TOWARDS ADDINGVARIETY TO SIMPLICITY

ELISABET LOBO
NACHIAPPAN VALLIAPPAN SOLENE MIRLIAZ
ALEJANDRO RUSSO

; r
CHALMERS rennes

MOTIVATION

Icon made by Smashicons from www.flaticon.com

http://www.flaticon.com/

@ BITCOIN SCRIPT LANGUAGE

= Stack-based

* Not Turing-complete

" No loops

* Conditionals

* Hashing and digital
signature verification

A2B.bitScript

9 BITCOIN TRANSACTIONS AS CONTRACTS

Simplicity +
Bitcoin Script Simplicity Higher Order
Functions

+ Formal semantics
- Few arithmetic + Static analysis ? Static analysis
(memory & time)

Expressiveness

Smart

Lobotomize

CONTRIBUTIONS

Simplicity + Higher Order Functions (HOF)

Implementation of b Connection with
Simplicity and its N ‘ category theory
virtual machine in __| ’ (with proofs)
Z4

https://bitbucket.orqg/russo/isola-additional-material/overview

Haskell

https://bitbucket.org/russo/isola-additional-material/overview

SIMPLICITY

Icon made by Freepik from www.flaticon.com

http://www.flaticon.com/

TYPED COMBINATOR LANGUAGE

Types Combinators
= Unit=1 prog: A B
" Products = A X B “Program prog has input type A and output type B”

= Coproduct=A4 + B _
LR SR B dota Simpl a b where

data Unit Unit :: Simpl a Unit

data a :*: b = jden: A FA
data a :+: b .,

Iden :: Simpl a a

l{:@}));STHE BIT MACHINE

Icon made by Puppets www.flaticon.com

http://www.flaticon.com/

@ EXECUTION OF TERMS

prog: A+ B

@} EXECUTION OF TERMS

Read Stack

prog: A+ B

Before the execution

@ EXECUTION OF TERMS

Read Stack Write Stack

'I' prog: A+ B

HEODOEB o]ifefo]i]ofe

Before the execution After the execution

@ EXECUTION OF TERMS

Read Stack Write Stack

‘ll prog: A+ B \l!
HHEOOR olifolofi]ole
olifo HEDD

@ EXECUTION OF TERMS

Read Stack Write Stack

‘l! prog: A+ B \l!
HHEOOR olifolofi]ole

simpl2sbm :: Simpl a b > [Inst]

run :: [Inst] -> SBM [Maybe Bit]

@ IMPLEMENTATION

1
2
3
4
5
6
/
8
9

type Frame
type Stack
type SBM

([Maybe Bit], Int)
[Frame]
State Machine

data Machine = Machine { readStack

, writeStack ::

}

data Inst = Fwd Int
Bwd Int
Skip Int
Write Bit

@} RESOURCE ALLOCATION

prog: A+ B

sizeOf(A) = How many cells do we need to read
sizeOf(B) = How many cells do we need to allocate

Well-typed programs have a finite representation in terms of cells
sizeOf(1) = 0

sizeOf(A4 X B) = sizeOf(A) + sizeOf(B)
sizeOf(A + B) = 1 + max(sizeOf(A), sizeOf(B))

-
l\ﬁﬁ CATEGORIES

Icon made by Freepik from www.flaticon.com

http://www.flaticon.com/

(&
‘ﬁ ABSTRACTION

Simplicity Categories

Combinators

Bi-cartesian
categories

(&
iﬁ ABSTRACTION

Simplicity

+ Functions

Combinators

Categories

Bi-cartesian
closed categories

Bi-cartesian
categories

¥ EXTENDING THE LANGUAGE

Icon made by Freepik from www.flaticon.com

http://www.flaticon.com/

CHANGES IN SIMPLICITY

Types Combinators

= Exponentials =4 = B = lam(l1:RXA+-B):R+A = B
"= app(f:RFA=>B)x:R+-A):R B

data a :=>: b

data Simpl a b where

Lam :: Simpl (r :*: a) b > Simpl r (a :=>: b)
App :: Simpl r (a :=>: b) > Simpl r a = Simpl r b

CHANGES IN THE BITMACHINE

prog :: Simpl r (a :=>: b) =3 1is :: [Inst]

sizeOf(A = B) =7

CHANGES IN THE BITMACHINE

data Inst

| PutF [Inst] Int Int
|

EvalF Int Int

putF(1is,r,p)
evalF(p,Db)

CHANGES IN THE BITMACHINE

Read Stack

060110601] [1?2??7?72?] 000 ([Fwd 3,.], [10 1])

[...] [.] j' j'

Pointer (Body, Context)

CHANGES IN THE BITMACHINE

Read Stack

001101] [L??22?2?7?] 000 ([Fwd 3,.], [1 0 1])
[...] [...]

putF(is,r,p) lrun (PutF [Write 1, ..] 2 3)

CHANGES IN THE BITMACHINE

Read Stack

001101] [L??22?2?7?] 000 ([Fwd 3,.], [1 0 1])
[...] [...]

lrun (PutF [Write 1, ..]1 2| 3)

Read Stack

(00110601] [10017?7?7] 000 ([Fwd 3,..], [1 0 1])
[...] [...] 001

CHANGES IN THE BITMACHINE

Read Stack

001101] [L??22?2?7?] 000 ([Fwd 3,.], [1 0 1])
[...] [...]

lrun (PutF [[Write 1, ..]1|12 3)

Read Stack

(0601101] [100177?] 000 ([Fwd 3,..], [1 0 1])
[...] [...] 001 ([Write 1,..]

CHANGES IN THE BITMACHINE

Read Stack

001101] [L??22?2?7?] 000 ([Fwd 3,.], [1 0 1])
[...] [...]

lrun (PutF [Write 1, ..11213)

Read Stack

(06061161] [106017?7? 000 ([Fwd 3,..], [1 0 1])
[...] [...] 001 ([Write 1,..]1, [1,0])

CHANGES IN THE BITMACHINE

Read Stack

(001101] [10017?77?7 000 ([Fwd 3,..], [1 0 1])
[...] [...] 001 ([Write 1,..], [1,0])

lrun evalF(p,s)

sizeOf(A = B) = sizePtr
sizePtr = log, (total_closures) + 1

FUTURE WORK: STATIC ANALYSIS

How many instructions will
be executed by the SBM?

Refined analysis: Defunctionalization:
Count number of Before executing the terms
instructions of each closure

' FINAL REMARKS

= Glimpse of the implementation of Simplicity and its virtual machine in
Haskell

= Build the intuition on how categories can model simplicity programs
= Exploit results from categories to add functions

® Change the bit machine keeping the invariant that sizeOf is finite

\
Simplicity + HOL: @ SBM + HOL.:
~115 LOC ~250 LOC

@ QUESTIONS

Icon made by Freepik from www.flaticon.com

http://www.flaticon.com/

