

Runtime Monitoring with Union-Find Structures

N. Decker J. Harder T. Scheffel M. Schmitz D. Thoma

 $\{\texttt{decker}, \texttt{harder}, \texttt{scheffel}, \texttt{schmitz}, \texttt{thoma}\} \\ \texttt{@isp.uni-luebeck.de}$

Institute for Software Engineering and Programming Languages, University of Lübeck, Germany

TACAS 2016, Eindhoven

March 7, 2016

Runtime Verification

- ► (On-line) verification of a single run
- lacktriangleright "Word problem" $run \stackrel{?}{\in} SPEC$

Tasks

- Specification
- Evaluation
 - Monitor construction
 - Monitor execution

Runtime Verification

- ► (On-line) verification of a single run
- lacktriangleright "Word problem" $run \stackrel{?}{\in} SPEC$

Tasks

- Specification
- Evaluation
 - Monitor construction
 - Monitor execution

Goals

- Convenience and expressiveness
- Efficiency (on-line: overhead minimisation)

Observations

Behaviour, interaction of individual objects

Observations

- ▶ Behaviour, interaction of individual objects
- Sequence of events

аа Ба Б

Observations

- Behaviour, interaction of individual objects
- Sequence of events
- Object IDs (a.k.a. event parameter, data value)

Monitor

- Operational model: projection automata
- ► "Local" perspective, "global" information
 - ► Execute one automaton instance per object
 - Dispatch and qualify observations individually

Example

 $a_{=}, a_{\neq}$ local event b global event

- q_1
- q_0
- q_2
- q_2
- q_0

 $a_{=}, a_{\neq}$ local event b global event

- 1
- q_1
- (2)
- q_0 q_2
- $\overline{4}$
 -) q
- (5)

local event $a_{=}, a_{\neq}$ global event b

Object State

- q_0
- - q_2
- - q_2

 q_1

 $a_{=}, a_{\neq}$ local event b global event

Object State

- 2 90 q

 q_2

- \widetilde{A}
- q_2
- $\binom{5}{}$ q_1

 $a_{=}, a_{\neq}$ local event b global event

- 2 96 q₀
- (3) (3) (4)
- q_2
- (5) q_1

 $a_{=}, a_{\neq}$ local event b global event

- (2) % qo
- (3) (3) (3)
- q_2 q_2

 $a_{=}, a_{\neq}$ local event b global event

- (2) % q
- (3) (3) (4)
- (4) (2) (4)
- (5) (7)

 $a_{=}, a_{\neq}$ local event b global event

Object State

 q_2 q_2 q_3

Suitable data structure?

Hash tables

JAVAMOP [Chen and Rosu], MARQ [Reger et al.]

 $a_{=}, a_{\neq}$ local event b global event

Object State

- 1 94
 - 96 9
- (3)
- 92 (
- \bigcirc 4
- 92

- Suitable data structure?
 - Hash tables
 - Union-Find structures

JAVAMOP [Chen and Rosu], MARQ [Reger et al.]

Union-Find

Object State

 $\overline{3}$ q_2

 $\binom{4}{}$ q_2

(5) q_0

Union-Find: Dispatch a= to (5)

find (5) yields A

$$A \longleftrightarrow q_0$$

$$\delta(q_0,\,\mathsf{a}_=)=q_1$$

$$q_1 \longleftrightarrow B$$

delete (5), A

union
$$\{5\}$$
, B

Union-Find: Dispatch a= to (5)

find 5 yields A

$$A \longleftrightarrow q_0$$

$$\delta(q_0,\,\mathbf{a}_=)=q_1$$

$$q_1 \longleftrightarrow B$$

delete 5, A

union
$$\{5\}$$
, B

Union-Find: Dispatch a= to (5)

find (5) yields A

$$A \longleftrightarrow q_0$$

$$\delta(q_0, \mathbf{a}_{=}) = q_1$$

$$q_1 \longleftrightarrow B$$

delete (5), A

union
$$\{5\}$$
, B

Union-Find: Dispatch b to All

$$\delta(q_0, \mathsf{b}) = q_0$$

$$\delta(q_1,\mathsf{b})=q_2$$

$$\delta(q_2,\,\mathsf{b})=q_2$$

$$q_1 \longleftrightarrow B$$

$$q_2 \longleftrightarrow C$$

union B, C

Union-Find: Dispatch b to All

$$\delta(q_0, \mathsf{b}) = q_0$$

$$\delta(q_1,\mathsf{b})=q_2$$

$$\delta(q_2,\,\mathsf{b})=q_2$$

$$q_1 \longleftrightarrow B$$

$$q_2 \longleftrightarrow C$$

union B, C

Union-Find: Dispatch b to All

$$\delta(q_0, \mathsf{b}) = q_0$$

$$\delta(q_1, \, \mathsf{b}) = q_2$$

$$\delta(q_2,\,\mathsf{b})=q_2$$

$$q_1 \longleftrightarrow E$$

$$q_2 \longleftrightarrow C$$

union B, C

- ▶ individual objects (a=)
- ► all objects (b)

- ▶ individual objects (a=)
- ► all objects (b)
- ▶ all but one object (a_≠)

- ▶ individual objects (a=)
- ► all objects (b)
- all but one object (a_≠)
- hierarchically structured subsets of objects

- ▶ individual objects (a=)
- ► all objects (b)
- ▶ all but one object (a_≠)
- hierarchically structured subsets of objects
 - ▶ resource < lock
 - ▶ collection < iterator1, iterator2
 - ▶ immList < head < tail
 - (⇒ Tree structure)

Trees: Dispatch b to All Objects

Trees: Dispatch b to All Objects

Trees: Dispatch b to All Objects

Trees: Pull Down Changes

union

Trees: Pull Down Changes

Example

Benchmarks: Relative Time Overhead

Benchmarks: Relative Memory Overhead

Logical Characterisation

$$G(\mathsf{create} \to G(\mathsf{modify} \to \neg\,F\,\mathsf{use}))$$

Iterator perspective

- ▶ If you create me and then
- ► modify my collection then
- don't use me any more.

Logical Characterisation

$$G(\mathsf{create} \to G(\mathsf{modify} \to \neg\,F\,\mathsf{use}))$$

Iterator perspective

- ▶ If you create me and then
- ► modify my collection then
- don't use me any more.

Fragment of first-order LTL

$$\forall me. \, \mathrm{G}(\mathsf{create} \wedge \mathsf{id} = me \to \mathrm{G}(\mathsf{modify} \wedge \mathsf{id} < me \to \neg \, \mathrm{F} \, \mathsf{use} \wedge \mathsf{id} = me))$$

(Models: Sequences of FO structures))

Conclusion

- Monitoring of object-oriented systems
- ► Individual behaviour of objects, hierarchical dependencies
- ► Formal model and logical characterization

Conclusion

- Union-find as alternative to hash tables
- Execution time of one monitoring step is
 - guaranteed: logarithmic
 - amortised: almost constant

in the number of observed objects

▶ Benchmarks show that Mufin¹ outperforms JavaMOP² and MarQ³

http://www.isp.uni-luebeck.de/mufin

P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Rosu. An overview of the MOP runtime verification framework. (STTT '12)

³ G. Reger, H. C. Cruz, and D. E. Rydeheard. MarQ: Monitoring at runtime with QEA. (TACAS '15)