

Model Checking Product Lines

Martin Leucker

partially joint work with Alarico Campetelli, Alexander Gruler and Daniel Thoma

University of Lübeck

Dagstuhl, February 25th, 2013

Martin Leucker	

イロト イポト イヨト イヨト

Outline

Software Product Families

Features Modelling of Product Lines

(Multi-valued) Model Checking

Multi-valued μ -Calculus

Traditional Abstractions

Optimistic-Pessimistic Abstractions

Causes for Indefinite Results

Conclusions

ъ

イロト イポト イヨト イヨト

İSρ

Presentation outline

isp

Software Product Families

Features Modelling of Product Lines

(Multi-valued) Model Checking

Multi-valued µ-Calculus

Traditional Abstractions

Optimistic-Pessimistic Abstractions

Causes for Indefinite Results

Conclusions

Leucker

ъ

ヘロト 人間 トイヨト 人民ト

isp

Building a family of products

ъ

ヘロト 人間 ト 人造 ト 人造 トー

isp

Building a family of products

family of products = product line

æ

ヘロト A倒ト A注ト A注ト

Software Product Family

isp

How to deal with software product lines?

- how to model software product lines?
- how to verify software product lines?
- how to model software product lines to allow their verification?

イロト イボト イヨト イヨト

Software Product Family

isp

How to deal with software product lines?

- how to model software product lines?
- how to verify software product lines?
- how to model software product lines to allow their verification?
- one system model incorporating all products
- ▶ PL-CCS: product line extension of Milner's CCS [FMOODS'08]

イロト イボト イヨト イヨト

Software Product Family

Dijstra'72

If a program has to exist in two different versions, I would rather not regard (the text of) the one program as a modification of (the text of) the other. It would be much more attractive if the two different programs could, in some sense or another, be viewed as, say, different children from a common ancestor, where the ancestor represents a more or less abstract program, embodying what the two versions have in common.

イロト 不得下 イヨト イヨト

ISp

Definition [Clements&Northrop]

A *software product line* is a set of software intensive systems sharing a common, managed set of features that satisfy the specific needs of a particular market segment or mission and that are developed from a common set of core assets.

イロト イポト イヨト イヨト

Definition [Clements&Northrop]

A *software product line* is a set of software intensive systems sharing a common, managed set of features that satisfy the specific needs of a particular market segment or mission and that are developed from a common set of core assets.

イロト イポト イヨト イヨト

Software Product Line

Definition (Feature)

A *feature* is the ability of a product to cover a certain use case or meet a certain customer need.



Martin Leucker	

ヘロト 人間 ト 人 ヨト 人 ヨトー

Feature versus Product Line

Different views

- Feature: Customer view
- SPL: Technical view
- It is frequently impossible to map features independently to certain technical properties (=core assets).
- Mapping features combinations to products is no homomorphism!

ヘロト 人間 トイヨト 人民ト

Definition (Features to Products)

 $\mathcal{F}: \mathbb{P} \to 2^{\mathbb{F}}$ is a *feature function* mapping products $p \in \mathbb{P}$ to features $f \in \mathbb{F}$ they have.

Definition (Feasible Feature Combinations)

The set $F \subseteq \mathbb{F}$ is a *feasible feature combination* if $\exists p \in \mathbb{P} : F \subseteq \mathcal{F}(p)$.

イロト 不得 トイヨト イヨト

The core (of PL-CCS)

Variability = Choice Points

wiper := wiper₁ \oplus_1 wiper₂; sensor := sensor₁ \oplus_2 sensor₂

Composition of assets

wiper || sensor

ヘロト A倒ト A注ト A注ト

PL-CCS Semantics

isp

Three semantics

flat semantics

PL-CCS Semantics

isp

Three semantics

- flat semantics
- unfolded semantics

PL-CCS Semantics

isp

Three semantics

- flat semantics
- unfolded semantics
- configured-transitions semantics

Flat Semantics

Definition (fully configured)

Given a well-formed PL-CCS program with *N* variants operators, we call a corresponding configuration vector

 $\theta \in \{R, L, ?\}^N$

fully configured if

 $\theta \in \{R, L\}^N$

From a PL-CCS program to a set of CCS programs

config : $\mathcal{P} \times \{R, L, ?\}^N \mapsto \mathcal{R}$

Definition (flat semantics)

$$\llbracket Prog \rrbracket_{Flat} = \left\{ \llbracket V \rrbracket_{CCS} \mid \exists \theta : config(Prog, \theta) = V \right\}$$

Unfolded Semantics

isp

Definition (PL-LTS)

A *product-line transition system* (PL-LTS) with *N* variants operators is a tuple (S, A, Δ, σ) , where

- ► S is a (countably, possibly infinite) set of states,
- ► *A* is a set of actions, and
- Δ is a finite set of transition relations of the form $\xrightarrow{\alpha, \nu} \subseteq S \times S$, where $\alpha \in A, \nu \in \times \{R, L, ?\}^N$,
- and $\sigma \in S$ is the start state.

イロト 不得 トイヨト イヨト 二日

From a PL-CCS program to a PL-LTS

SOS rules

$$\frac{P,\nu \xrightarrow{\alpha,\nu} P',\nu}{C,\nu \xrightarrow{\alpha,\nu} P',\nu} , C \stackrel{\text{\tiny def}}{=} P \quad (constant \ definition)$$

$$\frac{1}{\alpha \cdot P, \nu \xrightarrow{\alpha, \nu} P, \nu} , \text{ for arbitrary } \nu \in \{R, L, ?\}^N \qquad (prefix)$$

$$\frac{P_{j}, \nu \xrightarrow{\alpha, \nu} P'_{j}, \nu}{P_{1} + P_{2}, \nu \xrightarrow{\alpha, \nu} P'_{j}, \nu} , j \in \{1, 2\} \quad (summation)$$

$$\frac{P, \nu \xrightarrow{\alpha, \nu} P', \nu}{(P \parallel Q), \nu \xrightarrow{\alpha, \nu} (P' \parallel Q), \nu}$$

 $(parallel \ composition \ (1) \)$

ヘロト 人間 ト 人 ヨト 人 ヨトー

:

ж

Presentation outline

Software Product Families

Features Modelling of Product Lines

(Multi-valued) Model Checking

Multi-valued µ-Calculus

Traditional Abstractions

Optimistic-Pessimistic Abstractions

Causes for Indefinite Results

Conclusions

Martin Leucker

ъ

イロト イボト イヨト イヨト

.

Definition (Model Checking)

Specification of system

Definition (Model Checking)

- Specification of system
- Implementation of system

ж

ヘロト 人間 ト 人造 ト 人造 トー

Definition (Model Checking)

- Specification of system
- Implementation of system
- Question: Does the system meet its specification??

ヘロト 人間 ト 人造 ト 人造 トー

Definition (Model Checking)

- Specification of system given by logical formula φ
- Implementation of system
- Question: Does the system meet its specification??

イロト イボト イヨト イヨト

Definition (Model Checking)

- Specification of system given by logical formula φ
- ► Implementation of system given by Kripke structure *K*
- Question: Does the system meet its specification??

イロト イボト イヨト イヨト

Definition (Model Checking)

- Specification of system given by logical formula φ
- ► Implementation of system given by Kripke structure *K*
- Question: Does the system meet its specification??

$\mathcal{K}\models\varphi$

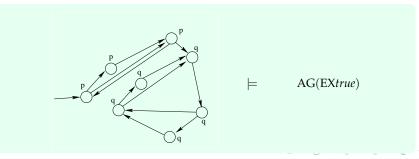
イロト 不得 トイヨト イヨト

isp

Definition (Model Checking)

- Specification of system given by logical formula φ
- ► Implementation of system given by Kripke structure *K*
- Question: Does the system meet its specification??

$\mathcal{K}\models\varphi$



Definition (Model Checking)

- Specification of system given by logical formula φ
- ► Implementation of system given by Kripke structure *K*
- Question: Does the system meet its specification??

$\mathcal{K}\models\varphi$

Practical Definition

Model Checking is a powerful analysis tool parameterized via a logical specification

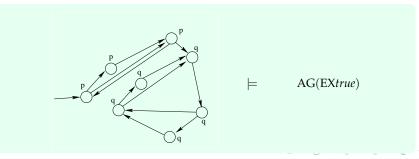
イロト イボト イヨト イヨト

isp

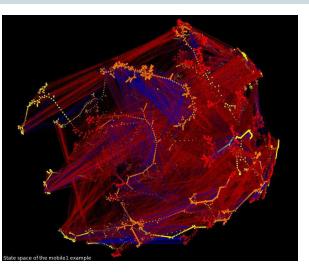
Definition (Model Checking)

- Specification of system given by logical formula φ
- ► Implementation of system given by Kripke structure *K*
- Question: Does the system meet its specification??

$\mathcal{K}\models\varphi$



State Space



© Moritz Hammer

ヘロト A倒ト A注ト A注ト

ъ

Multi-valued (mv) Model Checking

Definition (Multi-valued Model Checking)

Specification of a property

Э

ヘロト 人間 ト 人造 ト 人造 トー

Multi-valued (mv) Model Checking

Definition (Multi-valued Model Checking)

- Specification of a property
- Multi-valued model of system(s)

イロト イボト イヨト イヨト

isp

Multi-valued (mv) Model Checking

Definition (Multi-valued Model Checking)

- Specification of a property
- Multi-valued model of system(s)
- Question: To which extent does system meet its specification??

イロト イポト イヨト イヨト

isp

Multi-valued (mv) Model Checking

Definition (Multi-valued Model Checking)

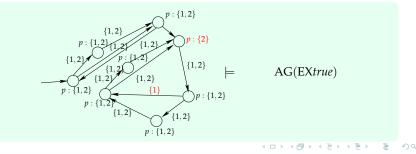
- Specification of a property given by logical formula φ
- Multi-valued model of system(s)
- Question: To which extent does system meet its specification??

イロト イポト イヨト イヨト

Multi-valued (mv) Model Checking

Definition (Multi-valued Model Checking)

- Specification of a property given by logical formula φ
- ► Multi-valued model of system(s) given by mv-Kripke structure K
- Question: To which extent does system meet its specification??

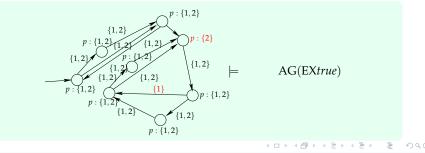


Multi-valued (mv) Model Checking

Definition (Multi-valued Model Checking)

- Specification of a property given by logical formula φ
- ► Multi-valued model of system(s) given by mv-Kripke structure K
- Question: To which extent does system meet its specification??

 $\llbracket \varphi \rrbracket_{\mathcal{K}} = v$



Thesis

Rational

Model Checking Product Lines is Multi-valued Model Checking

Martin Leucker

ж

ヘロト ヘロト ヘヨト ヘヨト

However...

... there are different approaches

based on open system's verification:

```
http://cs.brown.edu/~sk/Publications/Papers/Published/
lkf-verif-cc-features-open-sys/
and
http://cs.brown.edu/~sk/Publications/Papers/Published/
bfkv-param-int-open-sys-verif-prod-line/
but this is not considered here.
```

イロト イ押ト イヨト イヨト

Presentation outline

Software Product Families

Features Modelling of Product Lines

(Multi-valued) Model Checking

Multi-valued μ -Calculus

Traditional Abstractions

Optimistic-Pessimistic Abstractions

Causes for Indefinite Results

Conclusions

Leucker

Э

イロト イボト イヨト イヨト

Lattices

Lattices

- *lattice* is a partially ordered set $(\mathcal{L}, \sqsubseteq)$
- where for each $x, y \in \mathcal{L}$, there exists
 - a unique greatest lower bound (glb) $x \sqcap y$, and
 - a unique *least upper bound* (lub) $x \sqcup y$.
- ▶ bottom \perp top \top
- ► distributive iff

$$x \sqcap (y \sqcup z) = (x \sqcap y) \sqcup (x \sqcap z)$$
$$x \sqcup (y \sqcap z) = (x \sqcup y) \sqcap (x \sqcup z)$$

▶ DeMorgan

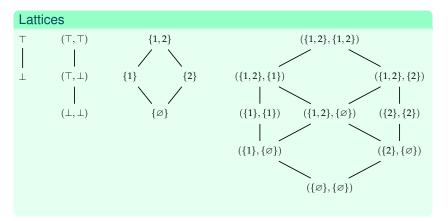
 $\neg \neg x = x$

Boolean iff complete, distributive, and

$$x \sqcup \neg x = \top$$
 $x \sqcap \neg x = \bot$

Dagstuhl

Examples



Multi-valued Modal Kripke Structure

Definition (Multi-valued Kripke structure (mv-KS))

- $\mathcal{T} = (\mathcal{S}, \mathcal{R}, L)$
 - \blacktriangleright *S* states
 - $\mathcal{R}(.,.): \mathcal{S} \times \mathcal{S} \rightarrow \mathcal{L}$ valuation function
 - $L: S \to \mathcal{L}^{\mathcal{P}}$ value of proposition

イロト 不得 トイヨト イヨト

Multi-valued μ -Calculus

isp

Definition (mv- \mathfrak{L}_{μ} —Syntax)

$$\varphi ::= true | false | q | \neg q | Z | \varphi \lor \varphi | \varphi \land \varphi$$
$$\Diamond \varphi | \Box \varphi |$$
$$\mu Z.\varphi | \nu Z.\varphi$$

$\llbracket true \rrbracket_{\rho}$:=	$\lambda s. op$
$\llbracket false \rrbracket_{\rho}$:=	$\lambda s. \perp$
$\llbracket q \rrbracket_{\rho}$:=	$\lambda s.L(s)(q)$
$[\![\neg q]\!]_{\rho}$:=	$\lambda s. \neg L(s)(q)$
$[\![Z]\!]_{\rho}$:=	$\rho(Z)$
$[\![\varphi \lor \psi]\!]_\rho$:=	$\llbracket \varphi \rrbracket_{\rho} \sqcup \llbracket \psi \rrbracket_{\rho}$
$[\![\varphi\wedge\psi]\!]_\rho$:=	$\llbracket \varphi \rrbracket_{\rho} \sqcap \llbracket \psi \rrbracket_{\rho}$
$[\![\Diamond\varphi]\!]_\rho$:=	$\lambda s. \bigsqcup \{ \mathcal{R}(s,s') \sqcap \llbracket \varphi \rrbracket_{\rho}(s') \}$
$[\![\Box \varphi]\!]_{\rho}$:=	$\lambda s. \prod \{\neg \mathcal{R}(s, s') \sqcup \llbracket \varphi \rrbracket_{\rho}(s')\}$
$\llbracket \mu Z. \varphi \rrbracket_{\rho}$:=	$\prod \{f \mid \llbracket \varphi \rrbracket_{\rho[Z \mapsto f]} \sqsubseteq f\}$
$[\![\nu Z.\varphi]\!]_{\rho}$:=	$\bigsqcup \{ f \mid f \sqsubseteq \llbracket \varphi \rrbracket_{\rho[Z \mapsto f]} \}$

$\llbracket true \rrbracket_{\rho}$:=	$\lambda s. op$
$\llbracket false \rrbracket_{\rho}$:=	$\lambda s. \perp$
$\llbracket q \rrbracket_{\rho}$:=	$\lambda s.L(s)(q)$
$[\![\neg q]\!]_{\rho}$:=	$\lambda s. \neg L(s)(q)$
$\llbracket Z \rrbracket_{\rho}$:=	$\rho(Z)$
$[\![\varphi \lor \psi]\!]_\rho$:=	$\llbracket \varphi \rrbracket_{\rho} \sqcup \llbracket \psi \rrbracket_{\rho}$
$[\![\varphi \wedge \psi]\!]_\rho$:=	$\llbracket \varphi \rrbracket_{\rho} \sqcap \llbracket \psi \rrbracket_{\rho}$
$[\![\Diamond\varphi]\!]_\rho$:=	$\lambda s. \bigsqcup \{ \mathcal{R}(s, s') \sqcap \llbracket \varphi \rrbracket_{\rho}(s') \}$
$[\![\Box\varphi]\!]_{\rho}$:=	$\lambda s. \prod \{\neg \mathcal{R}(s,s') \sqcup \llbracket \varphi \rrbracket_{\rho}(s')\}$
$\llbracket \mu Z. \varphi \rrbracket_{\rho}$:=	$\prod \{ f \mid \llbracket \varphi \rrbracket_{\rho[Z \mapsto f]} \sqsubseteq f \}$
$[\![\nu Z.\varphi]\!]_{\rho}$:=	$\bigsqcup \{ f \mid f \sqsubseteq \llbracket \varphi \rrbracket_{\rho[Z \mapsto f]} \}$

$\llbracket true \rrbracket_{\rho}$:=	$\lambda s. op$
$\llbracket false \rrbracket_{\rho}$:=	$\lambda s. ot$
$\llbracket q \rrbracket_{\rho}$:=	$\lambda s.L(s)(q)$
$[\![\neg q]\!]_{\rho}$:=	$\lambda s. \neg L(s)(q)$
$\llbracket Z \rrbracket_{\rho}$:=	$\rho(Z)$
$[\![\varphi \lor \psi]\!]_\rho$:=	$\llbracket \varphi \rrbracket_{\rho} \sqcup \llbracket \psi \rrbracket_{\rho}$
$[\![\varphi \wedge \psi]\!]_\rho$:=	$\llbracket \varphi \rrbracket_{\rho} \sqcap \llbracket \psi \rrbracket_{\rho}$
$[\![\Diamond\varphi]\!]_\rho$:=	$\lambda s. \bigsqcup \{ \mathcal{R}(s,s') \sqcap \llbracket \varphi \rrbracket_{\rho}(s') \}$
$[\![\Box\varphi]\!]_{\rho}$:=	$\lambda s. \prod \{\neg \mathcal{R}(s, s') \sqcup \llbracket \varphi \rrbracket_{\rho}(s')\}$
$\llbracket \mu Z. \varphi \rrbracket_{\rho}$:=	$\prod \{ f \mid \llbracket \varphi \rrbracket_{\rho[Z \mapsto f]} \sqsubseteq f \}$
$[\![\nu Z.\varphi]\!]_{\rho}$:=	$\bigsqcup \{ f \mid f \sqsubseteq \llbracket \varphi \rrbracket_{\rho[Z \mapsto f]} \}$

$\llbracket true \rrbracket_{\rho}$:=	$\lambda s. op$
$\llbracket false \rrbracket_{\rho}$:=	$\lambda s. ot$
$\llbracket q \rrbracket_{\rho}$:=	$\lambda s.L(s)(q)$
$\llbracket \neg q \rrbracket_{\rho}$:=	$\lambda s. \neg L(s)(q)$
$[\![Z]\!]_\rho$:=	$ \rho(Z) $
$[\![\varphi \lor \psi]\!]_\rho$:=	$\llbracket \varphi \rrbracket_{\rho} \sqcup \llbracket \psi \rrbracket_{\rho}$
$[\![\varphi\wedge\psi]\!]_\rho$:=	$\llbracket \varphi \rrbracket_{\rho} \sqcap \llbracket \psi \rrbracket_{\rho}$
$[\![\Diamond\varphi]\!]_\rho$:=	$\lambda s. \bigsqcup \{ \mathcal{R}(s,s') \sqcap \llbracket \varphi \rrbracket_{\rho}(s') \}$
$[\![\Box \varphi]\!]_{\rho}$:=	$\lambda s. \prod \{\neg \mathcal{R}(s, s') \sqcup \llbracket \varphi \rrbracket_{\rho}(s')\}$
$\llbracket \mu Z. \varphi \rrbracket_{\rho}$:=	$\prod \{f \mid \llbracket \varphi \rrbracket_{\rho[Z \mapsto f]} \sqsubseteq f\}$
$[\![\nu Z.\varphi]\!]_{\rho}$:=	$\bigsqcup \{ f \mid f \sqsubseteq \llbracket \varphi \rrbracket_{\rho[Z \mapsto f]} \}$

$\llbracket true \rrbracket_{\rho}$:=	$\lambda s. op$
$\llbracket false \rrbracket_{\rho}$:=	$\lambda s. ot$
$\llbracket q \rrbracket_{\rho}$:=	$\lambda s.L(s)(q)$
$[\![\neg q]\!]_\rho$:=	$\lambda s. \neg L(s)(q)$
$\llbracket Z \rrbracket_{\rho}$:=	ho(Z)
$[\![\varphi \lor \psi]\!]_\rho$:=	$\llbracket \varphi \rrbracket_{\rho} \sqcup \llbracket \psi \rrbracket_{\rho}$
$[\![\varphi \wedge \psi]\!]_\rho$:=	$\llbracket \varphi \rrbracket_{\rho} \sqcap \llbracket \psi \rrbracket_{\rho}$
$[\![\Diamond\varphi]\!]_\rho$:=	$\lambda s. \bigsqcup \{ \mathcal{R}(s,s') \sqcap \llbracket \varphi \rrbracket_{\rho}(s') \}$
$[\![\Box\varphi]\!]_{\rho}$:=	$\lambda s. \prod \{\neg \mathcal{R}(s, s') \sqcup \llbracket \varphi \rrbracket_{\rho}(s')\}$
$\llbracket \mu Z. \varphi \rrbracket_{\rho}$:=	$\prod \{ f \mid \llbracket \varphi \rrbracket_{\rho[Z \mapsto f]} \sqsubseteq f \}$
$[\![\nu Z.\varphi]\!]_{\rho}$:=	$\bigsqcup \{ f \mid f \sqsubseteq \llbracket \varphi \rrbracket_{\rho[Z \mapsto f]} \}$

$\llbracket true \rrbracket_{\rho}$:=	$\lambda s. op$
$\llbracket false \rrbracket_{\rho}$:=	$\lambda s. ot$
$\llbracket q \rrbracket_{\rho}$:=	$\lambda s.L(s)(q)$
$[\![\neg q]\!]_\rho$:=	$\lambda s. \neg L(s)(q)$
$[\![Z]\!]_\rho$:=	ho(Z)
$[\![\varphi \lor \psi]\!]_\rho$:=	$\llbracket \varphi \rrbracket_\rho \sqcup \llbracket \psi \rrbracket_\rho$
$[\![\varphi \wedge \psi]\!]_\rho$:=	$\llbracket \varphi \rrbracket_{\rho} \sqcap \llbracket \psi \rrbracket_{\rho}$
$[\![\Diamond\varphi]\!]_\rho$:=	$\lambda s. \bigsqcup \{ \mathcal{R}(s,s') \sqcap \llbracket \varphi \rrbracket_{\rho}(s') \}$
$[\![\Box\varphi]\!]_{\rho}$:=	$\lambda s. \prod \{\neg \mathcal{R}(s, s') \sqcup \llbracket \varphi \rrbracket_{\rho}(s')\}$
$[\![\mu Z.\varphi]\!]_{\rho}$:=	$\prod \{f \mid \llbracket \varphi \rrbracket_{\rho[Z \mapsto f]} \sqsubseteq f\}$
$[\![\nu Z.\varphi]\!]_{\rho}$:=	$\bigsqcup \{ f \mid f \sqsubseteq \llbracket \varphi \rrbracket_{\rho[Z \mapsto f]} \}$

$\llbracket true \rrbracket_{\rho}$:=	$\lambda s. op$
$\llbracket false \rrbracket_{\rho}$:=	$\lambda s. ot$
$\llbracket q \rrbracket_{\rho}$:=	$\lambda s.L(s)(q)$
$[\![\neg q]\!]_\rho$:=	$\lambda s. \neg L(s)(q)$
$[\![Z]\!]_\rho$:=	ho(Z)
$[\![\varphi \lor \psi]\!]_\rho$:=	$\llbracket \varphi \rrbracket_{\rho} \sqcup \llbracket \psi \rrbracket_{\rho}$
$[\![\varphi \wedge \psi]\!]_\rho$:=	$\llbracket \varphi \rrbracket_\rho \sqcap \llbracket \psi \rrbracket_\rho$
$[\![\Diamond\varphi]\!]_\rho$:=	$\lambda s. \bigsqcup \{ \mathcal{R}(s,s') \sqcap \llbracket \varphi \rrbracket_{\rho}(s') \}$
$[\![\Box\varphi]\!]_{\rho}$:=	$\lambda s. \prod \{\neg \mathcal{R}(s, s') \sqcup \llbracket \varphi \rrbracket_{\rho}(s')\}$
$\llbracket \mu Z. \varphi \rrbracket_{\rho}$:=	$\prod \{f \mid \llbracket \varphi \rrbracket_{\rho[Z \mapsto f]} \sqsubseteq f\}$
$[\![\nu Z.\varphi]\!]_{\rho}$:=	$\bigsqcup \{ f \mid f \sqsubseteq \llbracket \varphi \rrbracket_{\rho[Z \mapsto f]} \}$

$\llbracket true \rrbracket_{\rho}$:=	$\lambda s. op$
$\llbracket false \rrbracket_{\rho}$:=	$\lambda s. ot$
$\llbracket q \rrbracket_{\rho}$:=	$\lambda s.L(s)(q)$
$[\![\neg q]\!]_\rho$:=	$\lambda s. \neg L(s)(q)$
$[\![Z]\!]_\rho$:=	ho(Z)
$[\![\varphi \lor \psi]\!]_\rho$:=	$\llbracket \varphi \rrbracket_{\rho} \sqcup \llbracket \psi \rrbracket_{\rho}$
$[\![\varphi\wedge\psi]\!]_\rho$:=	$\llbracket \varphi \rrbracket_\rho \sqcap \llbracket \psi \rrbracket_\rho$
$[\![\Diamond \varphi]\!]_\rho$:=	$\lambda s. \bigsqcup \{ \mathcal{R}(s,s') \sqcap \llbracket \varphi \rrbracket_{\rho}(s') \}$
$[\![\Box\varphi]\!]_{\rho}$:=	$\lambda s. \prod \{\neg \mathcal{R}(s, s') \sqcup \llbracket \varphi \rrbracket_{\rho}(s')\}$
$[\![\mu Z.\varphi]\!]_{\rho}$:=	$\prod \{ f \mid \llbracket \varphi \rrbracket_{\rho[Z \mapsto f]} \sqsubseteq f \}$
$[\![\nu Z.\varphi]\!]_{\rho}$:=	$\bigsqcup \{ f \mid f \sqsubseteq \llbracket \varphi \rrbracket_{\rho[Z \mapsto f]} \}$

$\llbracket true \rrbracket_{\rho}$:=	$\lambda s. op$
$\llbracket false \rrbracket_{\rho}$:=	$\lambda s. ot$
$\llbracket q \rrbracket_{\rho}$:=	$\lambda s.L(s)(q)$
$[\![\neg q]\!]_\rho$:=	$\lambda s. \neg L(s)(q)$
$[\![Z]\!]_\rho$:=	ho(Z)
$[\![\varphi \lor \psi]\!]_\rho$:=	$\llbracket \varphi \rrbracket_{\rho} \sqcup \llbracket \psi \rrbracket_{\rho}$
$[\![\varphi\wedge\psi]\!]_\rho$:=	$\llbracket \varphi \rrbracket_{\rho} \sqcap \llbracket \psi \rrbracket_{\rho}$
$[\![\Diamond\varphi]\!]_\rho$:=	$\lambda s. \bigsqcup \{ \mathcal{R}(s,s') \sqcap \llbracket \varphi \rrbracket_{\rho}(s') \}$
$\llbracket \Box \varphi \rrbracket_\rho$:=	$\lambda s. \prod \{\neg \mathcal{R}(s,s') \sqcup \llbracket \varphi \rrbracket_{\rho}(s')\}$
$\llbracket \mu Z. \varphi \rrbracket_\rho$:=	$\prod \{ f \mid \llbracket \varphi \rrbracket_{\rho[Z \mapsto f]} \sqsubseteq f \}$
$[\![\nu Z.\varphi]\!]_{\rho}$:=	$\bigsqcup \{ f \mid f \sqsubseteq \llbracket \varphi \rrbracket_{\rho[Z \mapsto f]} \}$

$\llbracket true \rrbracket_{\rho}$:=	$\lambda s. op$
$\llbracket false \rrbracket_{\rho}$:=	$\lambda s. ot$
$\llbracket q \rrbracket_{\rho}$:=	$\lambda s.L(s)(q)$
$\llbracket \neg q \rrbracket_{\rho}$:=	$\lambda s. \neg L(s)(q)$
$[\![Z]\!]_\rho$:=	ho(Z)
$[\![\varphi \lor \psi]\!]_\rho$:=	$[\![\varphi]\!]_{\rho} \sqcup [\![\psi]\!]_{\rho}$
$[\![\varphi \wedge \psi]\!]_\rho$:=	$\llbracket \varphi \rrbracket_\rho \sqcap \llbracket \psi \rrbracket_\rho$
$[\![\Diamond\varphi]\!]_\rho$:=	$\lambda s. \bigsqcup \{ \mathcal{R}(s,s') \sqcap \llbracket \varphi \rrbracket_{\rho}(s') \}$
$[\![\Box \varphi]\!]_{\rho}$:=	$\lambda s. \prod \{\neg \mathcal{R}(s,s') \sqcup \llbracket \varphi \rrbracket_{\rho}(s')\}$
$\llbracket \mu Z. \varphi \rrbracket_\rho$:=	$\prod \{f \mid \llbracket \varphi \rrbracket_{\rho[Z \mapsto f]} \sqsubseteq f\}$
$[\![\nu Z.\varphi]\!]_{\rho}$:=	$\bigsqcup \{ f \mid f \sqsubseteq \llbracket \varphi \rrbracket_{\rho[Z \mapsto f]} \}$

$\llbracket true \rrbracket_{\rho}$:=	$\lambda s. op$
$\llbracket false \rrbracket_{\rho}$:=	$\lambda s. ot$
$\llbracket q \rrbracket_{\rho}$:=	$\lambda s.L(s)(q)$
$[\![\neg q]\!]_\rho$:=	$\lambda s. \neg L(s)(q)$
$[\![Z]\!]_\rho$:=	ho(Z)
$[\![\varphi \lor \psi]\!]_\rho$:=	$\llbracket \varphi \rrbracket_{\rho} \sqcup \llbracket \psi \rrbracket_{\rho}$
$[\![\varphi\wedge\psi]\!]_\rho$:=	$\llbracket \varphi \rrbracket_{\rho} \sqcap \llbracket \psi \rrbracket_{\rho}$
$[\![\Diamond\varphi]\!]_\rho$:=	$\lambda s. \bigsqcup \{ \mathcal{R}(s,s') \sqcap \llbracket \varphi \rrbracket_{\rho}(s') \}$
$[\![\Box \varphi]\!]_{\rho}$:=	$\lambda s. \prod \{\neg \mathcal{R}(s,s') \sqcup \llbracket \varphi \rrbracket_{\rho}(s')\}$
$\llbracket \mu Z. \varphi \rrbracket_\rho$:=	$\prod \{f \mid \llbracket \varphi \rrbracket_{\rho[Z \mapsto f]} \sqsubseteq f\}$
$[\![\nu Z.\varphi]\!]_\rho$:=	$\bigsqcup \{ f \mid f \sqsubseteq \llbracket \varphi \rrbracket_{\rho[Z \mapsto f]} \}$

Theorem (Computation of Fixpoints, Tarski'55)

For all MMKS \mathcal{T} with state set S there is an $\alpha \in \mathbb{O}$ rd s.t. for all $s \in S$ we have: if $[\![\eta Z.\varphi]\!]_{\rho}(s) = x$ then $Z^{\alpha}(s) = x$.

ヘロト 人間 トイヨト 人民ト

Model Checking

Theorem (Correctness of Model Checking)

For all PL-CCS programs $Prog = (\mathcal{E}, P_1)$, every configuration vector ν , and formulae $\varphi \in mv$ - \mathfrak{L}_{μ} , we have

 $\llbracket config(Prog,\nu) \rrbracket_{CCS} \models \varphi \text{ iff } \nu \in (\llbracket Prog \rrbracket_{CT} \models \varphi)(P_1)$

Practical Model Checking?

Similar stories..

- On-the-fly: Adapt Shoham&Grumberg's game-based approach
- ► Symbolic MC: ...
- ▶ CTL: As restrictions of *µ*-calculus, Chechik et al.
- Automata-based for mv-LTL: Checkik et al.
- More specific integration of notion of features in on-the-fly mc: Legay et al.
- Bounded MC: ...
- Abstraction: see next

イロト 不得下 イヨト イヨト

Presentation outline

Software Product Families

Features Modelling of Product Lines

(Multi-valued) Model Checking

Multi-valued µ-Calculus

Traditional Abstractions

Optimistic-Pessimistic Abstractions

Causes for Indefinite Results

Conclusions

Э

イロト イボト イヨト イヨト

İSρ

Two-valued Abstraction

Idea

Check smaller over-approximation of the system

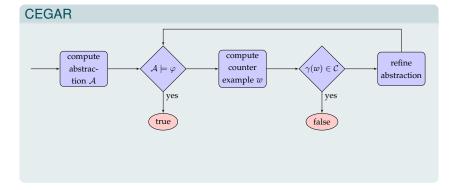
ж

ヘロト 人間 ト 人 ヨト 人 ヨトー

Two-valued Abstraction

Idea

Check smaller over-approximation of the system



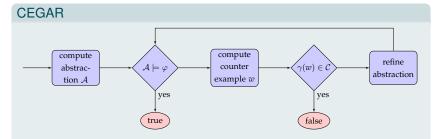
ъ

ヘロト 人間 ト 人造 ト 人造 トー

Two-valued Abstraction

Idea

Check smaller over-approximation of the system



[Clarke, Grumberg, Jha, Lu, Veith'03] [Lakhnech, Bensalem, Berezin, Owre:'01] [...]

Martin	

э

ヘロト 人間 ト 人造 ト 人造 トー

Idea

▶ Yields conservative results for both, TRUE and FALSE

isp

Idea

- ▶ Yields conservative results for both, TRUE and FALSE
- Requires third value: Don't know

isp

Idea

- ▶ Yields conservative results for both, TRUE and FALSE
- Requires third value: Don't know
- Check over-approximation and under-approximation of the system

3

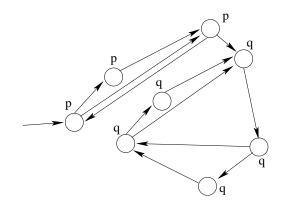
ヘロト 人間 ト 人 ヨト 人 ヨトー

isp

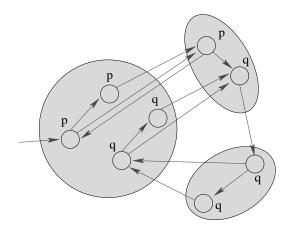
Idea

- ▶ Yields conservative results for both, TRUE and FALSE
- ▶ Requires third value: *Don't know*
- Check over-approximation and under-approximation of the system
- carried out for the μ-calculus in [Bruns, P. Godefroid'99]

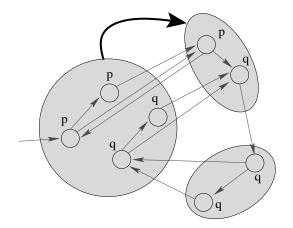
イロト イボト イヨト イヨト



★ロト★御と★注と★注と、注

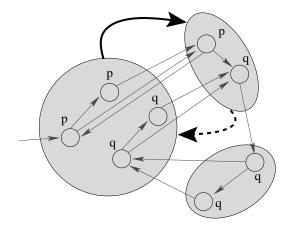


イロト イロト イヨト イヨト 三日



イロト イロト イヨト イヨト 三日

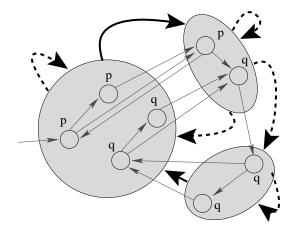
must/may transitions



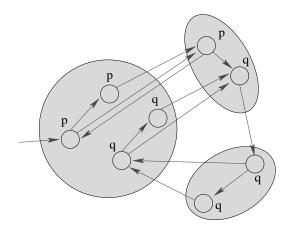
・ロト ・四ト ・ヨト ・ヨト ・ヨ

isp

Three-valued Abstraction

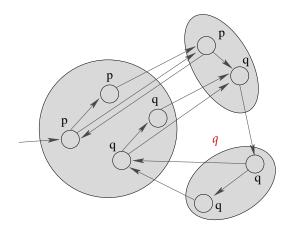


イロト イロト イヨト イヨト 三日



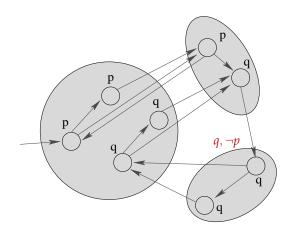
イロト イロト イヨト イヨト 三日

Three-valued Abstraction



イロト イロト イヨト イヨト 三日

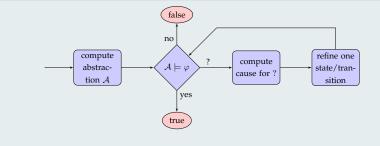
Three-valued Abstraction



イロト イロト イヨト イヨト 三日

CBAR

CBAR—Cause-based Abstraction Refinement



CBAR

CBAR—Cause-based Abstraction Refinement false no abstrac tion A geodedicate for ? geodefinition ? geodedicate for ? geodedicate for ? geodefinition ?

Presentation outline

isp

Software Product Families

Features Modelling of Product Lines

(Multi-valued) Model Checking

Multi-valued µ-Calculus

Traditional Abstractions

Optimistic-Pessimistic Abstractions

Causes for Indefinite Results

Conclusions

Leucker

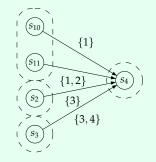
Э

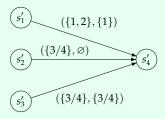
イロト イボト イヨト イヨト

isp

Abstraction by joining states

Idea





イロト イロト イヨト イヨト

э

The abstract lattice

Definition (op-lattice)

Let \mathcal{L} be a de Morgan lattice. The lattice

$$\mathcal{L}_{op} = (\{(m_1, m_2) \in \mathcal{L} imes \mathcal{L} \mid m_1 \sqsupseteq m_2\}, \sqcap_{op}, \sqcup_{op}, \lnot_{op})$$

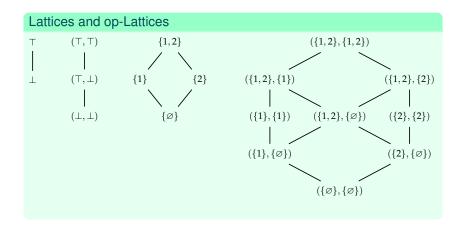
with the operations \sqcap_{op} , \sqcup_{op} , \neg_{op} given by

$$\begin{array}{lll} (m_1, m_2) \sqcap_{op} (m_1', m_2') & := & (m_1 \sqcap m_1', m_2 \sqcap m_2') \\ (m_1, m_2) \sqcup_{op} (m_1', m_2') & := & (m_1 \sqcup m_1', m_2 \sqcup m_2') \\ \lnot_{op} (m_1, m_2) & := & (\lnot m_2, \lnot m_1) \end{array}$$

is called the *optimistic-pessimistic lattice* (*op-lattice*) for \mathcal{L} .

ヘロト A倒ト A注ト A注ト

Examples



39/54

э

ヘロト A倒ト AEト AEト

Abstraction by Joining States

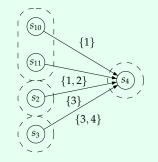
Definition (State Abstraction Operator)

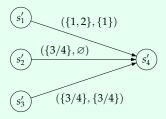
We call the function abs_S [...] by joining states according to the abstraction complete function γ the *state abstraction operator*, where the set S_A of abstract states is implicitly given by γ , the lattice \mathcal{L}_A is the op-lattice of \mathcal{L}_C and

$$\mathcal{R}_{A}(s_{A}, s_{A}') = \left(\bigsqcup_{s_{C} \in \gamma(s_{A})} \bigsqcup_{s_{C}' \in \gamma(s_{A}')} \mathcal{R}_{C}(s_{C}, s_{C}'), \\ \prod_{s_{C} \in \gamma(s_{A})} \bigsqcup_{s_{C}' \in \gamma(s_{A}')} \mathcal{R}_{C}(s_{C}, s_{C}') \right)$$
$$L_{A}(s_{A}, p) = \left(\bigsqcup_{s_{C} \in \gamma(s_{A})} L_{C}(s_{C}, p), \prod_{s_{C} \in \gamma(s_{A})} L(s_{C}, p) \right)$$

イロト イポト イヨト イヨト

Idea





イロト イロト イヨト イヨト

э

Abstraction of lattices

Definition (Galois Connection)

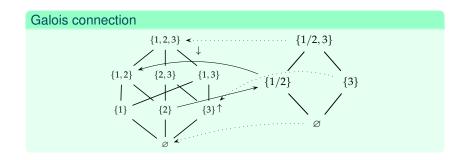
Let \mathcal{L}_1 and \mathcal{L}_2 be lattices. A pair (\uparrow,\downarrow) of monotone functions $\uparrow : \mathcal{L}_1 \to \mathcal{L}_2$ and $\downarrow : \mathcal{L}_2 \to \mathcal{L}_1$ is a *Galois connection* from \mathcal{L}_1 to \mathcal{L}_2 , if

 $\forall l \in \mathcal{L}_1 : l \sqsubseteq \downarrow (\uparrow(l))$

and

 $\forall a \in \mathcal{L}_2 : \uparrow(\downarrow(a)) \sqsubseteq a$

イロト イボト イヨト イヨト 二日



43/54

э

ヘロト A倒ト AEト AEト

Definition (aop-lattice)

Let \mathcal{L}_C , \mathcal{L}_0 , and \mathcal{L}_p be de Morgan lattices. Let $\uparrow_0 : \mathcal{L}_C \to \mathcal{L}_0$ and $\downarrow_0 : \mathcal{L}_0 \to \mathcal{L}_C$ and $\uparrow_p : \mathcal{L}_p \to \mathcal{L}_C$ and $\downarrow_p : \mathcal{L}_C \to \mathcal{L}_p$ be Galois connections. We call the lattice

$$\mathcal{L}_{aop} = \left(\{ (m_{\mathsf{O}}, m_{\mathsf{P}}) \in \mathcal{L}_{\mathsf{O}} \times \mathcal{L}_{\mathsf{P}} \mid \downarrow_{\mathsf{O}} (m_{\mathsf{O}}) \sqsupseteq \uparrow_{\mathsf{p}} (m_{\mathsf{P}}) \}, \ \sqcap_{aop}, \ \sqcup_{aop}, \ \neg_{aop} \right)$$

with the operations given by

$$\begin{array}{rcl} (m_{\rm o}, m_{\rm p}) \sqcap_{aop} (m'_{\rm o}, m'_{\rm p}) & := & (m_{\rm o} \sqcap m'_{\rm o} \ , \ m_{\rm p} \sqcap m'_{\rm p}) \\ (m_{\rm o}, m_{\rm p}) \sqcup_{aop} (m'_{\rm o}, m'_{\rm p}) & := & (m_{\rm o} \sqcup m'_{\rm o} \ , \ m_{\rm p} \sqcup m'_{\rm p}) \\ \neg_{aop} (m_{\rm o}, m_{\rm p}) & := & (\neg_{\rm p} m_{\rm p} \ , \ \neg_{\rm o} m_{\rm o}) \end{array}$$

the *abstract optimistic-pessimistic lattice (aop-lattice)* for the lattice \mathcal{L}_C .

イロト 不得 トイヨト イヨト

Definition (aop-lattice)

Let \mathcal{L}_C , \mathcal{L}_0 , and \mathcal{L}_p be de Morgan lattices. Let $\uparrow_0 : \mathcal{L}_C \to \mathcal{L}_0$ and $\downarrow_0 : \mathcal{L}_0 \to \mathcal{L}_C$ and $\uparrow_p : \mathcal{L}_p \to \mathcal{L}_C$ and $\downarrow_p : \mathcal{L}_C \to \mathcal{L}_p$ be Galois connections. We call the lattice

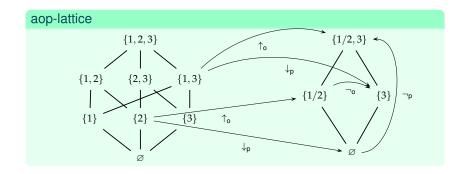
$$\mathcal{L}_{aop} = \left(\{ (m_{\mathsf{O}}, m_{\mathsf{P}}) \in \mathcal{L}_{\mathsf{O}} \times \mathcal{L}_{\mathsf{P}} \mid \downarrow_{\mathsf{O}} (m_{\mathsf{O}}) \sqsupseteq \uparrow_{\mathsf{p}} (m_{\mathsf{P}}) \}, \ \sqcap_{aop}, \ \sqcup_{aop}, \ \neg_{aop} \right)$$

with the operations given by

the *abstract optimistic-pessimistic lattice (aop-lattice)* for the lattice \mathcal{L}_C .

Furthermore, let \mathcal{L}_0 and \mathcal{L}_p be connected by two anti-monotone negation functions $\neg_0 : \mathcal{L}_0 \to \mathcal{L}_p$ and $\neg_p : \mathcal{L}_p \to \mathcal{L}_0$ with $\neg_0 \uparrow_0(x) \sqsubseteq \downarrow_p(\neg x)$ and $\uparrow_0(\neg x) \sqsubseteq \neg_p \downarrow_p(x)$.

イロト イボト イヨト イヨト 二日



э

ヘロト A倒ト AEト AEト

Definition (Lattice Abstraction Operator)

Let $(S_A, \mathcal{L}_A, \mathcal{R}_A, L_A)$ be a mv-KS, and \uparrow_0, \downarrow_p be two Galois connections with corresponding negation functions \neg_0, \neg_p . Then, the *lattice abstraction operator abs*_L yields an abstracted mv-KS

$$abs_L\left((S_A, \mathcal{L}_A, \mathcal{R}_A, L_A), \uparrow_{o}, \downarrow_{p}, \neg_{o}, \neg_{p}\right) = (S'_A, \mathcal{L}'_A, \mathcal{R}'_A, L'_A)$$

labeled with an aop-lattice \mathcal{L}'_A , where $S'_A = S_A$ and

$$\begin{aligned} \mathcal{R}'_A(s,s') &= \left(\uparrow_{\mathsf{o}}\left((\mathcal{R}_A(s,s'))_1\right) \ , \ \downarrow_{\mathsf{p}}\left((\mathcal{R}_A(s,s'))_2\right)\right) \\ L'_A(s,p) &= \left(\uparrow_{\mathsf{o}}\left((L_A(s,p))_1\right) \ , \ \downarrow_{\mathsf{p}}\left((L_A(s,p))_2\right)\right) \end{aligned}$$

イロト 不得 トイヨト イヨト

Conservative Abstraction

isp

Theorem (Correctness of abstraction) [...] $\uparrow_{\mathbf{p}}(m_p) \sqsubseteq \llbracket \varphi \rrbracket_{\varnothing}^{\mathcal{K}_C}(s_C) \sqsubseteq \downarrow_{\mathbf{p}}(m_o)$

where $(m_o, m_p) = \llbracket \varphi \rrbracket_{\varnothing}^{\mathcal{K}_A}(s_A)$ is the result of the evaluation of φ on \mathcal{K}_A .

・ロト ・個ト ・ヨト ・ヨト 三日

Presentation outline

isp

Software Product Families

Features Modelling of Product Lines

(Multi-valued) Model Checking

Multi-valued µ-Calculus

Traditional Abstractions

Optimistic-Pessimistic Abstractions

Causes for Indefinite Results

Conclusions

Martin	

Э

イロト イボト イヨト イヨト

Towards Refinement

Question?

Why do optimistic and pessimistic assessment differ?

Relevant cases

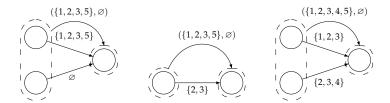
- (i) the evaluation of the labeling function *L* for some atomic proposition *p* and state *s*
- (ii) the evaluation of the transition relation function \mathcal{R} for two states *s* and *s'*,
- (iii) the computation of negation, or
- (iv) the computation of meet and join.

$$\Phi := \neg \Phi \mid \Phi \sqcap \Phi \mid \Phi \sqcup \Phi \mid \prod_{s_i} \Phi \mid \bigsqcup_{s_i} \Phi \mid L(s_i, p) \mid \mathcal{R}(s_i, s_j)$$

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

ISP

Sources of Imprecision



э

イロト イロト イヨト イヨト

Atomic propositions

 $causes(p(s), m_{o}, m_{p}, \xi_{o}, \xi_{p}, \zeta) = \{(s, p, (\downarrow_{o}(m_{o}), \uparrow_{p}(m_{p})))\}$

p evaluates to $\{1, 2, 3, 4, 5\}$ in the optimistic and to $\{2, 3, 4, 5\}$ in the pessimistic account: the cause is $(s, p, (\{1, 2, 3, 4, 5\}, \{2, 3, 4, 5\}))$.

Meet

- Imprecision due to lattice abstraction
- Precision due to meet: $(\top, \bot) \sqcap (\bot, \bot) = (\bot, \bot)$

$$causes((\varphi_1 \sqcap \varphi_2)(s), m_0, m_p, \xi_0, \xi_p, \zeta) = \{(\downarrow_o(\xi_o(\varphi_1(s))) \sqcap \downarrow_o(\xi_o(\varphi_2(s))), \uparrow_p(m_p))\} \text{ if components differ} \cup \bigcup_{c \in \zeta(\varphi_1(s)) \cup \zeta(\varphi_c(s))} fil(m_o, m_p, c)$$

 $fil(m_{o}, m_{p}, (k, (l_{o}, l_{p}))) = (k, l_{o} \sqcap \downarrow_{o}(m_{o}), (l_{p} \sqcup \uparrow_{p}(m_{p})) \sqcap (l_{o} \sqcap \downarrow_{o}(m_{o})))$

イロト イロト イヨト イヨト 三日

Presentation outline

isp

Software Product Families

- Features Modelling of Product Lines
- (Multi-valued) Model Checking
- Multi-valued µ-Calculus
- **Traditional Abstractions**
- **Optimistic-Pessimistic Abstractions**
- **Causes for Indefinite Results**

Conclusions

Э

イロト イボト イヨト イヨト

isp

We have shown

product familily verification is multi-valued model-checking

ж

ヘロト 人間 ト 人 ヨト 人 ヨトー

We have shown

- product familily verification is multi-valued model-checking
- abstractions for multi-valued systems

э

ヘロト A倒ト A注ト A注ト

isp

We have shown

- product familily verification is multi-valued model-checking
- abstractions for multi-valued systems
- by joining states

ヘロト A倒ト A注ト A注ト

isp

We have shown

- product familily verification is multi-valued model-checking
- abstractions for multi-valued systems
- by joining states
- by abstraction of truth values

イロト イポト イヨト イヨト

isp

We have shown

- product familily verification is multi-valued model-checking
- abstractions for multi-valued systems
- by joining states
- by abstraction of truth values
- as multi-valued model checking problem

イロト イポト イヨト イヨト

We have shown

- product familily verification is multi-valued model-checking
- abstractions for multi-valued systems
- by joining states
- by abstraction of truth values
- as multi-valued model checking problem
- identified causes for indefinite results

(4 同) トイヨト イヨト

We have shown

- product familily verification is multi-valued model-checking
- abstractions for multi-valued systems
- by joining states
- by abstraction of truth values
- as multi-valued model checking problem
- identified causes for indefinite results

(4 同) トイヨト イヨト

We have shown

- product familily verification is multi-valued model-checking
- abstractions for multi-valued systems
- by joining states
- by abstraction of truth values
- as multi-valued model checking problem
- identified causes for indefinite results

Future work

abstractions for compact representations

We have shown

- product familily verification is multi-valued model-checking
- abstractions for multi-valued systems
- by joining states
- by abstraction of truth values
- as multi-valued model checking problem
- identified causes for indefinite results

Future work

- abstractions for compact representations
- implementation?

We have shown

- product familily verification is multi-valued model-checking
- abstractions for multi-valued systems
- by joining states
- by abstraction of truth values
- as multi-valued model checking problem
- identified causes for indefinite results

Future work

- abstractions for compact representations
- implementation?

▶ ...

We have shown

- product familily verification is multi-valued model-checking
- abstractions for multi-valued systems
- by joining states
- by abstraction of truth values
- as multi-valued model checking problem
- identified causes for indefinite results

Future work

- abstractions for compact representations
- implementation?
- ▶ ...
- feature-based verification Is it compositional (multi-valued) model checking?

ISP