
Marlowe
Financial Contracts on Blockchain

Pablo Lamela Seijas, Simon Thompson

School of Computing, University of Kent, UK ISoLA 2018

Financial DSLs aren’t new

We have a model …

An embedded domain specific language

User-level, not programmer-level.

Some errors made impossible … others less likely.

An EDSL can use host language features … selectively.

It's a language: can transform, analyse, interpret …

Specificity: analysis and proof can do more.

Example

 (When (Or (two_chose alice bob carol refund)
 (two_chose alice bob carol pay))
 (Choice (two_chose alice bob carol pay)
 (Pay alice bob AvailableMoney)
 redeem_original))

Example

 (When (Or (two_chose alice bob carol refund)
 (two_chose alice bob carol pay))
 (Choice (two_chose alice bob carol pay)
 (Pay alice bob AvailableMoney)
 redeem_original))

Onto blockchain

Onto blockchain

Enforcement
 
The legal system ensures financial contracts …

… but a contract on blockchain should enforce itself.

Onto blockchain

Enforcement
 
The legal system ensures financial contracts …

… but a contract on blockchain should enforce itself.

Double spend  
 
Blockchain designed to prevent spending the same money twice …

 … but that’s precisely how credit works.

Cardano SL / Sidechains

Cardano

Cardano SL / Sidechains

Plutus Core /
Plutus

Cardano

Cardano SL / Sidechains

Plutus Core /
Plutus

IELE / 
K-EVM

Cardano

Cardano SL / Sidechains

Real world / time / state

Plutus Core /
Plutus

IELE / 
K-EVM

Cardano

Cardano SL / Sidechains

Real world / time / state

Plutus Core /
Plutus

IELE / 
K-EVM

Marlowe

Cardano

Crypto-economics

Make the past irrefutable through cryptography.

Shape behaviour through financial incentives.

Avoid bad behaviour … and “walk away”.

Marlowe

Why Marlowe?

Understand the implications for smart contract languages …

 … for blockchain,

 … and for Cardano in particular.

Why Marlowe?

Understand the implications for smart contract languages …

 … for blockchain,

 … and for Cardano in particular.

It’s a distinct service … and a model for others.

Marlowe

An EDSL as a Haskell data type.

Executable small-step semantics.

Analyses and proof.

Compile from original DSLs.

Meadow interactive demo.

Real values: e.g. “the spot price of
oil in Aberdeen at 12:00, 31-12-17”.

Random values.

Interactions with the outside world

Commitments

Commit a certain amount of cash for
a finite time.

Need to avoid “walk away” …

Commitments and Timeouts

Commit a certain amount of cash for
a finite time.

Need to avoid “walk away” …

We don’t require a commitment: can
only ask for one …

 … and only wait a bounded time for
the commitment to be made.

Step and Contract

step	::	Input	->	State	->	Contract	->	OS	->	(State,Contract,AS)

step	::	Input	->	State	->	Contract	->	OS	->	(State,Contract,AS)

the contract
before and after

the step

the contract
before and after

the step

step	::	Input	->	State	->	Contract	->	OS	->	(State,Contract,AS)

the contract
before and after

the step

the state keeps
track of the

commitments
currently in place

the contract
before and after

the step

the contract
before and after

the step

step	::	Input	->	State	->	Contract	->	OS	->	(State,Contract,AS)

the contract
before and after

the step

the state keeps
track of the

commitments
currently in place

the contract
before and after

the step

the contract
before and after

the step

 the commitments
made, payments
redeemed, …
at this step

step	::	Input	->	State	->	Contract	->	OS	->	(State,Contract,AS)

context info:
the values of
observables

the contract
before and after

the step

the state keeps
track of the

commitments
currently in place

the contract
before and after

the step

the contract
before and after

the step

 the commitments
made, payments
redeemed, …
at this step

step	::	Input	->	State	->	Contract	->	OS	->	(State,Contract,AS)

context info:
the values of
observables

the contract
before and after

the step

the state keeps
track of the

commitments
currently in place

the contract
before and after

the step

the contract
before and after

the step

the actions
that are

enabled at
this step

 the commitments
made, payments
redeemed, …
at this step

Observations are recorded to be reused in verification step.

Actions affect on the blockchain: e.g. by transactions being issued.

Step is quiescent if same contract results: it makes progress otherwise.

At each block, run step until quiescent.

Redemption: at each block check for expired commitments, etc.

step	::	Input	->	State	->	Contract	->	OS	->	(State,Contract,AS)

The Contract data type

data	Contract	=	

				Null	|	

				CommitCash	IdentCC	Person	Money	Timeout	Timeout	Contract	Contract	|	

				RedeemCC	IdentCC	Contract	|	

				Pay	IdentPay	Person	Person	Money	Timeout	Contract	|	

				Both	Contract	Contract	|	

				Choice	Observation	Contract	Contract	|	

				When	Observation	Timeout	Contract	Contract	

															deriving	(Eq,Ord,Show,Read)	

The Contract data type

data	Contract	=	

				Null	|	

				CommitCash	IdentCC	Person	Money	Timeout	Timeout	Contract	Contract	|	

				RedeemCC	IdentCC	Contract	|	

				Pay	IdentPay	Person	Person	Cash	Timeout	Contract	|	

				Both	Contract	Contract	|	

				Choice	Observation	Contract	Contract	|	

				When	Observation	Timeout	Contract	Contract	

															deriving	(Eq,Ord,Show,Read)	

CommitCash idCC p n t1 t2 k1 k2

For this contract to make progress, either

• before the timeout t1 the user p makes a money commitment of n and timeout t2
with the identifier idCC: generate SuccessfulCommit action, continue as k1;

• or timeout t1 exceeded and continue as k2.

Otherwise it is quiescent. At timeout t2 remaining committed cash can be redeemed,
and fullStep enables that.

The Contract data type

data	Contract	=	

				Null	|	

				CommitCash	IdentCC	Person	Money	Timeout	Timeout	Contract	Contract	|	

				RedeemCC	IdentCC	Contract	|	

				Pay	IdentPay	Person	Person	Cash	Timeout	Contract	|	

				Both	Contract	Contract	|	

				Choice	Observation	Contract	Contract	|	

				When	Observation	Timeout	Contract	Contract	

															deriving	(Eq,Ord,Show,Read)	

RedeemCC idCC k

Enables a committer of cash to redeem it before the commitment times out.

• If the commit has already expired and was redeemed, it does nothing.

• If it has already been redeemed, then don't, and issue DuplicateRedeem action.

The Contract data type

data	Contract	=	

				Null	|	

				CommitCash	IdentCC	Person	Money	Timeout	Timeout	Contract	Contract	|	

				RedeemCC	IdentCC	Contract	|	

				Pay	IdentPay	Person	Person	Money	Timeout	Contract	|	

				Both	Contract	Contract	|	

				Choice	Observation	Contract	Contract	|	

				When	Observation	Timeout	Contract	Contract	

															deriving	(Eq,Ord,Show,Read)	

Pay idpay from to val expi con

Enables a payment of val from from to to before expi, and continues as con

• Payment identified as idpay.

The Contract data type

data	Contract	=	

				Null	|	

				CommitCash	IdentCC	Person	Money	Timeout	Timeout	Contract	Contract	|	

				RedeemCC	IdentCC	Contract	|	

				Pay	IdentPay	Person	Person	Money	Timeout	Contract	|	

				Both	Contract	Contract	|	

				Choice	Observation	Contract	Contract	|	

				When	Observation	Timeout	Contract	Contract	

															deriving	(Eq,Ord,Show,Read)	

The Contract data type

data	Contract	=	

				Null	|	

				CommitCash	IdentCC	Person	Cash	Timeout	Timeout	Contract	Contract	|	

				RedeemCC	IdentCC	Contract	|	

				Pay	IdentPay	Person	Person	Cash	Timeout	Contract	|	

				Both	Contract	Contract	|	

				Choice	Observation	Contract	Contract	|	

				When	Observation	Timeout	Contract	Contract	

															deriving	(Eq,Ord,Show,Read)	

When obs expi k1 k2

Will progress either

• when the observation obs becomes true, and continues as k1, or

• when the timeout expi reached, and continues as k2.

The Contract data type

data	Contract	=	

				Null	|	

				CommitCash	IdentCC	Person	Money	Timeout	Timeout	Contract	Contract	|	

				RedeemCC	IdentCC	Contract	|	

				Pay	IdentPay	Person	Person	Money	Timeout	Contract	|	

				Both	Contract	Contract	|	

				Choice	Observation	Contract	Contract	|	

				When	Observation	Timeout	Contract	Contract	

															deriving	(Eq,Ord,Show,Read)	

Deposit incentive

 CommitCash com1 alice ada100 10 200
 (CommitCash com2 bob ada20 20 200
 (When (PersonChoseSomething choice1 alice) 100
 (Both (RedeemCC com1 Null)
 (RedeemCC com2 Null))
 (Pay pay1 bob alice ada20 200
 (Both (RedeemCC com1 Null)
 (RedeemCC com2 Null))))
 (RedeemCC com1 Null))
 Null

 CommitCash com1 alice ada100 10 200
 (CommitCash com2 bob ada20 20 200
 (When (PersonChoseSomething choice1 alice) 100
 (Both (RedeemCC com1 Null)
 (RedeemCC com2 Null))
 (Pay pay1 bob alice ada20 200
 (Both (RedeemCC com1 Null)
 (RedeemCC com2 Null))))
 (RedeemCC com1 Null))
 Null

Wait until time 10 for alice to
commit 100 ADA until time 200.Deposit incentive

 CommitCash com1 alice ada100 10 200
 (CommitCash com2 bob ada20 20 200
 (When (PersonChoseSomething choice1 alice) 100
 (Both (RedeemCC com1 Null)
 (RedeemCC com2 Null))
 (Pay pay1 bob alice ada20 200
 (Both (RedeemCC com1 Null)
 (RedeemCC com2 Null))))
 (RedeemCC com1 Null))
 Null

Wait until time 10 for alice to
commit 100 ADA until time 200.

similarly
for bob

Deposit incentive

 CommitCash com1 alice ada100 10 200
 (CommitCash com2 bob ada20 20 200
 (When (PersonChoseSomething choice1 alice) 100
 (Both (RedeemCC com1 Null)
 (RedeemCC com2 Null))
 (Pay pay1 bob alice ada20 200
 (Both (RedeemCC com1 Null)
 (RedeemCC com2 Null))))
 (RedeemCC com1 Null))
 Null

Wait until time 10 for alice to
commit 100 ADA until time 200.

similarly
for bob

if alice chooses to before
time 100, both people get

their money back

Deposit incentive

 CommitCash com1 alice ada100 10 200
 (CommitCash com2 bob ada20 20 200
 (When (PersonChoseSomething choice1 alice) 100
 (Both (RedeemCC com1 Null)
 (RedeemCC com2 Null))
 (Pay pay1 bob alice ada20 200
 (Both (RedeemCC com1 Null)
 (RedeemCC com2 Null))))
 (RedeemCC com1 Null))
 Null

Wait until time 10 for alice to
commit 100 ADA until time 200.

similarly
for bob

if alice chooses to before
time 100, both people get

their money back

otherwise, alice gets her
money and the 20 ADA

from bob

Deposit incentive

 CommitCash com1 alice ada100 10 200
 (CommitCash com2 bob ada20 20 200
 (When (PersonChoseSomething choice1 alice) 100
 (Both (RedeemCC com1 Null)
 (RedeemCC com2 Null))
 (Pay pay1 bob alice ada20 200
 (Both (RedeemCC com1 Null)
 (RedeemCC com2 Null))))
 (RedeemCC com1 Null))
 Null

Wait until time 10 for alice to
commit 100 ADA until time 200.

similarly
for bob

if alice chooses to before
time 100, both people get

their money back

otherwise, alice gets her
money and the 20 ADA

from bob
action if bob didn't

commit in time

Deposit incentive

Implementation

Implementations

Interactively step through the evaluation of a contract: input
commitments, values at each stage; corresponding actions generated.

Visualise as finitely-branching decision trees.

Embedded DSL

 (When (Or (two_chose alice bob carol refund)
 (two_chose alice bob carol pay))
 (Choice (two_chose alice bob carol pay)
 (Pay alice bob AvailableMoney)
 redeem_original))

 (When (Or (two_chose alice bob carol refund)
 (two_chose alice bob carol pay))
 (Choice (two_chose alice bob carol pay)
 (Pay alice bob AvailableMoney)
 redeem_original))

Embedded DSL

 (When (Or (two_chose alice bob carol refund)
 pay_chosen)
 (Choice pay_chosen
 (Pay alice bob AvailableMoney)
 redeem_original))
 where
 pay_chosen =
 two_chose alice bob carol pay

Embedded DSL

Meadow: implementation in Blockly

In-browser implementation: Haskell semantics, compiled into JavaScript.

Two forms of interaction: choose from arbitrary actions …

… or in the smart interface choose from those applicable at each point.

Embedded editor for Marlowe / Haskell scripts.

Blockly is an open source project, which we have adapted.

Analysis

What can we check?

Semantics termination

Step semantics always reduce contract (or are quiescent)

Properties about particular contracts

What can we check?

Semantics termination

Step semantics always reduce contract (or are quiescent)

Properties about particular contracts

Is it possible to produce a FailedPay action?

Is it possible to produce a DuplicateRedeem action?

Are there redefined identifiers for commits and payments?

FailedPay analysis: decidable by ILP / SMT

One symbolic trace per  
execution path:

Symbolic trace ⇨  

Concrete trace ⇨  

Result ⇨

If symbolic traces for all execution
paths are either:

• unsolvable, or

• do not produce FailedPay

then it is impossible for a
FailedPay to occur.

Symbolic traces

Global variables. For example:

• When is this commit issued? Call it X

• What is the value of this choice? Call it Y

Variables are constrained by logical combinations of integer inequalities.

Cover all possible paths, but …

 … may cover impossible paths, which are discarded through execution.

Work in progress

Revising the language and implementation

data Contract =
 ...
 Observation !Timeout !Contract !Contract |
 Scale !Value !Value !Value !Contract |
 Let !IdentLet !Contract !Contract |
 Use !IdentLet

Coq formalisation of semantics

Translate Haskell semantics of Marlowe to Coq.

Extract Haskell from Coq … and QuickCheck the two equivalent.

Properties about contracts in general

Can contracts of this form produce a FailedPay action?

Can contracts of this form produce a DuplicateRedeem action?

…

Compile from original DSL to Marlowe

Estimate commitments to ensure no failed payments.

Include (default) commitments.

Cardano SL / Sidechains

Real world / time / state

Plutus Core /
Plutus

IELE / 
K-EVM

Marlowe

Push vs pull model

UTxO vs accounts

Redeemer/validator model

Observations

Wallet/IDE

Integrate with the Cardano SL

Cardano SL / Sidechains

Real world / time / state

Plutus Core /
Plutus

IELE / 
K-EVM

Marlowe

Push vs pull model

UTxO vs accounts

Redeemer/validator model

Observations

Wallet/IDE

But first integrate with the “mockchain”

Marlowe

An EDSL as a Haskell data type.

Executable small-step semantics.

Analyses and proof.

Compile from original DSLs.

Meadow interactive demo.

https://github.com/input-output-hk/marlowe

Marlowe and UTxO

