Frequency Linear-time Temporal Logic

Benedikt Bollig
LSV, ENS Cachan, CNRS & INRIA
Cachan, France
bollig@Ilsv.ens-cachan.fr

Abstract—We propose fLTL, an extension to linear-time tem-
poral logic (LTL) that allows for expressing relative frequencies
by a generalization of temporal operators. This facilitates the
specification of requirements such as the deadlines in a real
time system must be met in at least 95% of all cases. For our
novel logic, we establish an undecidability result regardig the
satisfiability problem but identify a decidable fragment which
strictly increases the expressiveness of LTL by allowing,.g.,
to express non-context-free properties.

Keywords-temporal logic; LTL; specification; frequency;
availability; counters; symbolic tableau

I. INTRODUCTION

Normann Decker Martin Leucker

Institute for Software Engineering and Programming Langes

Universitat zu Lilbeck, liibeck, Germany
{decker, leuckem@isp.uni-luebeck.de

trace is given from which several finite behaviours of the
underlying system are derived to estimate the probabiity t
which extent the formula is satisfied. A notable work in this
area is given by [11].

We also extend LTL to allow for the specification of
quantitative means within our formal logic. In contrast to
the existing work we do not extend the underlying structures
towards integers nor do we rely on profound probability the-
ory arguments. Our extension focuses on tin¢il-operator
present in LTL. The standard meaningfintil ¢ (denoted
by ¢ Uw) is that there is a future moment in which a
property holds and up to this moment a propertyhas

Linear-time Temporal Logic (LTL) has been introducedto hold in each position. Our main idea is now to relax the

to the setting of formal verification of computer programsnumber of positions in whickp has to hold by allowing to

in 1977 by Pnueli [1]. Meanwhile it has become a well- say that, e.g., only at 95 % of the positiopshas to hold.
established specification formalism that is used in many A similar concept has been worked out by Hoenicke et
different areas and for different purposes, but especfally al. in the setting of regular expressions [12]. Their notion
verification. It is the basis of PSL (Property Specificationof availability in finite words appears closely related but
Language, [2]), which is a standardized specification lanwhile the relationship between LTL-definable languages and
guage used in the hardware domain. To foster its industrialegularw-languages is well studied, the formal link between
application, it has been supported by specification patternour logic fLTL and the so called availability expressions
[3] and by syntactic sugar [4]. remains subject to further investigation.

Despite its extensive use in many different application An extension of LTL towards counters has also been
areas it has been noted that LTL has a limited expressivenessonsidered recently by Laroussinie et al. [13]. In contrast
Wolper [5] showed that LTL is not able to express @l to our approach, this is a syntactic variation in terms of ex-
regular properties. More specifically, he showed that LTL ispressiveness, as they reside in the class of LTL-definable
not able to express that holds in every other moment. In languages. There is, however, an interesting correspaeagen
essence it means that LTL is not able to count. which we point out in Section IV.

Over the past decades LTL has been extended in manX
directions to enrich its expressiveness. Starting withpapl Acknowledgement
[5], there is a line of work extending LTL's expressiveness We thank the anonymous reviewer for valuable comments.
to capture the regulav-languages [6], [7], [8].

Another line of work extends the expressiveness of LTL
towards quantitative measures. Demri considers LTL over Words: Let AP be a finite, non-empty set aitomic
integers rather than atomic propositions [9], giving thepropositions We consider words over the alphabet= 247,
resulting logic the possibility to reason over sequences oPowers of finite words and letters are to be read in the
integers and to allow counting modulo constants. In thecommon way, i.ew® = ¢ andw™*! = ww™. For an infinite
context of probabilistic model checking, where a systemword w = agajias... € ¥ (a; € AP) we denote the finite
description is given as a Markov chain, the set of tracegrefix of lengthn by w|,, = apa;...a,—1 and then-th true
satisfying an LTL formula is measured allowing one to give (infinite) suffix by w|* = ayany1.... Thus,wly = ¢ and
an idea about the probability to which extent the underlyingw = w|® = w|,w|™. This notation is analogously used for
formula holds [10]. A similar concern of giving a measure linear sequences in general, such as paths. We sometimes
to which extent the formula is satisfied is also pursued in thespecify alphabets directly when propositions are not néede
setting of runtime verification. Here, however, only a singl explicitly. The reader may assume any Aétthat allows for

Il. PRELIMINARIES

distinguishing propositionally at least the number ofdegt We use the standard abbreviations= - T andy V) :=
needed and possibly some more, which are not being useeh(—p A—1)). Inspecting the negation(¢ U ¢) we obtain a
Formulae: Furthermore, we use letters € X (i.e. notion of “sufficiently often- releasesw at that position”
sets of propositions) in formulae to keep them concisewhere “sufficiently often” amounts to a least frequency of
and readable. They abbreviate an exactly characterizing — c¢. Hence, the dual operator fdi“ can be seen as
conjunction(Ac,») A (A,z, —p)- In general, aset’ of @Ry := ~(=pU'“—=¢) and we confirm coincidence
formulaeis considered ag\ .- ¢. Sets of lettersndicate ~ with the traditionalR-operator forc = 0. Also note, that
their disjunction For example, letdM be the set of letters our definition is robust considering the operatBréeventu-

{a,b}. When used in a formula, we interpraf as ally) and G (always). We can use the common definition
F¢ = T Uy with an implicit frequencyc = 1 while
((/\ q) A (/\ ﬁQ)) v ((/\ q) A (/\ ﬁq))' any other frequency would neither formally nor intuitively
q€a aga acb agb change the semantics. Allowing to hold less frequently
I1l. THE TEMPORAL LOGIC fLTL (c < 1) does not change anything as it always holds. Dually,

he id ff . low f | . f th i we letG ¢ := = F -9 = L Ry for ¢ = 0 since_L does not
The idea offLTL is to allow for relaxation of the unti r?old, particularly not “more often”d(> 0).

operator in terms of an annotated frequency. The usual
intuition for a formulayp U is thaty must hold at some IV. fLTL 1S NOT CONTEXT-FREE

point in the future, and before that has to holdalways We observe that LTL is not only a syntactic but alsouee
Instead of “always”, we consider the less strict formulatio semantic fragmenif fLTL regardingw-languages: Consider
“sufficiently often” referring to a minimum ratie € [0,1] alphabetsZ,, = {a1,...,a,, b} and the family of languages
of positions, thefrequencyof . Lo = {abak . abb* | ke No).

which are not context-free fon > 2. While the LTL-
definable languages are (strictly) contained in the class of
regularw-languages, each of the languadgsis definable
=T | |pAe| Xe|e U ¢o|p (peAP) by anfLTL formula

Definition 1 (Syntax and semantics 6£TL). The syntax
of Frequency Linear-time Temporal Logic (fLTL) formulae
is given by

c € Q with 0 < ¢ < 1. fLTL formulae are interpreted over /\ Glair1 — Gai)

wordsw € X%, w = agaias... as follows: oot) =1
providing the following theorem.

where eachU-operator is annotated by a rational number N net
P y <pn—</\aiU%Gb>/\<),

wkET

wkEp if p€ap (p€AP) Theorem 1. fLTL can express non-context-free languages.
wE !f w IFA ¥ Corollary 1. fLTL can express non-context-free languages
w=Xe i wl =g without nesting of frequency-until operators.

wEeANp i wEeandwEY o .

weeUy if 3,:w/” = and At this point it is worth having a closer look at the work

H#own) >c-n done by Laroussinie et al. in [13]. They consider an exten-
' sion to LTL that allows for counting the number of positions
where certain properties hold. They show that there is a
H#own) ={i |0<i<n, w|i E o} translation from their logic, which they call CLTL, to LTL.
This strictly distinguishes CLTL formiLTL. Interestingly it
turns out that only a subtle change to their formalism effect
the observed gap in terms of expressiveness.

CLTL allows for formulaey U v where the until oper-
ator is annotated by a constraint of the form

In the definition above we write

for the number of positions beforesatisfying a formulap.
For ¢ = 1, ¢ has to hold at all the positions befote

holds, which coincides with th&-operator in LTL and we

thus considerp Ut as abbreviation for the special case

©U' 4. Note, that our definition is less strict as it could

be regarding the eventuality. Consider, for examplé? g Cu=T|CNC[C| 300 #m~k

and the wordv = {r}{q}{p}H{pHaH{q}{r}*. The observed where~c {<,<,=,>,>}, k, o, arepositiveintegers and

frequency ofp at positions 1 and 5 itz — 9 and 4, is again a CLTL formula. Semantically; = ¢ Uie) ¥

#’%Tw@ = % respectively, which is too low. Yet, at position for a wordw € X if 3, : w|" |= ¢ and (w,n) = C and

4, q is satisfiedand the frequency constraint is mei: is Vo<i<n : w|* = ¢. To obtain the semantics ¢fv, n) = C,

thus a model since the frequency constraint is not necéssarithe terms#n in C are interpreted as the number of positions

required to hold at the first position whegeholds. In our beforen that satisfyn), i.e. #,, ., (n).

conclusion, we discuss a variantfafTL that considers only For trying to expressp U4y nonetheless in CLTL we

the frequency up to the first satisfaction ©f could write o U4 and letC' = (% > ¢). Equivalently,

with ¢ = I, we could writeC' = (m - #p —n - #T > 0).
Hence, allowing fornegative weights «; in constraints
obviously completely changes the character of CLTL.

V. fLTL IS UNDECIDABLE

Considering the expressiveness fdfTL, the question
arises whether it is decidable. One of our main contribugtion
is the following answer.

Theorem 2. Satisfiability of fLTL formulae is undecidable.

In the remainder of this section we sketch a proof,

which is inspired by [12]. Its main idea is to reduce the
(undecidable) termination problem of two-counter Minsky
machines [14] to the satisfiability problem 6fTL. More
specifically, for a given Minsky maching1, we construct a
formula ¢ ¢ that expresses the (deterministic) computatio
of M. Then,pa A Fliing is satisfiable, if and only itM
terminates in lindsng, denoting the halting location of1.
Minsky machinesA Minsky machine uses two instruc-
tionsinc(K;,1) anddect(K;, l1,l2) where K; refers to one
of the two counters and,[,,l, € L are locations in the

program.inc increases the counter and jumps to location

I, while thedect instruction testsK; for zero and directly
jumps tol; in that case, or otherwise decreagésand the
next instruction to be executed is the one at locatipon

W.l.o.g. we consider instructions for each counter instea
of using the counter as argument. Alslect is split into a

pure test for zero and a decrement instruction that has no

effect, if a counter is zero. Thus, our instruction set is
IS := {incy, inco, decy, decs, testzy , testzo }

A Minsky machine is a tuple\t = (m, L, linit, lfinal, 720, M0)
whereL is a non-empty, finite set dbcations liit, lfinal € L
are the initial and final location, respectivehy, mo € Ny
are theinitial counter values the program = : L —
IS x L x L is a mapping of locations toommandgtuples
of instructions and locations). &onfigurationof M is a
tupleC = (I,n,m) € L x Ny x Ny representing the current
location and the values of both counters. Thenputatiorof
M is the unique, infinite sequencg) — C; — Cy — ...

of configurationsC;, such thatCy = (linit, no, mo) IS
the initial configuration and for any’; (I,n,m), the
subsequent configuratiari, is computed according to the

by letters fromaOP := {i,,d,, s,} for the first and from
bOP := {i;,dy} for the second countet, indicates an
increase of the counter 1 and thus the numben®fs,
indicates a skip operation, namely keeping the numbesof
constant in the encoding and similarly for the other letters

Note that, while using lettes, for not modifying the
number ofas, we donot use an explicit letteg;, for a skip
on counter 2. This is due to technicalities when counting
letters in the following.

Depending on which instruction is specified byl) =
(is,1’,1") we represent the computation e.g. as

[a%iga™t oo™ for is = incy,
[a"s,a™ bmbp™ for is = testz; or
1 a"sqa"™ b™iph™t! for is = inco.

nThe computation

(lo,n0, m0) = (l1,n1,m1) = (l2,n2,Mm2) — ...
of M is thereby represented as a word of the form
lp a™ op, @™ b™Sop, ™ 1y a™ opl, a2 b™ $opj b
12 a™? op;/ Qns bm2$opg gms

wherely = linit is the initial location andbp,, op/,, opl, €
aOP, op,, op;, € bOPU{e}. For purely technical reasons we

@dd a separator sighbetween thés andbs. The encoding

yields the alphabet we use:
S ={a,a,b,b,8,ia, iy, da, dp, o} U L.

Ordering of symbolsin order to ensure the correct or-
dering of the symbols in the encoding of the computation we
use a formulapenc that consist of the following conjuncts:

Labels! € L and the lettera are followed bya or
op € aOP: (L Va) — X(aV aOP).

An operationop € aOP on counter 1 and letter& are
followed by a, b or $: (aOP Vv a) — X(aVvbV$).
Letter b is followed by anotheb or $: b — X(b V $).
After each $ there is an operation 6na number ofy
or the next label$ — X(bOP v bV L).

A label must follow directly after symbols or directly
after an operation oh: (bOP v b) — X(bV L).

Additionally, the computation has to start with the finite
prefix lop a™ op, a™ b™°§ according to the initial con-

programm in the expected manner. Note, that the secondiguration. It can be described similarly by an LTL formula
location in a command is taken into account only by they;.

testz instructions.

Encoding the computationWe encode counters unary
into words by lettersz or a for counter 1 anch or b for
counter 2.a™,b™ represent counter valuesm beforeand
a™',b™ valuesn’,m’ after some operation.

Specifying program instructionsNext, for is € IS,
l1,l2 € L, we construct formulae(is, [1, l2). Assuming the
correct ordering of symboals, i.e. in conjunction withpep,
these formulae enforce the correct numberaefand bs
according to the number afs andbs and also the correct

We consider instructions always performing an explicitchoice for the next location. E.g., the formuléinc., [, l5)

operation on each of the counters, e.tnc; performs an

shall enforce the patterm™s,a" bm$z‘b13m“ l1... and

incrementation on counter 1 and a “skip” operation ony(testz,ly,l2) enforces eithewn™1s,a"t! bmgH™ ls. ..

counter 2. These operations are represented in the encodif; > 0) or s, b™$b™ I;... (K,

0). The formula

bUz [A bUZ2 [enforces the patterb’”l;m l.... Based on if the number of occurrences of symbols frdagn is equal

this idea we use to the number of of symbols from the sBiet U {i,} minus
Bne(l) = (bV) AX((bV$V z’b)U% IABUS) one which is expressed by the formula
to express the effect of aimcy operation on counter 2, Yinc == X (((B'eft Via) U?$) A (Brignt U? $))-

namely the pattertbm$ibbm+1 l.... The Complete formula Caseopa — da: If the counter is decreased we have
must also impose equality between the numbersoéndas bm 1 a"*t1d,a"b™ and we enforce exactly one more symbol

which can be done similarly. Therefore we let from Bie than from Biign U {d} by
o(inca, 1, lo) = Yec 1= X ((13|eft Uz $) A ((Biight V do) U? $)) .
(aVsq) ANX ((a\/ 50) U (Binc(l1)) A aU? Binc(ll)) Note that in order to represent the offset of one we can

safely remove the first symbol using tkeoperator and then
enforce an equal number because we know the pattern starts
with at least one symbol fronBies.
Caseop, = s,: A neutral operation on yields the pattern
b™ 1 a"s,a"b™ and we can guarantee equalityrofandm’
| by an equal number of symbols froBex and Brignt U { s, }:

stating that there must be a sequence of lettess followed
by the pattern fornpi,(l1) as above. Additionally, between
the first position and the beginning of thig,.(l;) pattern,
half of the positions must carry afa and the other half
and the first position must carry eitheror s,. Assuming,
in virtue of weng, that s, occurs exactly once, the overal
number ofas andas must thus be equal. Yeip = (Ben U2 $) A ((Bright V s4) U2 $).
The other instructions can be reflected similarly and

. . . Combining the cases, we obtain a formula which ex-
we compose these instruction formulae according to the

programs to a formula presses that in any case, the propagation is done correctly.
The property must always hold right after the position of the

or =G (/\ l— ch(w(l))). operator symbol for counter 2. Recall, that these symbols
leL for counter 2 might not be explicitly present since the

which enforces that any model must mimic the instructionsSkip operation was expressed by We therefore describe
of the Minsky machine at every position where an accordingh€ position that triggers the copy-property foiby either
label occurs. finding symbol frombOP = {i;,d;} explicitly or just the $
Propagation: From each computation step to the next, SYmbol without a following operation froraOP:
we need to ensure that the result of a computation, i.e. the
powers ofa™ andb™, arecopiedcorrectly. e =G ((bOP V(8 A ~XbOP))
—+X (winc \ wdec V wskip)) .

lo a™ op, @™ b™o$op, b™ Iy a™ op], " bTS. .. Combining all the formulae we obtain

M :‘Pﬁ/\wa/\djb/\((}(ﬂenc)/\‘ﬁl

e . :

describing exactly the computation 8ff and g A F lfinal

is satisfiable if and only ifM eventually reaches the final
location, i.e. terminates. This proves Theorem 2.

Assuming, again, correct encoding and computation, w
observe an invariant in between the blocksasf andas,
i.e. the sub-termb™$op,b™ 1. If op, = is, then the number
of occurrences of letters from the séfer := {a,b,$, 4y}

is equal to the number of letters from the séfgn := VI. A DECIDABLE FRAGMENT OF fLTL
{b,a,d,}UL sincem’ = m~1. This also holds foop;, = ds,

! _ _ 1 !
wherem’ + 1 = m, andop, = e with m’ = m. ThUS, go0entness propertigsfLTL) that is still more expressive

- ;s N ~ o, .

n = n'in a"b™Sop,b™ la™ iff the number of occurring | 7| put has alecidablesatisfiability problem. Formu-
letters fromALer: equals the number of occurring letters from |, i that fragment are restricted in terms of nesting and
Ajight- Thus we can ensure the correct propagation of th%egation and have the form

value of counter 1 (in terms afs) independently obp, by
eu=tu | (L) US(e) [eAe | eVe | Xe

o := G (aOP — X ((Aiet UZ aOP) A (Agignt U aOP))). .
¥ (a - ((left 20P) A (Argnt a))) where ¢ 1. denotes a standard LTL formula, which we

For propagating the value of the second counter weassume w.l.o.g. to be in positive normal form, i.e. where
enforce the pattern..b™ [a™ opad":bm& ... To the left negation occurs only in front of atomic propositions. Hence
of op, we find the symbolBier; := {b,a} U L and to the for sfLTL we consider positive boolean combinations of
right Brignt := {a, b}. We distinguish three cases fop,,. formulae including frequency-until operators that are not

Caseop, = i,: Counter 1 is increased and we have thenested in the first operand. Note, trsdtTL is still more
patternb™ [a™i,a" 6™ . We see thatn = m’ if and only ~ expressive than LTL since the non-context-free properties

In this section we consider tHd.TL fragment ofsimple

used to show thattLTL is more expressive than LTL (The- Lemma 1 (Counted unfolding equivalence)et ® be a
orem 1) do neither rely on nesting nor negating frequency{possibly biased) fLTL formula and € ¥*. Then,w | ®
until formulae. if and only ifw = unf(®).

In the remainder of this section we show the following. Proof: For & £ US4 the unfolding does not affect
: k

Theorem 3. The satisfiability problem of sfLTL is decidable. the formula and the result follows trivially. Thereforet le

E ® = ¢ Uj ¢ for some wordw € X¢.

Case 1:k > 0. By definition we havew = ¢ Uj ¢ iff

dp>o (W™ E ¢ andk + #, ,(n) — c-n > 0), where

we can distinguish the cases= 0 andn + 1 > 0. With

k > 0 we have thatw = ¢ or 3,50 : w|"™! | ¢ and

k++#4.w(n+1)—c-(n+1) > 0. Note, thatw|" 1 = w|!|".
The value of#, ,(n + 1) is #, 1 (n) if w & ¢ or

We outline a decision procedure that reduces satisfiability"”
of sfLTL formulae to the integer linear programming prob-
lem, i.e. to solving systems of linear inequalities, whietmc
be solved by using known algorithms, c.f. [15, Part IV]. We
prove that there is a model to the formula if and only if
the constructed inequality systems have a (natural) soluti
The reduction comprises three steps: .

1) We first introduce a notion of our logic using counters.Otr\]/srvwse#l“"’é”'1t(ﬁ),[:r L U & if and onlv if

2) Based on that we build a labelled tableau graph from e conclude thato = o Uy, v if and only if w =y or

a given formula and check satisfiability by solving % Feand3,: w/'|" =4 and

constrained reachability problems in that graph. k+ (=0 +#owp(n)—c-n=0
3) We construct integer linear programs in order to find or
paths that obey constraints imposed by the edge labels. ,, £ pand3, : w|'|" = and
A. Counter semantics for fLTL k4 (=c)+#pwpr(n) —c-n>0

We rely on a notion of unfolding in order to build a Which reduces by the definition of tHé- and X-operator to

tableau graph fofLTL formulae. Therefore, we consider wkeandw = X(pUi,,_.¢) or
fLTL formulae enriched with aounter valuek € Q for w9 or (w = pandw = X(pUi_.))

the frequency-until-operators, writ_t@ﬂUz 1. The annotated and further to

counter value can be seen as bias to such a (sub)-formula

that reflects soméistory. Intuitively, in the case ok = 0 wEYPV(eAX(@Uiii_.¥)VX(eUi_ 9)

the history is balanced, i.e. neither additional credituttio _(k>0) unf (o US 1))

be rewarded for satisfying the obligatignmore often than])]
needed, nor was a due recorded by unfulfilling the obligation €ase€ 2:k < 0. The second case is almost identical. For
too often. A formulap US v therefore coincides with the the 1ast step we obtain

fLTL formula without annotation. c c
ANXpUi_)V X(eUi_.
Formally, we letw = ¢ U$ ¢ if and only if wi=(phXe k“(kdf) f (%c Z)) ¥)
= unt(p Uy |

I cw|” =y andk + #,.0(n) > c-n. _

If an obligationy is known to hold or known to not hold B. Qraph repres_entatlon)
at the first position, a formula U5, ¢ can be rewritten —just ~ Given our notion of unfolding we can pursue a tableau
as the standard unfoldihg- by anX-formula requiring the ~construction in the style of [16] in order to check _satlsﬂa—
very same formula to hold at the next position, though thedility of a formula. In contrast to the common setting, we
fact of fulfilling or unfulfilling the obligationy, respectively, face a potentially infinite number of reachable states in the
should be recorded in terms of the bias. We hence exten@bleau graph due to the annotated counter values that can

the notion of unfolding to the counter setting. in- and decrease arbitrarily. _
Our variant therefore constructs symbolictableau us-

Definition 2 (Counted unfolding) Let & be an fLTL for- jng the rules shown in Figure 1. Starting from the initial
mula. The unfolding of LTL formulae is extended to theformuyla, disjunctions are split up into two child nodes and

counter semantics as follows. conjunctions are written as sets of (sub-)formulae.
PV (e AX(eUi_¥) if&=¢oUry As opposed to computing an explicit counter value for
VX(pUS_ 0) andk > 0 formulae in successor nodes we label the edges with the
) according operation that is performed. Recall that the un-
unf(®) := ¢ (P AX(pUpyi¥)) if ®=¢Ui?¥ folding of a formulay US, v depends on the actual value of
VX(eUs_.9) andk <0 K and so do the reachable successor nodes. Since we handle
o otherwise. the counters symbolically, we label the edges to such nodes

with constraints. That is, an edge to a successor that is only
IThe definition of LTL implies the equalityy U = o v (o o '€achable if the value ok’ is greater or equal to zero is

X(eU)). labelled with the constraintA” > 0”.

(i

{pUg Ul
{o, X(pUgE) puT

{eUEyiur .
{y}ur)

K:i=K+1—cg

leUg ol
{X(eUg)T

{pUypturl
WA (@AX(eUy)FuUT

K —cp

{po ViUl
{pituT

{¥Re}uUT
{eA (W VX Rp)IUT

=0,1)

{gOo/\(pl}UF {X(pl,...7X(pT,ql,...,qm}

{@07%01}UF {@17"'7%07”}

{q1,---,am}

Figure 1. Rules for building the symbolic tableau for hTL formula.
The X-rule includes possibly negated propositianse {p, —p | p € AP}.

Definition 3 (Symbolic tableau)Let ® be an sfLTL formula

if v9 = v, (@ndwvy...v,_1 is simple). The values that are
added to a certain counteK along ¢ are denoted by

1—crx ifAvi,vi1)="K:=K+1—cg”
5[{(’01') = —CK if)\(Uiavi-f-l) ="K: =K — CK"
0 otherwise

The function® x represent the weight of a node with respect
to a specific counterK and are extended to paths by
Ok (0) 1= Yimy Oxc(vi).

The pathg is calledvalid if (1) every label\(v;, v;+1) =
“{q1,...,qm}" is non-contradictory, i.e.q. # —q, for
r,s =1,...,m and (2) for every labeh(v;,v;11) =“ K >
0" we havedx(g|i+1) > 0.

That is, the weight of the patl|;+; (ending with v;)
satisfies the corresponding condition and the nodes camn
actually be traversed in that order.

Theorem 4. An sfLTL formula® is satisfiable if and only

and&\) the same formu'a, except that all frequency_unt” Sub_if there exists a valid path from the initial to a final node in

formulaep U4 (¢ < 1) are uniquelyannotated by indices
K1, ..., K,. Thesymbolic tableais an edge-labelled graph
G(®) = (V, E, \) whereV C 25u®(®) is the set of nodes of
which {®} € V is initial. The set of edge® C V x V
and the labelling function\, which associates with every
edgee € FE a label \(e), are defined according to the rules
shown in Figure 1.
A nodev € V is calledfinal, if v contains only pure LTL

formulae and the conjunctiof, .., ¢ is satisfiable.

We usesub(®) to denote the set of sub-formulae of a

formula ®, including possible unfoldings, ang to refer to
the frequency of a particular frequency-until (sub-)fotanu
with counter indexk .

Recall that nestings of frequency-until operators like

(p Uit 4h1) U2 by are not allowed within thefLTL frag-
ment. Without that restriction we would need to individyall
distinguish (i.e. consider a new counter variatite for)
each instance of the sub-formu,lﬁU%‘ll 11 which is “re-

produced” through unfolding. The state space of the tablea
would again be possibly infinite. The restriction allows

us to directly identify and uniquely index all occurring
frequency-until operators in the symbolic tableau sin@yth
are already present in the initial formula.

Given a path to a node in the symbolic tableau, we can
compute the actual value &f for a formulap UK ¢ € v by
applying all operations oK that occur along the path to the
initial value of K, which is 0. Hence, we can also explicitly

check whether a certain restricted edge can actually batake

at a specific position on a path.

Definition 4 (Paths) A pathin a symbolic tableau graph
G(®) is a finite sequence = vyv;...v, Of nodesy; € V,
such that(v;,v;41) € E fori =0,....,n — 1. We callp
simplg if v; = v; impliesi = j. We call o a (simple)loop

the symbolic tableau grapé(®).

Proof: («=). Assume there is a valid path= v. .. v,

to a final nodew,, in the graphG(®). W.l.o.g. & can be
assumed to be in positive normal form, i.e. negation occurs
only in front of atomic propositions. The rules used for
constructing the graph refin@ to an under-approximation
by dismissing one side from disjunctions. Thus, if there is a
model for a node, i.e. somew € ¥ s.t.w = A, ¢, then
there is a modelv’ for every predecessor af. The A-rule
does not effect any change since the set is interpreted as
conjunction. Also, letl’ be a set of formulae, then every
model for ¢; AT is also a model for(o; V pa) A T.
ExchangingJ- andR-formulae without frequency with their
respective unfoldings is purely syntactical andremains
a model. TheX-rule only applies to nodes of the form
X1, . X@r,q1,...,qm and foranyw = p1A... Ap,
we have thatuow = X1 A ... AXor Agi Ao Agm
if a« = {q1,...,¢n} N AP. We can dismiss all negated

ropositions since the path was valid af,...,q¢n} is
thus not contradictory.

The remaining rules unfold frequency-until-formulae. Re-
specting the according constraints ensures the correst bia
Thus, by Lemma 1, they at most refine the formula, which
means that any model for the child node is in particular a
model of the parent node, given the constraint is satisfied
or the according operation is performed on the counter,
respectively.

We hereby construct a model directly from a valid path
o, starting with a modelw,,, for the last nodev,, in the
path (which is final) and backwards prepending the letters
imposed by the propositional constraints of the applied
rules (see Figure 2).

(=). Assume® is satisfiable and a wordyy, € ¥¢ is
a model. We can derive a valid path= vyvivs...v, ON

o ... Vi lﬂ/iﬁl g L%H NSO previous cases applies, then considem(A)f {eU% v} U
liy Liy li I', ¢ < 1. Among the successor nodes in the graph, we

i} i} { havex = {¢}UT, y = {o,X(¢Uk¥)} UT and z =

Wy = @y as cee G . Wy, {0, X(e Uk ¥)}UT. By Lemma 1,6k (0;) > 0 andw; =

x[o(0;)] or w; is a model fory or z respecting the according

Figure 2. Following a valid pathp directly yields a model if the last ; ;) .))
position is satisfiable by some worg,,, , which is in particular the case operations or, i.e.w; [= ylo(ewy)] orwi = z[o(eiz)]. We

if v, is final, i.e. represents a pure, satisfiable LTL formula. #eg ~ Can choose a suitable onews; . In any case; 1 = 0ivi+1
propositions in labeld;; are included implicitly in the letters; by the remains a valid path, and;, := w; |: Ui+1[o‘(gi+1)]_ The

absence of their positive duals. case remaining is (8); = {X®1,... X©r, q1, - - -, m } With
gi € {p,—p | p € AP}. Sincew; = wvi[o(g;)], we take

_ wiv1 = wi|* | viv1 = {¢1,..., -} and the path remains
g(®) to a final nodev,. valid since{q, ..., qn} can not be contradictory.]

We constructp by starting with a pathoy = vg that
only consists of the initial node. Guided ly, we choose a C. Solving reachability with constraints

successor; for vy and obtain a new pathy = vgv:. Also, Theorem 4 reduces the satisfiability problem sSETL

we obtain a wordw, that shall guide us in the next step. formulae to (constrained) reachability in the tableau grap
By structural induction on the construction of the tableau | grder to check whether there is a valid path to a final
graphG(®) we show that we can always choose a childpgde we examine all simple paths to final nodes. Any valid
nodewv;+; of a nodev; on the path while maintaining the path must then be an extension of some simple path by a
invariant thatg; +1 = vo...vi41 is valid and there is a word hymper of loops. More precisely, we can assume these loops

wit1 = viy1[o(0i41)]. Here, we let to be simple loops that are possibly extended by a number of
o(0;) = {K1 > 05, (05)s - Kr — 05, (05)} s_uch loops themselv_es. T_h|s_h_|erarchy is of bounded depth
since the valid path itself is finite.
be a substitution that maps the variabl€s to the values Let o = vp...v, be a path on a tableau gragh We

they would have after applying all operations &) that denoteloops,(¢) the set of all simple loops= u. . . ugug
occur along a pat;. That substitution is used to substitute on G, u; € V, s.t. uy occurs onp. Further, letloops (o)
all counter variables by actual values in a particular node i pe the smallest set s.boops;(0) C loops;(e) and €
order to get a semantics regarding a word. In general, fofoops}; (o) = loopsg (1) C loops (o).
a formula formulay and a finite substitutionr = {K; We construct equation systems that are imposed by the
ki,..., K, — k.} we write p[o] = ¢[k1/Ku1,....k-/K:| constraints on the path. If there were no constraints, gmpl
for a formula that is equal t@ but where all occurrences paths would be fine already. For a path to be valid, any
of variableskK; are replaced by valugs. Note that this is constraint edge must be preceded by a prefix-path with a
well defined here, regardless of the order of substitution. \weight satisfying the respective constraint (c.f. Defoit#).

The construction so far may yield an infinite path throughHence, for each final nodg; we investigate alsimplepaths
some loop. However, this would mean that some frequencyp = vyv;. .. v, that start at the initial node and endip =
until is unfolded infinitely often. The assumption thatisa v, and consider the extending loops < loopsg (¢]i+1)
model for® and the existential definition of thé“-operator before a node;,; on o. These loops can possibly influence
ensures that we can finally dismiss the recurring frequencythe actual counter value when reaching Therefore we
until-formula during the unfolding of all such formulae and introduce a variable:,,, for the number of traversals of a
thus reach a node that only contains LTL formulae. loop I,,,. For every edgéuv;, v;,1) on the so far simple path

If & € LTL, the initial nodew, is already final and we o that is labelled by a constraint(v;,v;11) = "K > 0%
found a valid path of length one. Now, let = vovy...v; we construct an inequality

be a valid path andv; | v;[o(0;)]. We are done ify; C
LTL. Otherwise we consider the following cases. (&)= Oxc (eli+1) + (Z m '6K(lm)) 20
{o1 A2} UT, 1 A o & LTL. Choosing the successor I €loopsg (el i+1)

Vip1 = {1, 02} UT and wiy1 == w; E vig1[o(0ivit1)] that represents all those paths that follpvbut may addi-
maintains the invariant. Otherwise, if (2) = {p1 V o2} U tionally traverse some of the loops.

T, v1 V po & LTL we take eitherv; 1 := {1} UT or If o is extended by a subordinate lodp € loops.(l,)

vi+1 := {p2} UT. For at least one of themw; 1 := w; E of some loopl,, ¢ is necessarily extended by itself at
vit1[o(0ivi+1)] must hold. Similarly, for 3y; = {p Uy }U least once. Thus, for each such pair, we extend the equation
T orv; = {y Ry} UT we can safely choose the successorsystem by this implicationn,, = 0V n, > 0. Note that
node{y) V(p AX(eUy)}UT or {p A (v VX(pRp))}U equations in a system are considered in conjunction but we
T", respectively, since this unfolding does not change thean resolve the disjunction by using a copy of the system for
semantics and; 1 := w; remains a model. If neither of the each disjunct and obtain a sEtin(p) of equation systems.

There is a natural solution, in terms of the variablgs for ~ For a formulap U ¢, a position may only violate if ¢ has

at least one of them ifp can be extended by loops in order been satisfied often enough in previous positions. Finally,

to satisfy all constraints along it. Furthermore, if we ddes [8], LTL's expressiveness has been extended to capture the
the unionEqn(G(®)) = U, Ean(e) for all simple pathe to full class of regulats-languages. It might be worthwhile to

a final node inG(®), there is a systeriqn(p) € Eqn(G(®)) extend also this logic by a concept of frequencies.

that has a natural solution iff there is any path that can be
successfully extended to satisfy every constraint aloagdt
hence iff® is satisfiable.

REFERENCES
[1] A. Pnueli, “The temporal logic of programs,” iffOCS
IEEE, 1977, pp. 46-57.
an equation systeriqn(p) € Eqn(G(®)) that has a natural ser. Series on integrated circuits and systems. Springer,
solution. 2006.

This completes the reduction and proves Theorem 3. [31 M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Property
specification patterns for finite-state verification,” FMSP,

Motivated by our experience of applying LTL in the [4] A. Bauer and M. Leucker, “The theory and practice of
setting of verification, we introduced and studied a gener- ~ SALT." in NASA Formal Methodsser. LNCS, M. G. Bobaru,

L . . .2 K. Havelund, G. J. Hol , and R. Joshi, Eds., vol. 6617.
alization of LTL'’s until operator by relaxing the obligatio Sprir?ggrugon pp. 1%3210?[”“ an oS, £s., Vo

o of a formulay U . In the resulting logic, which we call _)
5] P. Wolper, “Temporal logic can be more expressivafor-

frequency LTL (LTL), it is now possible to _ertegoU ¢ to mation and Contrgl vol. 56, no. 1/2, pp. 72-99, Jan./Feb.
denote thaty has to hold at least at a fractierof positions 1983

up to a moment in which) holds. _ o)

We have shown thatLTL is far more expressive than [6] M. Y. Vardi, “A temporal fixpoint calculus,” inPOPL, 1988,
plain LTL as it allows us to formulate non-context-free Pp. 250-259.
properties. The price to pay for this expressiveness is thatl7] J. G. Henriksen and P. S. Thiagarajan, “Dynamic lineaueti
satisfiability offLTL is undecidable. We show this using an tle8”71pgga7| 'cl’gggA””' Pure Appl. Logicvol. 96, no. 1-3, pp.
encoding of the termination problem of Minsky machines. ' '
Expressing a frequentness within a certain scope via the[8] M. Leucker and C. Sanchez, “Regular linear temporaldgg
frequency-until operator allows us to simulate counters by in ICTAC 2007 ser. LNCS, C. B. Jones, Z. Liu, and J. Wood-
comparing numbers of letters, similar to [12]. cock, Eds., vol. 4711. Springer, 2007, pp. 291-305.

We also identified a decidable fragment fafTL which [9] S. Demri, “LTL over integer periodicity constraintsTheor.
still allows the formulation of context-free propertiesdan Comput. Scj.vol. 360, no. 1-3, pp. 96-123, 2006.
thus extends LTL’s expressiveness. The decidability proof10] C. Courcoubetis and M. Yannakakis, “Verifying tempora
is given via a tableau construction. However, a typical properties of finite-state probabilistic programs,” BROCS
approach, as for example introduced for LTL in [16], fails IEEE Computer Society, 1988, pp. 338-345.
as fLTL's counters would result in infinite tableaux. To [11] U. Sammapun, I. Lee, O. Sokolsky, and J. Regehr, “Stedis
overcome this problem we introducedsgmbolictableau runtime checking of probabilistic properties,” iRV, ser.
construction. As plain reachability algorithms are nott-sui LNCS, O. Sokolsky and S. Tasiran, Eds., vol. 4839. Springer,

able anymore to find valid paths in the according tableau 2007, pp. 164-175.

graph we encode the tableau as integer linear programs. [@2] J. Hoenicke, R. Meyer, and E.-R. Olderog, “Kleene, Rabi

other words, we reduce the satisfiability problenf GfL to and Scott are available,” iIEONCUR ser. LNCS, P. Gastin

ILP, which may then be solved using standard algorithms. Zgg_z?;_arousswe, Eds., vol. 6269. Springer, 2010, pp.
One might change the semanticsfefL's until operator, '

in a formulay U 9, by considering the frequency gfonly [13] F. Laroussinie, A. Meyer, and E. Petonnet, “Countind_['T

up to the veryfirst position in which holds. An easy in TIME, N. Markey and J. Wijsen, Eds. IEEE Computer

inspection of the undecidability proof shows, howevert tha Society, 2010, pp. 51-58.

the satisfiability problem of the resulting logic remains un [14] M. L. Minsky, Computation: finite and infinite machines

decidable. This indicates a certain robustness of the gisice Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1967.

developed in this paper. [15] A. Schrijver, Theory of linear and integer programming
The work initiated in this paper may be extended in ser. Wiley-Interscience series in discrete mathematias an
several directions. First, it would be interesting to rezluc optimization. Wiley, 1999.

the gap between the decidable fragmefifTL and fLTL [16] O. Lichtenstein and A. Pnueli, “Checking that finite teta
itself. To this end, it might be worth to study also a variant concurrent programs satisfy their linear specificatiom” i
of fLTL in which no credit is given in the following sense: POPL New York: ACM, Jan. 1985, pp. 97-107.

