Structural Properties of m-Step Graphs

Bachelor Thesis

submitted by René Schönfelder

course of study Information Science

matriculation number 560906

address Weberkoppel 4a
23562 Lübeck

e-mail reneschoenfelder@web.de

submitted on November 18, 2009

advisor PD Dr. Hanns-Martin Teichert
Declaration

I hereby declare that I produced this thesis without external assistance, and that no other than
the listed references have been used as sources of information.

Lübeck, November 18, 2009
Contents

1 Introduction and Basic Definitions ... 1

2 Literature and Overview ... 3
 2.1 Neighborhood and Competition Graphs 3
 2.2 Embedding and Competition Number 4
 2.3 Overview ... 5

3 Particular Graph Classes .. 6
 3.1 Paths .. 6
 3.2 Cycles .. 7
 3.3 Wheels .. 9
 3.4 Complete Bipartite Graphs .. 10

4 Basic Results for Arbitrary Graphs .. 12
 4.1 Minimum Degree .. 16
 4.2 Isomorphism Problems ... 18

5 Connectivity .. 20

6 Hamiltonicity ... 24

7 Conclusions .. 29
 7.1 Open Problems ... 29
1 Introduction and Basic Definitions

The definition of m-step graphs first requires precise definitions of graphs and paths. Throughout this thesis I will only consider simple graphs; simple in this context means finite, undirected and having neither loops nor multiple edges. Thus a graph $G = (V, E)$ is a pair of disjoint sets $V = V(G)$, the vertices, and $E = E(G)$, the edges; thereby any edge $e \in E$ is a set of two distinct elements $x, y \in V$. An edge $\{x, y\} \in E$ will be written as $xy \in E$. The set of all possible simple graphs over V is denoted by $G(V) = \{(V, E) \mid \forall e \in E : e \subseteq V \land |e| = 2\}$.

Paths are graphs isomorphic to $P_n = (V, E)$ with $n \in \mathbb{N}$ vertices $V = \{v_1, \ldots, v_n\}$ and edges $E = \{v_1v_2, \ldots, v_{n-1}v_n\}$. The length of a path is the number of its edges $|E| = n - 1$. Its end vertices are v_1 and v_n and the path is called a v_1v_n-path. The inner vertices are v_2, \ldots, v_{n-1}. A path from v_1 to v_n is often denoted by the sequence of its vertices $v_1v_2\ldots v_n$. The vertices of P (and therefore its edges) are pairwise distinct, otherwise it is called a walk.

Isomorphism is denoted by $G_1 \cong G_2$, subgraphs are denoted by $G_1 \subseteq G_2$, the union of graphs is denoted by $G_1 + G_2$. Inserting vertices (or edges) is denoted by $G + x$ (or $G + xy$, respectively) and deleting edges by $G - xy$. Other notations, which are not explicitly mentioned can be found in Diestel [8].

Definition 1.1. Let $G = (V, E)$ and $m \in \mathbb{N}$. The (open) m-neighborhood of $x \in V$ is given by

$$p_m(x : G) = \{y \in V \mid \exists \ xy\text{-path of length } m \text{ in } G\}.$$

If the context to G is clear we write $p_m(x)$ for short.

Note that p_m is symmetric for undirected graphs: $y \in p_m(x) \iff x \in p_m(y)$. For any vertex holds $v \notin p_m(v)$, because a path having distinct ends is required for $p_m, m \geq 1$. The distance of vertices x and $y \in p_m(x)$ is at most m.

Using this definition the m-step graph is an intuitive way of describing $p_m(v)$ for any $v \in V$.

Definition 1.2. If $G = (V, E)$ is a graph, its m-step graph $N_m(G) = (V, E_m)$ is given by

$$E_m = \{xy \mid y \in p_m(x)\}.$$
1 Introduction and Basic Definitions

The trivial cases of definition 1.2 are the following:

- The 1-step graph of G is $N_1(G) = G$ itself, because paths of length 1 in G are given exactly by its edges $E(G)$.
- For $m \geq |V|$ the m-step graph of G has no edges, because there is no path of length m with $|V|$ vertices.

Therefore I will consider only m-step graphs with $m \geq 2$ and $|V| > m$ avoiding excessive case distinctions. Figure 1 describes a basic example of constructing m-step graphs. An elementary result used for constructions of m-step graph is given by the following proposition.

Proposition 1.3. Let G be a simple graph. Then

$$\forall H \subseteq G : N_m(H) \subseteq N_m(G).$$

Proof. Let $H \subseteq G$ be an arbitrary subgraph of G. Since $V(N_m(H)) = V(H) \subseteq V(G) = V(N_m(G))$, it follows $V(N_m(H)) \subseteq V(N_m(G))$. Now let $xy \in E(N_m(H))$ be arbitrarily chosen, i.e. $y \in p_m(x : H)$. It follows $y \in p_m(x : G)$, because paths in H are also paths in G. Therefore $xy \in E(N_m(G))$.

\[\square\]
2 Literature and Overview

In this section I will describe some topical work using definitions similar to the m-step graphs given in the introduction. Afterwards I will describe the competition and embedding number of graphs, which are hard to determine, even for restricted graph classes. After that I will give an overview on the structural properties of m-step graphs, which are investigated in this thesis.

2.1 Neighborhood and Competition Graphs

The competition graph $C(D)$ of a directed graph D is a simple graph constructed over the same vertex set of D and having edges $xy \in E(V(D))$ if and only if there exists a vertex v such that (x, v) and (y, v) are arcs in D. The term competition graph was introduced by Cohen [6] in 1968 and caused a lot of further research on this topic.

The competition graph of an undirected graph has a handful of equivalent names. In fact, the definition of the 2-step graph $N_2(G)$ is one of those names; it is obtained by replacing the arcs (x, y) and (y, x) in a symmetric digraph by the edge xy or vice versa. Another equivalent definition is that of the neighborhood graph $N(G) = N_2(G)$.

In his Bachelor thesis Pfützenreuter [17] investigated structural properties of neighborhood graphs. Moreover, there have been several interesting studies concerning neighborhood graphs: In 1995 Lundgren et al. [13] characterized graphs which have neighborhood graphs, that are interval or unit interval. Furthermore Lundgren, Merz and Rasmussen [14] investigated the chromatic numbers of competition graphs. Competition graphs of strongly connected and hamiltonian digraphs have been investigated by Fraughnaugh et al. [9] in 1995. Schiermeyer, Sonntag and Teichert [18] investigated the hamiltonicity of neighborhood graphs in 2009. Another generalization was introduced and investigated by Sonntag and Teichert [19], [20], [21] using hypergraphs. The competition hypergraph $C\mathcal{H}(D)$ of a digraph D is defined on the same vertex set $V(D)$ and $e \subseteq V(D)$ is an edge if and only if $|e| \geq 2$ and there is a vertex $v \in V(D)$, such that $e = \{w \in V(D) \mid (w, v) \in A(D)\}$.

When dealing with m-step graphs one might come across the definition of the power of a graph. The k-th power G^k of a graph is defined on the same vertex set having edges $xy \in E(G^k)$ if and only if their distance is at most k, that is $d_G(x, y) \leq k$. Another notion is
2 Literature and Overview

2.2 Embedding and Competition Number

$G^{(k)}$, which describes a graph on the same vertex set having edges $xy \in E(G^{(k)})$ if and only if their distance is exactly k. However, in general neither G^{k} nor $G^{(k)}$ are equivalent to m-step graphs.

2.2 Embedding and Competition Number

Not all graphs are competition or neighborhood graphs. This will also be discussed in Section 4. However, it is possible to obtain from a graph a competition graph by adding isolated vertices. The least number of isolated vertices needed for this procedure is called the competition number. Similarly every graph G can be embedded in an m-step graph $N_m(G')$ as an induced subgraph. The least number of vertices for such a graph G' is called the embedding number.

The embedding number was investigated by Boland, Brigham and Dutton in [2] and [3], based on the introduction of open neighborhood graphs by Acharya and Vartak [1].

Similarly to m-step graphs there is a generalization for competition graphs called m-step competition graph introduced by Cho, Kim and Nam [5] in 2000. The m-step competition graph of a digraph D is defined on the same vertex set and has edges xy if x and y have a common m-step pray, that is a vertex v with directed paths of length m from x to v and from y to v. They also introduced the m-step competition number. Further work on this definition was done by Helleloid [10] in 2004 investigating connected triangle-free m-step competition graphs, by Ho [11] in 2005 introducing same-step and any-step competition graphs and by Zhao and Chang in 2009 examining the m-step competition number of paths and cycles.

Determining the competition number appears to be a difficult problem: In 1971 Stephen A. Cook [7] published his paper on the concept of NP-completeness. Based on this Richard M. Karp [12] took 21 well-known problems - for which there were (and still are) no deterministic polynomial algorithms found - and proved their NP-completeness. Using these results James Orlin [16] was able to prove the NP-completeness of determining minimal edge-clique-covers (ECCs) in 1977 by reducing this problem amongst others to Karps chromatic number problem. Robert J. Opsut [15] then showed 1982 that the ECC problem is reducible to computing the competition number of graphs. That means, if there was a deterministic polynomial algorithm for computing the competition number, then the infamous equation $P = NP$ would be solved.
2 Literature and Overview

2.3 Overview

In the following I want to give some detailed examples in Section 3, namely the descriptions of m-step graphs of well-known graph classes; paths, cycles, wheels and bipartite graphs. Then I will discuss some basic graph properties in Section 4 or to be more specific, I will answer some questions on how much these graph properties are preserved by the m-step function. As a first step in this, injectivity and surjectivity of the m-step function will be discussed. After that the minimum degree is a perfect example on how a graph property can be preserved by the m-step function. Two more of such interesting properties are connectivity and hamiltonicity, which got their own chapters 5 and 6. Finally I will have some conclusions, summaries and open problems in Section 7.
3 Particular Graph Classes

In this chapter I will describe particular m-step graphs, namely the m-step graphs of paths, cycles, wheels and bipartite graphs. Examining these graph classes will give us a basic idea on how to work with m-step graphs, so that we can rely on these results in the further chapters. Considering the complete graph K_n with n vertices, for example, its m-step graph is still K_n, respecting the condition $2 \leq m < n$ given in the introduction. Therefore by Proposition 1.3 we can conclude, for example, that any supergraph of K_n has again K_n in its m-step graph.

3.1 Paths

P_n is a path of length $n - 1$ with n vertices.

Proposition 3.1. Let $d \in [0, m - 1]$ with $d \equiv n \mod m$. The m-step graph $N_m(P_n)$ consists of m paths; d of those paths have $\left\lceil \frac{n}{m} \right\rceil$ vertices, the other paths have $\left\lfloor \frac{n}{m} \right\rfloor$ vertices, i.e.

$$N_m(P_n) = d \cdot P_{\left\lceil \frac{n}{m} \right\rceil} + (m - d) \cdot P_{\left\lfloor \frac{n}{m} \right\rfloor},$$

or by substitution $n = m \cdot k + d$ for any $k \in \mathbb{N}$ and $d \in [0, m - 1]$ this is

$$N_m(P_{m \cdot k + d}) = d \cdot P_{k + 1} + (m - d) \cdot P_k.$$

![Diagram](image)

Figure 2: The 5-step graph $N_5(P_{5k+2})$ consists of five paths.
Proof. Let \(n = m \cdot k + d \) and \(P_n = v_0 \ldots v_{m-1} \ldots v_{n-1} \). Since there are at least \(m \) vertices there is a partition of \(V \) containing \(m \) subsets \([v_0], \ldots, [v_{m-1}]\) with

\[
[v_i] := \{ v_k \in V \mid k \equiv i \mod m \}.
\]

The induced subgraphs in \(N_m(P_n) \) having vertices \([v_i]\) are paths.

- There are two possibilities for the number of vertices, which is caused by

\[
[v_i] = \begin{cases}
 v_i, v_{i+m}, v_{i+2m}, \ldots, v_{i+km} & \text{if } 0 \leq i < d \\
 v_i, v_{i+m}, v_{i+2m}, \ldots, v_{i+(k-1)m} & \text{if } d \leq i < m
\end{cases}
\]

Therefore we obtain \(|[v_i]| = \left\lfloor \frac{n-m}{m} \right\rfloor\), that is

\[
|[v_i]| = \begin{cases}
 k + 1 = \left\lfloor \frac{n}{m} \right\rfloor + 1 & \text{if } 0 \leq i < d \\
 k = \left\lfloor \frac{n}{m} \right\rfloor & \text{if } d \leq i < m
\end{cases}
\]

However, since \(d = 0 \) always follows the second case, we can rewrite the first case by using \(\left\lceil \frac{n}{m} \right\rceil \) instead of \(\left\lfloor \frac{n}{m} \right\rfloor + 1 \).

- The edges induced are along the path \(v_iv_{i+m}v_{i+2m} \ldots, v_{i+km} \).

- In addition these paths are not interconnected, because there can be no path of length \(m \) from \(v_i \) to \(v_j \) in \(P_{m \cdot k + d} \) with \(i \not\equiv j \mod m \).

 Altogether we obtain \(d \) paths each with \(\left\lceil \frac{n}{m} \right\rceil \) vertices and \(m - d \) paths each with \(\left\lfloor \frac{n}{m} \right\rfloor \) vertices.

\[\square\]

3.2 Cycles

\(C_n \) is a cycle with \(n \) vertices, say \(V(C_n) = \{v_0, \ldots, v_{n-1}\}, v_iv_{i+1} \in E(C_n) \) and indices are taken modulo \(n \). For convenience \(C_1 \) denotes a single vertex and \(C_2 \) denotes two connected vertices instead of a real cycle.

Proposition 3.2. Let \(g = \gcd(m, n) \). The \(m \)-step graph of \(C_n \) consists of \(g \) cycles of equal length,

\[
N_m(C_n) = g \cdot C_g.
\]
Proof. There is a partition of $V(C_n)$ containing g subsets $\{[v_0], \ldots, [v_g]\}$ with

$$[v_i] := \{v_k \mid k \equiv i \mod g\} \subseteq V.$$

The induced subgraphs in $N_m(C_n)$ having vertices $[v_i]$ are cycles.

- The number of vertices $|[v_i]|$ is the least $k \in \mathbb{N}$ such that

$$i + k \cdot m \equiv i \mod n.$$

By subtracting i on both sides and dividing by g we obtain

$$k \cdot \frac{m}{g} \equiv \frac{n}{g}.$$

Because $\frac{m}{g}$ and $\frac{n}{g}$ are coprime, the least such k is exactly $\frac{n}{g}$.

- The edges induced are along the cycle $v_iv_i+m v_i+2m \ldots v_i+\frac{n}{2}m$ with $v_i+\frac{n}{2}m = v_i$ (indices taken modulo n).

- Let $[v_i]$ and $[v_j]$ be any two distinct sets of vertices. The cycles are not interconnected.

This is proven by contradiction. If there was an edge $\{v_{i+a \cdot g}, v_{j+b \cdot g}\} \in N_m(C_n)$ ($a, b \in \mathbb{N}$) we would obtain $i + a \cdot g - (j + b \cdot g) \equiv 0 \mod m$ which means $i - j \equiv 0 \mod g$ and thus $[v_i] = [v_j]$.

Altogether we obtain g cycles each with $|[v_i]| = \frac{n}{g}$ vertices in $N_m(C_n)$. □
3.3 Wheels

A wheel W_n is a graph with one center vertex connected to each vertex of a cycle of n vertices. Because of this notation $n = |V| - 1$ and $m \leq n$.

Proposition 3.3. The m-step graph of a wheel W_n is the complete graph K_{n+1}.

$$N_m(W_n) = K_n.$$

Proof. Let $V(W_n) = \{v_0, v_1, \ldots, v_n\}$ with center vertex v_0 and circle v_1, \ldots, v_n. It is sufficient to show, that v_1 has paths of length m to each other vertex. Consider the following three cases showing $v_1v_j \in E(N_m(W_n))$ for $i = 0, 2 \leq i < m$ or $m \leq i \leq n$.

\begin{itemize}
 \item Let $i = 0$. Then $v_1 \ldots v_m v_0$ is a path of length m in W_n.
 \item Let $2 \leq i < m$. Then $v_1 \ldots v_{i-1} v_0 v_m v_{m-1} \ldots v_i$ is a path of length m in W_n.
 \item Let $m \leq i \leq n$. Then $v_1 \ldots v_{m-1} v_0 v_i$ is a path of length m in W_n.
\end{itemize}

Therefore $p_m(v_1) = V \setminus \{v_1\}$. Because of the symmetry in a wheel, it follows $p_m(v_i) = V \setminus \{v_i\}$ for $1 \leq i \leq n$. And by the symmetry of p_m, from $v_0 \in p_m(v_i)$ for $v_i \in V \setminus \{v_0\}$ it follows $p_m(v_0) = V \setminus \{v_0\}$.

\[\square\]
3.4 Complete Bipartite Graphs

For a bipartite graph \(G = (A \cup B, E) \) with \(A \cap B = \emptyset \) let \(a = |A|, b = |B| \). Without loss of generalization assume \(a \leq b \). The complete bipartite graph \(K_{a,b} \) is a bipartite graph with all possible edges \(E = \{a_i b_j \mid a_i \in A \land b_j \in B\} \). The graph without edges having \(n \) vertices is denoted by \(I_n \).

Proposition 3.4. The \(m \)-step graph of the complete bipartite graph is

\[
N_m(K_{a,b}) = \begin{cases}
K_{a,b} & \text{if } m \text{ is odd and } m < 2a \\
K_a + K_b & \text{if } m \text{ is even and } m < 2a \\
I_a + K_b & \text{if } m = 2a \text{ and } a < b \\
I_{a+b} & \text{otherwise}
\end{cases}
\]

Proof. Since any path of length \(m \) in \(K_{a,b} \) is alternating on \(A \) and \(B \) it can be written in exactly one of the following three notations:

- \(P_{AA} = a_0 b_1 a_2 b_3 \ldots b_{m-1} a_m \) if \(m \) is even
- \(P_{AB} = a_0 b_1 a_2 b_3 \ldots a_{m-1} b_m \) if \(m \) is odd
- \(P_{BB} = b_0 a_1 b_2 a_3 \ldots a_{m-1} b_m \) if \(m \) is even

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{AA})</td>
<td>(\frac{m}{2} + 1)</td>
<td>(\frac{m}{2})</td>
</tr>
<tr>
<td>(P_{AB})</td>
<td>(\frac{m+1}{2})</td>
<td>(\frac{m+1}{2})</td>
</tr>
<tr>
<td>(P_{BB})</td>
<td>(\frac{m}{2})</td>
<td>(\frac{m}{2} + 1)</td>
</tr>
</tbody>
</table>

Table 1: Number of vertices of \(A \) and \(B \) traversed by paths \(P_{AA}, P_{AB} \) and \(P_{BB} \).

Table 1 describes the number of vertices of \(A \) and \(B \) traversed by each path \(P_{AA}, P_{AB} \) and \(P_{BB} \). Let \(a_0, a_m \in A \) and \(b_0, b_m \in B \) be arbitrarily chosen vertices. The following existence propositions are true, because \(b \geq a \) and \(K_{a,b} \) is complete.
3.4 Complete Bipartite Graphs

- P_{AA} exists if and only if $a \geq \frac{m}{2} + 1$, i.e. $m \leq 2a - 2$ and m is even.

- P_{AB} exists if and only if $a \geq \frac{m+1}{2}$, i.e. $m \leq 2a - 1$ and m is odd.

- P_{BB} exists if and only if $a \geq \frac{m}{2}$ and $b > a$, i.e. $m \leq 2a$ and $b > a$ and m is even.

For even m the m-step graph $N_m(K_{a,b})$ is induced by paths of type P_{AA} and P_{BB}. For odd m the m-step graph $N_m(K_{a,b})$ is induced only by paths of type P_{AB}. Therefore for even m we obtain the union of K_a and K_b; for odd m we obtain again the bipartite graph $K_{a,b}$. Only for $m = 2a$ and $b > a$ the paths P_{BB} do exist while paths P_{AA} do not exist; thus we obtain in this case the union of I_a and K_b.

□

A star is a graph with one center vertex and n additional vertices connected to its center, thus a star is $K_{1,n}$ and

$$N_m(K_{1,n}) = \begin{cases}
K_{1,n} & \text{if } m = 1 \text{ (trivial)}, \\
K_n + I_1 & \text{if } m = 2, \\
I_1 + n & \text{otherwise}.
\end{cases}$$
4 Basic Results for Arbitrary Graphs

In this chapter I will present some basic results on the structure of \(m\)-step graphs. After investigating injectivity and surjectivity of the \(m\)-step function I will answer some other questions similar to that of surjectivity. Then we will discuss a lower bound for the minimum degree of an \(m\)-step graph. After that I will finish this section by investigating some isomorphism problems, that ask for characterizations of graphs \(G\) such that the equations \(N_m(G) = K_n\), \(N_m(G) = G\) or \(N_m(G) = \overline{G}\) are fulfilled.

There are two elemental questions concerning \(m\)-step graphs:

- If two graphs \(G_1\) and \(G_2\) have the same \(m\)-step graph \(N_m(G_1) = N_m(G_2)\), does that imply \(G_1 = G_2\)?

- Is any graph \(G \in \mathcal{G}(V)\) an \(m\)-step graph? That is, for any graph \(G\) is there another \(G' \in \mathcal{G}(V)\) such that \(N_m(G') = G\)?

We can define the \(m\)-step function as a function mapping from simple to simple graphs, i.e.

\[
N_m : \mathcal{G}(V) \to \mathcal{G}(V), \quad N_m : (V, E) \mapsto (V, \{xy \mid y \in p_m(x)\}).
\]

With that the above questions ask for injectivity and surjectivity of this \(m\)-step function.

Proposition 4.1. Let \(V\) be any (finite) vertex set and \(m \in \mathbb{N}\) with \(2 \leq m < |V|\). Then the function \(N_m : \mathcal{G}(V) \to \mathcal{G}(V)\) is neither injective nor surjective.

Proof. Since \(N_m(K_2) = N_m(I_2) = I_2\) the function \(N_m\) is not injective. Furthermore the domain and codomain are equal and finite, therefore the range of \(N_m\) has less elements than its codomain and thus \(N_m\) is not surjective.

\[\square\]

The restriction to finite graphs makes this proof easier, however, as we will realize later, there are graphs that are not \(m\)-step graphs no matter how many vertices (or edges) a graph is allowed to have.

Concerning the trivial cases of \(m\)-step graphs as described in the introduction, we can complete the above proposition by the following.

- If \(m = 1\), then \(N_m(G) = G\); thus \(N_m\) is bijective.
• Otherwise if \(m \geq |V| \), then \(N_m(G) \) is empty. Therefore \(N_m \) is bijective for \(|V| \leq 1 \) and neither injective nor surjective for \(|V| \geq 2 \).

In order to develop a better understanding we will weaken the condition of surjectivity and examine the results. Let \(G \) be an arbitrary graph in \(\mathcal{G}(V) \). Surjectivity asks for a graph \(G' \in \mathcal{G}(V) \) such that \(N_m(G') = G \). By adding \(t \) vertices to \(G' \) we have \(G' \in \mathcal{G}(V \cup \{v_1, \ldots, v_t\}) \). However, that makes \(N_m(G') \neq G \) in any case, because they are defined on different vertex sets. That is why we should ask for the following questions.

1. Is there a graph \(G' \) such that \(N_m(G') \) contains only \(G \) and \(t \) isolated vertices?
2. Is there a graph \(G' \) such that \(N_m(G') \) contains \(G \) as a component?
3. Is there a graph \(G' \) such that \(N_m(G') \) contains \(G \) as an induced subgraph?

The second and thus the third question as well will be answered positively by the following proposition.

Proposition 4.2. For any graph \(G \in \mathcal{G}(V) \) there is a \(t \in \mathbb{N}_0 \) such that there exists a graph \(G' \in \mathcal{G}(V \cup \{v_1, \ldots, v_t\}) \) with \(N_m(G') \) containing \(G \) as a component.

Figure 5: Subdividing edges such that \(G \) is a component of \(N_m(G') \) (\(e_i = v_a v_b, a < b \)).
4 Basic Results for Arbitrary Graphs

Proof. Let \(G = (V, E) \) be a simple graph with vertices \(V = \{v_1, \ldots, v_n\} \) and edges \(E = \{e_1, \ldots, e_k\} \). Then \(G' = (V', E') \) is constructed by subdividing each edge in \(G \) into \(m \) edges.

\[
V' = V \cup \{v^i_j \mid i = 1, \ldots, k, j = 1, \ldots, m-1\}
\]
\[
E' = \{v^i_jv^i_{j+1} \mid i = 1, \ldots, k, j = 1, \ldots, m-2\}
\]
\[
\cup \{v_av^i_1v^m_1v_b \mid v_av_b = e_i, a < b, i = 1, \ldots, k\}
\]

Now \(N_m(G') \) contains \(G \) as an induced subgraph: By construction the vertex set \(V \) is a subset of \(V' \). Let \(e_i = v_av_b \in E \) with \(a < b \) be an arbitrary edge in \(G \). Since \(G' \) contains a path of length \(m \) from \(v_a \) to \(v_b \), namely \(v_av^1_1v^2_1\ldots v^m_1v_b \), this edge \(e_i \) is in \(E(N_m(G')) \) as well. In addition, any path of length \(m \) in \(G' \) with end vertices in \(V(G) \) by construction has a corresponding edge in \(E(G) \). Therefore \(G \) is an induced subgraph of \(N_m(G') \).

It is left to prove, that \(G \) is a component of \(N_m(G) \), which means, that the subgraph is not connected to any vertex in \(V' \setminus V = \{v^i_j \mid i = 1, \ldots, k, j = 1, \ldots, m-1\} \). However, by construction any path of length \(m \) starting in \(v_a \in V(G) \) ends in \(v_b \in V(G) \). Thus because of symmetry, there can be no path from \(v_a \) to \(v^i_1 \in V(G) \) of length \(m \), and there is no edge \(v_av^i_1 \in N_m(G') \).

Furthermore, if \(G \) is a component of \(N_m(G') \) then it is also an induced subgraph, thus positively answering the third question. In that case the least number \(|V(G')| = |V(G)| + t \) is called the embedding number of \(G \). Determining the embedding number seems not to be an easy problem. Boland, Brigham and Dutton have done research on this for neighborhood graphs \(N_2 \) in [2] and [3]. However, the NP-completeness has not been proven yet, and the embedding number of \(m \)-step graphs \(N_m(G), m \geq 3 \) was not investigated yet.

The first question however has a negative answer. For example let \(m = 2 \), then \(G = P_2 = acb \) plus any number of isolated vertices is not a neighborhood graph. For those two edges \(ac \) and \(bc \) there must be two vertices \(v_1, v_2 \) adjacent to the ends of these edges. If they are identical \(v_1 = v_2 \) then there is an edge \(ab \in E(N_2(G)) \) induced by the path \(av_1b \). This yields a triangle instead of a path. If the vertices are not identical \(v_1 \neq v_2 \), then they have a common neighbor \(c \) and thus are connected in the neighborhood graph. For arbitrary \(m \geq 3 \) the graph \(G' \) with \(N_m(G') = P_2 + I_t \) can be constructed as shown in Figure 6.
Basic Results for Arbitrary Graphs

Figure 6: An m-step graph consisting of $P_2 = acb$ and isolated vertices for $m \geq 3$.

However, if $G = P_3$ there is no graph G' with $N_m(G') = P_3 + I_r$.

Proposition 4.3. Let $m \geq 2$ and $t \in \mathbb{N}_0$. Then there is no graph G' such that $N_m(G') = P_3 + I_r$.

Proof. Let $P_3 = acbd$ a path of length three. The subpath acb must be a fork in G' as can be seen in Figure ??: Let ac be induced by the path $a = a_0a_1...a_m = c$ and bc induced by the path $b = b_0b_1...b_m = c$. It follows, that there must be a minimal $i < \frac{m}{2}$ with $a_i = b_i$; otherwise this would yield edges in $N_m(G')$ that are not in $acbd$. Now there must be a path of length m in G' inducing the edge bd. However, by a case distinction on where this path must diverge from the other paths, in any case there is a fourth edge or a triangle induced. Therefore we obtain contradictions such that there is no G' with $N_m(G') = P_3 + I_r$.

\[\square\]

Figure 7: Any bd-path in G implies edges in $N_m(G')$, that are not in $acbd$.
4.1 Minimum Degree

A lower bound for the minimum degree of m-step graphs is given by

Theorem 4.4. Let $G = (V, E)$ be a graph with minimum degree $\delta(G)$ and $m \in \mathbb{N}$ with $2 \leq m \leq \delta(G)$. Then we obtain for the m-step graph $N_m(G)$

$$\delta(N_m(G)) \geq \delta(G) - 1. \quad (1)$$

Proof. Without loss of generality assume that G is connected (otherwise the following considerations can be made separately for each component). We have $|V| > \delta(G)$ and because of $m \leq \delta(G)$ there is a path $P = v_1 \ldots v_m$ of length $m - 1$ in G for an arbitrarily chosen start vertex $v_1 \in V$. In the following we show the existence of $\delta(G) - 1$ paths of length m from v_1 to pairwise distinct end vertices, which proves (1).

(a) Let $j = ||v_iv_m \in E \mid i \in \{1, \ldots, m - 2\}||$, that is the number of edges from any vertex v_i in the path (except from v_{m-1}) to the end vertex v_m. Then v_m has at least $\delta(G) - (j + 1)$ neighbors $a_1, \ldots, a_{\delta(G) - j - 1} \notin V(P)$. Now the path Pa_i from v_1 to a_i is of length m in G, thus $v_1a_i \in E(N_m(G))$ for $i = 1, \ldots, \delta(G) - j - 1$ (see Figure (8)).

![Figure 8: Path $v_1 \ldots v_m$, neighbors of v_m and $j = 2$ edges from v_m back to the path.](image)

(b) Now consider the j vertices $v_{i_1}, \ldots, v_{i_j} \in V(P)$ with $i_t \in \{2, \ldots, m - 1\}$, $v_{i_t-1}v_m \in E$ and $t = 1, \ldots, j$. Because of $\delta(G) \geq m$ there are (not necessarily distinct) vertices $w_t \notin V(P)$ with $w_tv_{i_t+1} \in E$ and $t = 1, \ldots, j$. For each $t \in \{1, \ldots, j\}$ we distinguish three cases (see Figure (9)).

(i) Let $b_t := v_{i_t+2}$ and $w_tv_m \in E$ (that is $w_t = a_t, i \in \{1, \ldots, \delta(G) - j - 1\}$). Then the path $P_1 = v_1 \ldots v_{i_t}v_{i_t+1}w_tv_m \ldots b_t$ has length m, and thus $v_1b_t \in E(N_m(G))$.

(ii) Let $b_t := w_t$ and $w_tv_m \notin E$. If there is no other vertex v_{i_t} with $i_t > i_t$ and $\{v_{i_t+1}, w_t\} \in E$ then the path $P_2 = v_1 \ldots v_{i_t}v_m \ldots v_{i_t+1}b_t$ has length m and $\{v_1, b_t\} \in E(N_m(G))$. Note that this case appears at most once for each vertex w_t.
4.1 Minimum Degree

(iii) Otherwise there is a vertex \(v_{i_r}\) with \(i_r > i_t\) and \({v_{i_t + 1}, w_t}\) \(\in E\). Let \(b_t := v_{i_t + 2}\). Then the path \(P_3 = v_1 \ldots v_{i_t} v_{i_t + 1} w_t v_{i_t + 2} \ldots v_m v_{i_r} \ldots b_t\) is of length \(m\) and \(v_1 b_t \in E(N_m(G))\).

Summarizing the results we obtain the vertices \(a_1, \ldots, a_\delta(G) - j - 1\) and \(b_1, \ldots, b_j\). In cases (i) and (iii) \(b_t = v_{i_t + 2}\) and in case (ii) \(b_t = w_t\). Furthermore these vertices are pairwise distinct and we obtain \(\delta(G) - 1\) edges \({v_1, a_i}, {v_1, b_i} \in E(N_m(G))\), this completes the proof.

\[\square\]

This lower bound for the minimum degree is sharp.

- For \(K_n\) we have \(\delta(K_n) = n - 1\) and \(\delta(N_m(K_n)) = 0\) for any \(m \geq n > \delta(K_n)\).

- There are graphs with \(\delta(N_m(G)) = \delta(G) - 1\). Let \(m \in \mathbb{N}\) and \(m \geq 2\). Graph \(G = (V, E)\) is the union of a tree and a complete bipartite graph; the tree has the root vertex \(v\) and all leaves are at depth \(m - 1\), the inner nodes have degree of \(m\) and all the leaf vertices are connected to the vertices \({y_1, \ldots, y_{m-1}}\). See Figure 10 for an example. To be precise, the construction is formally given by

\[
V = \bigcup_{i=0}^{m} L_i, \quad L_i = \begin{cases}
\{v\} & \text{if } i = 0 \\
\{v_p \mid p \in [1, m] \times [1, m - 1]^{i-1}\} & \text{if } 0 < i < m \\
\{y_k \mid k \in [1, m - 1]\} & \text{if } i = m
\end{cases}
\]
and the set of edges E is defined by the following four conditions

(i) $\{vv_1, \ldots, vv_m\} \subseteq E$,

(ii) $\forall i \in [1, m-2] \forall w \in L_i : w = v_{p_1, \ldots, p_i} \rightarrow \{wv_{p_1, \ldots, p_i, 1}, \ldots, wv_{p_1, \ldots, p_i, m-1}\} \subseteq E$,

(iii) $\forall w \in L_{m-1} : \{wy_1, \ldots, wy_{m-1}\} \subseteq E$,

(iv) there is no other edge in E than those given in (i), (ii) and (iii).

Figure 10: Example for $m = \delta (G) = 4$ and $\delta (N_m(G)) = \delta (G) - 1$.

The graph G has the minimum degree $\delta (G) = m$. Because of Theorem 4.4 the minimum degree of its m-step graph is $\delta (N_m(G)) \geq \delta (G) - 1$. Considering the start vertex $v \in G$ we notice that every path of length m is of the type $vv_{p_1, p_3, p_2, \ldots, p_m, 1} y_k$. Therefore $N_m(v) = \{y_1, \ldots, y_{m-1}\}$ and thus $\delta (N_m(G)) = m - 1$.

4.2 Isomorphism Problems

Brigham and Dutton [4] gave characterizations for graphs G such that $N_2(G) \cong K_n$ and $N_2(G) \cong G$. Furthermore they described new results on the more difficult problem $N_2(G) \cong \overline{G}$. With respect to m-step graphs, these problems can be generalized by the following equations:

- $N_m(G) \cong K_n$,
- $N_m(G) \cong G$ or
- $N_m(G) \cong \overline{G}$.

Let us first consider the equation $N_m(G) \cong K_n$ (remember that $|V| = n > m \geq 2$).
Proposition 4.5. Necessary conditions for $N_m(G) = K_n$ are:

(i) G is connected,

(ii) diameter $d(G) \leq m$,

(iii) if $v \in V(G)$ is a cut vertex separating A, B, then $|V(A)| > m$ and $|V(B)| > m$,

(iv) there is no bridge in G,

(v) each $e \in E(G)$ is part of a cycle of length $m + 1$.

Proof. If $d(G) > m$, then there are two vertices $x, y \in V(G)$, such that there is no xy-path of length m, thus $xy \notin E(N_m(G))$. Therefore (ii) is necessary, which implies, that (i) is necessary too. Condition (iii) is necessary, because any xy-path in G requires at least $m + 1$ vertices and can not visit a cut vertex twice. Any edge $e = xy \in E(G)$ requires an xy-path of length m in G, otherwise $e \notin E(N_m(G))$. Therefore e is part of a cycle of length $m + 1$, and (v) is necessary, which implies, that (iv) is necessary too.

Obviously these conditions are not sufficient for $m \geq 3$; C_{m+1} for example fulfills these necessary conditions, but $N_m(C_{m+1}) \cong C_{m+1} \neq K_{m+1}$.

Let us now consider the equation $N_m(G) \cong G$. For $m = 2$ Brigham and Dutton have shown, that every component of G is a complete graph on other than two vertices or an odd cycle. However, for $m \geq 3$ we obtain only sufficient but not necessary conditions by generalizing these conditions. If $n > m$ then $N_n(K_n) = K_n$, and if also $\gcd(m, n) = 1$ then $N_n(C_n) \cong C_n$, but another example is given in Figure 11 showing a spiked cycle isomorphic to its 3-step graph. Similarly for any odd m there is a spiked cycle $G = C_{2m-2} + x + xv_0$, such that $N_m(G) \cong G$. Finding elegant conditions for problems with $m \geq 3$ remains an open problem.

![Figure 11: The spiked cycle on five vertices is isomorphic to its 3-step graph.](image-url)
5 Connectivity

A necessary condition for the connectivity of an m-step graph $N_m(G)$ is the connectivity of
G, as described in the following proposition.

Proposition 5.1. If $N_m(G)$ is connected, then G is also connected.

Proof. Let $x, y \in V$ be any arbitrary vertices. Since $N_m(G)$ is connected, there is a path P
from x to y in $N_m(G)$. An edge of this path is induced by a path of length m in G. Thus there
is a walk from x to y in G and G is connected.

Now the other way round is more difficult. Does connectivity of G imply also the connec-
tivity of $N_m(G)$? From Section 3.1 we already know, that a path P is split up into m paths
in $N_m(P)$. Furthermore $N_m(K_{1,n}) = I_{n+1}$ if $m \geq 3$ (see 3.4), thus there is no boundary for
the number of components of an m-step graph $N_m(G)$ of a connected graph G. However,
one might come to the idea, that if a graph is connected, large enough and contains certain
subgraphs, then perhaps the connectivity of $N_m(G)$ is guaranteed. An example of such a
subgraph is the cycle C_{m+1}. Since $N_m(C_{m+1}) = C_{m+1}$ remains connected this cycle induces
connectivity of any supergraph. More general we obtain

Proposition 5.2. Let G be connected and $H \subseteq G$ with $N_m(H)$ connected and having more
than one vertex, then $N_m(G)$ is connected.

Proof. Let $x, y \in V(G)$ be arbitrarily chosen. It is to prove, that there is an xy-path in $N_m(G)$.

(i) If $x, y \in V(H)$ then there is an xy-path in $N_m(G)$, because $N_m(H) \subseteq N_m(G)$ (by Proposi-
tion 1.3) and $N_m(H)$ is connected.

(ii) Let $x \notin V(H), y \in V(H)$. Since G is connected, there is a path P_1 from x to $v \in V(H)$ in
G such that $\{v\} = V(P) \cap V(H)$ (see Figure 12). The length of P_1 is $k \cdot m + d$ with $k \in \mathbb{N}$
and $d \in [0, m - 1]$. Now let $v_m \in V(H)$ such that there is a vv_m-path $vv_1 \ldots vv_{m-1}v_m$ of
length m in H. Then $xP_1v_1 \ldots v_{m-d}$ is a path in G with a length divisible by m. Therefore
there is a path from x to $v_{m-d} \in V(H)$ in $N_m(G)$. By extending this path with an $v_{m-d}y$-
path as in (i) we obtain a walk from x to y in $N_m(G)$ and thus have an xy-path in $N_m(G)$.

(iii) Let $x, y \notin V(H)$ and $v \in V(H)$ arbitrarily chosen. By (ii) we obtain an xy-path and an
yy-path, therefore there exists an xy-path in $N_m(G)$.

- 20 -
In any case there exists an xy-path in $N_m(G)$ for arbitrarily chosen $x, y \in V(G)$, therefore $N_m(G)$ is connected.

\[\square\]

A subgraph $H \subseteq G$ as in above proposition is called minimal, if there is no other subgraph $H' \subset H$ of at least two vertices such that $N_m(H')$ is connected. For $m = 2$ it is not difficult to see, that the only minimal graphs H with $N_2(H)$ connected are odd cycles:

- Odd cycles are connected and contain more than two vertices. Since N_2 preserves odd cycles (under isomorphism) Proposition ?? holds.

- Odd cycles are minimal. Proper connected subgraphs of odd cycles are paths, their m-step graphs are disconnected by Proposition 3.1.

- In order to show, that there are no minimal subgraphs $H \subseteq G$ other than odd cycles inducing connectivity in $N_2(G)$, assume G does not contain odd cycles. Then G is bipartite and by Proposition 3.4 $N_2(G)$ is disconnected.

By the same reason an odd cycle is required even though not sufficient for even $m \geq 4$. However, for odd $m \geq 3$ a minimal subgraph H with $N_m(H)$ does not require any cycles. To give an example I will show the connectivity of an acyclic graph, a caterpillar graph that is a tree having its leaf vertices within a distance of 1 from a central (longest) path.

Figure 12: Showing the existence of an xy-path for Proposition 5.2 (ii).
Proposition 5.3. For any odd \(m \geq 3 \) the \(m \)-step graph \(N_m(G) \) of the following caterpillar graph \(G = (V, E) \) (see Figure 13) is connected (and even contains a hamiltonian path):

\[
V = \{a_i, b_i, c_i, d_i \mid i = 1, \ldots, m - 1\},
\]
\[
E = \{a_ia_{i+1}, b_ib_{i+1}, c_ic_{i+1} \mid i = 1, \ldots, m - 2\}
\]
\[
\cup \{b_id_i \mid i = 1, \ldots, m - 1\}
\]
\[
\cup \{a_{m-1}b_1, b_{m-1}c_1\}.
\]

\(G : \)

```
Figure 13: The caterpillar graph of Proposition 5.3.
```

Proof. For odd \(m \geq 3 \) the \(m \)-step graph \(N_m(G) \) contains the following edges

\[
E(N_m(G)) = \{a_ia_{i+1}, b_ib_{i+1}, c_ic_{i+1} \mid i = 1, \ldots, m - 2\}
\]
\[
\cup \{a_id_i, d_ic_i \mid i = 1, \ldots, m - 1\} \cup \{c_1a_{m-1}, d_md_{m-1}\}.
\]

Therefore \(N_m(G) \) contains a hamiltonian path \(P = b_1P_1a_{m-1}c_1P_2b_{m-1} \) (see Figure 14) with

\[
P_1 = (b_1c_2d_2a_2)(b_3c_4d_4a_4) \ldots (b_{m-2}c_{m-1}d_{m-1}a_{m-1}),
\]
\[
P_2 = (c_1d_1a_1b_2)(c_3d_3a_3b_4) \ldots (c_{m-2}d_{m-2}a_{m-2}b_{m-1}).
\]

Note that the constructed path uses every edge in \(E(N_m(G)) \) except for \(d_1d_{m-1} \). Furthermore this caterpillar graph is minimal regarding the above definition, i.e. for any proper subgraph \(H \subset G (|V(H)| \geq 2) \) the \(m \)-step graph \(N_m(H) \) is disconnected.
Figure 14: Proving the connectivity by finding a Hamiltonian path in $N_m(G)$.
6 Hamiltonicity

In this chapter I want to generalize some ideas on hamiltonicity concerning neighborhood graphs.

A simple result follows from theorem 4.4 and Dirac’s theorem stating: Any simple graph G on $n \geq 3$ vertices is hamiltonian if each vertex has degree at least $\frac{n}{2}$.

Corollary 6.1. Let $G = (V, E)$ be a simple graph, $n = |V| \geq 3$ and $m < n$. If $\delta(G) \geq \frac{n}{2} + 1$ then $N_m(G)$ is hamiltonian.

Proof. From $\delta(G) \geq \frac{n}{2} + 1$ theorem 4.4 follows $\delta(N_m(G)) \geq \frac{n}{2}$, which implies a hamiltonian cycle according to Dirac.

In their paper Schiermeyer, Sonntag and Teichert [18] have proven some interesting propositions, answering the question on how $N_2(G)$ does inherit hamiltonicity properties from G. Their basic results are

Proposition 6.2. Let $G = (V, E)$ be a graph and $N_2(G)$ its neighborhood graph.

(i) If $|V|$ is odd and G is hamiltonian then $N_2(G)$ is hamiltonian.

(ii) If G is nonbipartite and hamiltonian then $N_2(G)$ contains a hamiltonian path.

(iii) If G has an odd spanning spiked cycle then $N_2(G)$ is hamiltonian.

(iv) If G is 1-hamiltonian then $N_2(G)$ is hamiltonian.

The first proposition can easily be generalized and proven; if $\gcd(m, |V|) = 1$ and G is hamiltonian then $N_m(G)$ is hamiltonian, because by Proposition 3.2 a hamiltonian cycle is congruent to a hamiltonian cycle in $N_m(G)$.

With that in mind one might come to the conclusion, that the odd spanning spiked cycle of 6.2 (iii) can be generalized to a spanning spiked cycle of length n with $\gcd(m, n) = 1$. However, this is not the case. A counterexample is the 3-step graph of the spiked cycle as already seen in Figure 11. Instead there are variants of spikes for which the m-step graph is hamiltonian:

- A non-cycle vertex connected to two cycle vertices at a given distance (Proposition 6.3).
Hamiltonicity

- Two spikes at a given distance on the cycle (Proposition 6.4).
- Cycles of length m can be appended to cycle vertices (Proposition 6.5).
- Pairs of paths of length $m - 1$ can be appended to one cycle vertex (Proposition 6.6).

Proposition 6.3. Let $G = (V, E)$ with $V = \{v_0, \ldots, v_{n-1}, w\}$. Furthermore let $E = \{wv_a, wv_b\} \cup \{v_i v_{i+1} \mid i = 0, \ldots, n-1\}$ (indices are taken modulo n) such that $b - a \equiv m - 2 \mod n$ (or $a - b \equiv m - 2 \mod n$), then $N_m(G)$ is hamiltonian.

Proof. Without loss of generalization assume $a = 1$ and $b = m - 1$ (otherwise this can be achieved by switching a and b or by rotation ($v_i \rightarrow v_{i+\tau}$, indices taken modulo n). From $\gcd(m, n) = 1$ and Proposition 3.2 we obtain a cycle in $N_m(G)$ covering the cycle vertices v_0, \ldots, v_{n-1}. To integrate the vertex w in this cycle there are three edges of importance (see Figure 15):

- $wv_0 \in E(N_m(G))$ since there is a path of length m in G, namely $wv_{m-1}v_{m-2}\ldots v_1v_0$.
- $wv_m \in E(N_m(G))$ since there is a path of length m in G, namely $wv_1v_2\ldots v_{m-1}v_m$.
- $v_0v_m \in E(N_m(G))$ is obtained from the induced cycle of C_N.

Now $(V, \{v_i v_{i+m} \mid i = 1, \ldots, n-1\} \cup \{wv_0, wv_m\}) \subseteq N_m(G)$ is a hamiltonian cycle.

\[\square\]

![Figure 15: Replacing v_0v_m (blue) by v_0wv_m (green) yields a hamiltonian cycle.](image)

In case of $m = 2$ the precondition $b - a \equiv m - 2 \mod n$ means $b = a$ and therefore $v_a = v_b$, yielding the familiar spike in Proposition 6.2 (iii).

Another possibility exists by using two spikes at a given distance:
Proposition 6.4. Let $G = (V, E)$ with $V = \{v_0, \ldots, v_{n-1}, x, y\}$. Furthermore let $E = \{xv_a, yv_b, xy\} \cup \{v_i v_{i+1} \mid i = 0, \ldots, n-1\}$ (indices are taken modulo n) such that $b - a \equiv m - 2 \mod n$ (or $a - b \equiv m - 2 \mod n$), then $N_m(G)$ is hamiltonian.

Proof. Similar to the proof of the preceding proposition, assume $a = 1$ and $b = m - 1$ without loss of generelization. There are four edges of importance to construct a hamiltonian cycle:

- $v_0y \in E(N_m(G))$, since $v_0v_1 \ldots v_{m-2}v_{m-1}y$ is a path of length m in G.
- $v_mx \in E(N_m(G))$, since $xv_1v_2 \ldots v_{m-1}v_m$ is a path of length m in G.
- xy, since $xv_1v_2 \ldots v_{m-2}v_{m-1}y$ is a path of length m in G.
- $v_0v_m \in E(N_m(G))$ is obtained from the induced cycle of C_N.

Therefore $(V, \{v_i v_{i+1} \mid i = 1, \ldots, n-1\} \cup \{xv_0, xy, vy_m\}) \subseteq N_m(G)$ is a hamiltonian cycle.

\[\square\]

Figure 16: Replacing v_0v_m (blue) by v_0xyv_m (green) yields a hamiltonian cycle.
Furthermore there can be cycles of length m be appended to a vertex of C_n.

Proposition 6.5. Let $G = (V, E)$ with $V = \{v_0, \ldots, v_{n-1}, w_1, \ldots, w_{m-1}\}$. Furthermore let $E = \{v_0w_1, w_1w_2, \ldots, w_{m-2}w_{m-1}, w_{m-1}v_0\} \cup \{v_i v_{i+1} \mid i = 0, \ldots, n-1\}$ (indices are taken modulo n), then $N_m(G)$ is hamiltonian.

Proof. To construct a hamiltonian cycle there are the following edges of importance:

(i) $v_{n-m+1}w_1, \ldots, v_{n-1}w_{m-1} \in E(N_m(G))$ and $w_1v_1, \ldots, w_{m-1}v_{m-1} \in E(N_m(G))$; these edges are interconnecting the vertices from both cycles.

(ii) The edges $v_{n-m+1}v_1, \ldots, v_{n-1}v_{m-1} \in E(N_m(G))$ are induced by the cycle C_n.

Therefore by replacing the edges of (ii) by the paths $v_{n-m+1}w_1v_1, \ldots, v_{n-1}w_{m-1}v_{m-1}$ of (i) yields a hamiltonian cycle, namely $(V, \{v_i v_{i+m} \mid i = 0, \ldots, n-m\} \cup \{v_{n-m+i}w_i, w_iv_i \mid i = 1, \ldots, m-1\})$.

□

An example for constructing this hamiltonian cycle is given in Figure 17 with $m = 6$.

![Figure 17: Replacing $v_{n-m+i}v_i$ (blue) by $v_{n-m+i}w_i$ (green), $i = 1, \ldots, m-1$ with $m = 6$](image-url)
Another possibility is described in Figure 18, which is similar to the previous one using two paths of length m instead of a cycle C_m.

Proposition 6.6. Let $G = (V, E)$ with $V = \{v_0, \ldots, v_{n-1}, x_1, \ldots, x_{m-1}, y_1, \ldots, y_{m-1}\}$. Furthermore let $E = \{v_0x_1, x_1x_2, \ldots, x_{m-2}x_{m-1}, v_0y_1, y_1y_2, \ldots, y_{m-2}y_{m-1}\} \cup \{v_iv_{i+1} \mid i = 0, \ldots, n-1\}$ (indices are taken modulo n), then $N_m(G)$ is hamiltonian.

Proof. Similar to the previous proof a hamiltonian cycle is constructed by replacing the edges $v_{n-m+1}v_1, \ldots, v_{n-1}v_{m-1} \in E(N_m(G))$ by the paths $v_{n-m+1}x_1y_{m-i}v_1, \ldots, v_{n-1}x_{m-1}y_1v_{m-1}$, namely $(V, \{v_iv_{i+m} \mid i = 0, \ldots, n-m\} \cup \{v_{n-m+i}x_i, x_iy_{m-i}, y_{m-i}v_i \mid i = 1, \ldots, m-1\})$.

Figure 18: Replacing $v_{n-m+i}v_i$ (blue) by $v_{n-m+i}x_iy_{m-i}v_i$ (green), $i = 1, \ldots, m-1$ with $m = 6$
7 Conclusions

The m-step graph is an interesting theoretical construct and closely related to the topical research on neighborhood graphs, competition graphs, m-step competition graphs and their other generalizations. Describing the m-step graphs for particular graph classes is a straightforward procedure. The more interesting question is: How are graph properties preserved by the m-step function? The minimum degree was a perfect example; as long as $m \leq \delta(G)$, the minimum degree of the m-step graph is at least $\delta(N_m(G)) \geq \delta(G) - 1$. Other interesting graph properties could be the girth and circumference. Furthermore the results for connectivity 5 and hamiltonicity 6 are elemental results, but there are many questions left. The following section describes a small selection of open problems concerning m-step graphs.

7.1 Open Problems

- For $m \geq 3$ it was not difficult to show that P_2 together with isolated vertices is an m-step graph. P_3 was shown to be not an m-step graph, no matter how many isolated vertices are added. By that one might conjecture that even paths are m-step graphs and odd paths are not. For $m = 2$ however it is obvious that no path of length at least two is a neighborhood graph.

- Is there an elegant way of describing the m-step graph of a tree? The easy thing about trees is the existence and uniqueness of xy-paths for arbitrary $x, y \in V(G)$. However, as we have seen in Section 5 the m-step graphs of trees do not necessarily decompose for odd m, which makes an elegant description difficult.

- In Section 2.2 we have seen the history of NP-completeness for determining the competition number. However, because the proof of Opsut [15] makes heavily use of directed arcs, it is difficult and perhaps impossible to translate it to the undirected case, i.e. the embedding number.

- The isomorphism problems in Section 4.2 ask for classes of graphs fulfilling the equations $N_m(G) = K_n$, $N_m(G) = G$, $N_m(G) = \overline{G}$. However, no elegant descriptions of the graphs fulfilling these equations are known yet. Another interesting problem could arises when comparing $N_m^2 = N_m(N_m(G))$ with $N_{2m}(G)$, or in general $N^k_m(G) = N_{m-k}(G)$?
References

