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Abstract

This thesis presents the high-level temporal specification language SALT (Struc-
tured Assertion Language for Temporal Logic), designed for the comfortable
creation of concise specifications to be used in model checking and runtime ver-
ification. Unlike other specification languages, SALT does not target a specific
domain.

Besides the common temporal operators, SALT provides exception operators,
counting quantifiers and support for simplified regular expressions, as well as
scope operators, allowing to express that a property has to hold before, after
or in between some events. Frequently occurring patterns can be defined as
parameterisable macros and can be used in a similar way as operators of the
language. A timed extension allows to express real-time constraints.

In contrast to many proprietary specification languages, SALT can be trans-
lated into LTL—or in the case of real-time properties into TLTL—and thus be
used as a front end to existing verification tools. A compiler performing this
task has been implemented and is presented in this thesis. Experimental results
show that the higher level of abstraction SALT provides does not come at the
expense of efficiency—rather, on the contrary.
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Chapter 1

Introduction

Developing a hardware or software system inevitably means producing errors,
with consequences reaching from annoyance for the users of an erroneous soft-
ware to the death of humans caused by wrongly controlled devices (e. g., [LT93]).
Among the numerous techniques for finding defects, formal methods like model
checking [VW86, CMO05] can prove automatically and with absolute certainty
that a system satisfies a given set of properties. This is an obvious advantage
over traditional testing, which can merely show the presence of defects, but
never their absence [DDH72].

Still, formal methods are often disregarded in industrial practice. One ob-
stacle, the feasibility of model checking for real-world systems, has been tackled
in the past years with increased computing power, significantly improved algo-
rithms and alternative approaches like runtime verification [CMO05]. Another
barrier, still hindering the practical application of formal methods, is the lim-
ited usability of the specification formalism. Temporal logics, especially linear
temporal logic (LTL) [Pnu77, MP92], are traditionally used to express the de-
sired temporal properties of a system in a formal way. However, complex LTL
formulae are quite difficult to write—mnot only for novices but also for experi-
enced users—and they are often not very intuitive. Consider for instance the
requirement

“s precedes p after ¢”
found in [DAC99] and its representation in LTL
(O-q) v Ol (=p W s)).
We can note three things about this formula:
1. It does not resemble much the initial requirement.

2. q appears twice in the formula although it is mentioned in the requirement
only once.

3. The formula is wrong (as we will see in chapter 3.1).

The latter is probably the worst—of what use is the formal verification of a
system against a specification, if the specification itself is erroneous?



CHAPTER 1. INTRODUCTION 2

Still, LTL has two significant advantages that justify its use: first, it has
a well-accepted precise semantics, a precondition for the application of formal
verification methods. Second, powerful model checking and runtime verification
tools that process specifications in LTL exist already.

This thesis relies on the conviction that LTL is in general a suitable for-
mal basis for the creation of formal specifications, but located on a level of
abstraction too low for comfortable use in daily practice. A model for resolving
this problem can be found in the field of programming languages: for decades,
new languages have been built atop of lower level languages, raising the level
of abstraction while keeping the lower level as a well-accepted basis and as an
interface to existing tools. Compilers hide the complexity of the translation pro-
cess (e.g., UML model to C++, C++ to C, C to assembler code, assembler code
to binary code) from the users. In this work, we will apply the same approach
to specification languages and design a higher level specification language that
can be translated into LTL with the help of a compiler.

Contribution

This thesis proposes a new general purpose temporal specification language
called SALT (Structured Assertion Language for Temporal Logic). In order to
be comfortable for engineers, this language was designed to resemble natural
language and common programming languages. It aims at providing the ab-
stractions and operators necessary for the creation of concise specifications. A
timed extension permits the expression of real-time constraints.

Untimed SALT is completely translatable into LTL. TLTL [D’S03], an effi-
ciently decidable real-time logic, is used as target language for the timed ex-
tension. LTL is preferred over CTL (i.e., linear time over branching time) for
mainly two reasons: CTL is inherently unsuitable for runtime verification, as
observed traces are linear instead of tree-like, and it is less intuitive than LTL
[Var01].

A compiler performing the translation has been implemented and is pre-
sented in this thesis. Experimental results show that the higher level of abstrac-
tion SALT provides does not come at the expense of efficiency—rather, on the
contrary.

Related approaches

Various high-level specification languages (e.g., Sugar/PSL [Acc04] and For-
Spec [AFFT02]) have been developed in the hardware domain, where formal
verification techniques can be applied more easily (because of a smaller state
space), and where they are successfully used by the industry. Those languages
are however focused on hardware design and aimed as front ends to proprietary
verification tools. They are therefore not apt for translation into LTL.

Dwyer et al. [DAC99] have analysed real-world specifications and developed
a pattern system for property specification, similar to design patterns encoun-
tered in software engineering [GHJV94]. Patterns allow inexperienced users to
profit from expert knowledge. The specification patterns focus especially on
requirements that are limited to a scope, i.e., that have to hold before, after
or between some events. Unfortunately, patterns cannot be combined freely,
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and provide only little help for new requirements not contained in the pattern
catalogue.

Both Sugar/PSL and the pattern approach have deeply inspired this thesis,
as they represent sound knowledge about the needs of the users.

Outline

This thesis is organised as follows:

e Chapter 2 introduces the necessary preliminaries and formalisms, in par-
ticular LTL and TLTL.

e Chapter 3 describes existing specification formalisms and discusses their
advantages and drawbacks. From the discussion we derive goals for the
development of a new specification language.

e Chapter 4 presents the main features of the new specification language
SALT. Furthermore it describes in detail how a mapping to LTL can be
obtained for two important non-trivial aspects, namely the scope operators
and simplified regular expressions.

e Chapter 5 deals with the implementation of the SALT compiler.

e Chapter 6 presents and discusses experimental results on the efficiency of
the SALT compiler. In particular, it provides evidence that the additional
processing step does not increase model checking cost, but in most cases
even improves efliciency.

e Chapter 7 summarises the results and contributions of this thesis.

e The appendix contains the full language reference and compiler manual
for the SALT language, as distributed together with the compiler. Besides
the detailed description of the language, the manual includes installation
and configuration instructions as well as a tutorial and several example
specifications. Furthermore, it provides a complete mapping of SALT into
LrL and TLTL and thereby defines the formal semantics of the language.

Typographical conventions.

SALT specifications are written in typewriter style with bold keywords (e.g.,
variable | until ), while mathematical style and symbols (e.g., v, U) are
used for LTL expressions. A full list of LTL operators can be found in section
2.3. Placeholders for propositional formulae are denoted with italic lower case
letters (e.g., a,b). Temporal formulae are denoted with Greek letters (e.g.,

).
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Preliminaries

This chapter presents the context and preliminaries necessary for the under-
standing of this thesis, namely verification methods and temporal logic.

2.1 Model checking

Model checking [VW86, BRO5] is a formal verification technique, i.e., it can
prove that a system satisfies a specification. This is an obvious advantage
over traditional testing, which can merely show the presence of defects, but
never their absence [DDH72]. A model checking tool enumerates—explicitly or
implicitly—all reachable states of the system under scrutiny in an automated
way. The system is described by a model, usually a finite state automaton, which
can be derived from the system design (e.g., the program code) or written by
hand (e.g., in the verification language ProMeLa [Hol90]). The properties to be
verified are usually expressed by temporal logic formulae, from which Biichi au-
tomata are constructed for the verification process [VW86, Wol02, GOO01, Fri03].

Model checking suffers from the so-called state space explosion problem—an
exponential blow up of the state space—that occurs when combining the au-
tomata representing the system and the specified properties. Therefore model
checking is, in industrial practice, currently mainly employed for hardware de-
sign, embedded systems and communication protocols, where the state space
is usually not as big as for software systems. Substantial progress has however
been made in the optimisation of the underlying algorithms, and there is more
and more research in the application of model checking to software, even for
programs written in Java [CDHRO01, VHBPOO0].

The model checkers relevant for this thesis are NuSMV [CCGR99], a reim-
plementation of SMV [McM], and SPIN [Hol97]. Both tools can be downloaded
for freel.

2.2 Runtime verification

The application of model checking to large systems is often not feasible because
of the state space explosion problem. In these cases, runtime verification tech-

Lhttp://nusmv.irst.itc.it and http://www.spinroot.com
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niques [CMO5] offer an alternative approach. As in model checking, the desired
behaviour is specified in temporal logic and translated into an automaton, the
so-called monitor. Then, the system under test and the monitor are executed in
parallel, and the monitor is fed with output or events from the system (this might
require instrumenting the system under scrutiny with event-emitting code). If
the monitor detects a violation of the specification, it triggers an alarm signal.
In a productive environment, it might even take further action, like resetting
the system to a safe state. As a variation of the described on-line monitoring,
output from the system can be saved and analysed off-line later.

Of course, runtime verification cannot provide a proof of correctness, because
it examines only a few out of all possible execution traces. It is nevertheless a
useful technique where traditional testing does not yield the desired reliability
and model checking is not feasible. An advantage of runtime verification over
model checking is that it can test the implementation of a system in a real
environment, while model checking is limited to checking a model of the system
and thus cannot assure that the model is implemented correctly.

Various tools for runtime verification are described in [Dru00, BGHS04b,
HRO4, ABLS05]. An experimental comparison between different verification
techniques can be found in [BDGT04].

2.3 Temporal Logic

Linear temporal logic (LTL) [Pnu77, MP92] is a formalism for reasoning about
sequences of states. It extends propositional logic with temporal operators that
are based on a linear view of time. By way of contrast, temporal operators in the
branching time logic CTL [CE82] carry a universal or existential quantifier and
therefore consider all possible continuations of a sequence in the future. In this
thesis, LTL is preferred over CTL for two reasons: CTL is inherently unsuitable
for runtime verification, as observed traces are linear instead of tree-like, and it
is less intuitive than LTL [Var01].

Syntax. We define the set of LTL formulae over a set of atomic propositions
AP inductively as

p=T|pl-0|leAp|eUep|Op|eSp|ep

with p € AP. As in propositional logic, T, = and A are read as true, logical or
boolean not, and logical or boolean and. The operators U, S, O and ® are read
as until, since, next and previous.

Formulae that do not contain S or ® are called future formulae. Formulae
that do not contain U or O are called past formulae. Formulae that contain none
of U, O, S or ® are called state formulae or propositional formulae. Formulae
that do not contain O or ® are called stutter invariant.

Let ¥ = 247 be the alphabet of states over AP, w = agaias... € ¥ an
infinite sequence of states and i € Ny a position. Then w; describes the i + 1th
(counting starts at zero) state of w, and w® describes the suffix of w starting at
i (i.e., aja;41 ...). w,i = ¢ means that a sequence w satisfies the LTL formula
@ at position ¢. One can also say that ¢ holds or evaluates to true at position
i of w. When considering a propositional formula p as indicator of an event, a
position where p is satisfied is an occurrence of p.



CHAPTER 2. PRELIMINARIES

Semantics. The semantics of LTL is defined inductively as follows:

w,i =T
w,iE=p — pEw;
w, i = —p = w,ifEp
wiEeAY <= w,ikEypand w,iEY

. Yli<j: w,j k¢ and
wiEeUy Vkli <k <jiwkp
w,i = Op = w,i+1lEp

. Jjli>j5>0: w,jEvand
wiEeSY VE[i> k> jiw ko
w,i = ®p <~ iZ0and w,i—1FE¢p

Although past operators do not add expressiveness to LTL [GPSS80], their
use allows more concise and efficient formulae [Mar03].

Additional operators.
1 =T
eV =a(np )
poY =pVy
pot == UY)A W =)

Qp =TUyp

Uy =0y

e Wy = (pUy)V Oy
pRY  ==(mp U 1)

L J0) =TU¢p

1% =y

eBY =(pSy)Vv (M)
e Ty ==(p8S )
Oy =0-p

Furthermore, we define a number of abbreviations:

(read false)

read logical or boolean or)
read implies)

read equals)

read eventually)

read globally or always)

(

(

(

(

(

(read weak until or waiting for)
(read releases)

(read once or eventually in past)
(read historically or globally in past)
(read weak since or back to)
(read triggered)

(read weak previous)

W, B and @y are called weak operators in contrast to their strong equivalents
U, S and ®, because they do not require an occurrence of ¥ resp. the existence
of a previous step in the sequence. When reasoning over finite sequences, a weak
next operator Oy, can be defined similarly to weak previous.

The operators U, W, O, ¢, S, B, B and ¢ defined here are all reflexive or
non-strict. This means they consider the present as part of both future and
past. One can also define strict or non-reflexive variants of these operators, like
for example ¢ U ¢ := O(p U v). We will, however, not use them in this work.
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2.4 LTL on finite sequences

Normally, LTL formulae are defined over infinite sequences. However, there are
two reasons for considering finite sequences too. First, when performing incom-
plete verification methods (like runtime verification), only a finite, incomplete
sequence can be observed and must be sufficient for a decision. Second, speci-
fications may contain the requirement that the evaluation of a formula can be
aborted on occurrence of a certain event, or that a formula has to be fulfilled be-
fore a certain event. These situations can be imagined as evaluating the formula
on a sequence that has been truncated at the moment when the event occurs.

Incomplete sequences in runtime verification. Finite sequences in run-
time verification can be dealt with in two ways. On the one hand, the formula
can be modified by replacing all strong operators with weak operators [EFH'03].
This makes that for example an until expression does not fail as long as it could
be satisfied by an extension of the sequence. Having to change the formula is
however a clumsy, unsatisfying solution. On the other hand, 3-valued semantics
can be defined for LTL on finite sequences that allow the verification tool and
its underlying automaton not only to output true or false, but also inconclusive
for sequences that do not yet allow a final judgement [ABLS05].

Truncated sequences. The meaning of LTL on truncated sequences is ex-
plored in [EFHT03] and presented shortly in the following. On the one hand,
truncation can be performed under connected strong and weak views. On the
other hand, truncation can also be seen under a neutral view.

Strong and weak truncation. On a sequence truncated under the weak
view, a formula evaluates to true if there is no evidence in the truncated sequence
against it. This implies that Op is always true on such a truncated sequence
(because it could still be satisfied by a later occurrence of p)%. Op is true
only if p = T throughout the whole sequence. Under the strong view a formula
evaluates to false unless there is evidence in the truncated sequence that satisfies
the formula. This implies that (p is always false in such a truncated sequence,
and that Qp is only true if there is a state in the sequence that satisfies p.

In other words: a pending formula ¢ (i.e., a formula that has U or O op-
erators referring to states beyond the truncation) yields true resp. false when
evaluated in a sequence truncated under the weak resp. strong view. Weak and
strong view are dual to each other: negation switches from weak to strong and
vice versa.

Truncation of a sequence under the weak and the strong view is connected
to the accepton and rejecton operators described in [ABKV03]. They truncate
a sequence on occurrence of an abort condition. It is possible to translate a
formula containing accepton and rejecton operators into pure LTL using the
definition in [ABKVO03], hence they do not add expressiveness to LTL. The
definition of accepton and rejecton will be used in section 4.3.5 of this thesis.

2Even L is true on a sequence truncated under the weak view, although this formula
can of course never be satisfied. The Sugar 2.0 Language [BBDET01], on which the Accellera
Property Specification Language PSL is based, contained an abort operator with different
semantics, which was considered too difficult to be implemented [ABKV03] and therefore
changed for version 1.1 of PSL [Acc04].
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Neutral truncation. While the weak and the strong view evaluate any
pending formula to true resp. false on occurrence of the abort condition, the
result of neutral truncation is based on what can be reasonably expected from
a truncated sequence: Op evaluates to false if there is no state satisfying p,
as there is no evidence that p would eventually hold. [p evaluates to true if
p is satisfied throughout the sequence, as there is no evidence that p would
eventually not hold. Truncation under the neutral view will be used in section
4.3.5 for defining a stop operator that is needed to translate properties of the
form “p before b”.

2.5 Timed LTL

Various extensions of LTL have been proposed in order to express real-time
constraints. The most prominent include TpTL [AH94], MTL [Koy90] and MITL
[AFH96]. A choice has to be made between discrete modelling of time (e.g.,
time represented by natural numbers) and dense modelling of time (e. g., time
represented by real numbers), and between pointwise semantics (each state is
attributed a time value and formulae are evaluated at a position i € Ny) and
interval semantics (each state is attributed an interval of time and formulae
may be evaluated at any time ¢ € R) [BCMO05]. Alur and Henzinger provide a
good overview in [AH92].

However many of the real-time logics mentioned above are hard or impossible
to decide. We will therefore use another real-time logic called TLTL (also Timed
LtLr) [D’S03] in this thesis.

Syntax and semantics of TLTL. TLTL extends LTL by two operators >..¢
and <..p (read event predicting operator and event recording operator) with
~€{<,<,=,>,>} and c € R}
Let w be a timed sequence, i.e., a sequence where each state w; is attributed
a time stamp 7;. Then the semantics of the event predicting and event recording
operator are defined as follows:
djli<j: w,jEpand
W, Dy = VEli <k <j:w, ke and
Tj — Tp ~ C
Jjli>j>0: w,jE¢and
W, E <oy = VEli > k> j:w, k= ¢ and

T — Tj ~ C
The semantics of the other operators remain the same.

Expressiveness of TrrL. TLTL is based on State Clock Logic proposed by
Raskin and Schoebbens in [RS97, RS99] 2. TLTL is less expressive than other
extensions like MITL [RS97]. For example, the MITL formula (10p (“There
is an occurrence of p after more than 1.0 time units, although there might also

3The semantics of >~cp and <J~ep defined in [RS97] are slightly different. The semantics
used here appear in [RS99], with both operators being strict instead of non-strict. This allows
the specification of properties like [J(p — >=1.0p) that could not have been expressed before,
as the > operator would have always matched the current p.
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be occurrences of p before that”) cannot be expressed in TLTL, because >p can
only reason about the next occurrence of p. Many real-world requirements can
be formulated in TLTL, though [RS99).

D’Souza has shown in [D’S03] that TLTL corresponds directly to the first-
order fragment of monadic second order logic interpreted over timed words.
Because formulae expressed in LTL correspond to properties defined in first-
order logic over words [Kam68], TLTL is a natural real-time extension of LTL.

TLTL is decidable and can be translated into Event Clock Automata [AFH94,
RS99]. Therefore it is suitable for model checking and runtime verification. A
runtime verification framework based on TLTL is being developed [ABLS05].

Additional operators. We define a number of abbreviations:
eUcct® =(pUY)A[WVEc))
Omctp =V eyt
Unep = =0ncmp
e Weey =(pU)VDOcp
©Suc®  =(pSY)A (V<))
oo =V ducp t
It = e
pBc =(pSyY)VR_ o

~ is restricted to be either < or <. This ensures that the semantics of ¢ U, 9
in TLTL are similar to those in Mi1TL, MTL and TPTL.

4n [RS99], O~ is defined as T U~ ¢, which is an abbreviation for (T U @) A(pVD>rcy).
The definition used here is semantically equivalent but shorter.



Chapter 3

Discussion of existing
specification formalisms

This chapter provides an overview of existing temporal specification languages
and formalisms and discusses their strengths and drawbacks. From the discus-
sion we then derive several design goals for a new specification language.

3.1 Temporal logic

Temporal logic, as presented in the previous chapter, can be seen as a starting
point for the development of most formal temporal specification languages. In
the following we concentrate on LTL, i.e., on a linear view of time.

3.1.1 Advantages

Clearly defined semantics. Being based on logic, LTL has clearly defined
semantics and can be reduced to a small set of core operators, which makes it
suitable for formal proofs. This is a big advantage over semi-formal or informal
specification methods.

Existing tool support. The semantics of LTL is well accepted, and it is
understood by a broad range of verification tools. For instance, the SMV [McM]
and SPIN [Hol97] model checkers use specifications based on LTL and CTL
syntax. For these reasons LTL is apt as a smallest common denominator for
connecting different tools, a task that is hard to perform with a language whose
semantics is disputable or subject to change.

3.1.2 Drawbacks

Low level of abstraction. LTL operators allow the specification of require-
ments only on a rather low level of abstraction. Consider for example the
requirement

“A proposition p becomes true at most two times
before the occurrence of end condition r”.

10
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A translation to LTL of this rather simple property yields

(0r) = ((p A=) U (rv((pA=r) U (rv((zpA-r) U
(rv((eA=r)U (rv(=pUr))))))):

This formula does not reflect the initial requirement in an intuitive way.
Understanding and changing such a formula is difficult.

Some research papers and tools define LTL with a minimalistic set of oper-
ators in order to simplify proofs and implementation, at the cost of usability.
For example, past operators are often disregarded, although they allow more
succinct formulae [Mar03], and neither SMV nor SPIN provides the weak until
operator W.

Unnecessary repetition of sub-expressions. Many LTL-based tools do
not allow the definition of abbreviations for recurrent sub-expressions. This is
particularly painful as LTL offers only a small set of operators and all other
operators have to be constructed from this basic set, which usually involves
repeating sub-expressions in the formula.

In the formula mentioned above, the proposition p appears five and the
proposition 7 even ten times. Working with this kind of formula becomes really
complicated if p or r are not atomic propositions but more complex expressions,
because then one first has to find out which parts of the formula form the
sub-expressions.

Proneness to errors. Writing LTL formulae is difficult, not only for novices
but also for experienced users. Even relatively simple requirements sometimes
contain pitfalls that lead to defects in the specification. Consider for instance
the property

“s precedes p after ¢”.
We can find the following mapping to LTL in [DAC99]:
O=¢) VOlaA(=p W s))

At first sight, this formula looks correct (“either ¢ never holds or, when ¢ be-
comes true, there is no p before an s”). Nevertheless, the formula contains a
subtle error: it states that eventually g A (—p W s) holds, but does not require
it to be the first occurrence of q. The sequence qPQs satisfies the formula,
although it is clear that it should not. The correct formula would be

(B=¢)V—qU (gNA(=p W 3)).

Avoiding this kind of mistake in specifications altogether is practically impos-
sible. The minimalistic set of operators available in LTL however intensifies the
danger, as it forces users to build complex, error-prone formulae for even very
simple requirements, as can be seen above.
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Symbolic instead of named operators. Many verification tools, like SMV
or SPIN, use an LTL syntax based on symbols rather than textual operator
names. This saves time for experienced users who are familiar with logics and
who want to write down a formula quickly. It might also simplify parsing a
little. However, the resulting formulae are much more difficult to understand
for novices, because the gap between a requirement in natural language and the
formal specification is wider. Compare for example the formula

(<>b) -> (llp)

and a specification in a formal pseudo-language

if eventually b then always p

to the requirement in simple natural language
“If eventually b occurs then p has to be true all the time”.

The second specification resembles much more the requirement in natural lan-
guage.

3.2 Pattern-based approaches

A pattern provides a solution to a recurrent problem, often including notes
about its advantages, drawbacks, and alternatives. It enables inexperienced
users to profit from expert knowledge. Furthermore, a pattern system can help
to establish a common terminology for a domain.

Design patterns have had great success in software engineering [GHIV94].

3.2.1 Specification Patterns and the Bandera language

Dwyer et al. propose a system of patterns for property specification [DAC99],
The patterns are based on a survey of real-world specifications and describe
frequently found properties. They consist of requirements (e.g., “absence”—a
condition is false or “response”—an event triggers another one) that can be
expressed under different scopes. The available scopes are “globally”, “before
an event r”, “after an event ¢”, “between two events r and ¢” and “after-
until”, which is similar to “between” but does not require the occurrence of the
second event. For each combination of requirement and scope, corresponding
parameterisable formulae in various formalisms (including LTL) are provided.
For instance, the “absence-of-p-before-r” pattern is expressed in LTL as

(©r) = (=p Ur).

Dwyer et al. convincingly argue that scopes are needed in many real-world spec-
ifications but supported by very few languages. However, specification patterns
as defined by Dwyer et al. cannot be nested: only propositional formulae may
be used as parameters. Adding a new requirement to the pattern system means
having to manually write an LTL formula for each scope.

The Bandera Specification Language [CDHRO1] uses a textual representation
of the specification patterns. A compiler that translates such specifications into
LrL is part of the Bandera system.
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3.2.2 Real-time specification patterns

Similar to the specification pattern system by Dwyer et al. [DAC99], Konrad
and Cheng define a pattern system for the specification of real-time properties
[KCO05]. They identify five frequently used real-time requirements (e. g., “maxi-
mum duration” — a condition p may not last more than ¢ time units) and provide
a translation under five scopes into various formalisms, including MTL. They
also provide a structured grammar that can be used to express the property
by a standardised English sentence. A mapping to TLTL is not included but
possible.

3.2.3 Discussion

Higher level of abstraction. Specification patterns deal with several of the
problems of LTL by raising the level of abstraction. This reduces the com-
plexity for the average user, as they no longer have to write LTL by hand. In
particular, expressing a requirement under the “before”’-scope becomes much
easier. Referring to the name of the pattern makes clear what the intention of
the specification is and frees the reader from the need to understand an LTL
formula first. The problem of repeating sub-expressions vanishes if the patterns
are used within a system that automatically instantiates a pattern for a given
set of parameters, as for instance the Bandera system.

Limited expressiveness. Although many requirements can be expressed by
one of the patterns or a variation, the expressiveness of the pattern system is
limited to known patterns. Users who face a new problem have to go back to
handwritten LTL formulae.

Furthermore, the five scopes proposed for the pattern system cover only a
few situations. For instance, scopes could be defined to include or exclude the
delimiting events (i. e., to form closed or open intervals). Various interpretations
are also possible for the case that a delimiting event never occurs. Dwyer et
al. describe (in the notes section of their pattern system) how to modify the
formulae to match these situations. However, this forces the user to either
work with a big predefined pattern catalogue that contains all combinations
of variations, or to modify the formulae by hand. The latter requires good
understanding of LTL and breaks up the pattern as a “black box” with a clearly
defined meaning and an error-free translation.

Limited freedom in the combination of patterns. The specification pat-
terns proposed by Dwyer et al. cannot be freely combined. While propositional
formulae may always be inserted as parameters, the use of temporal formulae
can lead to problems and often requires manual modification of the pattern. In
particular, nesting two patterns is usually not possible. This limits the expres-
siveness of the pattern system and forces users to write or modify LTL formulae
by hand for more complicated requirements.
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3.3 Specification languages from the hardware
domain

In the domain of hardware design, formal methods are used in industrial prac-
tice. Various domain-specific high-level specification languages have therefore
been developed, two of which—mnamely Sugar/PSL and ForSpec—are presented
in this section.

Both of them have higher expressiveness than LTL and hence cannot be
translated completely into LTL. Usually they are used together with specialised,
proprietary tools. Nevertheless, they deserve examination for our aim of defining
a high-level specification language that is translatable into LTL/TLTL, as the
set of operators they provide reflects practical experience with the needs of the
users. Also, some parts of those languages may be expressible in LTL although
the language as a whole is not.

The feature that usually prohibits translation of a language into LTL is the
inclusion of unrestricted regular expressions. Wolper has shown in [Wol83] that
there are properties that can be expressed using regular expressions but not in
LrL. Languages that nevertheless include regular expressions are usually trans-
lated directly into a Biichi automaton that is generated during model checking
anyway.

3.3.1 Sugar/PSL

The Sugar/PSL language is a high level specification language aimed mainly at
hardware design. Sugar [BBDET01] was developed since 1994 at IBM Haifa as
a “syntactic sugaring” of the branching time logic CTL. It was selected as a
candidate for a standard property specification language by the Accellera Formal
Verification Technical Committee in 1998. Sugar 2.0 was based on a linear
view of time while keeping branching time as an optional extension. It became
the Accellera Property Specification Language PSL [Acc04]. After some minor
corrections and modifications in version 1.1, PSL is undergoing standardisation
by the IEEE [FMWO05].

PSL is structured into four layers (boolean, temporal, verification and mod-
elling). The boolean layer provides operators for propositional logic, while the
operators of the temporal layer are used to combine propositional formulae to
temporal ones. The verification layer allows to define what the verification tool
is expected to do with the specified properties (e.g., check that a property
holds, assume that a property holds etc.). The modelling layer, in turn, is used
to model the input to the design or external hardware.

In order to provide compatibility to different verification tools, PSL comes
in different flavors (SystemVerilog, Verilog, VHDL and GDL). Each flavor has
a slightly different syntax (mainly for the boolean and modelling layer) that is
adapted to the underlying hardware description language.

PSL provides a rich set of operators for reasoning over boolean conditions
(e.g., bit vector operations) and for regular expressions (named SEREs). A so-
called clocking operator allows to state that an expression is evaluated only in
steps where its clocking condition holds. The PSL abort operator can be used
to model resets: it evaluates a pending expression to false on occurrence of an
abort condition. Furthermore, PSL allows the use of macro directives similar to
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those of the C preprocessor. Parameterised properties can be instantiated for
a set of concrete values. PSL does not contain temporal past operators and no
means for specifying real-time constraints.

PSL is usually directly used as input to a verification tool, both for formal
verification and for generating checks that are executed by a simulation tool.
The latter corresponds to a runtime analysis of a simulated hardware design. A
translation of PSL into LTL is possible only for a subset of the language [TS05].

3.3.2 ForSpec/OpenVera™ Assertions

The ForSpec Temporal Logic (FTL) [AFFT02] is a temporal specification lan-
guage developed at Intel and based on a linear view of time. It is tailored to
the formal verification of hardware design. Much like Sugar/PSL, ForSpec pro-
vides regular and clocked expressions as well as accept and reject operators for
modelling resets. ForSpec also contains limited support for references to the
past. It does not address real-time properties. It has been included into the
OpenVera™ Assertions language [Syn02, Syn03]. ForSpec cannot be translated
completely into LTL, as it provides regular expressions.

3.3.3 Discussion

Hardware-specific features. Both Sugar/PSL and ForSpec contain various
features that are tailored to the verification of hardware design, like bit vector
operations and a clocking operator. Sugar/PSL even defines some of its syntax
depending on the underlying hardware description language. These features are
superfluous or even disturbing when using these languages as general purpose
specification formalisms.

Limited compatibility to LTL. Both languages include regular expressions,
which prohibit a complete translation into LTL. Restricting regular expressions
to a translatable subset seems feasible, but would probably remove a large set
of operators.

Lack of scope operators. Neither one of the languages provides good sup-
port for scope statements.

Sugar/PSL contains the operator next _event ;| which is similar to the “after”-
scope defined by Dwyer et al., and the operator before , which is similar to
the “existence-before” pattern. The operators exist in inclusive/exclusive and
weak /strong variants. Applying scopes to arbitrary expressions is however not
possible.

ForSpec provides the operators followed _by and triggers  that are sim-
ilar to the “after”-scope. A “before”-operator is missing.

No support for real-time constraints. Neither Sugar/PSL nor ForSpec
provide operators for the specification of real-time constraints.
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3.4 Other approaches

3.4.1 EAGLE

EAGLE [BGHS04b] is a temporal logic with a small but flexible set of primitives.
The logic is based on recursive parameterised equations with fix-point semantics
and three temporal operators: next-time, previous-time, and concatenation.
Using these primitives, one can construct the operators known from various
other formalisms, such as LTL or regular expressions. EAGLE also allows the
specification of real-time constraints. A subset with equal expressiveness as LTL
can be defined [BGHS04a].

3.4.2 Temporal Rover assertions

The Temporal Rover [Dru00] is a verification tool that checks temporal logic
formulae included as assertions in the source code of a program. The input
syntax is based on LTL and MTL and provides both textual (Always ) and
symbolic ([] ) syntax. It also contains two operators that allow statements
about the repetition of events.

The author is not aware of a compiler that translates Temporal Rover spec-
ifications into pure LTL. Implementing such a tool seems however possible.

3.4.3 Discussion

EAGLE. The fix-point semantics employed in EAGLE is rather difficult to
understand for novices without a mathematical background. Therefore, EAGLE
does not seem to be a promising basis for developing an easy-to-use specification
language.

Temporal Rover assertions. Temporal Rover assertions resemble LTL in
many aspects and do not add much comfort for the user.

3.5 Design goals for a new specification language

In the following we define a number of design goals for a new specification
language that shall remedy the weaknesses mentioned above.

High level of abstraction. The language shall provide a sufficiently high
level of abstraction. This can improve readability and reduce the probability of
introducing errors. It can also avoid repetition of sub-expressions. For instance,
the language should support scope statements.

Similarity to natural language or programming languages. Specifica-
tions shall be easy to read and to understand. This can be achieved if they
resemble natural language as much as possible without becoming ambiguous.
Similarities to programming languages ease the understanding of the language
for engineers.
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Avoiding implicit assumptions. Assuming a default meaning for an am-
biguous statement can shorten specifications, but may lead to misinterpreta-
tions. Because temporal specifications are usually small and rather complex, it
is more important to find as many errors as possible during compilation than
to reduce the number of characters a user has to type. Therefore, users shall be
forced to write down their requirements in an explicit and unambiguous way.

Extendability. The language shall provide the possibility to define macros in
a flexible way and to thereby extend the set of available operators. This enables
the user to adapt the language to different domains.

Real-time support. The language shall allow the specification of real-time
constraints, needed in particular for the verification of reactive systems. The
timed subset shall be clearly separated from the untimed subset, so that users
are free to choose whether they do or do not want to use real-time.

Translatability into LTL and TrTL. The untimed subset of the language
shall be completely translatable into LTL because a wide range of tools accepts
LrL formulae as input. The timed language shall be translatable into TLTL.

In order to make the practical usage of the language possible, the formulae
that result from the compilation process must be about as efficiently to check
as average handwritten formulae.



Chapter 4

Features of the SALT
language

A new specification language called SALT is developed in this thesis. SALT stands
for Structured Assertion Language for Temporal Logic. This chapter presents
the main features of SALT and describes in detail how a mapping to LTL can be
obtained for two non-trivial aspects, namely the scope operators and simplified
regular expressions. For a complete language reference, see the SALT manual in
the appendix. The manual also contains a translation schema that defines the
formal semantics of SALT, a tutorial and various example specifications.

All but section 4.4 of this chapter refers to the untimed subset of SALT,
which can be translated into LTL. Section 4.4 deals with the timed extension
and its translation into TLTL.

4.1 General structure

Assertions

A SALT specification contains one or many assertions. An assertion formulates
a requirement that is expected to be satisfied by the system under test. Each
assertion is translated into a separate formula, which can then be used in a
model checker or another verification tool.

SALT mainly uses textual operators, so that the frequently used LTL formula

O(p — 0q)

would be written as

assert always (p implies eventually q)

Layering

Basically, the SALT language consists of the following three layers, each covering
different specification aspects:

e The propositional layer provides the atomic, boolean propositions as well
as the well-known boolean operators.

18




CHAPTER 4. FEATURES OF THE SALT LANGUAGE 19

e The temporal layer encapsulates the main features of the SALT language
for specifying temporal system properties. The layer is divided into a
future fragment and a symmetrical past fragment.

e The timed layer adds real-time constraints to the language. Similar to the
temporal layer, it is divided into a future and a past fragment.

Within each layer, parameterised macros can be defined and instantiated.
Iteration operators allow the instantiation of parameterised expressions for a set
of concrete values.

The kind of formula that is generated from a SALT specification depends on
the layers that it comprises. If only operators from the propositional layer ap-
pear, the resulting formulae are propositional formulae. If only operators from
the temporal and the propositional layer are employed, the resulting formulae
are LTL formulae. If the timed layer is used, the resulting formulae are TLTL
formulae. The resulting formulae are pure future LTL/TLTL formulae if only op-
erators from the future fragments are employed, and LTL/TLTL+past formulae
if past operators are used.

4.2 Propositional layer

The propositional layer deals with boolean propositions and boolean operators.
All boolean operators can also be used to combine temporal expressions.

Atomic propositions

Boolean propositions are the atomic elements from which SALT expressions are
built. They usually correspond to boolean variables, signals or expressions of
the system under test.

Referring to boolean variables is simple: every identifier that appears in a
SALT specification and that was not previously defined as a macro or a formal
parameter is treated as an atomic proposition. This means it appears in the
output as written in the specification.

Also more complex expressions, such as predicates over integer numbers, can
be employed as boolean propositions, as long as a subsequent tool can evaluate
them to either true or false. Such complex expressions must be enclosed in "™
in a SALT specification and appear unchanged in the output. For example,

assert ‘"state!l=ERROR"

is a valid SALT specification and results in the output

LTLSPEC state!l=ERROR

The ability to process arbitrary text as atomic propositions makes the SALT
language independent from the domain of application and the models and tools
that influence the rest of the verification process. The SALT compiler can be
customised using proposition parser plugins performing checks and/or transfor-
mations on the atomic propositions. This allows to detect syntax errors rapidly.
For instance, a custom proposition parser could check that all propositions are
valid Java expressions.
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Boolean operators

The following boolean operators can be used in SALT:

Boolean operator | SALT operator

- ! or not

A & or and

\Y% | or or

— -> or implies orif -then -else
— <> or equals

The conditional operators if -then and if -then -else tend to make spec-
ifications easier to read, because if -then -else constructs are familiar to pro-
grammers of almost every language. Similar operator appear in the ForSpec lan-
guage. With the if -then operator, the example from above' could be rewritten
as

assert always (if p then eventually q)

4.3 Temporal layer

This section deals with the heart of the SALT language, the temporal layer. The
temporal layer consists of a future and a symmetrical past fragment. Although
past operators do not add expressiveness [GPSS80], they can help to write
formulae that can be understood more easily and processed more efficiently
[Mar03].

SALT provides a past operator for every future operator presented here,
including operators like occurring  or the scope operators. Future operators
are translated using only LTL future operators, and past operators are translated
using only LTL past operators. This leaves the user the choice whether they do
or do not want to use past operators (some model checkers, for instance SMV,
allow the use of past operators in LTL formulae, while others like SPIN do not).

In the following, we concentrate on the future fragment only.

4.3.1 Standard LTL operators

SALT provides the common LTL operators. Untimed SALT therefore has the
same expressiveness as LTL.

LTL operator || SALT
until

until weak
releases
always
eventually
next

coOw=a

1The example uses operators from both the temporal and the propositional layer.
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4.3.2 Extended operators

SALT also provides a number of extended operators that express frequently used
requirements. Some are rather simple abbreviations, but yield more intuitive
specifications (e.g., never ). Other operators provide a concise way to specify
requirements that are awkward to express in LTL, like for example the fact that
an event occurs a certain number of times in the future.

e never . The never operator is similar to always but requires that a
formula never holds. Sugar/PSL provides a similar operator.

e Extended until . SALT provides an extended version of the LTL U oper-
ator. The users can specify whether they want it to be exzclusive (¢ has
to hold until the moment 1) occurs) or inclusive (¢ has to hold until and
during the moment v occurs) 2

They can also chose whether the end condition is required (must eventually
occur), weak (may or may not occur) or optional (the expression is only
considered if the end condition eventually occurs).

The until  operator family of Sugar/PSL provides a similar choice be-
tween inclusive/exclusive and weak/strong end conditions.

e Extended next . Instead of writing long chains of next operators, the
users can specify directly that they want a formula to hold at a certain
step in the future. It is also possible to use the extended next operator
with an interval, e. g., specifying that a formula has to hold at some time
between 3 and 6 steps in the future 3.

A similar operator can be found in Sugar /PSL and—with less flexibility—
in Temporal Rover assertions.

4.3.3 Counting quantifiers

SALT provides two operators occurring  and holding  allowing to specify that
an event has to occur a certain number of times in the future. occurring  deals
with events that may last more than one step and are separated by one or more
steps in which the condition does not hold. holding considers single steps
in which a condition holds. Both operators can also be used with an interval,
expressing, e.g., the fact that an event has to occur at most 2 times in the
future. To express this requirement manually in L'TL, one would have to write

pW (pW (-p W (p W O-p))).

The corresponding SALT specification is written as

assert occurring [<=2] p

The occurring  operator is somewhat similar to the Repeated operator of
Temporal Rover assertions.

2This has nothing to do with strict or non-strict U: strictness refers to whether the present
state (i.e., the left end of the interval where ¢ is required to hold) is included or not in the
evaluation, while inclusive/exclusive defines whether ¢ has to hold in the state where 1) occurs
(i. e., the right end of the interval). Strict SALT operators can be created by adding a preceding
next operator.

3Note that this operator refers only to states at certain positions in the sequence, not to
real-time constraints.
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4.3.4 Exception operators

SALT includes the exception operators rejecton  and accepton that interrupt
the evaluation of a formula on occurrence of an exceptional abort condition.
rejecton  evaluates a formula to false if the abort condition occurs and the
formula has not been accepted before. For example, monitoring a formula {¢
when there has been no occurrence of ¢ yet would evaluate to false. The dual
operator, accepton , evaluates a formula to true if it has not been rejected
before.

Exception operators can be useful, for example, when specifying a commu-
nication protocol that requires certain messages to be exchanged but allows to
abort the communication at any time by sending a reset message. This would
be expressed in SALT as

assert (con_open and next (data until con_close))
accepton reset

Similar rejecton  and accepton operators can be found in ForSpec and
in PSL 1.1.

The translation of the exception operators uses an intermediate language
SALT--, in which most other SALT operators have already been replaced by
LrL expressions. Exception operators cannot be translated by simple pat-
tern replacement, but require weaving the abort condition into the whole sub-
expression. This can be done more easily if the set of operators in the expression
is small. The formal semantics of LTL enriched with exception operators opera-
tors (called Reset-LTL) is explored in [ABKV03], and—from a slightly different
point of view—in [EFHT03].

4.3.5 Scope operators

Many temporal specifications use requirements restricted to a certain scope, i.e.,
they state that the requirement has to hold only before, after or in between some
events, and not on the whole sequence [DAC99]. This can be expressed in SALT
using the operators upto (or before ), from (or after ) and between . Scope
operators in SALT can be used with arbitrary formulae, even with nested scope
operators. It is furthermore possible to specify whether the delimiting events are
part of the interval (inclusive) or not (exclusive) and whether the occurrence
of the delimiting events is strictly required or not. Figure 4.1 illustrates the
different scopes.

Scopes appear as an important issue in the specification pattern system and
the Bandera language. However, the pattern system is restricted to predefined
requirements. It does not allow nested scopes, and by default only certain com-
binations of inclusive/exclusive and required /optional delimiters. Some—but by
far not all—scopes can also be expressed in Sugar/PSL using the next _event
and before operators. The flexibility of the scope operators in SALT is a dis-
tinguishing feature of the language, and the author does not know of another
specification language that offers a similar degree of freedom.
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from excl a B >
from incl a [ >
upto excl bl >
upto incl bk >
between excl a, excl b B
between incl a, excl b >
between excl a, incl b B
between incl a, incl b [ ———— ]
0
f » Time
Present a b

B— State in which the formula is evaluated

—e State up to which the formula is evaluated

Figure 4.1: Inclusive and exclusive semantics of scope operators

Challenging properties of the upto operator

While it is possible to implement a translation of the from operator into LTL
relatively straightforward, the upto operator proves to be more difficult, as we
will see in the following example.

A specification

assert always @ upto b

expresses the fact that ¢ must hold always until the occurrence of end condition
b. A naive translation into LTL would be

© W b.

This translation is in order for a purely propositional ¢, but might be wrong
when temporal operators are used within . Consider for example
p:=p -> ( eventually S) yielding the formula

(p — 0s)Wb,

intending to say “p should be followed by s before b”. The sequence pbs is
a model for this naive translation, although S occurs after the end condition
b, which clearly violates our intuitions. In order to express the intuitively
expected semantics, the negated end condition b has to be inserted into the U
and O statements of ¢ in various places, for example like this:

(p—> (—|bU (—\b/\S))) Wb

Dwyer et al. outline this procedure in the notes of their specification pattern
system [DAC99]. It is however a lengthy and error-prone work if done manually.
In the following section, we therefore define the stop operator that allows us
to represent specifications like the example from above correctly and to auto-
mate their translation. The stop operator is introduced when translating upto
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and between operators into SALT-- (i. e., it never appears in a SALT specifica-
tion directly). It is then transformed into an LTL expression in a similar way as
the rejecton  and accepton operators.

The example from above yields a SALT-- formula like

((p — Os) stop b)Wb

with stop b expressing that (p — ¢{s) shall not take into account states after
the occurrence of b.

Formal derivation of a translation into LTL

The semantics of the stop operator can be imagined as evaluating the argument
@ on a sequence that has been cut on occurrence of the end condition b. A ¢
operator whose argument has not been satisfied yet when reaching the end of
the sequence evaluates to false. Consequently, a [1 operator whose argument
has not been falsified yet evaluates to true. This is exactly the semantics of LTL
on sequences truncated under the neutral view, which are defined in [EFHT 03]
as follows (with w being a truncated sequence # ¢ and i < |w|):

w,iEDp = DpeEw

w,i = = wilfEp

wiEeAY = wikFgpandwEy

w,i = Op — i<|w-landw,i+1kEp
wibeUy < 3jli<j<wl:(w;kv)and

Vi <k <j:(w k=)

We introduce two variants of stop: an exclusive one, which limits the eval-
uation of ¢ to the time before the step when b occurs, and an inclusive one,
which takes this step still into account. However, there is a problem with the
exclusive stop: If the end condition occurs immediately, we have to evaluate ¢
on an empty sequence. Empty sequences have a meaning under the weak/strong
view, but not under the neutral view. It is not clear whether p stop,. b should
be true or false if p and b occur simultaneously. SALT addresses this problem by
requiring the user to specify explicitly for an exclusive upto which semantics
they want, unless it can be concluded from the nature of .

Definitions. We define wy,. ;[ as the section of w that starts at position a
(inclusive) and goes up to position b (exclusive) and wy,.. 4 as the section of
w that starts at position @ (inclusive) and goes up to position b (inclusive).
Instead of an index b, we can also use the occurrence of an end condition cepq
as delimiter of the section, and write wi,...c,, [ T€SP- Wiq...c,, ) for the section
of sequence w beginning at position a (inclusive) and going up to the position
where cenq occurs (exclusive resp. inclusive). Only cenq at positions > a are
considered. If b = 0o or b > |w| or if cenq never occurs, the section is equal to

w®.

Inclusive semantics. We first deal with the inclusive variant of stop and
develop a translation schema that replaces the operator and its arguments by
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an LTL expression. As a base, we start with the semantics defined above and
rewrite it for sections of sequences delimited by two indices a and b (inclusive).
It is required that a < b, so that the section is not empty.

Wa..4) F P = pEw,

Wa..5) F 7@ = W e

W p) FONY = W) FOANWG. b EY
Wia..4) F O = a+1<bAWer1. FP
Wa.p) FeUY = Fjla<j<b:(wy.pFE YA

Vkla <k <j: (wp. .y E @)

The semantics for O and U can be rewritten by changing the comparisons
between positions into simple tests of equality.
w Eo = a#bAw Eet
la...b] ¥ l[a+1..0) = ¢

Wa.p) FeUv = Fjla<j: (wy. FYIA
(VEla <k <j:(wp.p EeANk#D))°

The equality tests can then be expressed by tests on the occurrence of an
end condition c.,q at position b using

a=b << cCeng €Wy, and aFb << cCeng & Wy

a < b is ensured automatically as we consider only c.,q at positions > a.
w[a...cend] ': OQD — (Cend ¢ wa) A (w[a+1...b] ': 90)

Wia...cend) ': 2 Uy = EU‘G' <j: (w[j-~~cend] ': w)/\
(Vhla <k <52 ((k.cona) 9N
(Cend ¢ wk)))

The right side of the equations can be expressed using LTL operators and
yield the following inductively defined translation function T () for the inclusive
stop operator:

T(p $tOPiner Cend) = p

T((—p) stopine Cend) = T(p stopi,a Cend)

T((p A1) stoDiper Cend) = T(p 8t0Pjner Cend) A T(Y stopiye Cend)
T((O¢) stobinel Cend) = (OT(p $toPjne Cend)) A "Cend

T((¢ U 1) stopiper cend) = (T( 8t0Piner Cend) A —Cena) U

T (’lr/) Stopincl Cend)

Exclusive semantics. The definition of the exclusive stop operator works
similarly. We start with the semantics of LTL on sections of sequences delimited
by two indices a (inclusive) and b (exclusive). It is required that a < b, so that
at least w, is contained in the section.

4a < b together with a # b ensures that a + 1 < b.
5a < b together with Vk|a < k < j : k # b ensures that j < b.
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Wb F P = pEw,

Wiq..o[ F = Wb P

Wa. s FOANY = Wa b FPAWa. o FY
Wia..5] F O = a+1<bAWep1. B F P
wa. o Fe Uy = Fjla<j<b:(wy. = Y)A

Vkla <k < j: (W o = ©)

In a similar way as before we rewrite the comparisons between positions into
tests of equality and replace the equality tests by tests on the occurrence of end
condition c¢g,q at position b. It is required that cenq € w, in order to ensure
that the sequence is not empty (a < b).

w[a...cend[ ': OQD — (Cend §Z wa+1) A (w[a—i-l...b[ ': (P)

Wa e EP UV = Fjla<j: (W e V) A (Cena & wj)A
(Vkla <k < j: (Wk...conal E PIN
(Cend g wk)))

We are now ready to define the translation function for the exclusive stop
operator. However, we have to deal with the problem of empty sequences, as
the above formulae are valid only for ce,q & w,. SALT resolves this problem by
constraining the argument of upto statements:

e weak variant: the users can specify explicitly that they want the expression
to be true if ceng occurs immediately. In this case, a Vceng is added. It
therefore does not matter what the rest of the formula evaluates to if cqng
is true.

e strong variant: the users can specify explicitly that they want the expres-
sion to be false if cep,q occurs immediately. In this case, a A—ceng is added.
It therefore does not matter what the rest of the formula evaluates to if
Cend 1S true.

e normal variant: if none of the above is specified, the argument of upto is
required to be one of

— ¢ U ¢ (the above definition of U automatically evaluates to false if
Cend Occurs immediately, and thereby fulfils the intuitively expected
semantics)

e A (if ¢ and 9 both recursively meet the same requirements)

- (if ¢ recursively meets the same requirements)

g, Op (automatically show the desired semantics when expressed
using U)

The translation for the exclusive stop operator is defined as follows:
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T p Stopexcl Cend) = p
T _‘90) StOPexcl Cend) = _‘T(QO StOPexcl Cend)

(
((
T((
((
((

¥ A ¢) Stopexcl Cend) T(@ StOpexcl Cend) A T(T/) Stopexcl Cend)

=

Oyp) StOPexel Cend) O(T(¢ StOPexcl Cend) N Cend)

T((p U ¢) StOPexcl cend) = (T(SO StOPeycl CETLd) A ﬂCend) U
(T(d) StOPexcl Cend) A _‘Cend)

4.3.6 Regular expressions

Regular expressions provide a convenient way to express complex patterns of
events. They appear in many specification languages like Sugar/PSL, ForSpec
or EAGLE. Furthermore, the concept of regular expressions is known to many
programmers, as it appears in text searching® or in the programming language
Perl.

However, regular expressions can not be generally translated into LTL, as
the regular languages are a real superset of the languages expressible using LTL
[Wol83]. Other specification languages, like for instance Sugar/PSL, can ignore
this fact as they are translated directly into an automaton representation, which
has a higher expressiveness than Lt [TS05].

Still, many interesting properties can be expressed by regular expressions
that are translatable into LTL, and therefore SALT includes support for such
simplified regular expressions.

Expressiveness of regular expressions

Regular expressions over an alphabet 3 are normally defined using the operators
. (concatenation), U (union) and * (Kleene star). The complement operator
is sometimes added, although all regular languages can be expressed without it.

A regular language is expressible by an LTL formula if and only if the lan-
guage is star-free. This has been shown by proving equal expressiveness of
First-Order Monadic Logic of Order to LTL [Kam68, GPSS80] and regular star-
free languages [MP71]. Star-freeness means that the language can be described
by a regular expression using concatenation, union and complement, but not
the Kleene star. Note that there are regular expressions using the Kleene star
that still describe a star-free language. In particular, the Kleene closure of any

subset of ¥ is star-free, because it can be expressed as ['s = § \ .

Another way to ensure star-freeness is to require that the corresponding
finite automaton (DFA) is counter-free. A counter for a string v in a DFA is a
sequence qg, q1, - - - ,Gm—1 of distinct states with § * (g;,u) = g;+1 for all i <m
with m > 1 and ¢, = ¢o [MPT71].

While various algorithms exist for translating regular expressions into au-
tomata, the translation of star-free regular expressions into LTL formulae is less
explored. Zuck presents such an algorithm [Zuc86], which however has non-
elementary complexity.

6e.g., Menu Search — Search in the Eclipse Workbench (http://www.eclipse.org ).
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Regular expressions in SALT

SALT regular expressions provide concatenation (; ), union (| ) and Kleene star
operators (*), but no complement operator. The argument of a Kleene star is
required to be a purely propositional formula. The advantage of this operator
set—in contrast to the usual operator set for star-free regular expressions, which
contains concatenation, union and complement—is that it can be translated
efficiently into LTL. It seems that many relevant properties can be expressed
conveniently without the complement operator (Sugar/PSL does not provide a
complement operator either).

Additionally, SALT provides operators that do not increase the expressiveness
of its regular expressions, but make their use more convenient:

e The overlapping sequence operator : is inspired by the Sugar/PSL lan-
guage and states that one expression follows another one, overlapping in
one step.

e The ? and + operators (optional expression and repetition at least once)
are common extensions of regular expressions.

e The * operator extended with a range of natural numbers to specify that
an expression has to hold at least, at most, exactly or between n and m
times.

Traditional regular expressions match finite sequences. A SALT regular ex-
pression holds on an (infinite) sequence if it matches a finite prefix of the se-

quence’.

Formal derivation of a translation into LTL

Let p be a regular expression using ., U and * over propositions with the con-
straint that the argument of any Kleene star is a purely propositional formula.
p can be transformed using the equivalences

(p1.p2).p3 <= p1.(p2.p3) and (p1Up2).p3 <= (p1.p3) U (p2.p3)

so that the left argument of a concatenation operator is either a purely proposi-
tional formula or a Kleene star expression. When considering regular expressions
that match finite prefixes of infinite sequences, as we do for SALT regular ex-
pressions, a trailing Kleene star expression can be replaced by T (the language
it defines includes e, which is a prefix to any sequence).

Now, the semantics of a regular expression p on a sequence w of propositions

is defined as follows:
w ':RE p <~ PpPEw

w ERE p.p <= wkgrppand w! ErEp
werpp*x.p << Ji0<i:w'ErppandVjl0<j<i:w! Erpp
wErp pUY <= wlEggporwkEre Y

"This is true for regular expressions made of propositional formulae. The last element of a
SALT regular expression is however allowed to be an arbitrary SALT expression. This includes
expressions like (always a), which does ensure that a remains true forever on an infinite
sequence.
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The same semantics can be expressed using LTL operators and yield the
following translation function T(y):

T(p) =p

T(p.p) = pAOT(p)
T(p+.p) = pUT(p)
T(prUp2) = T(p1)VT(p2)

The translation schema actually used by the SALT compiler is slightly more
complicated due to the additional operators and optimisation reasons.

4.4 Timed layer

SALT contains a timed extension that allows the specification of real-time con-
straints. Timed operators are translated using the event predicting and event
recording operator of TLTL, a timed variant of LTL. For better readability, the
translation schema uses an intermediate language containing the extended TLTL
operators defined in 2.5.

Timing constraints in SALT are expressed using the modifier timed [ ~ c] ,
which can be used together with several untimed SALT operators in order to
make them timed operators. ~ is one of <, <=, =, >= > for next timed and
either < or <= for all other timed operators.

e next timed [~ c] ¢
states that the next occurrence of ¢ is within the time bounds ~ ¢. This
corresponds to the TLTL operator > .

e puntil timed [~c] ¢
states that ¢ is true until the next occurrence of v, and that this occur-
rence of ¢ is within the time bounds ~ ¢. The extended variants of until
can be used as timed operators as well.

e always timed [~ ] ¢
states that ¢ must always be true within the time bounds ~ c.

e never timed [~ ¢] ¢
states that ¢ must never be true within the time bounds ~ c.

e eventually timed [~c] ¢
states that ¢ must be true at some point within the time bounds ~ c.

Timed operators within upto and between . Timed operators within an
upto statement have to be handled with care. Both the timing constraint and
the upto specify a kind of end condition, and it is not a priori clear what
semantics they express when combined. For example,

assert (always timed [<3] p) upto req excl b

could have three different meanings:

1. p has to hold during the next 3 time units or until the occurrence of b.
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2. p has to hold during the next 3 time units and b is not allowed to occur
during this time.

3. p has to hold during the next 3 time units regardless of whether b occurs.

A look at the real-time specification pattern system [KC05] shows that this
kind of ambiguity actually occurs: the maximum duration pattern (—00<.p)
under the “before” scope follows interpretation 1, while the bounded invariance
pattern (O(p — O<.s)) follows interpretation 2.

Because of this ambiguity, the choice was made that upto and between do
not influence timed operators and their arguments at all, i. e., the end condition
is not woven into a timed sub-expression. This leaves the user full choice between
the possible meanings, because they can (or rather must) manually add the
desired constraints. Timed statements are usually short, so that dealing with
the constraint manually seems a feasible effort.

The SALT formulae yielding the correct semantics for the above example are:

assert (always timed [<3] p or eventually timed [<3] b)
upto req excl b

assert (always timed [<3] p and never timed [<3] b)
upto req excl b

assert (always timed [<3] p)
upto req excl b

4.5 Macros and parameterised expressions

SALT allows user-defined macros and parameterised sub-expressions. The use of
macros can help to make a specification easier to understand, because compli-
cated sub-expressions can be externalised and accessed by a name that explains
what the sub-expression stands for. Sub-expressions that are used several times
have to be written down only once and can even be instantiated with different
concrete values:

define  processends(name) := eventually $name$_end
assert processends(main) -- yields eventually main_end
assert  processends(sockethandler)

assert processends(eventhandler)

User-defined macros in SALT can be called in the same ways as built-in
operators. Within certain limits®, this allows the user to extend the SALT
language with their own operators. For example, the macro in the following
example is called in infix notation:

define  respondsto(x, y) =y implies eventually X
assert always (reply respondsto request)

8For instance, no custom counting quantifier operators can be defined by the user.
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Iteration operators allow to instantiate a parameterised sub-expression or
macro with a list of values provided by the user.

- Alist with input.1 | input.2 | input_3
assert someof enumerate  [1..3] as i in input_$i$

-- A list  containing I( always a) & !( always !b) &
I( always c):
assert noneof list [a, b, c] as i in always i

User-defined macros and iteration over parameterised expressions are a part
of many high-level specification languages, for instance Sugar/PSL, although
not all offer a similar flexibility and comfort as SALT for calling macros.




Chapter 5

Implementation of the SALT
compiler

This chapter describes how the compiler that translates the SALT language into
Lrr/TLTL has been implemented.

5.1 Architecture considerations

This section describes the different options that were considered for the archi-
tecture of the SALT compiler. The final choice is then explained in section 5.2.

5.1.1 General conditions
The following issues had to be considered:

e The SALT compiler is a prototype. It will probably rather be used in
research projects than in a professional environment. Therefore, usability
and error handling are not primary goals, although they should not be
neglected either.

e The SALT language was developed in an evolutionary way and might un-
dergo further changes in the future. Therefore, the compiler architecture
had to allow for easy and fast adaptations to the compiler.

e Compilation speed is unimportant, because temporal specifications are
short. Compilation time is small compared to the time needed to create
the specification and to run the formula through a model checker. The
same applies to memory space requirements.

e Macro expansion capabilities are required. As the specification language
was supposed to include user-defined macros, a solution that provided
macro expansion at little cost was advantageous.

5.1.2 Front end

For the preprocessing and parsing parts of the compiler, the following choices
had to be made.

32
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External preprocessor or internal macro processing. One possibility
to support user-defined macros is the use of an existing preprocessor, like the
C preprocessor or the M4 general purpose macro preprocessor. This avoids
reinvention of the wheel, but it restricts the syntax of the language in what
concerns macros and possibly also token types.

LALR(k) versus LL(k) parser. Most parser generators available produce
either LALR(k) parsers (bottom-up parsers, e.g., lex/yacc) or LL(k) parsers
(top-down parsers, e.g., ANTLR). LALR(k) usually is more flexible in what
concerns the grammar of the language and the generated syntax tree. However,
a recursive descent LL(k) parser can rely on semantic predicates for disambigua-
tion. This allows the parser for example to use the knowledge that respondsto
has been defined as a binary macro to process X respondsto y  correctly. A
LALR(k) parser would only be able to see three consecutive identifier tokens.
Parsing speed was not an issue, as explained above.

5.1.3 Transformation and back end

For the transformation of the abstract syntax tree (AST) and the final output,
the following alternatives were considered.

e Object-oriented AST transformation. The most obvious way to implement
a compiler back end is to define a class hierarchy for the nodes of the
AST and to implement tree transformations manually, possibly supported
by a tree transformation framework (like the one included in ANTLR) or
object-oriented techniques like the visitor pattern [GHJV94]. This solution
is easy to understand, flexible and powerful. It supports the introduction
of additional features like advanced error handling quite well. Various
implementation languages and platforms are available.

e XSLT engine. XML documents represent data in a tree-like structure.
XSLT [Cla99] provides a way to describe XML transformations in a declar-
ative way. Therefore, it seems an alternative to perform AST transfor-
mations using XSLT. However, XSLT transformations reach there limits
when implementing complex transformations like the translation of excep-
tion operators. Furthermore, XSLT files are originally intended for text
data and therefore rather difficult to read and understand when applied
to syntax trees.

e Haskell AST transformation. Haskell is a mature functional programming
language that provides user-defined data structures and pattern matching.
This makes it well suited for the rapid development of simple and complex
tree transformation code. When a Haskell interpreter is used instead of
a precompiled program, macro expansion can be handled by defining the
macros as user-defined functions, thus eliminating the need for an exter-
nal preprocessor. Advanced error handling proves to be a bit difficult in
Haskell.
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Figure 5.1: SALT compiler architecture

5.2 Compiler architecture

The architecture of the SALT compiler can be seen in figure 5.1. The specification
is read by a lexer/parser combination. No external preprocessor is used. Both
lexer and parser are Java classes generated using ANTLR [PQ95] and therefore
belong to the group of recursive descent LL(k) parsers. The parser does not
build a syntax tree but directly generates a Haskell program that contains the
specification as well as the function calls necessary for its translation. The
actual translation functions are imported from other Haskell modules. User-
defined macros are translated into function definitions. The compiler then calls
a Haskell interpreter to run the program. This is completely transparent to
the user. When the program is run, it translates the specification and prints
the resulting LTL formula, which is read by the compiler’s main program and
written to the chosen output channel.

This architecture allowed for a rapid and flexible development of the SALT
compiler. If an industrial-quality compiler should be necessary in the future
for a stable SALT language specification, the use of Haskell would probably be
abandoned in favour of a completely object-oriented architecture, leading to an
easier to install compiler and the possibility of better error handling.

5.3 Compilation phases

Compilation consists of the following phases !:

5.3.1 SALT specification parsing

The input to the compiler is the SALT specification as written by the user, which
is read by a lexer/parser combination. The parser generates a Haskell program
that contains the specification as well as the function calls necessary for its
translation. Each assertion from the original specification is represented by one
expression in the Haskell program. The main function of the program calls the

1Compilation phases might not be completely separated during an actual execution due to
lazy evaluation.
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translation functions for each of those expressions. The compiler then invokes
a Haskell interpreter to run the program.

5.3.2 Macro expansion

Macro definitions have been translated by the parser into Haskell function defini-
tions. Macro calls have been translated into function calls. During the execution
of the Haskell program, all macros are therefore automatically expanded with-
out the need of a macro preprocessor. Several high-level SALT operators (e. g.,
occurring  and the iteration operators) are represented internally like macros.
Their function definitions reside in one of the imported modules, and all uses
of these operators are automatically replaced by expressions made of simpler
SALT operators. This allows to keep the set of core SALT operators small.

5.3.3 Construction of the core SALT AST

For each core SALT element, there is a corresponding data constructor that
allows the construction of an abstract syntax tree (AST) node. For example,
the data constructor SALT.Until  expects one parameter specifying whether
the node represents a future or past operator, and two parameters representing
the two child expressions. After the first step of the execution of the Haskell
program, one AST has been built for each assertion.

5.3.4 Translation into SALT--

The compiler then traverses the SALT ASTs in left-right-top-down direction and
translates each node into corresponding SALT-- AST nodes. SALT-- contains all
LrL as well as the acc, rej and stop operators. acc and rej correspond to the
SALT exception operators. stop is introduced during the translation of upto and
between . Pattern matching on the SALT ASTs is required for the translation of
most operators. For example, the translation of the regular expression repetition
operator * depends on the sequence operator that forms its parent node. The
result of this translation step are ASTs built from SALT-- nodes.

5.3.5 Translation into LTL

Eliminating the non-LTL operators from the ASTs requires weaving the end
conditions into a whole sub-tree. The compiler traverses the ASTs in bottom-up
direction. When it reaches a non-LTL operator, it calls a weaving function that
traverses the sub-tree and inserts the end condition in all appropriate places.
This translation step results in ASTs built from LTL nodes only.

5.3.6 LTL output

Finally, the compiler traverses the LTL ASTs and prints the formula in the de-
sired output syntax 2. This might require the replacement of several nodes that
represent an operator that does not exist in the output syntax. For example,
no W operator exists in SMV syntax. It is therefore replaced by an equivalent

2For instance, boolean or is written as || when using the SPIN model checker and as |
when using SMV.
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expression, which is chosen according to the size relation of its two child ex-
pressions. The use of illegal operators, like past operators in SPIN syntax, is
detected here.

5.4 Optimisation

The use of optimised, context-dependent translation patterns as well as a fi-
nal optimisation step performing local changes help reducing the size of the
generated formulae.

For example, most verification tools do not support the W operator directly.
Therefore, W has to be expressed using other operators in the LTL output step.
The SALT compiler choses between the two equivalent expressions

(=% U (mp A=) and (o U 4)VvOp

depending on whether ¢ or 1 is more complex. In most cases, the first expres-
sion, which is less intuitive for humans, yields better technical results.
An important optimisation that is performed on the final LTL formula re-

places (¢ W %) by O(¢ V ).

5.5 Error handling

The SALT compiler aims at delivering all error messages, regardless of their
nature, to the user in a uniform way.

Errors during the lexing and parsing process are forwarded directly to the
compiler main program. The parser also performs a number of simple semantic
checks, like relating macro uses to macro definitions.

During the generation of the Haskell program, a source info (SI) node con-
structor call is added for each element of the future AST. The SI node contains
the line and column number of the corresponding source code element and al-
lows the following translation steps to output error messages containing a source
code reference.

Errors that occur during the Haskell part of the translation result in the
generation of error nodes. Each sub-expression that can not be properly trans-
lated is replaced by such a node containing the related source code position and
the error message. During traversal of the ASTs, error nodes are copied to the
new AST. The final LTL output function searches the tree for error nodes. If it
finds any, it prints the corresponding error messages (after removing duplicates)
instead of the formula output. This procedure is necessary because Haskell as a
functional programming language does not allow side effects, i. e., forbids storing
error messages in a separate place during translation.

5.6 Compilation process example

This section illustrates the compilation of an example specification through all
compilation phases. SI nodes (used for detailed error messages) have been left
out for readability reasons. ASTs are displayed in a way similar to how Haskell
would print them using the show function.
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1. SALT specification:?

define respondsto(x, y) =y -> ( eventually X)
assert (nextn [2] (/a;'a/ respondsto b)) upto incl
weak ¢

2. Haskell program:

module Main where
import SALT

respondsto x y = (SALT.Impl y ((SALT.Eventually
Future x)))

_assertion_1 = (SALT.UpTo Future ((SALTMacros.nextn
Future (SALT.Exactly 2) ((Main.respondsto
(SALT.Sequence Future (SALT.ldent "a") (SALT.Not
(SALT.Ident "a"))) (SALT.Ident "b")))))
(SALTMacros.inclusive (SALTMacros.weak
(SALT.lIdent "c"))))

main = Main.process_assertion (_assertion_1) >>
Prelude.putStr ™"

process_assertion a = LTL2SMV.printLTL
Common.WithoutTimed Common.WithPast
Common.WithNext (OptimizeLTL.optimizeLTL
(RLTL2LTL.convertRLTL2LTL
(SALT2RLTL.convertSALT2RLTL a)))

3. SALT AST:

UpTo Future (Next Future (Next Future (Impl (Ident
"b") (Eventually Future (Sequence Future (ldent
"a") (Not (Ident "a"))))))) (Inclusive (Weak
(Ident "c")))

4. SALT-- AST:

StopOnincl Future (Next Future (Next Future (Impl
(Ident "b") (Eventually Future (And (ldent "a")
(Next Future (Not (Ident "a"))))))) (Ident "c")

5. LtL AST:

And (Next Future (And (Next Future (Impl (Ident "b")
(Until Future (Not (ldent "c")) (And (Ident "a")
(And (Next Future (Not (Ident "a"))) (Not (Ident
"c)))))) (Not (Ident "c"))) (Not (Ident "c"))

3The aim of this specification is to comprise many different operators, not to specify a
meaningful requirement.
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6. LTL specification in output syntax (SMV):

LTLSPEC (X (X (b > (Ic U (a & ((X 'a) & !c)))) &
Ic)) & lc

5.7 Compiler features

Platforms. The standalone SALT compiler runs on both Windows and Linux
platforms. It can be downloaded together with a manual from http://salt.
intum.de . A web interface has been created for users who want to try SALT
without installing a Haskell interpreter.

Parameterisable propositional layer. The SALT language allows arbitrary
quoted text as atomic propositions. In order to make this feature more reliable
and allow for instance only valid Java expressions, custom proposition parsers
can be provided to the compiler via a plugin mechanism.

Flexible output syntax. The SALT compiler can generate LTL formulae for
both SMV and SPIN model checkers (with a slightly different syntax). Custom
output formats can be implemented using a plugin-mechanism.

For timed specifications, the compiler can produce either pure TLTL with
> and <. as the only timed operators, or extended TLTL with the additional
timed operators U.., W.., O.. and ¢~. as well as the corresponding past
operators. Extended TLTL is much easier to read than pure TLTL and has
similarities to MTL.

Operator restrictions. The compiler can be set to forbid the use of past
operators, if the user wants pure future formulae. It can also be set to forbid
the use of next operators (or operators that are translated using next operators),
which leads to stutter-invariant formulae.



Chapter 6

Experimental results

This chapter presents and discusses some experimental results on the correctness
and efficiency of compiler-generated LTL formulae compared to handwritten
ones, and on the kind of blowup in the size of the LTL formula that results from
a linear growth of a SALT specification.

6.1 Compiler correctness testing

Automated tests are an important tool in a software development process. A
test framework was set up in order to run automated tests on the SALT compiler.

6.1.1 Methods

Each test consists of a SALT specification that is translated into an LTL formula
1 by the compiler. The equivalence of this formula to a handwritten LTL
formula 9 is then tested with a model checker, in this case NuSMV [CCGR99).
This is done by generating a SMV [McM] specification of a system that contains
all boolean variables that appear in the formula and assigns arbitrary values to
the variables in each step. If the formula

P17 P2

can be proven to be true for this system, the formulae are equivalent. If the
formula

O(p1 < ¢2)
can be proven to be true, the formulae are congruent, i.e., they are equivalent

in each state (see [Pnu77]).
For some tests, it is useful to define invariants in SALT, like

assert always (occurring [>=3] a ) <> |( occurring [<3] a)

In these cases, the ¢ to be met is simply T.
The whole testing procedure was implemented as a JUnit [BGOO0] test case
class.
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6.1.2 Specification Patterns tests

Dwyer et. al. define a system of specification patterns [DAC99]. The patterns
consist of requirements that can be expressed under different scopes. For each
combination, an LTL formula is provided.

In order to gain test cases for the compiler, the requirements were written
as SALT expressions and inserted into five different SALT specifications that
represent the different scopes. Each combination was tested against the corre-
sponding LTL formula from the pattern catalogue using the procedure described
above.

Requirement SALT expression
Absence never p
Existence eventually p
Universality always p
Precedence Ip until weak S
Response always (p -> ( eventually s))
Bounded existence occurring [<=2] p
2-1 response chain always (/s;*;t/ -> [s;*t:*:p/)
2-1 precedence chain Ip until weak  /s&!p;!p*;t/
1-2 constr. resp. chain A || always (p -> ( eventually
(req /Is;*t/ upto excl weak  z)))
1-2 constr. resp. chain B || always (p -> ( eventually
(/s;*:t/ upto incl weak z)))

Each requirement was inserted into each of the five scopes:

Scope SALT expression

Globally assert ()

Before r assert () upto excl opt r

After q assert () from incl opt q

Between q and r assert always (( ¢) between
incl opt g, excl opt 1)

After q until r assert always (( ) between
incl opt g, excl weak )

When running these tests for the first time, several of the test cases failed.
All failures that were not results of bugs in the compiler or misinterpretations of
the requirements could be explained by mistakes or inconsistencies in the LTL
formulae from the pattern catalogue:

e The After-Precedence pattern contained an error.

e The Between-Existence and After-Until-Existence patterns showed a be-
haviour that was inconsistent with other pattern formulae in the case of
an immediately occurring end condition r .

e The Constrained Response Chain pattern had errors (missing checks for
end condition r) in the scopes Before, Between, After-Until as well as an
error in After scope (probably a typo—missing ¢). Furthermore, the for-
mulae provided did not check for absence of the constraint z in the last
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state of the pattern. This resulted in writing two different SALT expres-
sions, one (version A) reflecting the behaviour of the pattern formulae and
the other (version B) reflecting the probably intended behaviour.

e The Response Chain pattern in the scopes Before, Between and After-
Until contained errors (missing checks for end condition r ).

After correction of these problems in the LTL formulae, all tests were suc-
cessful and served as regression tests during the further development of the SALT
compiler. The fact that mistakes in the pattern catalogue could be found is an
indication that SALT indeed does raise the level of abstraction and is hence less
error-prone than LTL.

6.1.3 Other tests

Other test cases include example specifications found in [DAC99]. For these
examples, a SALT specification was written following the informal description
of the requirement and compared to the LTL formula provided in the example.
Several of the examples were erroneous or inaccurate.

Finally, a number of test cases was handwritten in order to cover as much
compiler code as possible. These test cases include invariants like

assert always (occurring [>=3] a) <> Y occurring  [<3] a)

as well as equivalence tests like the specification

assert a until weak b

which is tested to be equal to

(a U b) Vv (Da).

6.2 Compiler efficiency

In many cases, the use of a high-level language that is translated into a lower-
level language by a compiler yields bigger, less efficient results than a manual
translation. This drawback is however compensated by a gain in development,
debugging and maintenance time. Most modern compilers perform optimisa-
tions on the generated code that improve its quality significantly. Heavily opti-
mising compilers can even produce better code than the average programmer.

As the time required for model checking can be exponential with respect
to the size of the formula to be checked, efficiency was an import issue for the
development of the SALT compiler. One might suspect that generated formulae
are bigger and less efficient to check than handwritten ones. We will however
see in this section that this is not the case.

6.2.1 Methods

In order to quantify the efficiency of the SALT compiler, existing LTL formulae
were compared to the formulae generated by the SALT compiler from a corre-
sponding SALT specification. This was done for two data sets: the specification
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Specification BA BA U X Bool.

Patterns (N=50) [Fri] [Odd]

Increase 2 6 2 0 26
No change 24 28 35 46 17
Decrease 24 16 13 4 7
Example Specifi- BA BA U X Bool.

cations (N=26) [Fri] [Odd]

Increase 1 0 0 0 13
No change 15 12 18 26 11
Decrease 10 14 8 0 2

Figure 6.1: Comparison of generated to handwritten formulae: in how many
cases does a parameter increase or decrease?

pattern system [DAC99] (50 specifications) and a collection of real-world exam-
ple specifications, mostly from the survey data of [DAC99] (26 specifications).
The increase or decrease of the generated formula compared to the handwritten
one was measured using the following parameters:

e BA [Fri]: Number of states of the Biichi automaton (BA) generated using
the algorithm proposed by Fritz [Fri03], which is one of the best currently
known. This is probably the most significant parameter, as a BA is usu-
ally used for model checking, and the duration of the verification process
depends highly on the size of this automaton.

e BA [Odd]: Number of states of the BA generated using the algorithm
proposed by Oddoux [GOO01].

e U: Number of U, R, O and ¢ in the formula.
e X: Number of O in the formula.

e Boolean: Number of boolean leafs, i. e., variable references and constants.
This is a good parameter for estimating the length (not necessarily the
complexity) of the formula.

6.2.2 Results

Figure 6.1 shows for how many of the specifications of the two data sets a
parameter increases, decreases or remains the same when the specification is
translated with the SALT compiler (instead of a manual translation into LTL).
Figure 6.2 quantifies the average increase or decrease of each parameter. We
can see that the formulae generated by the SALT compiler are in many cases
bigger in size (number of boolean leafs), but use less temporal operators and
also yield a smaller BA. Often there is not much difference between generated
and handwritten formulae. Only few specifications yield smaller automata for
the handwritten formulae.
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Specification Patterns
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Example Specifications
+20%

+15%

+10%
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-15%

-20%

BA [Fri] BA [Odd] u X Boolean

Figure 6.2: Average size increase/decrease of generated formulae

6.2.3 Interpretation

Using SALT to write specifications does not increase model checking cost. On
the contrary, it often even leads to more efficient formulae.

The author of this text sees two reasons for these surprising results. The
SALT compiler performs a number of optimisations, as explained in 5.4. For
example, when translating a W it can choose between the two equivalent ex-
pressions

(=% U (mpA—=1)) and (o U)VvOp

While the first expression duplicates @ in the resulting formula, the second
expression duplicates ¢ and introduces a new temporal operator. When ¢ and
1) have about the same complexity, the first expression normally leads to smaller
automata. However, humans tend to always use the second expression (or a
similar one), because it is more intuitive to understand (“p is true until
becomes true, or ¢ is true all the time.”).

The second reason for the gap between generated and handwritten formulae
is that—apparently—the generation of BA is still not as good as it could be. As
the handwritten formula and the generated one are equivalent, a more advanced
generator might be able to produce the same automaton, or at least a similar
one, for both formulae.

6.3 Blowup introduced by SALT operators

Providing powerful operators, like occurring  or upto , can be problematic if
users are not aware of the increase in complexity that the use of those operators
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may entail. They might be surprised when changing a single integer number in
the specification causes their model checking tool to reach its limits. Also, they
might accidentally use a powerful operator to express a simple property, and
thereby cause a huge overhead in complexity.

In the following, we will measure the growth that a linear change in a SALT
specification causes in the translated LTL formula for various examples, and see
that most SALT operators are relatively good-natured.

6.3.1 Methods

The following specifications were used for the test. Each of them contains a
complexity parameter i, either directly as argument to a counting quantifier
operator or through repeating a sub-expression ¢ times.

e occurring  operator example:

assert occurring [i (p implies eventually q)

e holding operator example:

assert holding [7 (p implies eventually q)

e Nested upto operator example:

assert (weak ... (weak (p implies eventually gq) before
excl weak bl) ... before excl weak bi)

e Nested rejecton  and accepton operators example:

assert (( ... (( (p implies eventually g) rejecton rl)
accepton al) ... rejecton ri) accepton ai)

e Regular expression bounded repetition operator example:

assert /a*[<= i];b/

e Regular expression sequence operator example:

assert /true ; al*; bi; ...ooai*; b o

e until  nested in the left argument example:

assert (... ((p implies eventually q) until ul)
until uz)

For the test, ¢ was set to values between 0 and 5. Each of the resulting
specifications was then translated into an LTL formula and analysed using the
same criteria as in 6.2.
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6.3.2 Results

The results can be seen in figure 6.3, with the complexity parameter ¢ on the
X-axis.

The occurring  and holding  operators cause a linear growth of all pa-
rameters in relation to the repetition counter i. For the occurring  operator,
this growth is even somewhat compensated by the BA generation.

Nested upto and rejecton /accepton operators cause a linear growth of
the length of the formula, while the number of temporal operators and the size
of the corresponding BA remain constant.

Regular expression sequence and repetition operators cause a more or less
linear growth of all parameters in relation to the length of the sequence respec-
tively the repetition counter 7.

The nested until  operator example yields a linear increase of the number
of temporal operators but an exponential blowup of the size of the BA.

6.3.3 Interpretation

The SALT operators studied in the example all turn out to be relatively good-
natured in what concerns the growth of the most important parameter, the size
of the BA. Some operators only increase the size of the boolean expressions
(which looks complicated but does not affect the BA generation). Others do
add temporal operators, but create mainly a chain of operators where nested
operators appear in the right argument of an U. This kind of formula apparently
yields approximately linear growth of the BA, a rather harmless effect when
compared to the worst-case behaviour that the nested until  example (nested
in the left argument) shows. The author has the impression that examples
that—Ilike the last one—generate huge formulae from small specifications often
express requirements that are inherently complex to represent in LTL.



Chapter 7

Conclusion

This thesis presented SALT, a high-level temporal specification language. SALT
has been designed to be easily understandable and usable for both software
engineers and verification experts. It provides a higher level of abstraction than
LTL and permits its users to define their own operators via a macro mechanism,
thus extending the language and raising the level of abstraction further.

Among the most advanced features of the SALT language are the scope oper-
ators. The author does not know of another specification language that provides
such operators with similar flexibility, although their importance has been recog-
nised. Other features, like regular expressions, exception operators or counting
quantifiers are known from specification languages like Sugar/PSL. The contri-
bution that the SALT language provides here is the complete translatability of
these features into LTL and a compiler that actually performs this task. This
allows the users to choose from a broad set of verification tools.

Experimental results show that using SALT instead of writing LTL specifica-
tions by hand does not deprave the efficiency of the subsequent verification tools.
On the contrary, the SALT compiler often produces more efficient formulae than
the average engineer.

Although the development of SALT was guided by the analysis of real-world
example specifications and the features of other specification languages, the lan-
guage surely contains flaws and misses possible features. Therefore, user feed-
back is now absolutely required and very much appreciated. Many of the LTL
example specifications examined during the development of the SALT language
were rather trivial formulae; only some of them specified complex requirements.
The author hopes that the SALT language will encourage more people to use
formal methods and to test more complicated requirements. This will allow
the language to mature and grow together with its more and more complex

applications.
The SALT compiler can be downloaded together with a manual from the
website http://salt.in.tum.de . An interactive web interface that permits

to translate a SALT specification without having to install the compiler can be
found on the same site. Furthermore, the SALT compiler has been prototypically
integrated into AuTOoFocus [HSSS96], a modelling and verification tool.

An interesting issue that lies beyond the scope of this thesis but could be
explored in future research is the integration of formal methods into a develop-
ment process. Which parts of a system should be checked using formal meth-
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ods? Which other techniques can be employed? Should temporal specifications
be written as part of a requirements document, or should they be created from
a textual representation of the requirements? When is the best time to perform
the transition from an informal representation to a formal specification? Find-
ing an answer to these questions involves weighing benefits against drawbacks,
and is therefore hard to do on a purely theoretical level. A thorough empiri-
cal analysis using a real-world project could provide evidence on how software
engineering can profit best from the application of formal methods.
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Appendix A

General Information

A.1 The SALT language

SALT (Structured Assertion Language for Temporal Logic) is a high-level tem-
poral specification language designed for the comfortable creation of concise
specifications to be used in model checking and runtime verification. Unlike
other specification languages, SALT does not target a specific domain.

Besides the common temporal operators, SALT provides exception operators,
counting quantifiers and support for simplified regular expressions, as well as
scope operators, allowing to express that a property has to hold before, after
or in between some events. Frequently occurring patterns can be defined as
parameterisable macros and can be used in a similar way as operators of the
language. A timed extension allows to express real-time constraints.

In contrast to many proprietary specification languages, SALT can be trans-
lated into LTL (Linear Temporal Logic)—or in the case of real-time properties
into TLTL—and thus be used as a front end to existing verification tools. The
SALT compiler generates optimised formulae, that are usually at least as efficient
as hand-written ones, often even better.

A.2 Licensing and Contact

The SALT language and compiler are Open Source Software released under the
terms of the GNU GPL. The full license text can be found in the file LICENSE.

SALT language and compiler. Copyright (© 2006

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY:; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 51
Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
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Developers: Jonathan Streit
Contributions from: Andreas Bauer, Martin Leucker

Example specifications from: Matthew B. Dwyer, George S. Avrunin,
James C. Corbett, Laura Dillon, Leonid Kof

Third party software used: ANTLR parser generator by Terence Parr

Contact. The authors can be contacted at
salt AT mailbroy.informatik.tu-muenchen.de
Feedback—positive as well as critical—is greatly appre(nated
The SALT compiler can be downloaded from http://salt.in.tum.de
as binary or source distribution. There is also a web interface available that
allows to translate a SALT specification without having to install the compiler.
Additional information on the development and theoretical background of
SALT can be found in [Str06, BLS06].

A.3 Typographical conventions

In this manual, SALT specifications are written in typewriter style with bold
keywords (e.g., variable , until ), while mathematical style and symbols
(e.g., V, U) are used for LTL expressions. Placeholders for boolean propositions
are denoted with italic lower case letters (e.g., a,b). Temporal formulae are
denoted with Greek letters (e. g., ¢, ).

Product names, registered names and trademarks may appear in this manual
without being marked as such. This does not imply that they can be freely used.

A.4 SALT version history

0.7 Preliminary version

1.0 Revised manual, AUTOFOCUS support
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Installation

This chapter describes how to install the SALT command line compiler. Most of
its features can also be accessed using the web interface on the SALT homepage,
without having to install the compiler.

The SALT compiler can be used on Windows, Linux and Unix systems. The
following software is needed in order to install and run the compiler:

e The SALT compiler binaries. Binaries as well as the corresponding source
code can be downloaded from http://salt.in.tum.de . The same
binaries can be used for all platforms. There is no need for the average
user to build the SALT compiler themselves, although this is possible with
the source distribution.

e A Java Runtime Environment. The SALT compiler works with JRE version
1.3 or higher (preferably 1.5). The latest JRE can be downloaded from
http://www.java.sun.com

e A Haskell interpreter. The SALT compiler works with the Hugs 98 Haskell
interpreter as well as with the Glasgow Haskell Compiler GHC, although
Hugs is preferable as it is smaller and faster. The SALT compiler has
been tested with Hugs November 2003 and GHC 6.4.1 on Windows 2000
and SuSE Linux. Hugs 98 can be downloaded from www.haskell.org/
hugs . GHC can be downloaded from www.haskell.org/ghc

Installation procedure

1. Install the Java Runtime Environment unless you already have it installed.
Set the environment variable JAVA . HOMEo that it points to the directory
where Java is installed (which normally contains a subdirectory called
bin with the executable java ). See your operation system manual for
information on how to set environment variables.

2. Install the Haskell interpreter of your choice unless you already have it
installed.

3. The SALT compiler comes as a zip archive. Unzip the archive to the
directory of your choice. This directory will be referred to as the SALT
home directory. On a Linux or Unix system, you may have to make the
file salt.sh  executable by running the command chmod +x salt.sh
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4. Rename the file SALT_HOME/config/hs.properties.template to
SALT_HOME/config/hs.properties and open it with a text editor to
edit the following values:

e hs.interpreter must be set to either hugs or ghc, depending
on the Haskell interpreter to be used.

e hs.tempfile may optionally be set. The file named here will be
used for the intermediate Haskell code. This option may help if
your system-wide temp directory’s name contains spaces and Hugs is
unable to find the intermediate code.

e hugs.path must be set if you want to use Hugs. It must point to
the directory where Hugs is installed. Hugs on Windows seems to
have problems with spaces in the directory name, so you may have
to use the 8-letter DOS name.

e hugs.command must be set if you want to use Hugs. It is the
name of the executable to be used (runhugs.exe for Windows
and runhugs for Linux). hugs.command is interpreted relative
to hugs.path

¢ hugs.librarypath must be set if you want to use Hugs. It is
the name of the directory (relative to hugs.path ) where the Hugs
library files are located, usually called libraries

e hugs.options may optionally be set if you want to use Hugs.
These are additional options that can be passed to Hugs.

e ghc.path  must be set if you want to use GHC. It must point to the
directory where the GHC binaries are located (normally a directory
bin relative to where GHC is installed).

e ghc.command must be set if you want to use GHC. It is the name of
the executable to be used (runghc.exe for Windows and runghc
for Linux). ghc.command is interpreted relative to ghc.path

e ghc.options  may optionally be set if you want to use GHC. These
are additional options that can be passed to GHC.

5. If you want to call the SALT compiler from a directory different than the
SALT home directory, you have to set the environment variable SALT_HOME

accordingly.
6. Typing salt.bat -f "assert always a" in a DOS box or
Jsalt.sh -f "assert always a" in a Linux shell should output

the following;:
LTLSPEC G a
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Usage

This chapter describes the usage of the SALT compiler command line tool. It is
called via the shell scripts salt.bat  (for Windows) and salt.sh  (for Linux).
The compiler assumes that you either call it from its home directory or that
you have set the environment variable SALT_HOME

C.1 Command line parameters

The following parameters can be provided to the compiler:

o file
Sets the input file to be read. The SALT specification will be read from
the given file. If no input file is provided, the specification is read from
standard in (normally the console). This allows the usage of Unix pipes.

° _f n Specll
Processes a specification from the command line. This option allows to
translate small specifications provided on the command line.

e -0 file
Sets the output file to be used. The result is written to the given file.
If this option is not present, the result will be written to standard out
(normally the console). This allows the usage of Unix pipes.

e -€
Switches to embedded SALT mode. This is useful when a SALT specifica-
tion forms a part of another file, for example an SMV model. The compiler
searches the input for SALT specifications delimited by BEGINSALT and
ENDSALT The rest of the file is copied to the output, with the SALT
specifications replaced by the resulting LTL formulae. See chapter D for
an example.

e -parser  module
Enables a custom proposition parser plugin. The proposition parser is
called to check and/or transform atomic propositions. For information on
how to provide a custom implementation see section C.2.
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e -SMV
Chooses SMV syntax for the output (default). SMV syntax uses ! & |
-> <-> for booleanand G F UV X H O S T Y Br temporal oper-
ators. It is understood by SMV model checkers.

e -spin
Chooses SPIN output syntax. SPIN output syntax uses ! && || ->
<-> for boolean and [] <> U V X for temporal operators. It is under-
stood by the SPIN model checker. SPIN does not allow past operators in
LrL formulae.

e -latex
Chooses ITEX output syntax. IMTEX syntax allows to include LTL formu-
lae easily into ATEX documents. The packages amsmath and amssymb
have to be included.

e -printer module
Enables a custom printing function plugin. The printing function is used
to print the final LTL formula in the desired output syntax. For informa-
tion on how to provide a custom implementation see section C.2.

o -ltl
Chooses LTL generation (default). The result will be an LTL formula.

o -rltl
Chooses intermediate SALT-- generation. The result will be a formula that
contains rej , acc and stop operators in addition to the standard LTL
operators. This option exists mainly for troubleshooting.

e -hs
Chooses intermediate Haskell code generation. The result will be a Haskell
program. The Haskell interpreter is not invoked. This option exists mainly
for troubleshooting.

o -tltl
Chooses TLTL for timed operators (default). Timed SALT operators will be

translated using an event predicting (|>) and event recording (<|) operator,
as defined in State Clock Logic [RS99].

o -xtltl
Chooses extended TLTL for timed operators. In addition to the event
predicting and event recording operator, timed U, W, OO and ¢ as well
as the corresponding past operators will be used in the result. Extended
TLTL is much easier to read than pure TLTL.

e -notimed
Don’t allow timed operators. The use of timed operators will produce an
error message.

e -nopast
Don’t allow past operators. The use of past operators will produce an
error message. Note that past operators are not allowed anyway in SPIN
output syntax.



APPENDIX C. USAGE 63

e -nonext
Don’t allow next operators. The use of the next operator as well as of
other SALT operators that are translated using the next operator (e.g.,
regular expressions) produces an error message. This ensures that the
formula is stutter-invariant.

e -V
Choose verbose mode. The compiler will output some more status mes-
sages.

e -h or-?

Show help screen.

C.2 Extending the SALT compiler

Plugins. The SALT compiler can be extended via a plugin mechanism. Plugins
are Haskell modules stored in the directory hs. They have to be enabled with
a command line parameter.

Proposition parsing plugins allow to perform checks or transformations on
the atomic propositions that are used in a SALT specification. The default
proposition parser checks that if a declare -statement is present, all propo-
sitions used in the specification are listed. For custom implementations, copy

and modify the file hs/PropositionCheck.hs . Custom implementations
are enabled using the command line parameter -parser . All implementations
have to define a function parseProposition . Custom proposition parsing

is particularly interesting for quoted propositions that may contain arbitrary
text. For example, a custom proposition parser could check whether the atomic
propositions are valid Java boolean expressions.

Printing function plugins allow to define a custom output syntax for LTL
formulae. The default implementations hs/LTL2 zzz.hs provide SMV, SPIN
and ITEX syntax. For custom implementations, copy and modify the file
hs/LTL2SMV.hs . Custom implementations are enabled using the command
line parameter -printer . All implementations have to define a function
printLTL

Further modifications. In order to extend the compiler beyond the plugin
mechanism, you have to download the SALT source distribution and use ANT
with the file build.xml to build it. JUnit is required for the compiler self-
tests.
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Getting started with SALT

This chapter provides a short tutorial helping you to learn SALT. You should
however have some basic knowledge of temporal logic. In chapter E, you will find
a detailed language reference. Chapter G contains some example specifications.
See the index if you want to know about a specific operator.

This chapter assumes that you have the SALT compiler installed, as described
in chapter B, or that you have access to the SALT web interface.

D.1 First steps

We start with a very simple specification. Imagine some kind of client-server
constellation, where we want to specify that every request is eventually an-
swered. The SALT specification for this is

assert always (request  implies eventually answer)

The keyword assert starts an assertion. There can be more than one assertion
in a SALT specification, and each of them is translated into a formula of its own.
always , implies and eventually  are keywords. Their names should make
clear what their meaning is. request and answer represent two boolean
variables in the model to be checked. Any identifier that is not a keyword is
automatically interpreted as a boolean variable by the compiler.

When we run the compiler on the specification, we obtain

LTLSPEC G (request -> (F answer))

which corresponds to the LTL formula
O(request — Qanswer)

The compiler is by default set to SMV output syntax, and therefore uses G and
F for O and ¢ and begins each formula with the keyword LTLSPEC

If we prefer the SPIN model checker instead, we have to call the compiler
with the option -spin  and obtain

[] (request -> (<> answer))

We can also write SALT specifications as embedded part of another file, like
the following SMV file:
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MODULE main

VAR

erroroccured : boolean;
ASSIGN
init(erroroccured) = ...

BEGINSALT
assert never erroroccured
ENDSALT

The model checker can then be invoked using a piping command like
salt -e test.salt | nuSMV

D.2 SALT for LTL users

We have seen in the previous example that a SALT expression has a similar
structure as an LTL formula. Experienced LTL users probably want to know
how to denote the common LTL operators in SALT. Here they are:

LrL || SALT

- ! or not

A & or and

v | or or

— -> or implies

— <> or equals

U until

W until weak

R releases

O always

O eventually

o next

S since or untilinpast

W since weak or untilinpast weak
T triggered or releasesinpast
| historically or alwaysinpast

¢ once or eventuallyinpast
° previous or nextinpast

®,, || previous weak or nextinpast weak

The difference between symbolic and textual boolean operators (e.g., | and
or ) is that the symbolic operators have a higher precedence. Furthermore,
unary operators have a higher precedence than binary operators. If you do not
want to care about operator precedences, just set enough parentheses to avoid
any ambiguity. It is a good idea to use symbolic operators to create purely
propositional formulae and textual operators to combine temporal expressions.

The following three expressions all have the same meaning:

assert always a | b or eventually c|d
assert always (a or b) or eventually (c or d)
assert (always a | b) | ( eventually c | d)
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D.3 Scope operators

Until now, all we have done is to define a different syntax for LTL. Let’s benefit
a bit more from using SALT. Assume we want to specify that a program returns
a result before terminating. We can do this by writing

assert  (eventually result) before term

However, we will get an error message from the compiler saying

ERROR:
Operator must be used with inclusive/exclusive and
required, optional or weak at line 1:30

Our specification is ambiguous. For example, it is not clear what happens if
result and term become true at the same time. Also, the specifications
does not clarify what is expected if the program never sends a term . When
writing temporal specifications, one often forgets these special cases. In order
to avoid erroneous specifications, the compiler requires us to specify exactly
what we mean. We add the keyword exclusive  to emphasise that the step
when term becomes true does not any more belong to the denoted interval
and that therefore result  has to become true before that step. We also add
the keyword required  that states that term has to occur at some point. If
this seems annoying to you, think of the time you might have needed to find
out that your specification was expressing the wrong requirement (and not that
your model was wrong).
The correct specification looks like this:

assert ( eventually result) before exclusive required term

The keywords inclusive | optional  or weak would have lead to a differ-
ent meaning. Note that there are also other scope operators, like from and
between .

D.4 Regular expressions

Specifying sequences of consecutive events in LTL requires a lot of nested AO(. .. )
or AQ(...). SALT allows to describe such sequences in a concise way: by regular
expressions. In the following, we again specify the data flow between a client
and a server, this time a bit more in detail. The request consists of a begin
signal, followed (in the next step) by an optional header and one or more data
signals, and finally an end signal. The answer consists of a begin signal, any
number of data signals and an end signal.

assert always ( /request_begin;
request_header?;
request_data+;
request_end /
implies eventually
/answer_begin;
answer_data*;
answer_end /)
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Consecutive expressions are separated by the concatenation operator ;. The
+ operator states that an element is repeated one or more times, while the *
operator allows any number of repetitions. Note that the specification given
above does not prevent request_begin or any other of the signals from oc-
curring again at a step where they are not named explicitly. For example,
request_begin might remain true throughout the whole communication.

More operators and details about the usage of regular expressions can be
found in the language reference. In particular, some restrictions have to be
taken into account when using the * operator.

D.5 Exception operators

Let’s take the example a little further. Imagine that the communication can be
aborted by the client at any moment by sending a reset signal. The implication
for our specification is that it must be satisfied by any communication that
begins correctly and is then interrupted by the reset signal. In SALT, we can
use exception operators to express this:

assert always (( /request_begin;

answer_end /
) accepton request_reset)

D.6 Macros

Have a look again at the first specification in this tutorial. It states that each re-
quest to a server is eventually answered. However, the implies eventually

does not really tell us in an intuitive way what behaviour it expects. We there-
fore extract it into a macro definition that encapsulates the expression “is an-
swered by”:

define  answeredby(x, y) = x implies eventually y
assert always (request answeredby answer)

Note how we can use our macro like the predefined operators in infix nota-
tion.

D.7 TIteration operators

Specifications often contain similar requirements for a set of signals or variables.
In order to deal with this, SALT allows to instantiate a parameterised expression
with a list of concrete values and to combine the resulting expressions in a
certain way. For example, the following specification states that eventually all
four processes must send a termination signal p_i_finished

assert allof enumerate [1..4] as i in
eventually p_$i$_finished
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D.8 Further steps

You have reached the end of this short tutorial. You might start to write some
specifications of your own now, or have a look at the example specifications in
chapter G. There are also various operators in SALT that are not covered by
this tutorial. You can read more about them in chapter E.
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SALT Language Reference

This chapter describes the SALT language in detail. Formal semantics are de-
fined in chapter F via a translation schema. See chapter D for a tutorial if you
want to learn SALT and chapter G for some example specifications.

E.1 General structure

Assertions

A SALT specification contains one or many assertions. An assertion formulates
a requirement that is expected to be satisfied by the system under scrutiny.
Each assertion is translated into a separate formula, which can then be used in
a model checker or another verification tool.

Syntax

The syntax of SALT is described in this manual as an EBNF grammar, meant
to provide an overview of the syntactical structure. An actual parsing grammar
might be more complicated, as for example operator precedences have to be
respected.

For better readability, the grammar has been separated into several frag-
ments related to different concepts of the language. Each of the sections in this
chapter contains one fragment of the grammar.

<specification> = (<variable_declaration> )*
( <macro_definition> )*
( <assertion> )+

<assertion> = assert’ <expression>
<expression> w= (" <expression> )
| <propositional_expression>

| <temporal_expression>
| <timed_expression>

Figure E.1: SALT syntax: general structure
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Comments in SALT start with -- and end at the end of the line. Keywords
and identifiers are case-sensitive. The following operator precedences apply
(from high to low):

1. () parentheses

o

I symbolic unary boolean operators

. & | -> <-> symbolic binary boolean operators
* + ? repetition operators

5., © sequence operators

6. prefix macro calls, unary built-in operators like always or next and
modifiers like optional

7. infix macro calls and binary built-in operators like until  or and

8. if -then , if -then -else and iteration operators

Layers
The SALT language consists of three layers:

e The propositional layer deals with atomic boolean propositions and boolean
operators.

e The temporal layer encapsulates the main features of the SALT language
that reason about temporal behaviour. It is divided into a future fragment
and a symmetrical past fragment.

e The timed layer adds real-time constraints to the language. Similar to the
temporal layer, it is divided into a future and a past fragment.

Within each layer, parameterised macros can be defined and instantiated.
Iteration operators allow the instantiation of parameterised expressions for a set
of concrete values.

The kind of formula that is generated from a SALT specification depends on
the layers that are used in it. If only operators from the propositional layer are
employed, the resulting formulae are propositional formulae. If only operators
from the temporal and the propositional layer are employed, the resulting for-
mulae are LTL formulae. If the timed layer is used, the resulting formulae are
TrrL formulae. The resulting formulae are pure future LTL/TLTL formulae if
only operators from the future fragments are employed, and LTL/TLTL+past
formulae if past operators are used.
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E.2 Propositional layer

The propositional layer deals with atomic boolean propositions and boolean
operators. All boolean operators can however also be used to combine temporal
expressions.

<variable_declaration> == ‘declare’ <identifier> (' <identifier> »
<identifier> = ( a .. 7 | A7 | !_y )
(a7 | AL | 0 L9 )

<propositional_expression> =
<expression> <binary_bool_operator> <expression>
| <unary_bool_operator> <expression>
| if <expression> ‘then’ <expression>
[ ’else’ <expression> ]
| <atomic_proposition>

| <constant>
<binary_bool_operator> =& T > | >
| 'and’” | ‘or | ‘implies’ | ’equals’
<unary_bool_operator> = " | ’not
<atomic_proposition> = <identifier>
[(a .2 | A .2 ||
<parameter_reference> )
Ca .2 | A L7 0 LY
<parameter_reference> )*
| ™ (*| <parameter_reference> )
<parameter_reference> ©= '$ <identifier> '$
<constant> := ‘’true’ | ‘false’

Figure E.2: SALT syntax: propositional layer

Simple boolean variables. Boolean variables are the simplest atomic propo-

sitions from which SALT expressions can be built. Every identifier that was not

defined as a macro or a formal parameter is treated as a boolean variable. This

means that it appears in the output as it has been written in the specification.
The boolean literals are denoted as true and false

Quoted boolean propositions. Additionally, arbitrary strings between
can be employed as atomic propositions. This allows the use of predicates like
state==START or even Java expressions that can be interpreted by another
tool (e.g., the model checker or the runtime monitor) in the processing chain.
The text between "™ appears unchanged in the output (a " or $ inside the
quoted proposition must be escaped with \ ).

Quoted propositions make the SALT language independent from the domain
it is used in and the models and tools that influence the rest of the verification
process. In order to make the use of complex propositions more reliable, custom
proposition parser plugins can be provided to check and/or transform atomic
propositions that appear in a SALT specification (see section C.2).
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Example:

assert condition & "state==START"

yields the output

LTLSPEC condition & state==START

Parameterised propositions. Inside a boolean proposition, function param-
eters or iteration variables may appear between $$. During translation they are
replaced by the value of the parameter. See section E.5 for details on parame-
terised expressions.

Example:

define  isok(process) =
$process$_started & !$process$ error
assert isok("main”)

yields the output

LTLSPEC main_started & !main_error

Explicit declaration of atomic propositions. By default, declaring boolean
variables is not mandatory in SALT. It is however possible to do so using the
declare keyword. If at least one declaration appears in the specification, all
atomic propositions have to be declared explicitly and the compiler issues an
error message for atomic propositions that are used in the specification but not
listed in the declaration. This allows to detect typos rapidly.

Custom proposition parser plugins can define their own behaviour for propo-
sition checking (see section C.2).

Boolean operators. The usual semantics apply for the boolean operators
| & ! -=> <> (logical or, and, not, implication and equivalence).
The alternative notations and, or , not , equals and implies  have the same
meaning, but the operator precedence of a macro call.

if pthen i else p expresses that 1) must hold if ¢ holds, and that p (if
present) must hold if ¢ does not hold. The advantage of if -then -else over
-> is that it helps to write specifications in a more natural way, because it
makes clear to the reader that the first expression is a condition. Nested if -
then -else have to be enclosed in parentheses in order to clarify to which if
an else belongs.
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E.3 Temporal layer

The temporal layer is the heart of the SALT language. It allows to express
temporal properties by combining propositional expressions with temporal op-
erators. The temporal layer consists of a future fragment and a completely
symmetrical past fragment. For the sake of brevity, this section presents only
future operators explicitly. The corresponding past operators are introduced in
E.3.6.

E.3.1 Simple temporal operators

The common LTL temporal operators can be used in SALT specifications:

e always ¢
states that ¢ must hold forever from now on, including in the current step.

e never o
states that ¢ must never hold from now on, including in the current step.

e eventually ©
states that ¢ must hold at some time in the future or at the current step.

e next o
states that ¢ must hold in the next step. When used inside an upto
statement, next acts as a strong operator, i.e., even next true  does
not hold if there is no next step. next weak is the corresponding weak
operator.

e puntil o
states that 1 must eventually hold and that ¢ must hold from now on
until this step.

e o until weak ¥
states that either ¢ must hold forever from now on, or that 1) must even-
tually hold and that ¢ must hold from now on until this step.

e preleases
states that either v must hold forever from now on, or that ¢ must even-
tually hold and that ¥ must hold from now on until and during this step.

Extended until

Besides the two well-known versions of until |, SALT provides some more:

e ¢ until exclusive required P
is the same as @ until .

e o until exclusive optional P
states that if ¢ eventually holds, ¢ must hold from now on until this step.
Nothing is required if 1) never holds.

e o until exclusive weak )
is the same as ¢ until weak ).
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<temporal_expression> =

<modifier> * <expression> <ternary_temp_operator>

<modifier> * <expression> 'y <modifier> * <expression>
| <modifier> * <expression> <binary_temp_operator>

<modifier> * <expression>

| <unary_temp_operator> <modifier> * <expression>
| <quantified_temp_operator> <range> <expression>
| <regular_expression>

<modifier> = ’required’ | 'req’
| ‘'optional’ | ‘opt’
| ‘weak’
| ‘exclusive’ | ‘excl’
| ’inclusive’ | incl’
<ternary_temp_operator> = ’between’ | ’betweeninpast’
<binary_temp_operator> n= until’ | ’untilinpast’ | ’since’
| ’releases’ | ’releasesinpast’ | ‘triggered’
| 'upto’ | ’before’ | ‘'uptoinpast’
| ‘from’ | ‘after | ‘frominpast’
| 'rejecton’ | 'accepton’
<unary_temp_operator> = ‘always’ | ‘alwaysinpast’ | ’historically’
| ’'never | ’neverinpast’
| ’eventually’ | ’eventuallyinpast’ | ’once’
| 'next’ | ’nextinpast’ | ’previous’
<quantified_temp_operator> i= 'nextn’ | ’nextninpast’ | ’previousn’
| ‘occurring’ | ’occurringinpast’
| ’holding’ | ’holdinginpast’
<regular_expression> =
'l * [ <expression> ] [ <repetition_operator> ]
( <sequence_operator>
[ <expression> ] [ <repetition_operator> 1)y 1°
| '\’ [<expression> ] [ <repetition_operator> ]
( <sequence_operator>
[ <expression> ] [ <repetition_operator> 1)y '\
<repetition_operator> =7
| ™ [ <range> |]
|+

<sequence_operator> =y

<range> = T (= | > | < | >= | '<= ) <number> T
| T <number> '. <number> T
| ' <number> 7T

<number> = (1 .9 ) (0 .9 )

Figure E.3: SALT syntax: temporal layer
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e ¢ until inclusive required P
states that 1 must eventually hold and that ¢ must hold from now on
until and during this step.

e o until inclusive optional (0
states that if ¢» eventually holds, ¢ must hold from now on until and during
this step. Nothing is required if ¢ never holds.

e o until inclusive weak P
is the same as v releases .

The abbreviations req , opt , incl and excl may be used instead of the long
keywords.

Note that inclusive  /exclusive  has nothing to do with the strict or
non-strict until  operators that can be defined in LTL: strictness refers to
whether the present state (i.e., the left end of the interval where ¢ is required
to hold) is included or not in the evaluation, while inclusive  /exclusive
defines whether ¢ has to hold in the state where 1 occurs (i. e., the right end of
the interval). Strict SALT operators can be created by adding a preceding next
operator.

Extended next

There is also an abbreviation for consecutive next operators:

e nextn [=n] ¢ or nextn [ n] ¢ states that ¢ is required to hold n steps
from now in the future.

e nextn [ n.. m] ¢ states that ¢ is required to hold at some time in the
future, at least n steps from now and at most m steps from now (both
inclusive).

e nextn [>= n] ¢ states that ¢ is required to hold eventually in the future,
but at least n steps from now (inclusive).

e nextn [<= n] ¢ states that ¢ is required to hold eventually in the future,
but at most n steps from now (inclusive).

e nextn [> n] ¢, nextn [< n] ¢ similarly.
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E.3.2 Scope operators

Scope operators allow to specify that an expression has to hold before, after or
in between some events (represented by boolean propositions).

The upto operator

¢ upto exclusive required b

@ upto exclusive optional b

¢ upto exclusive weak b

required ¢ upto exclusive required b
required ¢ upto exclusive optional b
required ¢ upto exclusive weak b
weak ¢ upto exclusive required b
weak ¢ upto exclusive optional b
weak ¢ upto exclusive weak b

@ upto inclusive required b

@ upto inclusive optional b

¢ upto inclusive weak b

The upto operator states that an expression ¢ must hold in the time before the
first occurrence of a boolean end condition b. ¢ is evaluated in the current step,
but considering only the time up to b. This means that for example always x
is true if X holds at least until the occurrence b. It does not matter if X becomes
false afterwards. See below for a more detailed explanation.

The alternative name before can be used instead of upto .

The from operator

¢ from exclusive required
@ from exclusive optional
¢ from inclusive required
o from inclusive optional

Q2 QR

The from operator states that an expression ¢ must hold in the time after the
first occurrence of a start condition a.
The alternative name after can be used instead of from .

The between operator

The between operator is a combination of both from and upto : it states that
an expression ¢ must hold in the time after a start condition a, but before an
end condition b.

Start and end conditions

upto , from and between require the user to specify what behaviour is ex-
pected in a case where the condition does not occur at all. There are three
possibilities, expressed by prefixing the condition with a modifier keyword.




APPENDIX E. SALT LANGUAGE REFERENCE 7

e required b states that b is expected to hold at some time in the future.
The whole expression evaluates to false if there is no occurrence of b.

e optional b states that ¢ shall be considered only if b eventually holds.
The whole expression evaluates to true if there is no occurrence of b.

e weak b states that b is an end condition that may or may not hold in the
future. ¢ is evaluated for the time until b, or for the whole sequence if b
never holds. weak may only be used with upto or for the end condition

of between .
Example:
always a upto | always a upto | always a upto

Trace excl req b excl opt b excl weak b
aaab... || true true true

aaaa... || false true true

- ... || false true false

---b ... || false false false

Occurrences of end condition b of a between statement before the first occur-
rence of start condition a are not taken into account. When between is used
with the combination optional -optional , both conditions have to eventu-
ally hold in order for ¢ to be evaluated.

The abbreviations req and opt may be used instead of the long keywords.

Inclusive and exclusive semantics

upto can either be exclusive (the step when b occurs is not taken into account
any more) or inclusive (the step when b occurs is the last step of the denoted
interval). To specify which behaviour is meant, the condition b must be prefixed
with the modifier keyword exclusive  or inclusive . The same applies to
the from operator: inclusive means that the step when a occurs is the step
@ is evaluated. Exclusive means that ¢ is evaluated in the next step after a.
The between operator requires its start and end condition to be prefixed by
inclusive or exclusive . A between operator with an exclusive start con-
dition looks for occurrences of the end condition only from the next step on, i.e.,
it ignores b if it occurs together with the start condition a. The abbreviations
incl and excl may be used instead of the long keywords. Figure E.4 provides
a visualisation of inclusive/exclusive semantics.

Behaviour for empty time intervals

If the end condition of an exclusive upto or between holds immediately at
the current step, it is not clear whether the whole expression should evaluate to
true or false, as expressions can only be evaluated over non-empty intervals. For
example, p upto excl req b could be true or false if p and b are both true.
Depending on the immediate argument of the upto or between | the following
rules apply in this case:

e ¢ until 1 evaluates to false, because until  requires its end condi-
tion to eventually occur, and of course this cannot happen if the upto
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from excl a B >
from incl a [ >
upto excl bl >
upto incl bk >
between excl a, excl b B
between incl a, excl b >
between excl a, incl b B
between incl a, incl b [ ———— ]
0
f » Time
Present a b

B— State in which the formula is evaluated

—e State up to which the formula is evaluated

Figure E.4: Inclusive and exclusive semantics of scope operators

ends immediately. The same applies to ¢ until excl req 1 and ¢
until incl req .

e o until weak 1 evaluates to true, because until weak  allows the end
condition to never occur, as long as the loop condition always holds. As
there is no time for the loop condition to hold not, we can say that it holds

forever. The same applies to ¢ releases 1, ¢ until excl opt Y,
until incl opt ¥, p until excl weak 1 and ¢ until incl weak
.

e always ¢ and never ¢ evaluate to true, for the same reasons that apply
to until weak

e eventually o evaluates to false, as there is no time for ¢ to eventually
occur.

e ! & | -> <> have the usual boolean semantics. The arguments of the
operator are required to recursively match one of the above patterns.

e weak ¢ evaluates to true. This is a possibility to specify explicitly what
should happen in the case of an immediately occurring end condition.

e required ¢ evaluates to false. This is a possibility to specify explicitly
what should happen in the case of an immediately occurring end condition.
The abbreviation req may be used.

e all other ¢ are illegal as an argument to upto or between and produce
an error during compilation.

These rules imply that some ¢, like propositions, must be prefixed with either
weak or required  when used within an exclusive upto , while others, like
always , may also be used without. None of this has to be considered when
using an inclusive end condition, as this ensures that the time interval denoted
is at least of length 1.
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Details and special cases

All three operators may be freely nested.

Note that although upto and from seem to be very similar, there is a
crucial difference: The from operator evaluates its argument from a certain
step (where the condition a holds for the first time) on toward the future. The
upto operator evaluates its argument at the current step, but on a future limited
by the occurrence of the end condition b. See figure E.4 for a visualisation.

Note also that neither of the operators contains an implicit always . In
order to express that ¢ has to hold at every step before b, an explicit always
has to be added to ¢.

next v is always false when evaluated in the last step of the time interval
delimited by the end condition b of an upto . Similarly, next weak 1 is always
true in this situation.

Examples

assert always X upto inclusive required b

states that X must hold from now on until and including the step when b holds
for the first time. b is required to eventually hold.

assert eventually y from exclusive optional b

states that if b becomes eventually true, y must hold at the following or any
later step.

assert /x;y/  between incl opt a, excl opt b

states that X followed by Yy is expected to hold the step when a holds for the first
time. If b holds during this or the next step, the expression evaluates to false,
as the sequence /X;y/  could not be finished in time. If no a occurs, the whole
expression is true. If no b occurs together with or after the first occurrence of
a, the whole expression is also true (keyword optional ), even if X and y do
not show the desired behaviour.

assert always (weak (x->( eventually y)) upto excl weak D)

states that every X has to be followed by some y. This Yy must occur before
b holds the next time. The first weak states that the upto expression shall
be considered true if b occurs together with X. The always placed outside
the upto makes that the expression is tested at any time in the future, even
after the first occurrence of b. If it had been placed inside, any X after the first
occurrence of b would not have been taken into account.
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E.3.3 Exception operators

© rejecton b
@ accepton b

The operators rejecton  and accepton define an exception condition (also
called abort condition) for a formula ¢. The evaluation of ¢ stops when the
condition occurs. If the exception condition never occurs, the operator is ig-
nored. o rejecton b rejects a formula ¢ (evaluates it to false) on occurrence
of a condition b if ¢ has not been satisfied before. ¢ accepton b accepts a
formula ¢ (evaluates it to true) on occurrence of a condition b if ¢ has not been
violated before.

Examples:

assert (a until b) rejecton c

is true, if b occurs before ¢, and a is present until the occurrence of b. It is false
if a becomes false before the occurrence of b, if b never occurs or if b occurs
only together with or after c.

assert (a untii b) accepton ¢

is true, if b occurs before c, and a is present until the occurrence of b. It is
also true if a is present until the occurrence of c. It is false if @ becomes false
before the occurrence of b or c.

The semantics of rejecton  and accepton have similarities to those of the
upto operator (see E.3.2). However, rejecton  and accepton evaluate any
pending formula to false resp. true on occurrence of the abort condition, while
the result of an upto depends on the nature of ¢.

Example:
always always always
eventually a | eventually a | eventually a
Trace || rejecton b accepton b upto excl weak b
ab... false true true
-b... false true false
aa... true true true
rejecton and accepton do not have corresponding past operators (see

E.3.6). They influence both future and past operators in .
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E.3.4 Regular expressions

SALT regular expressions (SRE) allow testing on complex patterns of conditions
in a very concise way. They begin and end with a slash /. However, some
restrictions have to be applied, as not every regular expression can be translated
into LTL. The following table compares traditional regular expressions to SRE:

Traditional RE || SRE

terminal symbols || propositional formulae

. (concatenation) || ; : (sequence operators)

U (union) | (or operator)

* (Kleene star) * + (repetition operators, with constraints)
? (optional part) || ? (optional part)

- (complement) not implemented for efficiency reasons

Two sequence operators are available:

p; q states that ¢ must hold in the next step after p.

p: q states that ¢ must hold after p and overlap with p in one step. For
two boolean propositions, this is equivalent to p&q.

Each element of a SRE can be suffixed with a repetition operator. The following
repetition operators are available:

p* states that p may hold an arbitrary number of consecutive steps from

Nnow o1.

p*[= n] or p*[ n] states that p must hold during exactly n consecutive
steps from now on.

p*[ n.. m] states that p must hold during between n and m consecutive
steps from now on.

p*[> n] states that p must hold during more than n consecutive steps
from now on.

p*[< n] states that p must hold during less than n consecutive steps from
now on (including the possibility that p does not hold at all).

p*[>= n] states that p must hold during at least n consecutive steps from
nOW On.

p*[<= n] states that p must hold during at most n consecutive steps from
now on (including the possibility that p does not hold at all).

p? states that p may or may not hold (the same as p*[<=1] ).

p+ states that p must hold during at least one step from now on (the same
as p>=1] ).

The SRE / a*[0]: b/ (empty sequence in combination with the : sequence

operator) is equal to / b/ . This implies that for instance the SRE / p; ¢*:

* 7l is

not satisfied by an occurrence of p and r at the same time.
Elements in an SRE may be left out, which is interpreted as true . For exam-
ple, /*;al  isequivalent to/ true *;a/ , which is equivalent to eventually a.
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As regular expressions can not be generally translated into LTL, a few addi-
tional rules have to be followed when composing SRE:

e The argument of *, *[> n] , *[>= n] and + may only be a purely boolean
proposition. It may contain boolean operators like & | or !.

e All expressions except for the last in an SRE must be either purely boolean
propositions, or they must be other SRE combined by | . No other boolean
operators are allowed for the combination of SRE (although they can be
used to form boolean expressions).

e The last element in an SRE may be any SALT expression, however be-
cause of operator precedences it may be necessary to surround it with
parentheses.

Examples of allowed sequences:

assert / a* b; c/
assert [/ la*; ( always b) /
assert [/ fal | Ib*; ¢/

Examples of forbidden sequences:

assert [/ /a; b/*; ¢/
-- [/a; bl is not purely propositional

assert [/ la*/; b/
-- complement of reg. exp. /a* is not allowed

assert [/ /a*/ -> /bl c /
-- -> can not be used to combine reg. exp.

Remember that an SRE does not state anything about conditions not named
explicitly: /a;b/  requires a to hold in the current and b to hold in the next
step. It does not require b to be false in the current or a to be false in the next
step, and therefore also matches for example a sequence where a and b hold all
the time.

SRE match by default finite prefixes of a sequence. This implies that a
trailing unbounded * operator is equivalent to true, because it includes the
empty sequence, which is a prefix to any sequence. However, the last element
of an SRE is allowed to be an arbitrary SALT expression, and can therefore also
be for example (always a), which does ensure that a is true until infinity.
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E.3.5 Counting quantifiers

The counting quantifiers occurring  and holding allow concise statements
about conditions that have to hold a certain number of times. The difference
between the two operators is that holding  counts each step during which the
condition holds separately, while occurring treats consecutive steps where
the condition holds as one occurrence.

occurring  operator

e occurring [=n] ¢ or occurring [ n] ¢ states that ¢ occurs exactly n
times in the future. An occurrence may last more than one step, and has
to be separated from the next occurrence by a step where ¢ does not hold.
The first occurrence may or may not begin immediately. After the last
occurrence, ¢ must not hold again.

e occurring [ n.. m] ¢ states that ¢ occurs between n and m times in the
future. After the last occurrence, ¢ must not hold again.

e occurring  [>= n] ¢ states that ¢ occurs at least n times and is allowed
to occur again afterwards.

e occurring [<= n] ¢ states that ¢ occurs at most n times and is not al-
lowed to occur again afterwards.

e occurring [> n] ¢, occurring  [< n] ¢ similarly.

holding operator

e holding [=n] ¢ or holding [ n] ¢ states that ¢ is required to hold dur-
ing exactly n steps in the future. Those occurrences may or may not be
separated from the next occurrence by a step where ¢ does not hold.
The first occurrence may or may not begin immediately. After the last
occurrence, ¢ must not hold again.

e holding [n.. m] ¢ states that ¢ is required to hold during between n
and m steps in the future. After the last occurrence, ¢ must not hold
again.

e holding [>= n] ¢ states that ¢ is required to hold at least during n steps
and is allowed to hold again afterwards.

e holding [<= n] ¢ states that ¢ is required to hold at most during n steps
and is not allowed to hold again afterwards.

e holding [> n] ¢, holding [< n] ¢ similarly.
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E.3.6 Past operators

SALT supports past operators, that reason about past states instead of future
ones. For every future operator there is a corresponding past operator, as shown
in figure E.5. Future operators are translated using only LTL future operators,
and past operators are translated using only LTL past operators. This leaves
the users the choice whether they do or do not want to use past operators.
Some operators have two names: there is always a generic name where the
past operator has the name of the future operator with the suffix inpast . Addi-
tionally, there might be another more intuitive name like since or previous
The future operators from and upto have the alternative names after and
before . Past regular expressions are written between \ \ instead of / / .

Future Past

always historically or alwaysinpast
between betweeninpast

eventually once or eventuallyinpast
from or after frominpast

holding holdinginpast

never neverinpast

next previous or nextinpast

next weak previous weak or nextinpast weak
nextn previousn or nextninpast
occurring occurringinpast

releases triggered or releasesinpast
until since or untilinpast

until weak since weak or untilinpast weak
upto or before uptoinpast

Figure E.5: Overview of the future operators and their corresponding past op-
erators

Reading direction of past operators. Past operators as defined in LTL
bring with them an inherent pitfall connected to our understanding of time.
Time always progresses from present to future, and we attribute intuitively the
Western reading direction left-to-right to the progress of time from present to
future. Past operators however are mirrored future operators: their direction
is from present to past. While a until b steps forward on a sequence of a
until hitting a b, the corresponding a since b steps backward on a sequence
of a until hitting a b. This b occurs actually before the sequence of a, but
when reading a since b from left to right the b appears behind the a. This
can be a little confusing. When using past operators, imagine therefore always
standing at the present point in time and facing backward, while reading the
expression from left to right.
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a until b >
a since b <«—a .
Time
1 -
' Present ”
b b

aaaaaaa

All SALT past operators follow this mirrored semantics, which is consistent
with the definition of LTL past operators. This has the advantage of similar
semantics for all past operators, as well as a similar parameter order for future
and past operators. The drawback is, however, that some past operators have
a meaning not expected at first sight. The most surprising case are probably
regular expressions which, when read from left to right, have to be interpreted
from present to past. The expression \a;b;c\ matches a sequence where a is
true in the present, b was true one step ago and ¢ was true two steps ago. In
other words, it matches the sequence cha when reaching the a.

Past operators and scope operators used together. Future scope opera-
tors do not limit past operators in their argument, i. e., a from does not contain
an implicit uptoinpast . In the expression

assert (always x -> ( once y)) from incl req a

the corresponding y is allowed to occur before the occurrence of a. In order to
limit once Yy to the time after @, you have to write

assert (always x -> ( once Yy uptoinpast incl req a))
from incl req a

This expression however will look back for y only up to the first occurrence of
a it can find (which might be different from the one that triggered from ).

Past operators and exception operators used together. In contrast to
from and upto , the operators rejecton  and accepton influence both future
and past operators. There are no separated versions for future and past.
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E.4 Timed layer

SALT contains a timed extension that allows the specification of real-time con-
straints.

<expression> = <unary_timed_operator> <timing_constraint>
<expression>
| <expression> <until_operator>
<timing_constraint> <expression>
| <timing_constraint> <expression> <releases_operator>
<expression>

<unary_timed_operator> = ’next’ | ’nextinpast’ | ’previous’ |

‘always’ | ’alwaysinpast’ | ’historically’ |

‘never’ | ’neverinpast’ |

‘eventually’ | ’eventuallyinpast’ | ’once’
<until_operator> = until | untilinpast’ | ’since’
<releases_operator> = ’releases’ | ’releasesinpast’ | ‘triggered’
<timing_constraint> = timed’ T

(= | > | e | s= | <= ) <float> T

<float> = <number> [ ' (0" ..'9 )+ ]

Figure E.6: SALT syntax: timed layer

Timed SALT includes all features of untimed SALT as well as some timed
operators. Timed operators are translated into a timed variant of LTL, here
referred to as TLTL [D’S03]. TLTL adds the event predicting and event recording
operators defined in [RS99]. The SALT compiler can produce either pure TLTL
with .. and <. as the only timed operators, or an extended TLTL with the
additional timed operators U.., W, 0. and ¢~ as well as the corresponding
past operators. Extended TLTL is much easier to read than pure TLTL.

Timing constraints in SALT are expressed using the modifier timed [ ~ ]
that can be used together with several untimed SALT operators in order to make
them timed operators. ~ is one of <, <=, =, >=_ > for next timed and either
< or <= for all other timed operators.

e next timed [~ c] ¢
states that the next occurrence of ¢ is within the time bounds ~ c. It is not
taken into account if ¢ is true at the current step. next timed [~ ] ¢
corresponds to the event predicting operator >, ¢.

e puntil timed [~ ¢
states that ¢ is true until the next occurrence of v, and that this occur-
rence of 1 is within the time bounds ~ ¢. Occurrences of ¢ at the current
step are accepted too. The extended variants of until  (using required |
optional , weak, inclusive and exclusive ) can be used as timed
operators as well.

e timed [ ~ ] ¢ releases
states that 1 is true until and during the next occurrence of ¢, if such
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occurrence of ¢ is within the time bounds ~ ¢. Occurrences of ¢ at the
current step are accepted too. If ¢ does not occur within the time bounds,
1) is required to hold during the whole specified time interval.

e always timed [~ ¢
states that ¢ must be always true within the time bounds ~ c.

e never timed [~ ] ¢
states that ¢ must be never true within the time bounds ~ c.

e eventually timed [~c] ¢
states that ¢ must be true at some point within the time bounds ~ c.

Past operators can be enriched in a similar way. Other SALT operators can not
be combined with timed [ ] .

Examples:

assert always timed [<=3] p

states that p is true during the next 3 time units.

assert always (p -=> ( eventually timed [<3] a)

states that p is followed by q within less than 3 time units

assert p & (always (p -> ( next timed [=1] p)))

states that p occurs periodically with a distance of 1 time unit.

Timed operators within upto and between . Timed operators within an
upto statement have to be handled with care. Both the timing constraint and
the upto specify an end condition, and it is not a priori clear what semantics
they express when combined.

For example,

assert (always timed [<3] p) upto req excl b

could have three different meanings:
1. p has to hold during the next 3 time units or until the occurrence of b.

2. p has to hold during the next 3 time units and b is not allowed to occur
during this time.

3. p has to hold during the next 3 time units regardless of whether b occurs.

Because of this ambiguity, the choice was made that upto and between do
not influence timed operators and their arguments at all, i.e., the end condition
is not woven into a timed sub-expression. This leaves the user full choice between
the possible meanings, because they can (or rather must) manually add the
desired constraints.

The SALT formulae yielding the correct semantics for the example from above
are:
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assert (always timed [<3] p or eventually timed [<3] b)
upto req excl b

assert (always timed [<3] p and never timed [<3] b)
upto req excl b

assert (always timed [<3] p)

upto req excl b
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E.5 Macros and parameterised expressions

SALT allows the definition of macros and parameterised expressions. This can
help to make a specification easier to understand, because complex sub-formulae
can be defined separately and accessed by a name. It also helps writing more
concise specifications, because expressions that appear several times in a speci-
fication have to be written down only once. Iteration operators can be used to
instantiate parameterised expressions for a list of concrete values.

E.5.1 Parameterised expressions

A parameterised expression is an expression that contains placeholders. Param-
eterised expressions allow to reuse a specification pattern for different concrete
values.

Parameters can be used in two ways within an expression: First, they can be
employed directly as part of an expression. Secondly, they can be used within
an atomic proposition, e.g., as part of a variable name. This is expressed by
referencing the parameter between $$ in the atomic proposition (see section
E.2).

define mymacrol(x, y) = X implies eventually y
define  mymacro2(x, y) : always input$x$ & inputdy$

SALT parameters are expression-based and not—like for example C prepro-
cessor macro parameters—character-based. Therefore, parameters always have
to stand for complete expressions. It is not allowed (and hardly necessary) to
use incomplete expressions like a | as a parameter. Parameters used within an
atomic proposition should usually not be complex expressions.

E.5.2 Macros

Macro definitions. A macro definition starts with the keyword define |
followed by the macro name and an optional parameter list in parentheses. The
macro body appears after ;= . All macros have to be defined before being used.
Macro definitions have to appear before any assertion in the specification.

Simple macro calls. Macros can be accessed in four different ways:

e Without arguments. A macro that does not expect parameters can be
accessed simply via its name.

define any a :=al | a2 | a3 | a4
assert always any a

e As a prefix operator. A macro that expects exactly one parameter can
be used as a prefix operator without the need to enclose the argument in
parentheses, similar to the unary built-in operators like always or next .

define  stricteventually(x) := next eventually X
assert  stricteventually term
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<macro_definition> = ’define’ <identifier> [ <formal_parameter_list> ]
=" <expression>

<identifier> =@ 27 | A L2 )
('a 7| A A B I 9 )
<formal_parameter_list> u= '(  <formal_parameter>
(’;  <formal_parameter> )* )
<formal_parameter> = <identifier>
<expression> = <macro_call>

| <formal_parameter>
| <iteration_expression>

<macro_call> = <nullary_call>
| <prefix_call>
| <infix_call>
| <explicit_call>

<nullary_call> 1= <identifier>
| <formal_parameter>

<prefix_call> 1= <identifier> <actual_parameter>

<infix_call> = <actual_parameter> <identifier>
<actual_parameter_list>

<explicit_call> = <identifier>
' [ <actual_parameter_list> 17
| <formal_parameter>
' [ <actual_parameter_list> 1)
<actual_parameter_list> 1= <actual_parameter> (N

<actual_parameter> )*

<actual_parameter> = <expression>
| '@ <identifier>

<iteration_expression> = <iteration_operator> <list_creation>
‘as’  <identifier> in’ <expression>
<iteration_operator> = allof | ’'someof | ’'noneof | ’exactlyoneof’
<list_creation> w= list T [ <expression> (') <expression> )* ] T
(( ‘with’ | 'without’ ) <expression> )*
| ’enumerate’ <range>
(( ‘'with’ | 'without’ ) <expression>  )*

Figure E.7: SALT syntax: macros and parameterised expressions
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e As an infix operator. A macro that expects two or more parameters
can be used as an infix operator. The macro name appears after the first
argument. If the macro expects more than two parameters, the remaining
arguments are separated by commas. This is similar to the built-in binary
and ternary operators, like until | upto and between .

define  respondsto(x, y) =y implies eventually X
assert reply respondsto request

e With explicit arguments. Any macro can be accessed via its name followed
by the comma-separated arguments enclosed in parentheses.

define  my_macro(a, b, ¢) :=a | b | lc
assert my_macro(X, U & v, 2z)
-- evaluates to a| (u&v) | !z

Indirect macro calls. A macro name may be passed as a parameter to an-
other macro, which can then use the macro. This feature allows the defini-
tion of generic parameterised properties. The macro name has to be prefixed
with @when passed as a parameter. For accessing it, the explicit call syntax

f(a, b, ...) has to be used; the prefix and infix variants are not allowed.
Example:

define  myproperty(a, b) ;= a implies b

define circle(f,a,b,c) := f(a,b) and f(b,c) and f(c,a)

assert always circle(@myproperty, u, v, w)
-- evaluates to G(u -> !v) &(v > w & (w-> u)

E.5.3 Iteration

Many specifications have to define a certain assertion for a whole set of boolean
variables like inputl input2 input3 , or repeat an expression several times
with a few parameters exchanged. Iteration operators allow easy handling of
such sets of similar boolean variables and expressions.

The general syntax for an iteration expression is

allof  list as param in ¢
noneof list as param in ¢
someof list as param in
exactlyoneof list as param in ¢

Each of the elements in list is inserted as iteration parameter param in the
expression . The resulting instantiated expressions are then combined using
one of the four iteration operators.

List creation. The following operators can be used to create lists:

o list [, ¥, ...]
creates a list of expressions or identifiers.
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e enumerate [ n.. m]
creates a list containing the numbers between n and m. This list can be
used to create for example a parameterised list of boolean variables with
a common base name.

e [ist without ¢
removes the element ¢ (which must be an element of list) from the list.

o list with ¢
adds ¢ to the list.

Iteration operators.

o allof
combines the instantiated expressions with a logical and, i.e., all of them
have to be true in order to make the whole expression true.

e noneof
combines the negated instantiated expressions with a logical and, i.e.,
none of them is allowed to be true in order to make the whole expression
true.

e someof
combines the instantiated expressions with a logical or, i. e., some of them
have to be true in order to make the whole expression true.

e exactlyoneof
requires exactly one of the instantiated expressions to be true and all the
others to be false in order to make the whole expression true.

Examples:

assert allof list [a, b, c] as i in always i
-- is equal to (always a) & (always b) & (always «c)

assert exactlyoneof list [a, b, ] as i in i
- is equal to (a &'!'b &l!c)|(! a &b &'!c)|(! a &!b &)

assert someof enumerate [1..3] as i in
someof enumerate [1..3] without i as j in
in$i$$|$

-- is equal to inl12 | inl3 | in21 | in23 | in31 | in32
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Translation schema

This chapter describes how the SALT language is translated into LTL and TLTL
and thereby defines the formal semantics of SALT.
The translation of past operators is left out for brevity, unless stated other-

wise.

It follows the same schema as the translation of the future operators. The

translation of timed operators is described in section F.6. The other sections of
this chapter refer to untimed SALT.
Translation is done in several steps:

Expansion of user-defined macros.

Replacement of non-core SALT operators. Several SALT operators are
replaced by expressions made out of a small set of core operators.

Translation of core SALT into SALT--. The SALT operators are replaced
by SALT-- expressions. SALT-- includes all LTL operators as well as the
acc and rej operators (corresponding to the SALT exception operators
accepton and rejecton ) and the exclusive and inclusive stop opera-
tors for future and past (introduced during the translation of upto and
between ).

Translation of SALT-- into LTL/TLTL. The translation of the SALT-- oper-
ators requires weaving their end conditions into the whole sub-expression.

Optimisation. The LTL/TLTL expression is optimised using a number of
optimisation patterns.

Lrr/TrTL output. The LTL/TLTL expression is printed in the desired
output syntax. This might require expressing certain operators through
others (like W through U). Also, extended TLTL operators may be re-
placed by pure TLTL.

Each translation step is described in form of a translation function T(¢p)
that is applied by choosing the first translation that matches the current ex-
pression. Trivial translations that just descend recursively into the arguments
of an operator, such as T(p A1) = T(¢) A T (1)), are left out in the following.

93
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The LTL operators used during translation are:
true until U since
false weak until W back to
logical negation globally (I historically
logical and eventually ¢ once
logical or next o previous
logical implication —  weak next Oy,  weak previous @y
logical equivalence <«

<> 1] -
OO TN

And for timed expressions additionally:
timed until U~e timed since See
timed weak until W, timed weak since B
timed globally Oee timed historically M.,
timed eventually .. timed once ¢
event predicting >, event recording <

4
)

The SALT-- operators used are:
accept acc

reject rej
exclusive stop  StOpg.q
inclusive stop  stop;,q

F.1 Replacement of non-core SALT operators

F.1.1 never

T(never ¢) = —0T(y)

F.1.2 releases

T(preleases 1) = T(¢ until incl weak ®)
F.1.3 nextn

T(nextn [=n] o) =

if n=0: T(p)

else: OT(nextn [=n—1] ¢)
T(nextn [n.. m] @) = T(nextn [=n] (nextn [<=m —n] ¢))
T(nextn [<=n] ¢) =

if n=0: T(p)

clse: ©V OT(nextn [<=n—1] ¢)
T(nextn [< n] ¢) = T(nextn [<=n—1] ¢)
T(nextn [>= n] ) = T(nextn [=n] O¢)

T(nextn [> n] ) = T(nextn [>=n+1] ¢)
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F.1.4 occurring

T(occurring [=n] ¢) =

if n=0: _‘QT(QO)
if n=1: T(p) U (T(p) A ((T(p) W 20T ()"
else: ﬂT(sa) U (T(p) A (T(p) U (=T (p)A
T(occurring  [=n—1] ¢))))
T(occurring  [n.. m]¢) =
if n=0: T(occurring [<=m] @)
ifn=1: ~T(p) U (T(p) A (T(p) W (=T (0)A
T(occurring  [<= m — 1] ¢))))*
else: —~T(p) U (T(p) A (T(p) U (=T (p)A
T(occurring [n—1.. m—1] ¢))))
T(occurring [<=n] v) = —T(occurring [>=n+1]y)
T(occurring [< n] ¢) = —T(occurring [>=n] p)
T(occurring  [>= n] ¢) =
if n=0: T
if n=1: 0T(p)
else: O(T(p) A (O(=T(p)A
T(occurring  [>=n—1] ¢))))
T(occurring  [> n] ¢) = T(occurring [>=n+1]¢)

F.1.5 holding

T(holding [=n] ¢) =

if n=0: —‘<>T(<P)

if n = 1: T(p) U (T(¢) A O —~OT(p)))>

else: -T(p) U (T(p) AOT(holding [=n—1] »))
T(holding [n.. m]ly) =

ifn=0: T(holding [<=m] @)

ifn=1: =T(p) U (T(e)A

OWT(holding [<=m —1] ¢))?
else: T(p) U (T(p)A
oT(holding [n—1.. m—1]¢))

T(holding [<= n] ¢) = =T(holding [>=n+1]y)
T(holding [< n] ¢) = =T(holding [>=n]p)
T(holding [>= n] ¢) =

if n=0: T

if n=1: OT(p)?

else: O(T(p) A OT(holding [>= n —1] ¢))
T(holding [> n] ¢) = T(holding [>=n+1]¢)

INotice that the last occurrence of ¢ may last forever.
2A special case for n = 1 is required for situations where there is no next state, because
either a surrounding upto ended or because we reached time zero in the past. In these



APPENDIX F. TRANSLATION SCHEMA 96

F.1.6 Regular expressions, part 1

The ? and + repetition operators can be expressed by the more general * oper-

ator as follows:
T(p?) = T(p*[<=1] )

T(p+) = TET=1 )
The different variants of the * repetition operator are translated as follows into

core SALT, where only sequences and the *[>= n] repetition operator exist. The
empty sequence is denoted by ¢.

T(p*[= nl) =

if n=0: €

ifn=1: T(p)

else: T(p; o= n—1])
T(e[ n.. m]) =

if n=0: T(p*[<= m])

else: T(p*= n—1]; @*[<= m—n]; ¢)?
T(p*[<= n]) =

if n=0: €

else: eVT(pVe; (pVe(..))!
T(e*< n]) = T(p*[<=n-1])
T[> nl) = T(p>= n+1])

F.1.7 Iteration operators

The iteration operators are translated as follows:

T(allof list) = A T(y)
p€Elist
T(noneof list) = =\ T(p)
@p€elist
T(someof list) = V T(p)
p€list
T(exactlyoneof  list) = \/ (T(e)A= V  T))
p€Elist PYElist,hF#p

situations, even O T would be false, although the conditions for the holding operator have
been fulfilled.
3The trailing ¢ is necessary for correct translation when followed by a : sequence operator.
4The schema used here repeats ¢ less times than the straightforward translation
s SN VA% RN VAR
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F.2 Translation of core SALT into SALT--

F.2.1 until

T(¢ until excl req ) = T(e) UT®W)

T(puntl excl opt  ¢) = (OT(¥)) — (T(¢) U T(1))

T(p until excl weak ) = T(e) W T()

T(p until incl req ) = T(p) U (T(p) AT(¥))

T(puntil incl opt  ¢) = (OT()) — (T(x) U (T(¢) AT(®)))
T (¢ until incl weak ) = T(e) W (T(¢) AT())
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F.2.2 upto
T(p upto excl req  b) =
if T(p) = Oy (1) stopexe b) U b
if T(p) = =01 (=) stopeye b) U b
else: (0b) A (T(0) 5t0Pexer b)°
T(ep upto excl opt  b) =
if T(p) = O —((=¢) stopexe b) U b)
else: (Ob) ( ((P) Stopexcl b)5
T(¢ upto excl weak b) = (T(y) stopexe b)

T(req ¢ upto excl req b)

if T(p) =04:
else:

T(req ¢ upto excl opt b)
if T(p) = Ov:

else:
T(req ¢ upto excl weak b)

T(weak ¢ upto excl req  b)

if T(p) = O
if T(p) = ~0¢
else:

T(weak ¢ upto excl opt  b)
if T(p) = Ov:

else:
T(weak ¢ upto excl weak b)
T
T

@ upto incl req b)
© upto incl opt b)

(
(
(
T(p upto incl weak b)

if T(p) = 0O
if T(p) = =0

else:

—b A ((_',(/) Stopexcl b) U b)
(Ob) A =b A (T(QO) Stopexcl b)5

_‘((_‘1/’ Stopoxcl b) U b)
(Ob) - (_'b/\ (T(SO) Stopexcl b))5

=b A (T(<p) Stopexcl b)

(1/1 Stopexcl b) Ub
(ﬁw St-’Opexcl b) Ub
(Ob) A (b \ (T(SO) Stopexcl b))5

bv ﬁ((_@ Stopexcl b) U b)
(Ob) - (b A (T((p) Stopcxcl b))5

(T(W) Stopexcl b)
(Ob) A (T((p) Stopincl b)
(0b) = (T() stopipe b)

_‘(_‘b U (QZ} E’toplncl b))

_‘(_‘b U (1/} Stoplncl b))
(T( ) StOmel b>5

5The specialised translations exist only for optimisation reasons.



APPENDIX F. TRANSLATION SCHEMA 99
F.2.3 from
T(p from incl req a) = (-a) U (a AT(p))
T(p from incl opt a) =
if T(p) = Oy O(a — Oy)
if T(¢) = —=0: O(a — =0v)
else: (ma) W (a A T(p))°
T(p from excl req a) = (-a) U (a AOT(p))
T(p from excl opt a) = (-a) W (a AOT(p))

F.2.4 Dbetween

T(p between a,bd) T((p upto b)from a)

F.2.5 Exception

operators

T(p accepton b)

T(yp rejecton b)

F.2.6 Regular

T(p) acc b
T(p) rej b

expressions, part II

The *[>= n] repetition operator is translated as follows (its translation depends
on the next element % in the sequence as well as on the sequence operator):

T(p*>=0];, ) p U T(v)

pUTE D o)
T(y) VT(p>=1]: )

pUT® p; ... p )

T(p*>= nl: )
T(p>=0]: v)
T >= nl: ¥)

For the translation of the sequence operators, we have to define the length of a
regular expression:

lel =0
Ip =1
[l =4 Ip>=n]| =1
lo1; @2 = |o1] + |2
le1: 2| = [p1] + |p2| — 1

The sequence operators are then translated as follows:

6The specialised translations exist only for optimisation reasons.
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if [p1] # 2|+ T(p1; ¥) V T(p2; ¥)
else: T((¢1 V p2); V)
T(p) A OIIT(1)

if |o1| # |@a| : T(e1: )V T(p2: 9)

T((p1 V) ) =

T(p; ¥)

T((p1Vpa)p) =

else: T((¢1V p2): )
_ B ifo=e: T@)
T ) n else: T(p) A OM_ITW))

F.3 Translation of SALT-- into LTL

During this step, the rej and acc operators (SALT-- equivalents of the SALT
exception operators) as well as the stop operators (introduced during the trans-
lation of upto and between ) are replaced by pure LTL expressions. This
requires weaving the end conditions into all sub-expressions of the argument.
The innermost operators are replaced first, so that the translation process does
not have to deal explicitly with nested operators.

F.3.1 acc

T(b acc a) = bVa

T((~p)acca) = ~T(preja)

T((p A1) acca) = T(pacca)AT(y acc a)

T((pVy)acca) = T(pacca)V T acca)

T((p U ) acca) = T(pacca)U T(¢ acc a)

T((Oyp) acc a) = (OT(p acca))Va

T((™Dyp) acc a) = =(-a U =T(p acc a))
T((Op) acc a) = OT(p acca)

The translation of —, <, W and Oy is done using the corresponding LTL
equivalents in F.5.
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F.3.2 rej
T(b rej r) = bA-r
T((—p) rej 7) = —T(p accr)
T((pAY)rejr) = T(prejr) AT rejr)
T((pVe)rejr) = T(prejr)VT(rejr)
T((p Uy)rejr) = T(prejr) U T( rejr)
T((O¢p) rej r) = (OT(prejr))An-r
T((™gp) rej r) = OT(prejr)

T((Op) rej a) = - UT(prejr)

The translation of —, <, W and Oy, is done using the corresponding LTL
equivalents in F.5.

F.3.3 stop;,a

T(b stop;ue S) = b

T((—¢) stopine $) = —T(p stopy $)

T((p AY) stopine 5) = T(¢ stopie 8) A T(1) stopiye )

T((p V¥) stopine s) = T(p stopie ) V T (1) stopipe )

T((¢ U ¥) stopine 5) = (=8 AT (¢ stopipe 5)) U T(1) stopiye )

T((O) stopine $) = =5 AOT(p stopy, $)

T((Ow ) stopipe 8) = sV OT(p stopiyy $)

T((@e) stopipe s) = (75 U 2T(p stopjye )

T((0) stopine $) = (=s) U T(p stopy,a s)

T((¢ S ¢) stopiye 8) = T(p stopina 5) S T(4) stopiyg )"
T((®¢) stopiye ) = OT(p stopy,q s)

The past stop operators are translated in a similar way as the future stop
operators, but affecting only past operators. The translation of W, — and «
is done using the corresponding LTL equivalents in F.5.

"Notice how the future stop operator affects only future operators and leaves the past
operators unchanged. The past operators not listed here are translated similarly.
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F.3.4 stopg.

T(b $t0Peyer S) = b

T((—¢) StoPexer $) = T(¢ stoPexar )

T((p AY) stoPexer 8) = T(p 5t0Pexer 8) A T (¢ 8t0Pexer S)

T((pV¥) stopexer 5) = T( 8t0Peyer 8) V T (1) 5t0Peyer )

T((¢ U %) stopexar ) = (78 AT (¢ 5t0pexar ) U (78 A T (¢ $t0pexer S))

T((¢ W ¥) 5t0Peyer ) = T(p 5t0pexar ) W (5 V T (1) 5t0Peyer $))

T((Op) st0Peycr ) = O(=s AT(¢ st0Pexar $))

T((Ow¢) st0Pexer ) = O(sV T( 5toPeyer 5))

T((O¢) 5t0Pexar ) = T(p 8topexer 5) W s

T((O) $t0Pexcr ) = (75) U (=5 A T(p StoPeyer )

T((¢ S ) stoPexer ) = T(p 5t0Pere 5) S T(Y 5t0Peeer 5)°
T((®) 5t0Pexcr 5) = OT(p 5t0peya 5)7

The past stop operators are translated in a similar way as the future stop
operators, but affecting only past operators. The translation of — and « is
done using the corresponding LTL equivalents in F.5.

F.4 Optimisation

The following equivalences are used for optimisation:

TUp = Qv

=0 <~ Uy

00w — oy

O0p — Oy

¢ Uy = Qv
OW4v) <« Olevy)

e W (pAY) = (U ~yp)
(pv) Uy = Uy

Furthermore, boolean operators with constant arguments (e.g., T Aa) are elim-
inated.

F.5 Operator replacement

The following equivalences are used to express certain operators through others
if necessary for the current output syntax.
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Oe
Qp

Ow

oWy

(= U )

I A

TU
=0 (—p)
if [¢] < [p|®: (= U (- A=)
else: (p Uy)vOep
R

F.6 Translation of timed operators

F.6.1 Timed SALT into timed SALT--

T(next timed [~ c] ¢) = > T(p)
T(p until timed [~ ] ¥) = T(¢) Ue T(¥)
T(p until timed [~¢ weak v) = T(p) Wee T(9)
T(puntil timed [~¢] excl req ) = T(p) U T(®)
T(puntil timed [~¢ excl opt ¢) = (0 TW)) —
(T() Une T())
T(puntil timed [~¢] excl weak o) = T(p) W, T(¢¥)
T(puntil timed [~¢] incl req ) = T(p) U.e (T(e) AT(¥))
T(puntil timed [~¢] incl opt ¢) = (0cT@W)) — (T(p) Une
(T() AT(¥)))
T(puntil timed [~¢] incl weak 1) = T(p) W, (T(¢) AT(¥))
T(timed [~ c] ¢ releases ) = T@W) Wee (T(¥) AT(p))
T(always timed [~ c] ¢) = O T(y)
(

T(eventually timed

[~c] ¢) = O~cT(p)

8 As a heuristic estimation for the size of a formula, the number of temporal operators in
the formula is used.
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F.6.2 Timed SALT-- into extended TLTL

acc (accepton ):
T((>~cp) acc a) = aV>..T(pacca)

T((p Uwe ¥) acca) = T(p acca) U, T(¢ acc a)

if [ < Jel”s ~(=T (4 acc a) Unc

T((p Wee 9) acc a) = (=T(¢ acc a) A =T(¢ acc a)))

else: (T(p acc a) U, T(¢ acc a))V
—(=a U, =T (¢ acc a))
T((O~cp) acc a) = =(-a U, 7T(p acc a))
T((Onecy) acc a) = O~cT(p acc a)
rej (rejecton ):
T((>cp) 1€] T) = 7 AO(—r U T(prejr)) A>cT(p rej r)t0
T((p Unc ) rejr) = T(prejr) Use T(¢ rej )

if o] < Jl't: =(=T (1) rej r) Une
(=T(p rej r) A =T(4) rej 1))
else: (T(prejr) Uee T(Y rej 7))V
OcT(p rej )

T((p Wee o) rejr) =

T((Owcp) 1ej 1) = O..T(prejr)
T((Onecp) €] 1) = - Uc. T(prejr)

stop operators: The stop operators do not influence timed operators, i.e.,
any timed operator and its arguments are left unchanged.

F.6.3 Extended TLTL into pure TLTL

T(e Unc ) = (T(p) U T@)) A (T(¥) V> T(¥))
T(e Wee¥) = (T(p) UT(@))V(T(p) A= ~cmT(p))
T(Owep) = T(p) A= (>neT(9))

T(Onep) = T(p) VEcT(p)

9As a heuristic estimation for the size of a formula, the number of temporal operators in
the formula is used.

10The O is required because [>~¢ is not supposed to match occurrences of ¢ at the current
state, but U would.

11 As a heuristic estimation for the size of a formula, the number of temporal operators in
the formula is used.
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Examples

The following examples describe requirements in natural language and provide
a corresponding SALT specification.

Simple specification

-- Requirement : A query is eventually answered

assert always (query -> ( eventually answer))

Specification using until

This example makes use of a quoted atomic proposition to encapsulate a com-
parison predicate.

-- Requirement : The software is working until the
-- gueue is empty or an abort signal comes.
-- Working may continue  forever

assert working until weak ("queuelength == 0" | abort)

Scheduler specification

The original specification for this example can be found on [DAC99].

--  Requirement : Between the moment in which an

-- execution completes and before a new execution

-- begins there is no work done.

--  Handwritten LTL: [J(( return_Execute && <>call_Execute )
-- -> ((! call_doWork ) U call_ Execute ))

assert always
(never call_doWork
between inclusive optional return_Execute,
exclusive optional call_Execute)

105
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Precedence specification

This example makes use of macros and past operators.

-- Requirement : An answer is preceded by a request

define  precedes(x, y) := if y then once x
assert always (request precedes answer)

Elevator specification

The original specification for this example can be found in [DAC99].

-- Requirement : Between the time an elevator is called at
-- a floor and the time it opens its doors at that

-- floor , the elevator can arrive at that floor at most
-- twice

--  Handwritten LTL: [(( call & <>open) ->

-- ((" atfloor & !'open) U

-- (open | (( atfloor & !'open) U

-- (open | ((* atfloor & !'open) U

-- (open | (( atfloor & 'open) U

- (open | (! atfloor U open))))))))))

assert always
(occurring [<=2] atfloor
between incl optional call, excl optional open)

Input channel iteration specification

This example makes use of iteration operators.

-- Requirement : Only one of the four input channels may
- be active at a time

assert always
( exactlyoneof enumerate [0..3] as i in in_$i$) |
(noneof enumerate  [0..3] as i in in_$i$)

Response pattern specification

This example makes use of regular expressions.

-- Requirement : A connection signal is eventually
-- answered by an ack signal , followed by at least
-- 4 data states and a close signal

assert always (if connection  then eventually
/answer; data*[>=4]; close/)
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Real-time example

This example uses the timed extension of SALT.

-- Requirement : On all floors of a building ,
-- the elevator must arrive at most 60s after
-- having been called

define  max_60s_before_open(i) =
always (call_$i$ implies
eventually timed [<=60.0] open_$i$)

assert allof enumerate [1..3] as floor in
max_60s_before_open(floor)
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