° l

O A7
(143 ALY

Marlowe

Financial Contracts on Blockchain

Pablo Lamela Seijas, Simon Thompson

School of Computing, University of Kent, UK ISoLA 2018

Financial DSLs aren’t new

We have a model ...

Composing contracts:
an adventure in financial engineering

Functional pearl

Simon Peyton Jones
Microsoft Rescarch, Cambridge
simonpj@microsoft.com

Jean-Marc Eber
LexiFi Technologies, Paris
jeanmarc.eber@lexifi.com

Julian Seward
University of Glasgow
v-sewardj@microsoft.com

23rd August 2000

Abstract

Financial and insurance contracts do not sound like promis-
ing territory for functional programming and formal seman-
tics, but in fact we have discovered that insights from pro-
gramming languages bear directlv on the complex subject
of describing and valuing a large class of contracts.

We introduce a combinator library that allows us to de-
scribe such contracts precisely, and a compositional denota-
tional semantics that savs what such contracts are worth,

At this point, any red-blooded functional programmer
should start to foam at the mouth, yelling “build a com-
binator library”, And indeed, that turns out to be not only
possible, but tremendously beneficial.

The finance industry has an enormous vocabulary ol jargon
for typical combinations of financial contracts (swaps, [u-
tures, caps, floors, swaptions, spreads, straddles, captions,
European options, American options, ...the list goes on).
Treating each of these individually is like having a large
catalogue of prefabricated components. The trouble is that

An embedded domain specific language

User-level, not programmer-level.

Some errors made impossible ... others less likely.
An EDSL can use host language features ... selectively.
It's a language: can transform, analyse, interpret ...

Specificity: analysis and proof can do more.

TR,
7 T VAN
RN

Example

(When (Or (two_chose alice bob carol refund)
(two_chose alice bob carol pay))
(Choice (two_chose alice bob carol pay)
(Pay alice bob AvailableMoney)
redeem_original))

Example

(When (Or (two_chose alice bob carol refund)
(two_chose alice bob carol pay))
(Choice (two_chose alice bob carol pay)
(Pay alice bob AvailableMoney)
redeem_original))

Onto blockchain

',,-.-j—,,‘;-z.;:\

Onto blockchain

Enforcement

The legal system ensures financial contracts ...
... but a contract on blockchain should enforce itself.

=W
{[158) X

Onto blockchain

Enforcement

The legal system ensures financial contracts ...
... but a contract on blockchain should enforce itself.

Double spend

Blockchain designed to prevent spending the same money twice ...
... but that’s precisely how credit works.

O AT
/ ! 14 l:.’ \3\

Cardano

Cardano SL / Sidechains

‘Vhin by,
7 ;'j", 'i‘::\
9, ﬂmhll

Cardano

Plutus Core /
Plutus

Cardano SL / Sidechains

Cardano

Plutus Core /
Plutus

Cardano SL / Sidechains

(150 00
. “((«wtf’/)/'

O 47NN
1,

Cardano

Real world / time / state

Plutus Core /
Plutus

Cardano SL / Sidechains

(150 00
. “((«wtf’/)/'

O 47NN
1,

Cardano

Real world / time / state

Marlowe

Plutus Core / |ELE /
Plutus K-EVM

Cardano SL / Sidechains

\155.9°]
Tor) /)
— \‘-fj_.‘._\tﬁzf;'.-’

R
o)

7
!l

o

Crypto-economics

Make the past irrefutable through cryptography.
Shape behaviour through financial incentives.

Avoid bad behaviour ... and “walk away”.

O A7
(1 14 l:.’ \3\

Marlowe

',’:-:i,‘.ﬁ.;:\
— /ﬂ J—'T-L:a)

Why Marlowe!

Understand the implications for smart contract languages ...
... for blockchain,

... and for Cardano in particular.

O AT
/ ! 14 l:.’ \3\

Why Marlowe!

Understand the implications for smart contract languages ...
... for blockchain,

... and for Cardano in particular.

It’s a distinct service ... and a model for others.

O A7
{[158) X

Marlowe

An EDSL as a Haskell data type.

Executable small-step semantics.
Analyses and proof.
Compile from original DSLs.

Meadow interactive demo.

TR

/!.éﬁ ;al\l‘

Interactions with the outside world

Real values: e.g. “the spot price of
oil in Aberdeen at 12:00,31-12-17". make

<> >

Random values.

"real" time,
Outside random, etc.

4 \
o "l‘g

S 7T
{ f' 14 1)

Commitments

Commit a certain amount of cash for

a finite time.
Need to avoid “walk away” ... make
commits

<> >

"real" time,
random, etc.

Outside

D I":f ; AN
TSR

Commitments and Timeouts

Commit a certain amount of cash for
a finite time.

Need to avoid “walk away” ... make
commits
We don’t require a commitment: can
only ask for one ...
... and only wait a bounded time for “real” time,
random, etc.

the commitment to be made. Outside

Step and Contract

N
AT
O, i AZI-LL;‘L

step :: Input -> State -> Contract -> 0S -> (State,Contract,AS)

step :: Input -> State -> Contract -> 0S -> (State,Contract,AS)

the contract
before and after
the step

step :: Input -> State -> Contract -> 0S -> (State,Contract,AS)

the contract
before and after
the step

the state keeps
track of the
commitments
currently in place

step :: Input -> State -> Contract -> 0S -> (State,Contract,AS)

the commitments

made, payments the contract
redeemed, ... before and after

at this step the step

the state keeps
track of the
commitments
currently in place

step :: Input -> State -> Contract -> 0S -> (State,Contract,AS)

the commitments

made, payments the contract
redeemed, ... before and after

at this step the step

the state keeps
track of the
commitments
currently in place

context info:
the values of
observables

step :: Input -> State -> Contract -> 0S -> (State,Contract,AS)

the commitments
made, payments
redeemed, ...

at this step

context info:
the values of
observables

the contract
before and after
the step

the state keeps the actions
track of the that are

commitments enabled at
currently in place this step

step :: Input -> State -> Contract -> 0S -> (State,Contract,AS)

Observations are recorded to be reused in verification step.
Actions affect on the blockchain: e.g. by transactions being issued.
Step is quiescent if same contract results: it makes progress otherwise.

At each block, run step until quiescent.

Redemption: at each block check for expired commitments, etc.

The Contract data type

data Contract =
Null |
CommitCash IdentCC Person Money Timeout Timeout Contract Contract |
RedeemCC IdentCC Contract |
Pay IdentPay Person Person Money Timeout Contract |
Both Contract Contract |
Choice Observation Contract Contract |
When Observation Timeout Contract Contract

deriving (Eqg,Ord,Show,Read)

\
L

\

)

‘.."\ lw'ilv‘ 1)
/f; :‘\
N

f1é

AN
° "l‘g

S T
{ f' i M)

The Contract data type

data Contract =
Null |

CommitCash IdentCC Person Money Timeout Timeout Contract Contract |

CommitCash 1dCC p n tl1l t2 k1l k2

For this contract to make progress, either

- before the timeout t1 the user p makes a money commitment of n and timeout t2
with the identifier 1dCC: generate SuccessfulCommit action, continue as k1;

- or timeout t1 exceeded and continue as k2.

Otherwise it is quiescent. At timeout t2 remaining committed cash can be redeemed,
and ful IStep enables that.

The Contract data type

data Contract =

Null |
CommitCash IdentCC Person Money Timeout Timeout Contract Contract |

RedeemCC IdentCC Contract |

RedeemCC idcCC k

Enables a committer of cash to redeem it before the commitment times out.
» If the commit has already expired and was redeemed, it does nothing.

- If it has already been redeemed, then don't, and issue Dup1icateRedeem action.

The Contract data type

data Contract =
Null |
CommitCash IdentCC Person Money Timeout Timeout Contract Contract |
RedeemCC IdentCC Contract |

Pay IdentPay Person Person Money Timeout Contract |

Pay idpay from to val expi con

Enables a payment of val from from to to before expi,and continues as con

- Payment identified as 1dpay.

WA Tar)t
1('11, N
o/ 7
4%

The Contract data type

data Contract =
Null |
CommitCash IdentCC Person Money Timeout Timeout Contract Contract |
RedeemCC IdentCC Contract |
Pay IdentPay Person Person Money Timeout Contract |
Both Contract Contract |
Choice Observation Contract Contract |
When Observation Timeout Contract Contract

deriving (Eqg,Ord,Show,Read)

\
L

\

)

‘.."\ lw'ilv‘ 1)
/f; :‘\
N

f1é

The Contract data type

data Contract =

wWhen obs expi k1 k2
Will progress either
« when the observation obs becomes true, and continues as k1, or

* when the timeout exp1 reached, and continues as k2.

CIHoOoLLE UbLD>SEI'vd UL LIl LoliLi'dCeu Loliurdeu |
When Observation Timeout Contract Contract

deriving (Eqg,Ord,Show,Read)

o /7T
424
{ 11 > %4 ll‘

The Contract data type

data Contract =
Null |
CommitCash IdentCC Person Money Timeout Timeout Contract Contract |
RedeemCC IdentCC Contract |
Pay IdentPay Person Person Money Timeout Contract |
Both Contract Contract |
Choice Observation Contract Contract |
When Observation Timeout Contract Contract

deriving (Eqg,Ord,Show,Read)

\
L

\

)

‘.."\ lw'ilv‘ 1)
/f; :‘\
N

f1é

Deposit incentive

CommitCash coml

alice adaloQ 10 200

(CommitCash com2 bob ada20 20 200

Null

(When (PersonChoseSomething choicel alice)
(Both (RedeemCC coml Null)
(RedeemCC com2 Null))
(Pay payl bob alice ada20 200
(Both (RedeemCC coml Null)
(RedeemCC com2 Null))))
(RedeemCC coml Null))

)
°lL

fl:\
AR
£f 4 \ \
a¥

100

Wiait until time for

Deposit incentive commic ADA unil cme

CommitCash coml alice adal@0 10 200
(CommitCash com2 bob ada20 20 200
(When (PersonChoseSomething choicel alice) 100
(Both (RedeemCC coml Null)
(RedeemCC com2 Null))
(Pay payl bob alice ada20 200
(Both (RedeemCC coml Null)
(RedeemCC com2 Null))))
(RedeemCC coml Null))
Null

Wiait until time for

Deposit incentive commic ADA unil cme

similarly
for bob

CommitCash coml alice adal@0 10 200
(CommitCash com2 bob ada20 20 200
(When (PersonChoseSomething choicel alice) 100
(Both (RedeemCC coml Null)
(RedeemCC com2 Null))
(Pay payl bob alice ada20 200
(Both (RedeemCC coml Null)
(RedeemCC com2 Null))))
(RedeemCC coml Null))
Null

Wiait until time for

Deposit incentive commic ADA unil cme

similarly
for bob

CommitCash coml alice adal@@ 10 200
(CommitCash com2 bob ada20 20 200
(When (PersonChoseSomething choicel alice) 100
(Both (RedeemCC coml Null)
if alice chooses to before (RedeemCC com2 Null))
time 100, both people get (Pay payl bob alice ada20 200
their money back (Both (RedeemCC coml Null)
(RedeemCC com2 Null))))
(RedeemCC coml Null))
Null

Wiait until time for

Deposit incentive commic ADA unil cme

similarly
for bob

CommitCash coml alice adal@0 10 200
(CommitCash com2 bob ada20 20 200
(When (PersonChoseSomething choicel alice) 100
(Both (RedeemCC coml Null)
if alice chooses to before (RedeemCC com2 Null))

time 100, both people get (Pay payl bob alice ada20 200

their money back (Both (RedeemCC coml Null)
(RedeemCC com2 Null))))

ST RS RN Il (RedeemCC coml Null))
money and the 20 ADA

from bob

Wiait until time for

Deposit incentive commic ADA unil cme

similarly
for bob

CommitCash coml alice adal@@ 10 200
(CommitCash com2 bob ada20 20 200
(When (PersonChoseSomething choicel alice) 100
(Both (RedeemCC coml Null)
if alice chooses to before (RedeemCC com2 Null))

time 100, both people get (Pay payl bob alice ada20 200

their money back (Both (RedeemCC coml Null)
(RedeemCC com2 Null))))

oYd TTAWIIREN RN -I N - (RedeemCC coml Null))

naLey ot el action if bob didn't

from bob SRa
commit in time

Implementation

',,-.-j—,,‘;-z.;:\

Implementations

Interactively step through the evaluation of a contract: input
commitments, values at each stage; corresponding actions generated.

Visualise as finitely-branching decision trees.

O A7
{[158) X

Embedded DSL

(When (Or (two_chose alice bob carol refund)
(two_chose alice bob carol pay))
(Choice (two_chose alice bob carol pay)
(Pay alice bob AvailableMoney)
redeem_original))

Embedded DSL

(When (Or (two_chose alice bob carol refund)
(two_chose alice bob carol pay))
(Choice (two_chose alice bob carol pay)
(Pay alice bob AvailableMoney)
redeem_original))

Embedded DSL

(When (Or (two_chose alice bob carol refund)
pay_chosen)
(Choice pay_chosen

(Pay alice bob AvailableMoney)
redeem_original))

where

pay_chosen =
two_chose alice bob carol pay

'n Meadow - 30ckly % CIEIEEY

— c O | B Sewus cllesrpu. oucsel kg lck jodsodel)

a | i

Jozenen
: ta1]

Vensy sy
wthid £l
s masws el by
ersn whid B
Iz pav:
wisv- w Jud il
whize< 1)

Cazlze Forzensdor nl e zotdtLe 3%

LR o ERTETE

Vazr 2z 200 azoozenadns Wi ztlrucas

ravik ¢ B s highs carlnus gs

LT Cuse
whid g
gerzo-wihid gl
Ty "'L".':l
A0 ailme =slim o ok 1 = ulm
Fmzreylscemmdze ozf>z b ek)
mrivucas

rivusay

gl ety

wili LD
1z b redic
WL i s

atrzanwtt d B3
raydazest | CoestVenzy ER AL

nnbizes BHE s we,
~ Pad ka2 otk il

L

Prrzani "nat 3z ~clhlsr;
‘orzhzice st 1z 6 .
perzon @ chuss sarewlom;

Ween gz svir g vixwaslir

37h
= jarelur
Teiluar
alwwirrciom|
i JiD

HERTE EETITEES B

glow e o |
wiliol

=z ot medzemes I'en

bl p g P .LUI

wind @

mray o LonsMates B ATA

ALA L sersnnea b o
- = h ek g9
e [Nzl
evore ich
Pazwwnll
Alow th: commt
wi- : [

Erhimamilmer-wmil e -

Cowmiblnat | Tde-kCC 3D 2
16l Hery 22

oV L0

Ivhas Permnl-nes=mst=n | Tds-bhema =0 1)
%
IDetn [TadestIC ZTdetID 10 MLl

METR] TEEEE S I SYTEESECA " MY]
Mes !Izewles 1! 21
s Pacasy 3010

o0
1Dzbn [TadeatIC 1 I3nkIC 1) MWLl
MEREL TS E I SYTEEEEC T b MY TN

I Necenls (Tde-kCC 20 RLLL

> Wsdyinfeze | Cazewfzdy< | Claw | “awicA

el ashed erdieddrg enns Oy

s bloes
Ko unbract skaly;

PCT -0 * 17, e Barhaeendd 122 2220 1110

Inpuc

(] EEERI SRETERMREICTR TEN Y N I B

Potental acionk | Ramesa |

Pt Gozuss I o chu e wic J 1 | Az v

Ouwlput;
I.
[Fazimplwe:
Twioed ccacttm | Coamennety | “rrozer

Meadow: implementation in Blockly

In-browser implementation: Haskell semantics, compiled into JavaScript.

Two forms of interaction: choose from arbitrary actions ...

... or in the smart interface choose from those applicable at each point.
Embedded editor for Marlowe / Haskell scripts.

Blockly is an open source project, which we have adapted.

O A7
143 3 X

Analysis

D ,";':::’;F:{:\
AN
[14%a))

What can we check?

Semantics termination

Step semantics always reduce contract (or are quiescent)

Properties about particular contracts

O A7
{[158) X

What can we check?

Semantics termination
Step semantics always reduce contract (or are quiescent)
Properties about particular contracts

s it possible to produce a FailedPay action?

s it possible to produce a DuplicateRedeem action?

Are there redefined identifiers for commits and payments?

D I";f .;’;F;\:‘\
(185

FailedPay analysis: decidable by ILP / SMT

One symbolic trace per
execution path:

Symbolic trace =

Concrete trace

Result

If symbolic traces for all execution
paths are either:

 unsolvable, or
* do not produce FailedPay

then it is impossible for a
FalledPay to occur.

D /':':f’;r\i‘::\
TSR

Symbolic traces

Global variables. For example:
e When is this commit issued? Call it X
e What is the value of this choice? Call it Y

Variables are constrained by logical combinations of integer inequalities.

Cover all possible paths, but ...

... may cover impossible paths, which are discarded through execution.

O A7
(1 14 l:.’ \3\

Work in progress

',,-.-j—,,‘;-z.;:\

Revising the language and implementation

data Contract =

Observation !Timeout !Contract !Contract |
Scale !Value !Value !Value !'Contract |

Let !IdentLet !Contract !Contract |

Use !IdentLet

J2
AT
9, 4}11-"!,;1

D /';':f’;ri\::\
AN
[14%a))

Coq formalisation of semantics

Translate Haskell semantics of Marlowe to Coaq.
Extract Haskell from Coq ... and QuickCheck the two equivalent.
Properties about contracts in general

Can contracts of this form produce a FailedPay action!?

Can contracts of this form produce a Dup LicateRedeem action!?

Compile from original DSL to Marlowe

Estimate commitments to ensure no failed payments.

Include (default) commitments.

(#

0

Integrate with the Cardano SL

Real world / time / state Push vs pull model

Marlowe UTxO vs accounts

Plutus Core / |ELE / Redeemer/validator model
Plutus K-EVM
Observations

Cardano SL / Sidechains Wallet/IDE

But first integrate with the “mockchain”

Real world / time / state Push vs pull model

Marlowe UTxO vs accounts

Plutus Core / |ELE / Redeemer/validator model
Plutus K-EVM
Observations

Cardano SL / Sidechains Wallet/IDE

Marlowe

An EDSL as a Haskell data type.

Executable small-step semantics.
Analyses and proof.
Compile from original DSLs.

Meadow interactive demo.

TR

https://github.com/input-output-hk/marlowe

arlowe and UTxO

