
TOWARDS ADDING VARIETY TO SIMPLICITY

ELISABET LOBO

NACHIAPPANVALLIAPPAN

ALEJANDRO RUSSO

SOLENE MIRLIAZ

MOTIVATION

Icon made by Smashicons from www.flaticon.com

http://www.flaticon.com/

BITCOIN SCRIPT LANGUAGE

A2B.bitScript

▪ Stack-based

▪ Not Turing-complete

▪ No loops

▪ Conditionals

▪ Hashing and digital

signature verification

BITCOIN TRANSACTIONS AS CONTRACTS

- Few arithmetic

Bitcoin Script

Lobotomize Smart

+ Formal semantics

+ Static analysis

(memory & time)

Simplicity

? Static analysis

Simplicity +

Higher Order

Functions

Expressiveness

CONTRIBUTIONS

Simplicity + Higher Order Functions (HOF)

https://bitbucket.org/russo/isola-additional-material/overview

Implementation of

Simplicity and its

virtual machine in

Haskell

Connection with

category theory

(with proofs)

https://bitbucket.org/russo/isola-additional-material/overview

SIMPLICITY

Icon made by Freepik from www.flaticon.com

http://www.flaticon.com/

TYPED COMBINATOR LANGUAGE

Types

 Unit = 𝟙

 Products = 𝐴 × 𝐵

 Coproduct = 𝐴 + 𝐵

Combinators

𝐩𝐫𝐨𝐠 ∶ 𝐀 ⊢ 𝐁

“Program 𝐩𝐫𝐨𝐠 has input type A and output type B”

 𝐮𝐧𝐢𝐭 ∶ 𝐀 ⊢ 𝟙

 𝐢𝐝𝐞𝐧 ∶ 𝐀 ⊢ 𝐀

 …

data Unit
data a :*: b
data a :+: b

data Simpl a b where
Unit :: Simpl a Unit
Iden :: Simpl a a
…

THE BIT MACHINE

Icon made by Puppets www.flaticon.com

http://www.flaticon.com/

EXECUTION OF TERMS

𝐩𝐫𝐨𝐠 ∶ 𝑨 ⊢ 𝑩

EXECUTION OF TERMS

𝐩𝐫𝐨𝐠 ∶ 𝑨 ⊢ 𝑩
1 1 0 0 1

Read Stack

Before the execution

…

EXECUTION OF TERMS

𝐩𝐫𝐨𝐠 ∶ 𝑨 ⊢ 𝑩
0 1 0 0 1 00

Write Stack

After the execution

…

1 1 0 0 1

Read Stack

Before the execution

…

EXECUTION OF TERMS

𝐩𝐫𝐨𝐠 ∶ 𝑨 ⊢ 𝑩
0 1 0 0 1 00

Write Stack

…

1 1 0 0 1

Read Stack

…

0 1 0 1 ? 0 0

EXECUTION OF TERMS

𝐩𝐫𝐨𝐠 ∶ 𝑨 ⊢ 𝑩
0 1 0 0 1 00

Write Stack

…

1 1 0 0 1

Read Stack

…

simpl2sbm :: Simpl a b → [Inst]
run :: [Inst] → SBM [Maybe Bit]

IMPLEMENTATION

1 type Frame = ([Maybe Bit], Int)
2 type Stack = [Frame]
3 type SBM = State Machine
4
5 data Machine = Machine { readStack :: Stack
6 , writeStack :: Stack
7 }
8
9 data Inst = Fwd Int
10 | Bwd Int
11 | Skip Int
12 | Write Bit
13 | …

RESOURCE ALLOCATION

𝐩𝐫𝐨𝐠 ∶ 𝑨 ⊢ 𝑩

sizeOf(A) = How many cells do we need to read

sizeOf 𝑩 = How many cells do we need to allocate

Well-typed programs have a finite representation in terms of cells

sizeOf(𝟙) = 0
sizeOf 𝐴 × 𝐵 = sizeOf 𝐴 + sizeOf 𝐵
sizeOf 𝐴 + 𝐵 = 1 +max sizeOf 𝐴 , sizeOf(𝐵)

CATEGORIES

Icon made by Freepik from www.flaticon.com

http://www.flaticon.com/

ABSTRACTION

Simplicity Categories

Bi-cartesian

categories

Combinators

+ Functions

ABSTRACTION

Simplicity Categories

Bi-cartesian

closed categories

Bi-cartesian

categories

Combinators

EXTENDING THE LANGUAGE

Icon made by Freepik from www.flaticon.com

http://www.flaticon.com/

CHANGES IN SIMPLICITY

Types

 …

 Exponentials = 𝐴 ⇒ 𝐵

Combinators

 …

 𝐥𝐚𝐦 𝐥 ∶ 𝐑 × 𝑨 ⊢ 𝑩 ∶ 𝐑 ⊢ 𝑨 ⇒ 𝑩

 𝐚𝐩𝐩 𝐟 ∶ 𝐑 ⊢ 𝐀 ⇒ 𝑩 𝐱 ∶ 𝐑 ⊢ 𝑨 ∶ 𝐑 ⊢ 𝐁

data a :=>: b

data Simpl a b where
…
Lam :: Simpl (r :*: a) b → Simpl r (a :=>: b)
App :: Simpl r (a :=>: b) → Simpl r a → Simpl r b

CHANGES IN THE BITMACHINE

is :: [Inst]

sizeOf 𝐴 ⇒ 𝐵 = ?

prog :: Simpl r (a :=>: b)

CHANGES IN THE BITMACHINE

…
putF(is,r,p)
evalF(p,b)

data Inst = …
| PutF [Inst] Int Int
| EvalF Int Int

CHANGES IN THE BITMACHINE

Read Stack Write Stack List of Functions

[0 0 1 1 0 1] [1 ? ? ? ? ?] 000 ([Fwd 3,…], [1 0 1])

[…] […]

Pointer (Body, Context)

CHANGES IN THE BITMACHINE

Read Stack Write Stack List of Functions

[0 0 1 1 0 1] [1 ? ? ? ? ?] 000 ([Fwd 3,…], [1 0 1])

[…] […]

run (PutF [Write 1, …] 2 3)putF(is,r,p)

CHANGES IN THE BITMACHINE

Read Stack Write Stack List of Functions

[0 0 1 1 0 1] [1 ? ? ? ? ?] 000 ([Fwd 3,…], [1 0 1])

[…] […]

Read Stack Write Stack List of Functions

[0 0 1 1 0 1] [1 0 0 1 ? ?] 000 ([Fwd 3,…], [1 0 1])

[…] […] 001

run (PutF [Write 1, …] 2 3)

CHANGES IN THE BITMACHINE

Read Stack Write Stack List of Functions

[0 0 1 1 0 1] [1 ? ? ? ? ?] 000 ([Fwd 3,…], [1 0 1])

[…] […]

Read Stack Write Stack List of Functions

[0 0 1 1 0 1] [1 0 0 1 ? ?] 000 ([Fwd 3,…], [1 0 1])

[…] […] 001 ([Write 1,…],

run (PutF [Write 1, …] 2 3)

CHANGES IN THE BITMACHINE

Read Stack Write Stack List of Functions

[0 0 1 1 0 1] [1 ? ? ? ? ?] 000 ([Fwd 3,…], [1 0 1])

[…] […]

Read Stack Write Stack List of Functions

[0 0 1 1 0 1] [1 0 0 1 ? ?] 000 ([Fwd 3,…], [1 0 1])

[…] […] 001 ([Write 1,…], [1,0])

run (PutF [Write 1, …] 2 3)

CHANGES IN THE BITMACHINE

Read Stack Write Stack List of Functions

[0 0 1 1 0 1] [1 0 0 1 ? ?] 000 ([Fwd 3,…], [1 0 1])

[…] […] 001 ([Write 1,…], [1,0])

sizeOf 𝐴 ⇒ 𝐵 = sizePtr

sizePtr = log2 𝑡𝑜𝑡𝑎𝑙_𝑐𝑙𝑜𝑠𝑢𝑟𝑒𝑠 + 1

run evalF(p,s)

FUTURE WORK: STATIC ANALYSIS

How many instructions will

be executed by the SBM?

Refined analysis:

Count number of

instructions of each closure

Defunctionalization:

Before executing the terms

FINAL REMARKS

 Glimpse of the implementation of Simplicity and its virtual machine in

Haskell

 Build the intuition on how categories can model simplicity programs

 Exploit results from categories to add functions

 Change the bit machine keeping the invariant that sizeOf is finite

Simplicity + HOL:

~115 LOC
SBM + HOL:

~250 LOC

QUESTIONS

Icon made by Freepik from www.flaticon.com

http://www.flaticon.com/

