Contracts over Smart Contracts:
Recovering from Violations
Dynamically

Joshua Ellul L-Universita
with: Christian Colombo, Gordon Pace ta' Malta

Ethereum Blockchain Platform

Anyone can run a node (full node, or other)

Each node stores the Ethereum Ledger

Consensus: Proof of Work

economicpoint.com

https://economicpoint.com/ethereum

Ethereum Blockchain Platform

https://economicpoint.com/ethereum

Ethereum Blockchain Platform

<contract> <contract> i

<contract>

</contract>

https://economicpoint.com/ethereum

Ethereum Blockchain Platform

<contract> <contract> i

"? _ [o§TT One Transaction at a Time

</contract>

</contract>

https://economicpoint.com/ethereum

Smart Contracts

Blockchain and Smart Contracts, enable:
- Decentralised, verifiable, enforceable automation of digital processes

Smart Contracts

Blockchain and Smart Contracts, enable:
- Decentralised, verifiable, enforceable automation of digital processes

Different to contracts:
- obligations vs automated execution of obligations

Smart Contracts

One transaction at a time:

- Initial state + new Transaction (sender, receiver, data) => Final State

S
INITIAL STATE

ADDRESS:4718bf7a
BALANCE:lo ETH

ADDRESS:741F7A2
BALANCE: lo ETH

STORAGE:[0,100,0,A)

TRANSACTION

g
FINAL STATE

v

SENDER:4718bf7a
RECIPIENT:741F7A2
GAS PICE:0.5 ETH
GAS LIMIT:2 ETH
DATA:[....]
SIGNATURE:100FD

ADDRESS:4718bf7Ta
BALANCE:8 ETH

ADDRESS:741F7a2
BALANCE: 12 ETH

STORAGE:[0,100,ETH,A]

Smart Contracts

One transaction at a time:
- Initial state + new Transaction (sender, receiver, data) => Final State

Simple -- false sense of security?
Smart contract code uploaded is immutable

S g
INITIAL STATE FINAL STATE
ADDRESS:4718bf7a TRANSACTION ADDRESS:4718bf7a
BALANCE:lo ETH SENDER:4718bf7a BALANCE:8 ETH
RECIPIENT:741F7A2
GAS PICE:0.5 ETH
ADDRESS:741F7A2 » GAS LIMIT:2 ETH »| |[ADDRESS:741F7a2
BALANCE: lo ETH DATA:[....] BALANCE: 12 ETH
[CODE.....c.cvvevinnee] SIGNATURE: 100FD [CODE.......couerrrene 1

STORAGE:[0,100,0,A) STORAGE:[0,100,ETH,A]

Bugs

2 June 2016: Decentralized Autonomous Organization Hack

A vulnerability in the DAO code resulted in $60 million in Ether being stolen

https://medium.com/chainsecurity/the-5-most-costly-ethereum-security-bugs-616c649b6c86

Bugs

2 June 2016: Decentralized Autonomous Organization Hack

A vulnerability in the DAO code resulted in $60 million in Ether being stolen

3 July 2017 $30 Million: Ether Reported Stolen Due to Parity Wallet

Breach

https://medium.com/chainsecurity/the-5-most-costly-ethereum-security-bugs-616c649b6c86

Bugs

2 June 2016: Decentralized Autonomous Organization Hack

A vulnerability in the DAO code resulted in $60 million in Ether being stolen

3 July 2017 $30 Million: Ether Reported Stolen Due to Parity Wallet

Breach

1 November 2017: ‘$300m in cryptocurrency’ accidentally lost forever

due to bug

More than $300m of cryptocurrency has been lost after a series of bugs in a
popular digital wallet service led a curious developer to, without intention,

take control of and then lock up the funds, according to reports.

https://medium.com/chainsecurity/the-5-most-costly-ethereum-security-bugs-616c649b6c86

Challenge: Immutability

Contracts cannot be changed even if a bug is detected!

If a smart contract is doing something wrong... it’ll keep doing something wrong
forever

Need for more assurances

Testing

Static Verification

Run-time Verification

Compile/Deploy Time

Run-time

Need for more assurances

Testing

Static Verification

Compile/Deploy Time | Run-time

Verification

Static checking - ideal given immutability

Solidity is not formally specified (yet?)

Runtime Verification

Checking the smart contract as it executes

ContractLarva

Smart contract

Smart contract

properties

contractlLarva

Safe smart
contract

Coin flipping casino example (Solidity excerpt)

contract Casino {
address private hiddenCoin;

function closeBet(uint _shownCoin) public {

require(msg.sender == casinoOwner);
require(sameAs(_shownCoin, hiddenCoin));
require(gameStatus == PLAYER_PARTICIPATED);

if (matches(_shownCoin, guessedCoin)) {
player.transfer(participationCost + winout);

&
gameStatus = GAME_OVER;

Coin flipping casino example (Solidity excerpt)

contract Casino {

address private hiddenCoin;

’ : : , , Casino Owner is caller
function closeBet(uint _shownCoin) publii/E///////
require(msg.sender == casinoOwner);
require(sameAs(_shownCoin, hiddenCoin));
require(gameStatus == PLAYER_PARTICIPATED);

if (matches(_shownCoin, guessedCoin)) {
player.transfer(participationCost + winout);

&
gameStatus = GAME_OVER;

Coin flipping casino example (Solidity excerpt)

contract Casino {

address private hiddenCoin;

. , : , , Casino Owner is caller
function closeBet(uint _shownCoin) publii/E///////

require(msg.sender == casinoOwner);
require(sameAs(_shownCoin, hiddenCoin));—
require(gameStatus == PLAYER_PARTICIPATED);

Coin chosen initially is still the same

if (matches(_shownCoin, guessedCoin)) {
player.transfer(participationCost + winout);

&
gameStatus = GAME_OVER;

Coin flipping casino example (Solidity excerpt)

contract Casino {

address private hiddenCoin;

. , : , , Casino Owner is caller
function closeBet(uint _shownCoin) publii/i///////

require(msg.sender == casinoOwner);
require(sameAs(_shownCoin, hiddenCoin));—
require(gameStatus == PLAYER_PARTICIPATED);

Coin chosen initially is still the same

——— At least 1 player played

if (matches(_shownCoin, guessedCoin)) {
player.transfer(participationCost + winout);

&
gameStatus = GAME_OVER;

Example property: Casino’s Bank can support bet

Dynamic Event Automaton:
DEA: event| condition => action
event: agent :: modality : solidity function

casinoOwner:: end: openBet(_amonnt,*)

casinoOwner:: end: withdranw(¥) |

) bankBalance < winout;

= amonnt = _amonnt;

casinoOwner:: end: closeBet(*)

end: placeBet(*)

Player:: end: timeont() N/ casinoOwner:: end: withdran) |
bankBalance < amonnt+winout:

ContractLarva

contract Casino { \

address private hiddenCoin;

function closeBet(uint _shownCoin) public {

require(msg.sender == casinoOwner);
require(sameAs(_shownCoin, hiddenCoin));
require(gameStatus == PLAYER_PARTICIPATED);

if (matches(_shownCoin, guessedCoin)) {
player.transfer(participationCost + winout);

}
gameStatus = GAME_OVER;

casinoOwner:: end: openBet(_amonnt,*)
> amonnt = _amonnt;

casinoOwner:: end: withdraw(¥) |
bankBalance < winount;

casinoOwner:: end: closeBet(*)

end: placeBet(*)

Dlayer: end: timeont() casinoOwner:: end: withdraw(¥) |

bankBalance < amonnt+winont;

contract Casino {
address private hiddenCoin;

functien 7eloseBet (uint _shownCoin) public {

require(msg.sender—==ycasinoOwner)’
require(sameAs(_shownCain ,-hiddenCoin));
require(gameStatus—== PLAYER_PARTICIPATED)-

if (matches(_shownCoin, guessedCoin)) {
player.transfer(partigipationCost + winout)s

3
gameStatus = GAME_OVER;

1

B

inont;

ContractLarva

contract Casino { \

address private hiddenCoin;

function closeBet(uint _shownCoin) public {

require(msg.sender == casinoOwner);
require(sameAs(_shownCoin, hiddenCoin));
require(gameStatus == PLAYER_PARTICIPATED);

if (matches(_shownCoin, guessedCoin)) {
player.transfer(participationCost + winout);

}
gameStatus = GAME_OVER;

casinoOwner:: end: openBet(_amonnt,*)
> amonnt = _amonnt;

casinoOwner:: end: withdraw(¥) |
bankBalance < winount;

casinoOwner:: end: closeBet(*) end: placeBet(¥)

Player:: end: timeont() casinoOwner:: end: withdraw(¥) |

bankBalance < amonnt+winont;

Safe Smart Contract

Two challenges upon violation

BUT how do you deal with violations?
You cannot change the smart contract code!

When something goes wrong: Recovery action
Then, how to: Fix the code

Recovery

Immutability is not new

Other areas such as financial transactions already deal with immutability

*draw inspiration from existing work
(Colombo 2012)

‘Checkpointing’ in Ethereum

Ethereum natively supports checkpointing at the granularity of a
function/transaction

If a violation is detected, reverting to initial state can be an option

This is useful but very coarse grained

Fine-grained checkpointing example

What if, you want to undo the transfer but keep the fee

function withdraw(uint _amount) public {
require(msg.sender == owner);

// Pay transaction fee
developer.transfer(transactionFee);
// Withdraw specified amount
checkpoint (BEFORE_WITHDRAWAL);
casinoOwner .transfer (_amount);

Fine-grained checkpointing example

What if, you want to undo the transfer but keep the fee

function withdraw(uint _amount) public {
require(msg.sender == owner);

// Pay transaction fee
developer.transfer(transactionFee);
// Withdraw specified amount
checkpoint (BEFORE_WITHDRAWAL)

’ Named
casinoOwner .transfer (_amount); checkpoints

RV with checkpointing

casinoOwner:: end: openBet(_amount)

- T L O
ey castnoOwner:: end: withdraw(¥) |

bankBalance < winout;
ﬂ

)‘ restore(BEFORE_WITHDRAWAL)

casinoOmner:: end: closeBet(*) end: placeBet(¥)

.)‘ restore(BEFORE_WITHDRAWAL)
Player:: end: timeont() NS casinoOmwner:: end- withdran %) | playerWins();

bankBalance < amount+winont;

castnoOwner:: begin: withdraw(¥) developer. tfransfer(¥)

/‘)C) BEFORE_WITHDRAWAL

casinoQwner:: end: withdraw(*)

Compensations

Not all actions can be simply rolled back (as if they never happened)

At times preferable to run a “counter-action” - compensation

Compensations example

player:: end: placeBet(_amonnt)
/ player.transfer(0.75% _amount);

player:: end: chooseCoinToss()

é player:: end: register()

player:: end: chooseRonlette()

Pplayer:: end: closeGame() | ClearCompensations

player:: end: placeBet(_amount)
/ player.transfer(0.85* _amount);

Fixing code

Fixing smart contract code

Once violation is detected (through RV) how can we fix the code for good?

RV can help again...

Specification-oriented approach

1. Expose aninterface of the contract
2. Passinterface calls to the current implementation (can be updated)
3. Instrument implementation to ensure specification is adhered to

Behavioural
specification

Smart contract

SN

iterface supporting
versioning

SN

CONTRACT-LARVA
Runtime verification
strumentation tool

=

Safe
smart contract
interface supporting
safe versioning

y» Current version of

¥» executable version

of the contract

ContractLarva

https://github.com/gordonpace/contractLarva

Conclusion

Smart contracts pose new challenges due to their immutability:
Recovery
Fixing code

Compensations can provide flexible yet automated recovery

RV can provide assurance that specification is respected even after code
updates

Need for More Software Assurances

If a smart contract is doing something wrong, it'll keep doing so forever
(bug, illegalities)

Testing
Run-time
Verification
Static
Verification
Compile/Deploy ’ Run-time
Time

Need for More Software Assurances

If a smart contract is doing something wrong, it'll keep doing so forever
(bug, illegalities)

Is this good enough?
| - Static verification and RV are as good as the
Testing specification
Run-time Proxy calls?
! Vgrifi cI;ati on Trade-offs? What guarantees are Users agreeing to?
i Can ContractLarva-like specifications help here?
Static i
Verification 5 More testing?

5 More eyes?

Compile/Deploy ’ Run-time

Time

Contact Us

Joshua Ellul
Christian Colombo

Gordon Pace

W..{ joshua.ellul@um.edu.mt
W.. christian.colombo@um.edu.mt
W..{ gordon.pace@um.edu.mt

