
Extending ITL with Interleaved Programs for
Interactive Verification

Gerhard Schellhorn
joint work with

Bogdan Tofan, Gidon Ernst, Kurt Stenzel,
Wolfgang Reif, Michael Balser, Simon Bäumler

Institute for Software and Systems Engineering
University of Augsburg

TIME, Lübeck, 13.9.2011

Background: Development of Correct Software

General Setting:

Specification of Software Systems with:
Algebraic Specification, Z,
Abstract State Machines (ASMs)

Incremental Refinement of Designs:
Algebraic, Data, ASM Refinement

Verification of refinements:
Tool support with KIV Interactive Verifier

Background: Proving Sequential Programs with KIV

KIV is an interactive theorem prover based on

Structured algebraic specification
of data types with higher-order logic

Sequent calculus with proof trees

wp-calculus for ASMs and Java

Proof principle for sequential programs:
symbolic execution (+ induction) [Burstall 74]
(= incremental computation of
strongest postconditions for instructions)

Concurrent systems: What Logic to use?

Define a general logic which

allows proofs for arbitrary properties: safety, liveness,
deadlock, fairness, refinement (trace inclusion)

can handle systems specifications
that use abstract data types
⇒ interactive proving approach

provides modular support for various forms of concurrency:
Programs with interleaving (“threading”)
Synchronous and asynchronous programs
Harel- and UML-Statecharts
(no encoding to transition systems)

Concurrent systems: What Calculus to use?

Define a calculus where

proving properties (e.g. contracts) for sequential programs
should not be more difficult than using wp-calculus

compositional reasoning (e.g. rely-guarantee) is supported,
as otherwise concurrency generates too many cases

Content of my talk:

One particular answer to choosing a logic and a calculus,
based on ITL [Moszkowski 00].

Some applications for interleaved programs.

Outline

The Logic RGITL
Compositional interleaving
A semantics with system and environment steps
Integration with HOL

Proof principles in RGITL
Symbolic Execution
Induction
Rely-Guarantee

Application: Lock-Free Algorithms
Motivation
Simple Example: Treiber’s Stack
Linearizability and Lock-Freedom

Experiences, Future Work

Why base the logic on ITL?

+ ITL directly offers termination/nontermination
by using finite & infinite intervals

+ ITL is (easily) compatible with higher-order logic.

+ ITL offers the concept: programs ⊆ formulas.
The semantics of both is a set of intervals.

− Some small extensions are needed:
Is variable M in the program N := t?
Recursive procedures

− ITL does not offer a concept for interleaving.

Interleaving: Informal Semantics

Interleaved program {N := N2; N:= N2} ‖ N := N + 1 started with N = 2:

N = 17 N = 25 N = 81
↑ STEP ↑ STEP ↑ STEP

N = 16,N := N + 1 N := N2,N = 5 N = 9,N := N2

տ STEP ր ↑ STEP
N = 4,N := N2 ‖ N := N + 1 N = 3,N := N2;N := N2

տ STEP ր
N = 2, {N := N2;N := N2} ‖ N := N + 1

Weak Fairness:

{while N 6= 0 do N := N + 1} ‖ N := 0 terminates

Interleaving and Compositionality

A substitution rule is basic for a calculus to scale:

α→ A β → B A⊕ B → C
α⊕ β → C

holds in ITL for ⊕ = sequential composition
and other operators (similar to Hoare calculus)

ideally, third premise should be trivial

should hold for ⊕ interleaving too!

Example for Noncompositional Interleaving in ITL

In classical ITL:

{while∗ N 6= 0 do N := 0}↔ {if∗ N 6= 0 then N := 0} (1)
(the star indicates, that the test does not take time)

Example for Noncompositional Interleaving in ITL

In classical ITL:

{while∗ N 6= 0 do N := 0}↔ {if∗ N 6= 0 then N := 0} (1)
(the star indicates, that the test does not take time)

Using the substitution rule:

{while∗ N 6= 0 do N := 0} ‖ {while∗ N 6= 1 do N := 1} (2)
↔
{if∗ N 6= 0 then N := 0} ‖ {while∗ N 6= 1 do N := 1} (3)

which is wrong:
(2) has nonterminating runs, which alternate between the loops
(3) terminates, since at some time N := 0 is executed

Example for Noncompositional Interleaving in ITL

In classical ITL:

{while∗ N 6= 0 do N := 0}↔ {if∗ N 6= 0 then N := 0} (1)
(the star indicates, that the test does not take time)

Using the substitution rule:

{while∗ N 6= 0 do N := 0} ‖ {while∗ N 6= 1 do N := 1} (2)
↔
{if∗ N 6= 0 then N := 0} ‖ {while∗ N 6= 1 do N := 1} (3)

which is wrong:
(2) has nonterminating runs, which alternate between the loops
(3) terminates, since at some time N := 0 is executed

The problem is, that equivalence (1) ignores effects of the
environment of the program

RGITL: Intervals with Environment Steps

Basic idea: environment steps between program steps

Semantics is based on Intervals I =
sequence of states (I(0), I′(0), I(1), I′(1), . . .)

state = valuation of variables

I has finite (termination!) or infinite length # I ∈ IN ∪ {∞}

I alternates system steps (I(0),I′(0)), (I(1),I′(1)), . . .
with environment steps (I′(0),I(1)), (I′(1),I(2)), . . .
(similar to reactive sequences [deRoever 01])

Programs determine system steps only

Primed and double primed (flexible) variables are needed:
X, X′, X′′ denote the value of X in I(0), I′(0), I(1)
(X = X′ = X′′ in final states by convention)

Semantics of the Example in RGITL

The semantics of while∗ N 6= 0 do N := 0 now are intervals
where N has values (ni 6= 0):

(0)

(n0, 0, 0) /* first env step does not change N */

(n0, 0, n1, 0, 0) /* env sets N to n1 */

(n0, 0, n1, 0, n2, 0, 0)

. . .

Nonterminating run (n0, 0, n1, 0, n2, 0, . . .)

⇒ The two programs are not equivalent

But: equivalence is provable with environment assumption:
(2 N′′ = N′)→
({while∗ N 6= 0 do N := 0}↔ {if∗ N 6= 0 then N := 0})

RGITL: Syntax

Extends simply types lambda-expressions with

static (x) and flexible variables (X,X′,X′′)

formulas (= expressions of type bool) with:
3, 2, until, A, E /* all paths/exists path */,
◦ , • /* strong/weak next state */,
last /* termination */, ; /* chop */, * /* star */
‖, ‖nf /* weak fair/nonfair interleaving */,
p(T;Y) /* procedure call with input an in-out parameters */

TL and HOL operators can be freely mixed

RGITL: Semantics

Expressions are evaluated over algebras
(constructed as models of algebraic specs.)
and an interval I = (I(0),I′(0),I(1),. . .)

If formula ϕ evaluates to true, write: I |= ϕ

TL Operators have standard semantics:
(I(0), I′(0), I(1), I′(1), . . .) |= 2 ϕ

iff for all n ≤ # I: (I(n), I′(n), I(n + 1), I′(n + 1), . . .) |= ϕ

I |= A ϕ iff for all J with J(0) = I(0): J |= ϕ

I |= last iff I = (I(0))
(I(0), I′(0), . . .) |= ∃ X. ϕ

iff ex. (a0,a′

0, . . .) with (I(0)[X← a0], I′(0)[X← a′

0], . . .) |= ϕ

Programs in RGITL

Programs α are formulas too:
I |= α⇔ the system steps in I are possible steps of α

Programs: parallel assignments X := T,
sequential (let, while, or, choose, rec. procedures) +
α ‖ β (interleaving), await C (block until C holds)

Programs α are placed in a frame assumption [α]X,Y

to indicate which variables are fixed in assignments
(similar to TLA [Lamport 94], but no built-in stuttering)

[X := T]X,Y ↔ X′ = T ∧ Y′ = Y ∧ ◦ last

Typical goal: α ∧ E→ P
“Executing α in environment E satisfies P”

Semantics of Interleaving

Interleaving of two programs (or formulas) α and β
is defined compositionally, by interleaving individual
intervals⇒ substitution rule is valid!

Assume I1 |= α, I2 |= β

Interleaving gives all intervals I which have
Interleaved system steps from I1 and I2 (fair)
The environment steps of I1 (I2) are the relevant alternating
sequences of env. steps and system steps of β (α) in I

env βα αenv

I1 env of α α

β env of β

env

envI

I2

α

Formal def. in paper, including blocked steps (tricky):
await ϕ ≡ while* ¬ ϕ do blocked

Outline

The Logic RGITL
Compositional interleaving
A semantics with system and environment steps
Integration with HOL

Proof principles of RGITL
Symbolic Execution
Induction
Rely-Guarantee

Application: Lock-Free Algorithms
Motivation
Simple Example: Treiber’s Stack
Linearizability and Lock-Freedom

Experiences, Future Work

Proof principle 1: Symbolic Execution

Symbolic execution = Step forwards through an interval

Advantage: no encoding of programs as transition systems
with program counters (as in Step, TLA or Model checking)
⇒ readable goals

Symbolic execution is done in two phases:
Unwinding and Stepping to the next state

Symbolic Execution: Unwinding (1)

Splits formulas ϕ with X = free(ϕ) into formulas
p(X,X′,X′′) describing the first step
◦ ψ describing properties of the rest of the run

Termination gives formulas of the form q(X) ∧ last

examples:
2 ϕ ≡ ϕ ∧ • 2 ϕ

• ϕ ≡ last ∨ ◦ ϕ

[X := T ;α]X ,Y ≡ X ′ = T ∧ Y ′ = Y ∧ ◦ [α]X ,Y

[let X = T in α]Y ≡ ∃ X .(X = T ∧ [α]X ,Y ∧ 2 X ′ = X ′′)

[choose X with ψ ≡ ∃ X .(ψ ∧ [α]X ,Y ∧ 2 X ′ = X ′′)

in α ifnone β]Y ∨ (¬ ∃ X .ψ) ∧ [β]Y

Symbolic Execution: Unwinding (2)

To unwind interleaving and compounds unwind subprograms:

If α ≡ p(X ,X ′,X ′′) ∧ ◦ α′ then

{α;β} ≡ p(X ,X ′,X ′′) ∧ ◦ {α′;β}

{α ‖ β} ≡ {α <‖ β} ∨ {α ‖> β}

{α <‖ β} ≡ p(X ,X ′,X ′′) ∧ ◦ {α′ <‖ β}

If α ≡ q(X) ∧ last then

{α;β} ≡ q(X) ∧ β

α <‖ β ≡ q(X) ∧ β

Symbolic Execution: Stepping

Stepping removes the first step of interval:
Instead of (I(0),I′(0),I(1),I′(1),. . .) consider (I(1), I′(1),. . .)

Use new static variables x0, x1 to store I(0)(X) and I′(0)(X)
of the old first step in I(1)(x0) and I(1)(x1)

p(x0, x1,X) ∧ ψ

p(X ,X ′,X ′′) ∧ ◦ ψ
step

q(x0)

q(X) ∧ last
last

Effect: computation of the strongest postcondition of the
first statement, weakened with environment assumption
⇒ sequential programs are executed as in wp-calculus

Temporal properties result in (often non-temporal)
additional goals for intermediate states

Proof principle 2: Induction

Proofs use induction over well-founded orders

Temporal induction reduced to well-founded induction by:
3 ϕ ≡ ∃ N. N = N ′′ + 1 until ϕ
“There is a number N of steps after which ϕ holds”

Note that N = N ′′ + 1↔ N ′′ = N − 1 ∧ N > 0

Proof of 2 ϕ by contradiction:
Assume a number N of steps after which ¬ ϕ holds
Proof is then by well-founded induction over N

Can be generalized to arbitrary safety properties
(e.g. sequential programs without local variables)

Induction to prove Fairness

Weak Fairness: In an interleaving α ‖ β, program α

eventually gets a chance to do a step (if not blocked)

In TLA: separate formula talking about encoded steps with
program counters⇒ not an option of RGITL

Alternative: General transformation of fair to unfair
interleaved programs using counters [Apt,Olderog 91]

In RGITL: Add an “α is scheduled flag” B:
{B :α ‖ β}↔ {α <‖ β} ∨ (¬ B ∧ {B :α ‖> β})

New Axiom: {α ‖ β}↔ ∃ B. 3 B ∧ {B :α ‖ β}

3 B allows induction!

Unfair interleaving satisfies almost the same axiom:
α ‖nf β ≡ (∃ B. 3 B ∧ {B :α ‖nf β})

∨ (β ∧ 2 (¬ blocked) ∧ E ∃ x. α)

E ∃ X. α: “there is at least one run of α” (X = free(α))

Proof principle 3: Compositional Reasoning

Substitution principle allows to abstract each program in an
interleaving to a property

In particular: Rely/Guarantee rules are expressible

Guarantee = Predicate for steps of a process G(X,X′)

Rely = Predicate on environment steps R(X′,X′′)

Program α satisfies R/G, iff:

α envenv α
⊆ R ⊆ R → ⊆ G

As a TL formula: R +
−→ G ≡ ¬ (R until (¬ G))

(not a special operator as in TLA [Lamport 94]!)

Proof principle 3: Compositional Reasoning

Basic principle:
Prove Ri /Gi for interleaved programs αi (i = 1,2)
Prove Gi → Rj for i 6= j , Ri transitive
Then: α1 ‖ α2 satisfies 2 G1 ∨ G2

Provable by using the substitution principle, with
A ≡ R1

+
−→ G1, B ≡ R2

+
−→ G2, C ≡ (X ′ = X ′′)

+
−→ G1∨G2

α1 → A α2 → B A ‖ B → C
α1 ‖ α2 → C

First two premises = Assumptions for the two programs

Third premise provable by induction, using
R +
−→ G↔ ∀ B. 3 B → (R ∧ ¬ B)

+
−→ G

Rely-Guarantee Theorem

Theorem

(1) pre ∧ COp1 → R1
+

−→ (G1 ∧ (last → post1))

(2) pre ∧ COp2 → R2
+

−→ (G2 ∧ (last → post2))
(3) G1 ∨ R → R2,G2 ∨ R → R1,G1 ∨ G2 → G
(4) reflexive(G1,G2), transitive(R1,R2)
(5) pre ∧ (R1 ∨ R2) → pre

then pre ∧ COp1‖COp2 → R +
−→ (G ∧ (last → post1 ∧ post2))

similar to [Xu,deRoever 97] (except cond. (5))

Their notation for (1): COp1 sat (pre, rely1, guar1, post1)

Deadlock freedom provable too (using blocked→ wait)

Outline

The Logic RGITL
Compositional interleaving
A semantics with system and environment steps
Integration with HOL

Proof principles of RGITL
Symbolic Execution
Induction
Rely-Guarantee

Application: Lock-Free Algorithms
Motivation
Simple Example: Treiber’s Stack
Linearizability and Lock-Freedom

Experiences, Future Work

Motivation

Multi-core processors getting more and more common
⇒ Concurrent algorithms more important than ever

Usually, concurrency is implemented using locks
(semaphores, synchronize in Java etc.)

Lock-free algorithms (also called nonblocking) are an
interesting class of algorithms that does not use locks

Instead they use CAS instructions (x86,Sparc, Itanium)
or LL/SC (Alpha,PowerPC)

Example: Treiber’s Stack

Defined in [Treiber 86]

Implementation of a global stack

Abstract view: Operations APush and APop

Implementation with algorithms CPush and CPop

Representation of stack as a linked list.

Treiber’s Stack - Push

CPush(v :Data; top : Pointer) {
n := new(Node);
n.val := v;
sucess := false;
while sucess = false do {

tmp := top;
/* other process .. */
/* .. may change top! */
n.next := tmp;
CAS(tmp, n, top)}

CAS(tmp, n, top; success) { /* atomic ! */
if∗ top = tmp

then { top := n, success := true; }
else success := false; }

tmp

n

top

Treiber’s Stack - Push

CPush(v :Data; top : Pointer) {
n := new(Node);
n.val := v;
sucess := false;
while sucess = false do {

tmp := top;
/* other process .. */
/* .. may change top! */
n.next := tmp;
CAS(tmp, n, top)}

CAS(tmp, n, top; success) { /* atomic ! */
if∗ top = tmp

then { top := n, success := true; }
else success := false; }

tmp

n

top

Treiber’s Stack - Push

CPush(v :Data; top : Pointer) {
n := new(Node);
n.val := v;
sucess := false;
while sucess = false do {

tmp := top;
/* other process .. */
/* .. may change top! */
n.next := tmp;
CAS(tmp, n, top)}

CAS(tmp, n, top; success) { /* atomic ! */
if∗ top = tmp

then { top := n, success := true; }
else success := false; }

v

tmp

n

top

Treiber’s Stack - Push

CPush(v :Data; top : Pointer) {
n := new(Node);
n.val := v;
sucess := false;
while sucess = false do {

tmp := top;
/* other process .. */
/* .. may change top! */
n.next := tmp;
CAS(tmp, n, top)}

CAS(tmp, n, top; success) { /* atomic ! */
if∗ top = tmp

then { top := n, success := true; }
else success := false; }

v

tmp

n

top

Treiber’s Stack - Push

CPush(v :Data; top : Pointer) {
n := new(Node);
n.val := v;
sucess := false;
while sucess = false do {

tmp := top;
/* other process .. */
/* .. may change top! */
n.next := tmp;
CAS(tmp, n, top)}

CAS(tmp, n, top; success) { /* atomic ! */
if∗ top = tmp

then { top := n, success := true; }
else success := false; }

v

?

tmp

n

top

Treiber’s Stack - Push

CPush(v :Data; top : Pointer) {
n := new(Node);
n.val := v;
sucess := false;
while sucess = false do {

tmp := top;
/* other process .. */
/* .. may change top! */
n.next := tmp;
CAS(tmp, n, top)}

CAS(tmp, n, top; success) { /* atomic ! */
if∗ top = tmp

then { top := n, success := true; }
else success := false; }

v

?

tmp

n

top

Treiber’s Stack - Push

CPush(v :Data; top : Pointer) {
n := new(Node);
n.val := v;
sucess := false;
while sucess = false do {

tmp := top;
/* other process .. */
/* .. may change top! */
n.next := tmp;
CAS(tmp, n, top)}

CAS(tmp, n, top; success) { /* atomic ! */
if∗ top = tmp

then { top := n, success := true; }
else success := false; }

v

? =

tmp

n

top

Treiber’s Stack - Push

CPush(v :Data; top : Pointer) {
n := new(Node);
n.val := v;
sucess := false;
while sucess = false do {

tmp := top;
/* other process .. */
/* .. may change top! */
n.next := tmp;
CAS(tmp, n, top)}

CAS(tmp, n, top; success) { /* atomic ! */
if∗ top = tmp

then { ; }
else success := false; }

v

tmp

n

top

Lock-Free Algorithms and their Use

Principle of lock-free algorithms:
read old data structure
prepare modified version
update with CAS. Retry on failure

Treiber’s Stack is one of the simplest algorithms
(inefficient for high loads; better: [Hendler et. al 04])

Lock-Free Algorithms exist for many data structures:
Queues [Michael, Scott 96], Hashtables [Michael 02], [Gao
et al 05], Linked Lists [Harris 01], [Heller 05]

Used for: process queues, indexes of data bases and Web
Servers, real-time 3D games, garbage collection

Java library supports CAS;
f implements lock-free data structures

Locks or no locks?

Advantages of using Locks:

Well understood, uniform principle
⇒ easier to verify than lock-free algorithms
(essentially: verify sequential algorithm)

Automatic checks for correct use of locks available

Simple lock-free algorithms are inefficient at high loads:
they waste processor time trying over and over

Disadvantages of using Locks:

Lock is a bottleneck (pessimistic strategy)

Deadlocks and priority inversion possible

What happens when the locking process crashes?

Safety: Linearizability

Defined in [Herlihy & Wing 90]

Scenario: Several processes (p,q,r), all
running algorithm COp in parallel (e.g. CPush ∨ CPop)

Informal definition: Parallel run must be equivalent
to a sequential run of AOp (APush ∨ APop)

retp(CPush)invp(CPush,a)

[a] APopq(a) []APushp(a) APushr (b) [b]

retq(CPop,a)

timeline

retr (CPush)invr (CPush,b)
invq(CPop)

[]

Decomposition of Linearizability

Theorem (Bäumler et al. 09)
If for all 1 ≤ p, q ≤ n, p 6= q:

(1) COpp → Rp
+

−→ Gp

(2) Gp → Rq , reflexive(Gp), transitive(Rp), R → Rp

(3) COpp(CS) ∧ 2 (Rp ∧ Abs(CS) = AS ∧ Abs(CS′) = AS′)
→ skip∗;AOpp(AS); skip∗

then COp∗

1‖ . . . ‖COp∗

n ∧ 2 R → AOp∗

1‖ . . . ‖AOp∗

n‖skip∗

COpp is a concrete algorithm (procedure)
that implements an atomic operation AOpp

R is the global environment assumption

Linearizability expressed as special case of refinement

Most linearizable algorithms allow reduction
to two representative processes⇒ reduction proved

Liveness: Lock-Freedom

For Treiber’s Stack:

CPush may have to retry over and over
⇒ one single process might be starved

Every time a retry is necessary, another CPush/CPop
must have succeeded and terminated

This is true, even if the scheduling is unfair, or
when a process crashes

Treiber’s stack satisfies property of Lock-Freedom:

As long as some operations are running, one of them
will terminate

Decomposition of Lock-Freedom

Theorem (Tofan et al. 10)
If for all 0 ≤ p, q, p 6= q:

(1) COpp → Rp
+

−→ Gp

(2) Gp → Rq , reflexive(Gp), transitive(Rp), R → Rp

(3) reflexive(U), transitive(U), R → Rp ∧ U
(4) COPp(CS) ∧ 2 Rp

→ 2 (¬ U(CS,CS′) ∨ (2 U(CS′
,CS′′)) → 3 last)

then COP∗

0 ‖ . . . ‖COP∗

n ∧ 2 R → 2 progress

where progress = “some operation active → some operation terminates”

Predicate U (“unchanged”) describes conditions under
which COPp(CS) terminates in environment Rp.

At any time, COPp eventually terminates (3 last), if:
It updates the shared state itself ¬ U(CS,CS′), or
It encounters no interference 2 U(CS′,CS′′)

Theorem holds for weak fair and nonfair interleaving

General Experience with the Calculus

Symbolic execution is natural to verify even concurrent
programs:
− rest of the program directly visible
− feels much like debugging

Main new difficulty for proofs is to determine the correct
Relys and Guarantees (similar to invariants) in advance
⇒ Add techniques to automatically infer them

We’ve done some significant case studies already:
Hazard pointers for lock-free algorithms [⇒ tomorrow]
Medical protocols with synchronous parallel hierarchical
plans [Protocure 06]

Calculus is not yet as easy to use or automated as the
wp-calculus for sequential programs (takes time and
experience)

Some Open Issues

Guarantees often hold in a certain section of the code:
currently boolean variables must be added manually
⇒ labels would be helpful, but are incompatible with chop:
α;{L : β}: final state of α and first of β disagree on L

express general refinement modulo stuttering

Prove general commuting diagrams for forward and
backward simulation (bounded nondeterminism!)

Completeness in general is open
(complete fragments of ITL and RG)

Proving Lock-Free Algorithms

Calculus is adequate to show correctness of proof
obligations (POs) as well as proving instances of the POs
for case studies

Automation is not as high as in related work:
Automatic checking of linearizability for short operations
sequences with model checking [Alur10]
Automatic proofs for some algorithms using RGSep
[Vafeiadis01]

Nevertheless, the algorithms we check are already more
difficult than those that have been proved automatically

Current Work on Lock-Free Algorithms

Support for Heap modularity is often beneficial
⇒ develop library with a lightweight embedding of
separation

Open issue: good frame rule for temporal logic?

Generalize proof obligations (POs) for linearizability
(POs shown require lin. points within executing thread
⇒ complete POs for arbitrary lin. points

Major Challenge:
Interleaving assumes sequentially consistent memory, but:
Processors use weak memory models
(and Javas much debated memory model is even weaker)

