ERSI
NEE T

5 .
S UNIVERSITAT ZU LUBECK | S p
N N S ' »
S N > C

)

LLUMey,

Runtime Monitoring with Union-Find Structures

N. Decker J.Harder T.Scheffel M.Schmitz D.Thoma

{decker, harder, scheffel, schmitz, thoma}@isp.uni-luebeck.de

Institute for Software Engineering and Programming Languages,
University of Liibeck, Germany

TACAS 2016, Eindhoven

March 7, 2016

{decker, harder, scheffel, schmitz, thoma}@isp.uni-luebeck.de

Runtime Verification

» (On-line) verification of a single run

» “Word problem” run é SPEC

Tasks

» Specification
» Evaluation

» Monitor construction
» Monitor execution

N. Decker Runtime Monitoring with Union-Find Structures 2/16

Runtime Verification

» (On-line) verification of a single run

» “Word problem” run é SPEC

Tasks Goals
» Specification » Convenience and expressiveness
> Evaluation » Efficiency (on-line: overhead

» Monitor construction minimisation)

» Monitor execution

N. Decker Runtime Monitoring with Union-Find Structures 2/16

Object-oriented Systems

Observations

» Behaviour, interaction of individual objects

N. Decker Runtime Monitoring with Union-Find Structures 3/16

Object-oriented Systems

Observations
» Behaviour, interaction of individual objects

» Sequence of events

N. Decker Runtime Monitoring with Union-Find Structures 3/16

Object-oriented Systems

Observations
» Behaviour, interaction of individual objects
» Sequence of events

» Object IDs (a.k.a. event parameter, data value)

ofolololo

N. Decker Runtime Monitoring with Union-Find Structures 3/16

Object-oriented Systems

Monitor

» Operational model: projection automata
» “Local” perspective, “global” information

> Execute one automaton instance per object
» Dispatch and qualify observations individually

N. Decker Runtime Monitoring with Union-Find Structures 4/16

Example

b,ax ax b,ax Object State

_ qQ
SHs6sG 9o
a—,ax local event @ @
b global event @ 1

@ qo

N. Decker Runtime Monitoring with Union-Find Structures 5/16

Observation (a,(v))

b,ax ax b,ax Object State

_ q
SHs6sG 9o
a—,ax local event @ 2
b global event @ i

@ >§< q1

ecker Runtime Monitoring with Union-Find Structures

5/16

Observation (b,()

b,ax ax b,ax Object State

= >< q2
SHs6e6 9
a—,ax local event @ 2
b global event % i
q1

ecker Runtime Monitoring with Union-Find Structures

5/16

Observation (b,()

b, a#£ a# b, a#£
Moo

a—,ax local event

b global event

Object State

@ x(e
@ o

q2
q2
q1

OO

ecker Runtime Monitoring with Union-Find Structures 5/16

Observation (b,()

b, a#£ a# b, a#£
Moo

a—,ax local event

b global event

Object State

@ X =
@ v
Q * =
Q
®

q1

ecker Runtime Monitoring with Union-Find Structures 5/16

Observation (b,()

b, a ay b,a Object State
—>gi> % i
)4
)4

q1

a—,ax local event

b global event

OO

ecker Runtime Monitoring with Union-Find Structures

5/16

Observation (b,()

b,ax ax b,ax Object State

SGHE-H6

a—,ax local event

b global event

OOOOO
KK XX

qo0
q2
q2
q2

ecker Runtime Monitoring with Union-Find Structures

5/16

Observation (b,()

b,ax ax b,ax Object State

% a— ﬁ b g @ >§< q2
- @ @ @ >< do
© » w
a—,ax local event
b global event % i “
q2
Suitable data structure?
» Hash tables JAVAMOP [Chen and Rosu], MARQ [Reger et al.]

N. Decker Runtime Monitoring with Union-Find Structures

5/16

Observation (b,()

b, a#£ a# b, a#£
Moo

a—,ax local event

b global event

Suitable data structure?
» Hash tables

» Union-Find structures

Object State

q0
q2

q2

OOOOO
KK XX

q2

JAVAMOP [Chen and Rosu], MARQ [Reger et al.]

N. Decker

Runtime Monitoring with Union-Find Structures

5/16

Union-Find

Object State

OOOOGO

q1
qo0
q2
q2

qo

ax

ba;ﬁ

LEndnd

qo | 1

q2

Wal

LN

'

:
|

N\

Runtime Monitoring with Union-Find Structures

6/16

Union-Find: Dispatch a_ to (5)

qo | 91 | q2

ol

.

B

N

C

A b y A

bun

find @ yields A
A <> qo
6(q01 a:) =q1

q «— B

delete @, A
union {@}, B

N. Decker Runtime Monitoring with Union-Find Structures

7116

A b y A

Union-Find: Dispatch a_ to (5) 83_) 8_) 8
N

qo | q1 | G2 find @ yields A

a\ A <> qo

4
l d(qo,a=)=q
G o
delete (5), A
union {@},B

N. Decker Runtime Monitoring with Union-Find Structures 7116

A b y A

Union-Find: Dispatch a_ to (5) 83_) 8_) 8
N

Qo [@[g find () yields A
il BN A <> qo
/ l \ d(qo, a=)=q
A Q<> B
B

C
delete @, A
union {@}, B

N. Decker Runtime Monitoring with Union-Find Structures 7116

A b y A

Union-Find: Dispatch b to All . 83_> 8_> 8

qgo | 91 | G2 5((]0, b) = qo

/ I N 5(a1, b) = as

5((12/ b)=q2
@@ 7,
B

QQHC

union B, C'

N. Decker Runtime Monitoring with Union-Find Structures 8/16

A b y A

Union-Find: Dispatch b to All . 83_> 8_> 8

g0 | 91| G2 d(qo, b) = qo
Dl B o BN

5(‘11’ b) = ¢2

/ l \ d(q2,b) = g2
A @« B
/\B_/ g «— C

union

union B, C'

N. Decker Runtime Monitoring with Union-Find Structures 8/16

Union-Find: Dispatch b to All

A

qo

q1

q2

A b y A

bun

8(qo, b) = qo
6((]11 b) =4q2
5((12/ b) =q2

Q14—>B

OO
©J0)

C q2 «— C

union B, C'

N. Decker

Runtime Monitoring with Union-Find Structures

8/16

Relation Between Objects

Union-Find structures allow for updating
» individual objects (a=)

» all objects (b)

N. Decker Runtime Monitoring with Union-Find Structures

9/16

Relation Between Objects

Union-Find structures allow for updating
» individual objects (a=)
» all objects (b)

» all but one object (a)

N. Decker Runtime Monitoring with Union-Find Structures 9/16

Relation Between Objects

Union-Find structures allow for updating
» individual objects (a=)
» all objects (b)

» all but one object (a)

» hierarchically structured subsets of objects

N. Decker Runtime Monitoring with Union-Find Structures 9/16

Relation Between Objects

Union-Find structures allow for updating
» individual objects (a=)
» all objects (b)
» all but one object (a)

» hierarchically structured subsets of objects

» resource < lock
» collection < iteratorl,iterator?2

» immList < head < tail

(= Tree structure)

N. Decker Runtime Monitoring with Union-Find Structures 9/16

A b y A

e (b

o E Bre o 6 5o

N. Decker Runtime Monitoring with Union-Find Structures 10/16

Trees

q2

A b y A

bun

qo

q1

q2

Runtime Monitoring with Union-Find Structures

10/16

Trees

qo

q1

q2

q2

A b y A

bun

qo

q1

q2

Runtime Monitoring with Union-Find Structures

10/16

Trees

qo

q1

q2

A b y A

bund

NIKS

Runtime Monitoring with Union-Find Structures 10/16

Trees

qo

q1

q2

\ \

A b y A

N

Ru

ntime Monitoring with Union-Find Structures

10/16

Trees: Dispatch b to All Objects

qo

q1 | G2

AN

A b y A

bund

3(qo, b) = qo

d(q1, b) = q2

\ \(Q2 b) = ¢

»

d

;
@ @

Runtime Monitoring with Union-Find Structures

10/16

Trees: Dispatch b to All Objects

qo

q1 | G2

AN

\

A b y A

bun

9(qo, b) = qo

d(q1, b) = q2

0(q2, b) = ¢2
unlon

»

d

;
@ @

Runtime Monitoring with Union-Find Structures

10/16

Trees: Dispatch b to All Objects

do | 91 | G2

ax

ba;ﬁ

bun

9(qo, b) = qo
d(q1, b) = q2
5(q2/ b) =q2

20

7 "-Lj;‘;~‘.,,.‘~'. |

Runtime Monitoring with Union-Find Structures

10/16

A b y A

Trees: Pull Down Changes . 83_) 8_) 8

q | g1 | g2 6(‘10/ b) =4qo
5(q1, b) = g2
5(q2/ b) =q2

D

union

ecker Runtime Monitoring with Union-Find Structures 10/16

Trees: Pull Down Changes

qo

q1

q2

A b y A

bun

9(qo, b) = qo
d(q1, b) = q2
5(q2/ b) =q2

A

Runtime Monitoring with Union-Find Structures

10/16

Example

else else else *

create, =) modify, < use, =

N. Decker Runtime Monitoring with Union-Find Structures 11/16

Benchmarks: Relative Time Overhead

Mufin Mufin Light JavaMOP M MarQ

30
T
0 3 =
0
—
[a]
20
2
© E EN
2 4q
@ 8
-
10 8
s R = 2 B
> © ©
[
32 = 5 N
R R KN I N
S IS e S
T T T T T T T
X X < X (<
Aot ot 30 S) N of
e \e\\e‘a Q\\G‘a (5*\0‘?> <o \)\&\Q\e «
I AN W

N. Decker Runtime Monitoring with Union-Find Structures 12/16

Benchmarks: Relative Memory Overhead

Mufin Mufin Light JavaMOP W MarQ

o)
8 5 N
N
67
0
@
47) [
~
2 -
° >
3 = : 2
0 o ° (=]

16.27 —
10.88 —
7.28
20.01 —

6.69

j=)
©
kil ©
o
00
<
n® ©
~ [a]
3 [5e)
=
2 n K
® >
[=} (=}
Mo
—
o
T \ \ \ 8‘
o <@

o
2
\»\e‘6 e \\e‘i‘\ N eé\\e‘ '\09\\‘\ o
&

N. Decker Runtime Monitoring with Union-Find Structures 13/16

Logical Characterisation

G(create — G(modify — = F use))

Iterator perspective
» If you create me and then
» modify my collection then

» don’t use me any more.

N. Decker Runtime Monitoring with Union-Find Structures 14/16

Logical Characterisation

G(create — G(modify — = F use))

Iterator perspective
» If you create me and then
» modify my collection then

» don’t use me any more.

Fragment of first-order LTL

Vme. G(create Aid = me — G(modify Aid < me — = Fuse Aid = me))
(Models: Sequences of FO structures))

N. Decker

Runtime Monitoring with Union-Find Structures

14/16

Conclusion

» Monitoring of object-oriented systems
» Individual behaviour of objects, hierarchical dependencies

» Formal model and logical characterization

N. Decker Runtime Monitoring with Union-Find Structures 15/16

Conclusion

» Union-find as alternative to hash tables
» Execution time of one monitoring step is
> guaranteed: logarithmic
» amortised: almost constant

in the number of observed objects

» Benchmarks show that Mufin' outperforms JavaMOP? and MarQ?

B http://www.isp.uni-luebeck.de/mufin
2 P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Rosu.

An overview of the MOP runtime verification framework. (STTT ’12)
3 G. Reger, H. C. Cruz, and D. E. Rydeheard.

MarQ: Monitoring at runtime with QEA. (TACAS ’15)

N. Decker Runtime Monitoring with Union-Find Structures 16/16

http://www.isp.uni-luebeck.de/mufin

	Runtime Verification
	Monitoring Objects
	Benchmarks
	Logic
	Conclusion

