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Abstract—We propose fLTL, an extension to linear-time tem-
poral logic (LTL) that allows for expressing relative frequencies
by a generalization of temporal operators. This facilitates the
specification of requirements such as the deadlines in a real-
time system must be met in at least 95% of all cases. For our
novel logic, we establish an undecidability result regarding the
satisfiability problem but identify a decidable fragment which
strictly increases the expressiveness of LTL by allowing, e.g.,
to express non-context-free properties.
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I. I NTRODUCTION

Linear-time Temporal Logic (LTL) has been introduced
to the setting of formal verification of computer programs
in 1977 by Pnueli [1]. Meanwhile it has become a well-
established specification formalism that is used in many
different areas and for different purposes, but especiallyfor
verification. It is the basis of PSL (Property Specification
Language, [2]), which is a standardized specification lan-
guage used in the hardware domain. To foster its industrial
application, it has been supported by specification patterns
[3] and by syntactic sugar [4].

Despite its extensive use in many different application
areas it has been noted that LTL has a limited expressiveness.
Wolper [5] showed that LTL is not able to express allω-
regular properties. More specifically, he showed that LTL is
not able to express thatp holds in every other moment. In
essence it means that LTL is not able to count.

Over the past decades LTL has been extended in many
directions to enrich its expressiveness. Starting with Wolper
[5], there is a line of work extending LTL’s expressiveness
to capture the regularω-languages [6], [7], [8].

Another line of work extends the expressiveness of LTL
towards quantitative measures. Demri considers LTL over
integers rather than atomic propositions [9], giving the
resulting logic the possibility to reason over sequences of
integers and to allow counting modulo constants. In the
context of probabilistic model checking, where a system
description is given as a Markov chain, the set of traces
satisfying an LTL formula is measured allowing one to give
an idea about the probability to which extent the underlying
formula holds [10]. A similar concern of giving a measure
to which extent the formula is satisfied is also pursued in the
setting of runtime verification. Here, however, only a single

trace is given from which several finite behaviours of the
underlying system are derived to estimate the probability to
which extent the formula is satisfied. A notable work in this
area is given by [11].

We also extend LTL to allow for the specification of
quantitative means within our formal logic. In contrast to
the existing work we do not extend the underlying structures
towards integers nor do we rely on profound probability the-
ory arguments. Our extension focuses on theuntil-operator
present in LTL. The standard meaning ofϕ until ψ (denoted
by ϕUψ) is that there is a future moment in which a
propertyψ holds and up to this moment a propertyϕ has
to hold in each position. Our main idea is now to relax the
number of positions in whichϕ has to hold by allowing to
say that, e.g., only at 95 % of the positionsϕ has to hold.

A similar concept has been worked out by Hoenicke et
al. in the setting of regular expressions [12]. Their notion
of availability in finite words appears closely related but
while the relationship between LTL-definable languages and
regularω-languages is well studied, the formal link between
our logic f LTL and the so called availability expressions
remains subject to further investigation.

An extension of LTL towards counters has also been
considered recently by Laroussinie et al. [13]. In contrast
to our approach, this is a syntactic variation in terms of ex-
pressiveness, as they reside in the class of LTL-definableω-
languages. There is, however, an interesting correspondence,
which we point out in Section IV.
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II. PRELIMINARIES

Words: Let AP be a finite, non-empty set ofatomic
propositions. We consider words over the alphabetΣ = 2AP.
Powers of finite words and letters are to be read in the
common way, i.e.w0 = ε andwn+1 = wwn. For an infinite
word w = a0a1a2. . . ∈ Σω (ai ⊆ AP) we denote the finite
prefix of lengthn by w|n = a0a1. . . an−1 and then-th true
(infinite) suffix by w|n = anan+1. . . . Thus,w|0 = ε and
w = w|0 = w|nw|

n. This notation is analogously used for
linear sequences in general, such as paths. We sometimes
specify alphabets directly when propositions are not needed
explicitly. The reader may assume any setAP that allows for



distinguishing propositionally at least the number of letters
needed and possibly some more, which are not being used.

Formulae: Furthermore, we use lettersa ∈ Σ (i.e.
sets of propositions) in formulae to keep them concise
and readable. They abbreviate an exactly characterizing
conjunction(

∧
p∈a p) ∧ (

∧
p6∈a ¬p). In general, aset Γ of

formulae is considered as
∧

ϕ∈Γ ϕ. Sets of lettersindicate
their disjunction. For example, letM be the set of letters
{a, b}. When used in a formula, we interpretM as

(
(
∧

q∈a

q) ∧ (
∧

q 6∈a

¬q)
)
∨
(
(
∧

q∈b

q) ∧ (
∧

q 6∈b

¬q)
)
.

III. THE TEMPORAL LOGIC f LTL

The idea off LTL is to allow for relaxation of the until
operator in terms of an annotated frequency. The usual
intuition for a formulaϕUψ is thatψ must hold at some
point in the future, and before thatϕ has to holdalways.
Instead of “always”, we consider the less strict formulation
“sufficiently often” referring to a minimum ratioc ∈ [0, 1]
of positions, thefrequencyof ϕ.

Definition 1 (Syntax and semantics off LTL) . The syntax
of Frequency Linear-time Temporal Logic (fLTL) formulae
is given by

ϕ ::= ⊤ | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕ Uc ϕ | p (p ∈ AP)

where eachU-operator is annotated by a rational number
c ∈ Q with 0 ≤ c ≤ 1. fLTL formulae are interpreted over
wordsw ∈ Σω, w = a0a1a2. . . as follows:

w |= ⊤
w |= p if p ∈ a0 (p ∈ AP)
w |= ¬ϕ if w 6|= ϕ
w |= Xϕ if w|1 |= ϕ
w |= ϕ ∧ ψ if w |= ϕ andw |= ψ
w |= ϕUc ψ if ∃n : w|n |= ψ and

#ϕ,w(n) ≥ c · n

In the definition above we write

#ϕ,w(n) := |{i | 0 ≤ i < n, w|i |= ϕ}|

for the number of positions beforen satisfying a formulaϕ.
For c = 1, ϕ has to hold at all the positions beforeψ

holds, which coincides with theU-operator in LTL and we
thus considerϕUψ as abbreviation for the special case
ϕU1 ψ. Note, that our definition is less strict as it could
be regarding the eventuality. Consider, for examplepU

1
2 q

and the wordw = {r}{q}{p}{p}{q}{q}{r}ω. The observed
frequency ofp at positions 1 and 5 is#p,w(1)

1 = 0
1 and

#p,w(5)
5 = 2

5 , respectively, which is too low. Yet, at position
4, q is satisfiedand the frequency constraint is met.w is
thus a model since the frequency constraint is not necessarily
required to hold at the first position whereq holds. In our
conclusion, we discuss a variant off LTL that considers only
the frequency up to the first satisfaction ofψ.

We use the standard abbreviations⊥ := ¬⊤ andϕ∨ψ :=
¬(¬ϕ∧¬ψ). Inspecting the negation¬(ϕUc ψ) we obtain a
notion of “sufficiently often¬ϕ releases¬ψ at that position”
where “sufficiently often” amounts to a least frequency of
1 − c. Hence, the dual operator forUc can be seen as
ϕRc ψ := ¬(¬ϕU1−c ¬ψ) and we confirm coincidence
with the traditionalR-operator forc = 0. Also note, that
our definition is robust considering the operatorsF (eventu-
ally) and G (always). We can use the common definition
Fϕ := ⊤Uϕ with an implicit frequencyc = 1 while
any other frequency would neither formally nor intuitively
change the semantics. Allowing⊤ to hold less frequently
(c < 1) does not change anything as it always holds. Dually,
we letGϕ := ¬F¬ϕ = ⊥Rc ϕ for c = 0 since⊥ does not
hold, particularly not “more often” (c > 0).

IV. f LTL IS NOT CONTEXT -FREE

We observe that LTL is not only a syntactic but also atrue
semantic fragmentof f LTL regardingω-languages: Consider
alphabetsΣn = {a1, . . . , an, b} and the family of languages

Ln = {ak1a
k
2 . . . a

k
nb

ω | k ∈ N0},

which are not context-free forn > 2. While the LTL-
definable languages are (strictly) contained in the class of
regularω-languages, each of the languagesLn is definable
by an f LTL formula

ϕn =

(
n∧

i=1

aiU
1
n G b

)
∧

(
n−1∧

i=1

G(ai+1 → G¬ai)

)
,

providing the following theorem.

Theorem 1. fLTL can express non-context-free languages.

Corollary 1. fLTL can express non-context-free languages
without nesting of frequency-until operators.

At this point it is worth having a closer look at the work
done by Laroussinie et al. in [13]. They consider an exten-
sion to LTL that allows for counting the number of positions
where certain properties hold. They show that there is a
translation from their logic, which they call CLTL, to LTL.
This strictly distinguishes CLTL formf LTL. Interestingly it
turns out that only a subtle change to their formalism effects
the observed gap in terms of expressiveness.

CLTL allows for formulaeϕU[C] ψ where the until oper-
ator is annotated by a constraint of the form

C ::= ⊤ | C ∧ C | ¬C |
∑

i αi ·#ηi ∼ k

where∼∈ {<,≤,=,≥, >}, k, αi are positive integers and
ηi is again a CLTL formula. Semantically,w |= ϕU[C] ψ
for a wordw ∈ Σω if ∃n : w|n |= ψ and (w, n) |= C and
∀0≤i<n : w|i |= ϕ. To obtain the semantics of(w, n) |= C,
the terms#η in C are interpreted as the number of positions
beforen that satisfyη, i.e. #η,w(n).

For trying to expressϕUc ψ nonetheless in CLTL we
could writeϕU[C] ψ and letC = (#ϕ

#⊤ ≥ c). Equivalently,



with c = n
m

, we could writeC = (m ·#ϕ − n ·#⊤ ≥ 0).
Hence, allowing for negative weights αi in constraints
obviously completely changes the character of CLTL.

V. f LTL IS UNDECIDABLE

Considering the expressiveness off LTL, the question
arises whether it is decidable. One of our main contributions
is the following answer.

Theorem 2. Satisfiability of fLTL formulae is undecidable.

In the remainder of this section we sketch a proof,
which is inspired by [12]. Its main idea is to reduce the
(undecidable) termination problem of two-counter Minsky
machines [14] to the satisfiability problem off LTL. More
specifically, for a given Minsky machineM, we construct a
formulaϕM that expresses the (deterministic) computation
of M. Then,ϕM ∧ F lfinal is satisfiable, if and only ifM
terminates in linelfinal, denoting the halting location ofM.

Minsky machines:A Minsky machine uses two instruc-
tions inc(Ki, l) anddect(Ki, l1, l2) whereKi refers to one
of the two counters andl, l1, l2 ∈ L are locations in the
program. inc increases the counter and jumps to location
l, while thedect instruction testsKi for zero and directly
jumps tol1 in that case, or otherwise decreasesKi and the
next instruction to be executed is the one at locationl2.

W.l.o.g. we consider instructions for each counter instead
of using the counter as argument. Also,dect is split into a
pure test for zero and a decrement instruction that has no
effect, if a counter is zero. Thus, our instruction set is

IS := {inc1, inc2, dec1, dec2, testz1, testz2}

A Minsky machine is a tupleM = (π, L, linit , lfinal, n0,m0)
whereL is a non-empty, finite set oflocations, linit , lfinal ∈ L
are the initial and final location, respectively,n0,m0 ∈ N0

are the initial counter values, the program π : L →
IS× L × L is a mapping of locations tocommands(tuples
of instructions and locations). Aconfigurationof M is a
tupleC = (l, n,m) ∈ L×N0 ×N0 representing the current
location and the values of both counters. Thecomputationof
M is the unique, infinite sequenceC0 → C1 → C2 → . . .
of configurationsCi, such thatC0 = (linit , n0,m0) is
the initial configuration and for anyCi = (l, n,m), the
subsequent configurationCi+1 is computed according to the
programπ in the expected manner. Note, that the second
location in a command is taken into account only by the
testz instructions.

Encoding the computation:We encode counters unary
into words by lettersa or â for counter 1 andb or b̂ for
counter 2.an,bm represent counter valuesn,m beforeand
ân

′

, b̂m
′

valuesn′,m′ after some operation.
We consider instructions always performing an explicit

operation on each of the counters, e.g.inc1 performs an
incrementation on counter 1 and a “skip” operation on
counter 2. These operations are represented in the encoding

by letters fromaOP := {ia, da, sa} for the first and from
bOP := {ib, db} for the second counter.ia indicates an
increase of the counter 1 and thus the number ofas. sa
indicates a skip operation, namely keeping the number ofas
constant in the encoding and similarly for the other letters.

Note that, while using lettersa for not modifying the
number ofas, we donot use an explicit lettersb for a skip
on counter 2. This is due to technicalities when counting
letters in the following.

Depending on which instruction is specified byπ(l) =
(is, l′, l′′) we represent the computation e.g. as

l aniaâ
n+1 bmb̂m for is = inc1,

l ansaâ
n bmb̂m for is = testz1 or

l ansaâ
n bmibb̂

m+1 for is = inc2.

The computation

(l0, n0,m0) → (l1, n1,m1) → (l2, n2,m2) → . . .

of M is thereby represented as a word of the form

l0 a
n0 opa â

n1 bm0$opb b̂
m1 l1 a

n1 op′a â
n2 bm1$op′b b̂

m2

l2 a
n2 op′′a â

n3 bm2$op′′b b̂
m3 . . .

where l0 = linit is the initial location andopa, op
′
a, op

′′
a ∈

aOP, opb, op
′
b ∈ bOP∪{ε}. For purely technical reasons we

add a separator sign$ between thebs andb̂s. The encoding
yields the alphabet we use:

Σ = {a, â, b, b̂, $, ia, ib, da, db, sa} ∪ L.

Ordering of symbols:In order to ensure the correct or-
dering of the symbols in the encoding of the computation we
use a formulaϕenc that consist of the following conjuncts:

• Labels l ∈ L and the lettera are followed bya or
op ∈ aOP: (L ∨ a) → X(a ∨ aOP).

• An operationop ∈ aOP on counter 1 and letterŝa are
followed by â, b or $: (aOP ∨ â) → X(â ∨ b ∨ $).

• Letter b is followed by anotherb or $: b→ X(b ∨ $).
• After each $ there is an operation onb, a number of̂b

or the next label:$ → X(bOP ∨ b̂ ∨ L).
• A label must follow directly after symbolŝb, or directly

after an operation onb: (bOP ∨ b̂) → X(b̂ ∨ L).

Additionally, the computation has to start with the finite
prefix l0 an0 opa ân1 bm0$ according to the initial con-
figuration. It can be described similarly by an LTL formula
ϕI .

Specifying program instructions:Next, for is ∈ IS,
l1, l2 ∈ L, we construct formulaeϕ(is, l1, l2). Assuming the
correct ordering of symbols, i.e. in conjunction withGϕenc,
these formulae enforce the correct number ofâs and b̂s
according to the number ofas andbs and also the correct
choice for the next location. E.g., the formulaϕ(inc2, l1, l2)
shall enforce the patternansaân bm$ibb̂

m+1 l1. . . and
ϕ(testz1, l1, l2) enforces eitheran+1saâ

n+1 bm$b̂m l2. . .
(K1 > 0) or sa bm$b̂m l1. . . (K1 = 0). The formula



bU
1
2 l ∧ b̂U

1
2 l enforces the patternbmb̂m l. . . . Based on

this idea we use

βinc(l) := (b ∨ $) ∧X((b ∨ $ ∨ ib)U
1
2 l ∧ b̂U

1
2 l)

to express the effect of aninc2 operation on counter 2,
namely the patternbm$ibb̂

m+1 l. . . . The complete formula
must also impose equality between the number ofas andâs
which can be done similarly. Therefore we let

ϕ(inc2, l1, l2) :=

(a ∨ sa) ∧ X
(
(a ∨ sa)U

1
2 (βinc(l1)) ∧ âU

1
2 βinc(l1)

)

stating that there must be a sequence of lettersa, sa followed
by the pattern formβinc(l1) as above. Additionally, between
the first position and the beginning of theβinc(l1) pattern,
half of the positions must carry an̂a and the other half
and the first position must carry eithera or sa. Assuming,
in virtue of ϕenc, that sa occurs exactly once, the overall
number ofas andâs must thus be equal.

The other instructions can be reflected similarly and
we compose these instruction formulae according to the
programπ to a formula

ϕπ := G
( ∧

l∈L

l → Xϕ(π(l))
)
.

which enforces that any model must mimic the instructions
of the Minsky machine at every position where an according
label occurs.

Propagation: From each computation step to the next,
we need to ensure that the result of a computation, i.e. the
powers ofân and b̂m, arecopiedcorrectly.

l0 a
n0 opa â

n1 bm0$opb b̂
m1 l1 a

n1 op′a â
n2 bm1$. . .

Assuming, again, correct encoding and computation, we
observe an invariant in between the blocks ofâs andas,
i.e. the sub-termbm$opbb̂

m′

l. If opb = ib, then the number
of occurrences of letters from the setAleft := {â, b, $, ib}
is equal to the number of letters from the setAright :=

{b̂, a, db}∪L sincem′ = m+1. This also holds foropb = db,
wherem′ + 1 = m, and opb = ε with m′ = m. Thus,
n = n′ in ânbm$opbb̂

m′

lan
′

iff the number of occurring
letters fromAleft equals the number of occurring letters from
Aright. Thus we can ensure the correct propagation of the
value of counter 1 (in terms ofas) independently ofopb by

ψa := G
(
aOP → X

(
(Aleft U

1
2 aOP) ∧ (Aright U

1
2 aOP)

))
.

For propagating the value of the second counter we
enforce the pattern. . . b̂m l an opaâ

n′

bm$. . . . To the left
of opa we find the symbolsBleft := {b̂, a} ∪ L and to the
right Bright := {â, b}. We distinguish three cases foropa.

Caseopa = ia: Counter 1 is increased and we have the
patternb̂m l aniaâ

n+1bm
′

. We see thatm = m′ if and only

if the number of occurrences of symbols fromBright is equal
to the number of of symbols from the setBleft ∪{ia} minus
one which is expressed by the formula

ψinc := X
((

(Bleft ∨ ia)U
1
2 $
)

∧ (Bright U
1
2 $)
)
.

Caseopa = da: If the counter is decreased we have
b̂m l an+1daâ

nbm
′

and we enforce exactly one more symbol
from Bleft than fromBright ∪ {da} by

ψdec := X
(
(Bleft U

1
2 $) ∧

(
(Bright ∨ da)U

1
2 $
))
.

Note that in order to represent the offset of one we can
safely remove the first symbol using theX-operator and then
enforce an equal number because we know the pattern starts
with at least one symbol fromBleft.

Caseopa = sa: A neutral operation ona yields the pattern
b̂m l ansaâ

nbm
′

and we can guarantee equality ofm andm′

by an equal number of symbols fromBleft andBright∪{sa}:

ψskip :=
(
Bleft U

1
2 $
)
∧
(
(Bright ∨ sa)U

1
2 $
)
.

Combining the cases, we obtain a formula which ex-
presses that in any case, the propagation is done correctly.
The property must always hold right after the position of the
operator symbol for counter 2. Recall, that these symbols
for counter 2 might not be explicitly present since the
skip operation was expressed byε. We therefore describe
the position that triggers the copy-property forâ by either
finding symbol frombOP = {ib, db} explicitly or just the $
symbol without a following operation frombOP:

ψb := G
(
(bOP ∨ ($ ∧ ¬X bOP))

→ X
(
ψinc ∨ ψdec ∨ ψskip

))
.

Combining all the formulae we obtain

ϕM = ϕπ ∧ ψa ∧ ψb ∧ (Gϕenc) ∧ ϕI

describing exactly the computation ofM andϕM ∧ F lfinal

is satisfiable if and only ifM eventually reaches the final
location, i.e. terminates. This proves Theorem 2.

VI. A DECIDABLE FRAGMENT OF f LTL

In this section we consider thef LTL fragment ofsimple
frequentness properties(sfLTL) that is still more expressive
than LTL but has adecidablesatisfiability problem. Formu-
lae in that fragment are restricted in terms of nesting and
negation and have the form

ϕ ::= ψLTL | (ψLTL )U
c(ϕ) | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ

where ψLTL denotes a standard LTL formula, which we
assume w.l.o.g. to be in positive normal form, i.e. where
negation occurs only in front of atomic propositions. Hence,
for sfLTL we consider positive boolean combinations of
formulae including frequency-until operators that are not
nested in the first operand. Note, thatsfLTL is still more
expressive than LTL since the non-context-free properties



used to show thatf LTL is more expressive than LTL (The-
orem 1) do neither rely on nesting nor negating frequency-
until formulae.

In the remainder of this section we show the following.

Theorem 3. The satisfiability problem of sfLTL is decidable.

We outline a decision procedure that reduces satisfiability
of sfLTL formulae to the integer linear programming prob-
lem, i.e. to solving systems of linear inequalities, which can
be solved by using known algorithms, c.f. [15, Part IV]. We
prove that there is a model to the formula if and only if
the constructed inequality systems have a (natural) solution.
The reduction comprises three steps:

1) We first introduce a notion of our logic using counters.
2) Based on that we build a labelled tableau graph from

a given formula and check satisfiability by solving
constrained reachability problems in that graph.

3) We construct integer linear programs in order to find
paths that obey constraints imposed by the edge labels.

A. Counter semantics for fLTL

We rely on a notion of unfolding in order to build a
tableau graph forf LTL formulae. Therefore, we consider
f LTL formulae enriched with acounter valuek ∈ Q for
the frequency-until-operators, writtenϕUc

k ψ. The annotated
counter value can be seen as bias to such a (sub)-formula
that reflects somehistory. Intuitively, in the case ofk = 0
the history is balanced, i.e. neither additional credit should
be rewarded for satisfying the obligationϕ more often than
needed, nor was a due recorded by unfulfilling the obligation
too often. A formulaϕUc

0 ψ therefore coincides with the
f LTL formula without annotation.

Formally, we letw |= ϕUc
k ψ if and only if

∃n : w|n |= ψ andk +#ϕ,w(n) ≥ c · n.

If an obligationϕ is known to hold or known to not hold
at the first position, a formulaϕUc

k ψ can be rewritten – just
as the standard unfolding1 – by anX-formula requiring the
very same formula to hold at the next position, though the
fact of fulfilling or unfulfilling the obligationϕ, respectively,
should be recorded in terms of the bias. We hence extend
the notion of unfolding to the counter setting.

Definition 2 (Counted unfolding). Let Φ be an fLTL for-
mula. The unfolding of LTL formulae is extended to the
counter semantics as follows.

unf(Φ) :=





ψ ∨ (ϕ ∧ X(ϕUc
k+1−c ψ))

∨X(ϕUc
k−c ψ)

if Φ = ϕUc
k ψ

and k ≥ 0

(ϕ ∧ X(ϕUc
k+1−c ψ))

∨X(ϕUc
k−c ψ)

if Φ = ϕUc
k ψ

and k < 0

Φ otherwise.

1The definition of LTL implies the equalityϕUψ ≡ ψ ∨ (ϕ ∧
X(ϕUψ)).

Lemma 1 (Counted unfolding equivalence). Let Φ be a
(possibly biased) fLTL formula andw ∈ Σω. Then,w |= Φ
if and only ifw |= unf(Φ).

Proof: For Φ 6= ϕUc
k ψ the unfolding does not affect

the formula and the result follows trivially. Therefore, let
w |= Φ = ϕUc

k ψ for some wordw ∈ Σω.
Case 1: k ≥ 0. By definition we havew |= ϕUc

k ψ iff
∃n≥0 : (w|n |= ψ and k + #ϕ,w(n) − c · n ≥ 0), where
we can distinguish the casesn = 0 andn + 1 ≥ 0. With
k ≥ 0 we have thatw |= ψ or ∃n≥0 : w|n+1 |= ψ and
k+#ϕ,w(n+1)−c ·(n+1) ≥ 0. Note, thatw|n+1 = w|1|n.

The value of#ϕ,w(n + 1) is #ϕ,w|1(n) if w 6|= ϕ or
otherwise#ϕ,w|1(n) + 1.

We conclude thatw |= ϕUc
k ψ if and only if w |= ψ or

w |= ϕ and∃n : w|1|n |= ψ and
k + (1− c) + #ϕ,w|1(n)− c · n ≥ 0

or

w 6|= ϕ and∃n : w|1|n |= ψ and
k + (−c) + #ϕ,w|1(n)− c · n ≥ 0

which reduces by the definition of theU- andX-operator to

w |= ψ or

(
w |= ϕ andw |= X(ϕUc

k+1−c ψ) or
w 6|= ϕ andw |= X(ϕUc

k−c ψ)

)

and further to

w |= ψ ∨ (ϕ ∧ X(ϕUc
k+1−c ψ)) ∨ X(ϕUc

k−c ψ)

=(k≥0) unf(ϕUc
k ψ).

Case 2:k < 0. The second case is almost identical. For
the last step we obtain

w |= (ϕ ∧XϕUc
k+1−c ψ) ∨ X(ϕUc

k−c ψ)

=(k<0) unf(ϕUc
k ψ)

B. Graph representation

Given our notion of unfolding we can pursue a tableau
construction in the style of [16] in order to check satisfia-
bility of a formula. In contrast to the common setting, we
face a potentially infinite number of reachable states in the
tableau graph due to the annotated counter values that can
in- and decrease arbitrarily.

Our variant therefore constructs asymbolic tableau us-
ing the rules shown in Figure 1. Starting from the initial
formula, disjunctions are split up into two child nodes and
conjunctions are written as sets of (sub-)formulae.

As opposed to computing an explicit counter value for
formulae in successor nodes we label the edges with the
according operation that is performed. Recall that the un-
folding of a formulaϕUc

K ψ depends on the actual value of
K and so do the reachable successor nodes. Since we handle
the counters symbolically, we label the edges to such nodes
with constraints. That is, an edge to a successor that is only
reachable if the value ofK is greater or equal to zero is
labelled with the constraint “K ≥ 0”.



{ϕUcK
K ψ} ∪ Γ

{ϕ,X(ϕUcK
K ψ)} ∪ Γ

K := K + 1 − cK

{ϕUcK
K ψ} ∪ Γ

{ψ} ∪ Γ
K ≥ 0

{ϕUcK
K ψ} ∪ Γ

{X(ϕUcK
K ψ)} ∪ Γ

K := K − cK

{ϕUψ} ∪ Γ

{ψ ∧ (ϕ ∧ X(ϕUψ))} ∪ Γ

(i = 0, 1)
{ϕ0 ∨ ϕ1} ∪ Γ

{ϕi} ∪ Γ

{ψRϕ} ∪ Γ

{ϕ ∧ (ψ ∨ X(ψRϕ))} ∪ Γ

{ϕ0 ∧ ϕ1} ∪ Γ

{ϕ0, ϕ1} ∪ Γ

{Xϕ1, . . . ,Xϕr, q1, . . . , qm}

{ϕ1, . . . , ϕr}
{q1, . . . , qm}

Figure 1. Rules for building the symbolic tableau for ansfLTL formula.
TheX-rule includes possibly negated propositionsqi ∈ {p,¬p | p ∈ AP}.

Definition 3 (Symbolic tableau). LetΦ be an sfLTL formula
andΦ̂ the same formula, except that all frequency-until sub-
formulaeϕUc ψ (c < 1) are uniquelyannotated by indices
K1, . . . ,Kn. Thesymbolic tableauis an edge-labelled graph
G(Φ) = (V,E, λ) whereV ⊆ 2sub(Φ̂) is the set of nodes of
which {Φ̂} ∈ V is initial. The set of edgesE ⊆ V × V
and the labelling functionλ, which associates with every
edgee ∈ E a labelλ(e), are defined according to the rules
shown in Figure 1.

A nodev ∈ V is calledfinal, if v contains only pure LTL
formulae and the conjunction

∧
ϕ∈v ϕ is satisfiable.

We usesub(Φ) to denote the set of sub-formulae of a
formulaΦ, including possible unfoldings, andcK to refer to
the frequency of a particular frequency-until (sub-)formula
with counter indexK.

Recall that nestings of frequency-until operators like
(ϕU

cK1

K1
ψ1)U

cK2

K2
ψ2 are not allowed within thesfLTL frag-

ment. Without that restriction we would need to individually
distinguish (i.e. consider a new counter variableKi for)
each instance of the sub-formulaϕU

cK1

K1
ψ1 which is “re-

produced” through unfolding. The state space of the tableau
would again be possibly infinite. The restriction allows
us to directly identify and uniquely index all occurring
frequency-until operators in the symbolic tableau since they
are already present in the initial formula.

Given a path to a nodev in the symbolic tableau, we can
compute the actual value ofK for a formulaϕUcK

K ψ ∈ v by
applying all operations onK that occur along the path to the
initial value ofK, which is 0. Hence, we can also explicitly
check whether a certain restricted edge can actually be taken
at a specific position on a path.

Definition 4 (Paths). A path in a symbolic tableau graph
G(Φ) is a finite sequence̺ = v0v1. . . vn of nodesvi ∈ V ,
such that(vi, vi+1) ∈ E for i = 0, . . . , n − 1. We call ̺
simple, if vi = vj implies i = j. We call̺ a (simple)loop

if v0 = vn (and v0. . . vn−1 is simple). The values that are
added to a certain counterK along ̺ are denoted by

δK(vi) =





1− cK if λ(vi, vi+1) = “ K := K + 1− cK”

−cK if λ(vi, vi+1) = “ K := K − cK”

0 otherwise

The functionsδK represent the weight of a node with respect
to a specific counterK and are extended to paths by
δK(̺) :=

∑n−1
i=0 δK(vi).

The path̺ is calledvalid if (1) every labelλ(vi, vi+1) =
“ {q1, . . . , qm}” is non-contradictory, i.e. qr 6= ¬qs for
r, s = 1, . . . ,m and (2) for every labelλ(vi, vi+1) = “K ≥
0” we haveδK(̺|i+1) ≥ 0.

That is, the weight of the path̺|i+1 (ending with vi)
satisfies the corresponding condition and the nodes on̺ can
actually be traversed in that order.

Theorem 4. An sfLTL formulaΦ is satisfiable if and only
if there exists a valid path from the initial to a final node in
the symbolic tableau graphG(Φ).

Proof: (⇐). Assume there is a valid path̺= v0. . . vn
to a final nodevn in the graphG(Φ). W.l.o.g. Φ can be
assumed to be in positive normal form, i.e. negation occurs
only in front of atomic propositions. The rules used for
constructing the graph refineΦ to an under-approximation
by dismissing one side from disjunctions. Thus, if there is a
model for a nodev, i.e. somew ∈ Σω s.t.w |=

∧
ϕ∈v ϕ, then

there is a modelw′ for every predecessor ofv: The∧-rule
does not effect any change since the set is interpreted as
conjunction. Also, letΓ be a set of formulae, then every
model for ϕ1 ∧ Γ is also a model for(ϕ1 ∨ ϕ2) ∧ Γ.
ExchangingU- andR-formulae without frequency with their
respective unfoldings is purely syntactical andw remains
a model. TheX-rule only applies to nodes of the form
{Xϕ1, . . . ,Xϕr, q1, . . . , qm} and for anyw |= ϕ1∧. . . ∧ϕr

we have thataw |= Xϕ1 ∧ . . . ∧ Xϕr ∧ q1 ∧ . . . ∧ qm
if a = {q1, . . . , qm} ∩ AP. We can dismiss all negated
propositions since the path was valid and{q1, . . . , qm} is
thus not contradictory.

The remaining rules unfold frequency-until-formulae. Re-
specting the according constraints ensures the correct bias.
Thus, by Lemma 1, they at most refine the formula, which
means that any model for the child node is in particular a
model of the parent node, given the constraint is satisfied
or the according operation is performed on the counter,
respectively.

We hereby construct a model directly from a valid path
̺, starting with a modelwvn for the last nodevn in the
path (which is final) and backwards prepending the letters
imposed by the propositional constraints of the appliedX-
rules (see Figure 2).

(⇒). AssumeΦ is satisfiable and a wordw0 ∈ Σω is
a model. We can derive a valid path̺= v0v1v2. . . vn on



v0 . . . vi1
X
−−→
li1

vi1+1 . . . vi2
X
−−→
li2

vi2+1 . . .
X
−−→
lij

. . . vn

↓ ↓ ↓
wϕ := a1 a2 . . . aj . . . wvn

Figure 2. Following a valid path̺ directly yields a model if the last
position is satisfiable by some wordwvn , which is in particular the case
if vn is final, i.e. represents a pure, satisfiable LTL formula. Negated
propositions in labelslij are included implicitly in the lettersaj by the
absence of their positive duals.

G(Φ) to a final nodevn.
We construct̺ by starting with a path̺ 0 = v0 that

only consists of the initial node. Guided byw0 we choose a
successorv1 for v0 and obtain a new path̺1 = v0v1. Also,
we obtain a wordw1 that shall guide us in the next step.
By structural induction on the construction of the tableau
graphG(Φ) we show that we can always choose a child
nodevi+1 of a nodevi on the path while maintaining the
invariant that̺ i+1 = v0. . . vi+1 is valid and there is a word
wi+1 |= vi+1[σ(̺i+1)]. Here, we let

σ(̺j) := {K1 7→ δK1
(̺j), . . . ,Kr 7→ δKr

(̺j)}

be a substitution that maps the variablesKi to the values
they would have after applying all operations onKi that
occur along a path̺j . That substitution is used to substitute
all counter variables by actual values in a particular node in
order to get a semantics regarding a word. In general, for
a formula formulaϕ and a finite substitutionσ = {K1 7→
k1, . . . ,Kr 7→ kr} we write ϕ[σ] = ϕ[k1/K1, . . . , kr/Kr]
for a formula that is equal toϕ but where all occurrences
of variablesKi are replaced by valueski. Note that this is
well defined here, regardless of the order of substitution.

The construction so far may yield an infinite path through
some loop. However, this would mean that some frequency-
until is unfolded infinitely often. The assumption thatw0 is a
model forΦ and the existential definition of theUc-operator
ensures that we can finally dismiss the recurring frequency-
until-formula during the unfolding of all such formulae and
thus reach a node that only contains LTL formulae.

If Φ ∈ LTL, the initial nodev0 is already final and we
found a valid path of length one. Now, let̺i = v0v1. . . vi
be a valid path andwi |= vi[σ(̺i)]. We are done ifvi ⊆
LTL. Otherwise we consider the following cases. (1)vi =
{ϕ1 ∧ ϕ2} ∪ Γ, ϕ1 ∧ ϕ2 6∈ LTL. Choosing the successor
vi+1 := {ϕ1, ϕ2} ∪ Γ andwi+1 := wi |= vi+1[σ(̺ivi+1)]
maintains the invariant. Otherwise, if (2)vi = {ϕ1 ∨ ϕ2} ∪
Γ, ϕ1 ∨ ϕ2 6∈ LTL we take eithervi+1 := {ϕ1} ∪ Γ or
vi+1 := {ϕ2} ∪ Γ. For at least one of themwi+1 := wi |=
vi+1[σ(̺ivi+1)] must hold. Similarly, for (3)vi = {ϕUψ}∪
Γ or vi = {ψRϕ} ∪ Γ we can safely choose the successor
node{ψ ∨ (ϕ∧X(ϕUψ))}∪Γ or {ϕ∧ (ψ ∨X(ψRϕ))} ∪
Γ, respectively, since this unfolding does not change the
semantics andwi+1 := wi remains a model. If neither of the

previous cases applies, then consider (4)vi = {ϕUc
K ψ} ∪

Γ, c < 1. Among the successor nodes in the graph, we
have x = {ψ} ∪ Γ, y = {ϕ,X(ϕUc

K ψ)} ∪ Γ and z =
{ϕ,X(ϕUc

K ψ)} ∪ Γ. By Lemma 1,δK(̺i) ≥ 0 andwi |=
x[σ(̺i)] orwi is a model fory or z respecting the according
operations onK, i.e.wi |= y[σ(̺iy)] orwi |= z[σ(̺iz)]. We
can choose a suitable one asvi+1. In any case̺ i+1 = ̺ivi+1

remains a valid path, andwi+1 := wi |= vi+1[σ(̺i+1)]. The
case remaining is (5)vi = {Xϕ1, . . . Xϕr, q1, . . . , qm} with
qi ∈ {p,¬p | p ∈ AP}. Sincewi |= vi[σ(̺i)], we take
wi+1 := wi|

1 |= vi+1 = {ϕ1, . . . , ϕr} and the path remains
valid since{q1, . . . , qm} can not be contradictory.

C. Solving reachability with constraints

Theorem 4 reduces the satisfiability problem ofsfLTL
formulae to (constrained) reachability in the tableau graph.

In order to check whether there is a valid path to a final
node we examine all simple paths to final nodes. Any valid
path must then be an extension of some simple path by a
number of loops. More precisely, we can assume these loops
to be simple loops that are possibly extended by a number of
such loops themselves. This hierarchy is of bounded depth
since the valid path itself is finite.

Let ̺ = v0. . . vr be a path on a tableau graphG. We
denoteloopsG(̺) the set of all simple loopsl = u0. . . uku0
on G, ui ∈ V , s.t. u0 occurs on̺. Further, letloops∗G(̺)
be the smallest set s.t.loopsG(̺) ⊆ loops

∗
G(̺) and l ∈

loops∗G(̺) ⇒ loopsG(l) ⊆ loops∗G(̺).
We construct equation systems that are imposed by the

constraints on the path. If there were no constraints, simple
paths would be fine already. For a path to be valid, any
constraint edge must be preceded by a prefix-path with a
weight satisfying the respective constraint (c.f. Definition 4).
Hence, for each final nodevf we investigate allsimplepaths
̺ = v0v1. . . vn that start at the initial node and end invn =
vf and consider the extending loopslm ∈ loops

∗
G(̺|i+1)

before a nodevi+1 on ̺. These loops can possibly influence
the actual counter value when reachingvi. Therefore we
introduce a variablenm for the number of traversals of a
loop lm. For every edge(vi, vi+1) on the so far simple path
̺ that is labelled by a constraintλ(vi, vi+1) = ”K ≥ 0“,
we construct an inequality

δK(̺|i+1) +
( ∑

lm∈loops∗G(̺|i+1)

nm · δK(lm)
)
≥ 0

that represents all those paths that follow̺ but may addi-
tionally traverse some of the loops.

If ̺ is extended by a subordinate looplr′ ∈ loopsG(lr)
of some looplr, ̺ is necessarily extended bylr itself at
least once. Thus, for each such pair, we extend the equation
system by this implication:nr′ = 0 ∨ nr > 0. Note that
equations in a system are considered in conjunction but we
can resolve the disjunction by using a copy of the system for
each disjunct and obtain a setEqn(̺) of equation systems.



There is a natural solution, in terms of the variablesnm, for
at least one of them iff̺ can be extended by loops in order
to satisfy all constraints along it. Furthermore, if we consider
the unionEqn(G(Φ)) =

⋃
̺ Eqn(̺) for all simple paths̺ to

a final node inG(Φ), there is a systemEqn(̺) ∈ Eqn(G(Φ))
that has a natural solution iff there is any path that can be
successfully extended to satisfy every constraint along itand
hence iffΦ is satisfiable.

Theorem 5. An sfLTL formulaΦ is satisfiable iff there is
an equation systemEqn(̺) ∈ Eqn(G(Φ)) that has a natural
solution.

This completes the reduction and proves Theorem 3.

VII. CONCLUSION

Motivated by our experience of applying LTL in the
setting of verification, we introduced and studied a gener-
alization of LTL’s until operator by relaxing the obligation
ϕ of a formulaϕUψ. In the resulting logic, which we call
frequency LTL (f LTL), it is now possible to writeϕUc ψ to
denote thatϕ has to hold at least at a fractionc of positions
up to a moment in whichψ holds.

We have shown thatf LTL is far more expressive than
plain LTL as it allows us to formulate non-context-free
properties. The price to pay for this expressiveness is that
satisfiability off LTL is undecidable. We show this using an
encoding of the termination problem of Minsky machines.
Expressing a frequentness within a certain scope via the
frequency-until operator allows us to simulate counters by
comparing numbers of letters, similar to [12].

We also identified a decidable fragment off LTL which
still allows the formulation of context-free properties and
thus extends LTL’s expressiveness. The decidability proof
is given via a tableau construction. However, a typical
approach, as for example introduced for LTL in [16], fails
as f LTL’s counters would result in infinite tableaux. To
overcome this problem we introduced asymbolic tableau
construction. As plain reachability algorithms are not suit-
able anymore to find valid paths in the according tableau
graph we encode the tableau as integer linear programs. In
other words, we reduce the satisfiability problem off LTL to
ILP, which may then be solved using standard algorithms.

One might change the semantics off LTL’s until operator,
in a formulaϕUc ψ, by considering the frequency ofϕ only
up to the veryfirst position in whichψ holds. An easy
inspection of the undecidability proof shows, however, that
the satisfiability problem of the resulting logic remains un-
decidable. This indicates a certain robustness of the concepts
developed in this paper.

The work initiated in this paper may be extended in
several directions. First, it would be interesting to reduce
the gap between the decidable fragmentsfLTL and f LTL
itself. To this end, it might be worth to study also a variant
of f LTL in which no credit is given in the following sense:

For a formulaϕUc ψ, a position may only violateϕ if ϕ has
been satisfied often enough in previous positions. Finally,in
[8], LTL’s expressiveness has been extended to capture the
full class of regularω-languages. It might be worthwhile to
extend also this logic by a concept of frequencies.
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