
TOWARDS ADDING VARIETY TO SIMPLICITY

ELISABET LOBO

NACHIAPPANVALLIAPPAN

ALEJANDRO RUSSO

SOLENE MIRLIAZ

MOTIVATION

Icon made by Smashicons from www.flaticon.com

http://www.flaticon.com/

BITCOIN SCRIPT LANGUAGE

A2B.bitScript

▪ Stack-based

▪ Not Turing-complete

▪ No loops

▪ Conditionals

▪ Hashing and digital

signature verification

BITCOIN TRANSACTIONS AS CONTRACTS

- Few arithmetic

Bitcoin Script

Lobotomize Smart

+ Formal semantics

+ Static analysis

(memory & time)

Simplicity

? Static analysis

Simplicity +

Higher Order

Functions

Expressiveness

CONTRIBUTIONS

Simplicity + Higher Order Functions (HOF)

https://bitbucket.org/russo/isola-additional-material/overview

Implementation of

Simplicity and its

virtual machine in

Haskell

Connection with

category theory

(with proofs)

https://bitbucket.org/russo/isola-additional-material/overview

SIMPLICITY

Icon made by Freepik from www.flaticon.com

http://www.flaticon.com/

TYPED COMBINATOR LANGUAGE

Types

 Unit = 𝟙

 Products = 𝐴 × 𝐵

 Coproduct = 𝐴 + 𝐵

Combinators

𝐩𝐫𝐨𝐠 ∶ 𝐀 ⊢ 𝐁

“Program 𝐩𝐫𝐨𝐠 has input type A and output type B”

 𝐮𝐧𝐢𝐭 ∶ 𝐀 ⊢ 𝟙

 𝐢𝐝𝐞𝐧 ∶ 𝐀 ⊢ 𝐀

 …

data Unit
data a :*: b
data a :+: b

data Simpl a b where
Unit :: Simpl a Unit
Iden :: Simpl a a
…

THE BIT MACHINE

Icon made by Puppets www.flaticon.com

http://www.flaticon.com/

EXECUTION OF TERMS

𝐩𝐫𝐨𝐠 ∶ 𝑨 ⊢ 𝑩

EXECUTION OF TERMS

𝐩𝐫𝐨𝐠 ∶ 𝑨 ⊢ 𝑩
1 1 0 0 1

Read Stack

Before the execution

…

EXECUTION OF TERMS

𝐩𝐫𝐨𝐠 ∶ 𝑨 ⊢ 𝑩
0 1 0 0 1 00

Write Stack

After the execution

…

1 1 0 0 1

Read Stack

Before the execution

…

EXECUTION OF TERMS

𝐩𝐫𝐨𝐠 ∶ 𝑨 ⊢ 𝑩
0 1 0 0 1 00

Write Stack

…

1 1 0 0 1

Read Stack

…

0 1 0 1 ? 0 0

EXECUTION OF TERMS

𝐩𝐫𝐨𝐠 ∶ 𝑨 ⊢ 𝑩
0 1 0 0 1 00

Write Stack

…

1 1 0 0 1

Read Stack

…

simpl2sbm :: Simpl a b → [Inst]
run :: [Inst] → SBM [Maybe Bit]

IMPLEMENTATION

1 type Frame = ([Maybe Bit], Int)
2 type Stack = [Frame]
3 type SBM = State Machine
4
5 data Machine = Machine { readStack :: Stack
6 , writeStack :: Stack
7 }
8
9 data Inst = Fwd Int
10 | Bwd Int
11 | Skip Int
12 | Write Bit
13 | …

RESOURCE ALLOCATION

𝐩𝐫𝐨𝐠 ∶ 𝑨 ⊢ 𝑩

sizeOf(A) = How many cells do we need to read

sizeOf 𝑩 = How many cells do we need to allocate

Well-typed programs have a finite representation in terms of cells

sizeOf(𝟙) = 0
sizeOf 𝐴 × 𝐵 = sizeOf 𝐴 + sizeOf 𝐵
sizeOf 𝐴 + 𝐵 = 1 +max sizeOf 𝐴 , sizeOf(𝐵)

CATEGORIES

Icon made by Freepik from www.flaticon.com

http://www.flaticon.com/

ABSTRACTION

Simplicity Categories

Bi-cartesian

categories

Combinators

+ Functions

ABSTRACTION

Simplicity Categories

Bi-cartesian

closed categories

Bi-cartesian

categories

Combinators

EXTENDING THE LANGUAGE

Icon made by Freepik from www.flaticon.com

http://www.flaticon.com/

CHANGES IN SIMPLICITY

Types

 …

 Exponentials = 𝐴 ⇒ 𝐵

Combinators

 …

 𝐥𝐚𝐦 𝐥 ∶ 𝐑 × 𝑨 ⊢ 𝑩 ∶ 𝐑 ⊢ 𝑨 ⇒ 𝑩

 𝐚𝐩𝐩 𝐟 ∶ 𝐑 ⊢ 𝐀 ⇒ 𝑩 𝐱 ∶ 𝐑 ⊢ 𝑨 ∶ 𝐑 ⊢ 𝐁

data a :=>: b

data Simpl a b where
…
Lam :: Simpl (r :*: a) b → Simpl r (a :=>: b)
App :: Simpl r (a :=>: b) → Simpl r a → Simpl r b

CHANGES IN THE BITMACHINE

is :: [Inst]

sizeOf 𝐴 ⇒ 𝐵 = ?

prog :: Simpl r (a :=>: b)

CHANGES IN THE BITMACHINE

…
putF(is,r,p)
evalF(p,b)

data Inst = …
| PutF [Inst] Int Int
| EvalF Int Int

CHANGES IN THE BITMACHINE

Read Stack Write Stack List of Functions

[0 0 1 1 0 1] [1 ? ? ? ? ?] 000 ([Fwd 3,…], [1 0 1])

[…] […]

Pointer (Body, Context)

CHANGES IN THE BITMACHINE

Read Stack Write Stack List of Functions

[0 0 1 1 0 1] [1 ? ? ? ? ?] 000 ([Fwd 3,…], [1 0 1])

[…] […]

run (PutF [Write 1, …] 2 3)putF(is,r,p)

CHANGES IN THE BITMACHINE

Read Stack Write Stack List of Functions

[0 0 1 1 0 1] [1 ? ? ? ? ?] 000 ([Fwd 3,…], [1 0 1])

[…] […]

Read Stack Write Stack List of Functions

[0 0 1 1 0 1] [1 0 0 1 ? ?] 000 ([Fwd 3,…], [1 0 1])

[…] […] 001

run (PutF [Write 1, …] 2 3)

CHANGES IN THE BITMACHINE

Read Stack Write Stack List of Functions

[0 0 1 1 0 1] [1 ? ? ? ? ?] 000 ([Fwd 3,…], [1 0 1])

[…] […]

Read Stack Write Stack List of Functions

[0 0 1 1 0 1] [1 0 0 1 ? ?] 000 ([Fwd 3,…], [1 0 1])

[…] […] 001 ([Write 1,…],

run (PutF [Write 1, …] 2 3)

CHANGES IN THE BITMACHINE

Read Stack Write Stack List of Functions

[0 0 1 1 0 1] [1 ? ? ? ? ?] 000 ([Fwd 3,…], [1 0 1])

[…] […]

Read Stack Write Stack List of Functions

[0 0 1 1 0 1] [1 0 0 1 ? ?] 000 ([Fwd 3,…], [1 0 1])

[…] […] 001 ([Write 1,…], [1,0])

run (PutF [Write 1, …] 2 3)

CHANGES IN THE BITMACHINE

Read Stack Write Stack List of Functions

[0 0 1 1 0 1] [1 0 0 1 ? ?] 000 ([Fwd 3,…], [1 0 1])

[…] […] 001 ([Write 1,…], [1,0])

sizeOf 𝐴 ⇒ 𝐵 = sizePtr

sizePtr = log2 𝑡𝑜𝑡𝑎𝑙_𝑐𝑙𝑜𝑠𝑢𝑟𝑒𝑠 + 1

run evalF(p,s)

FUTURE WORK: STATIC ANALYSIS

How many instructions will

be executed by the SBM?

Refined analysis:

Count number of

instructions of each closure

Defunctionalization:

Before executing the terms

FINAL REMARKS

 Glimpse of the implementation of Simplicity and its virtual machine in

Haskell

 Build the intuition on how categories can model simplicity programs

 Exploit results from categories to add functions

 Change the bit machine keeping the invariant that sizeOf is finite

Simplicity + HOL:

~115 LOC
SBM + HOL:

~250 LOC

QUESTIONS

Icon made by Freepik from www.flaticon.com

http://www.flaticon.com/

