
Contracts over Smart Contracts:
Recovering from Violations
Dynamically

Joshua Ellul
with: Christian Colombo, Gordon Pace

Ethereum Blockchain Platform

Anyone can run a node (full node, or other)

Each node stores the Ethereum Ledger

Consensus: Proof of Work

Ethereum Blockchain Platform

Ethereum Blockchain Platform

Ethereum Blockchain Platform

One Transaction at a Time

Blockchain and Smart Contracts, enable:
- Decentralised, verifiable, enforceable automation of digital processes

Smart Contracts

Smart Contracts

Blockchain and Smart Contracts, enable:
- Decentralised, verifiable, enforceable automation of digital processes

Different to contracts:
- obligations vs automated execution of obligations

One transaction at a time:
- Initial state + new Transaction (sender, receiver, data) => Final State

Smart Contracts

Smart Contracts

One transaction at a time:
- Initial state + new Transaction (sender, receiver, data) => Final State

Simple -- false sense of security?
Smart contract code uploaded is immutable

Bugs

https://medium.com/chainsecurity/the-5-most-costly-ethereum-security-bugs-616c649b6c86

Bugs

https://medium.com/chainsecurity/the-5-most-costly-ethereum-security-bugs-616c649b6c86

Bugs

https://medium.com/chainsecurity/the-5-most-costly-ethereum-security-bugs-616c649b6c86

Challenge: Immutability

Contracts cannot be changed even if a bug is detected!

If a smart contract is doing something wrong… it’ll keep doing something wrong
forever

Need for more assurances

Testing

Static Verification

Run-time Verification

Compile/Deploy Time Run-time

Need for more assurances

Testing

Static Verification

Run-time Verification

Compile/Deploy Time Run-time

Verification

Static checking - ideal given immutability

Solidity is not formally specified (yet?)

Checking the smart contract as it executes

Runtime Verification

ContractLarva

Coin flipping casino example (Solidity excerpt)

Coin flipping casino example (Solidity excerpt)

Casino Owner is caller

Coin flipping casino example (Solidity excerpt)

Casino Owner is caller

Coin chosen initially is still the same

Coin flipping casino example (Solidity excerpt)

Casino Owner is caller

Coin chosen initially is still the same

At least 1 player played

Example property: Casino’s Bank can support bet

Dynamic Event Automaton:
DEA: event | condition => action
event: agent :: modality : solidity function

ContractLarva

ContractLarva

Safe Smart Contract

Two challenges upon violation

BUT how do you deal with violations?

You cannot change the smart contract code!

When something goes wrong: Recovery action
Then, how to: Fix the code

Recovery

Immutability is not new

Other areas such as financial transactions already deal with immutability
* draw inspiration from existing work
(Colombo 2012)

‘Checkpointing’ in Ethereum

Ethereum natively supports checkpointing at the granularity of a
function/transaction

If a violation is detected, reverting to initial state can be an option

This is useful but very coarse grained

Fine-grained checkpointing example

What if, you want to undo the transfer but keep the fee

Fine-grained checkpointing example

What if, you want to undo the transfer but keep the fee

Named
checkpoints

RV with checkpointing

Compensations

Not all actions can be simply rolled back (as if they never happened)

At times preferable to run a “counter-action” - compensation

Compensations example

Fixing code

Fixing smart contract code

Once violation is detected (through RV) how can we fix the code for good?

RV can help again...

Specification-oriented approach

1. Expose an interface of the contract
2. Pass interface calls to the current implementation (can be updated)
3. Instrument implementation to ensure specification is adhered to

ContractLarva

https://github.com/gordonpace/contractLarva

Smart contracts pose new challenges due to their immutability:
Recovery
Fixing code

Compensations can provide flexible yet automated recovery

RV can provide assurance that specification is respected even after code
updates

Conclusion

If a smart contract is doing something wrong, it’ll keep doing so forever
(bug, illegalities)

Need for More Software Assurances

Testing

Static
Verification

Run-time
Verification

Compile/Deploy
Time

Run-time

If a smart contract is doing something wrong, it’ll keep doing so forever
(bug, illegalities)

Need for More Software Assurances

Testing

Static
Verification

Run-time
Verification

Compile/Deploy
Time

Run-time

Is this good enough?
- Static verification and RV are as good as the

specification

Proxy calls?
Trade-offs? What guarantees are Users agreeing to?
Can ContractLarva-like specifications help here?

More testing?
More eyes?

Contact Us

joshua.ellul@um.edu.mtJoshua Ellul

christian.colombo@um.edu.mtChristian Colombo

gordon.pace@um.edu.mtGordon Pace

