
1/70

Monitoring Smart Contracts:
ContractLarva and Open Challenges

Beyond

Shaun Azzopardi, Joshua Ellul, Gordon J. Pace

Department of Computer Science, Centre for Distributed Ledger Technologies,
University of Malta

November 2018

2/70

CONTRACTLARVA

3/70

Motivation for analysis of Smart Contracts

I Smart contracts deal with money and have been the
subject of many high-profile vulnerabilities.

I Smart contracts are not contracts: they specify the
how not what should or can happen.

I Analysis to point out potential misuse of the
language.

I Analysis for checking compliance to a contract.

3/70

Motivation for analysis of Smart Contracts

I Smart contracts deal with money and have been the
subject of many high-profile vulnerabilities.

I Smart contracts are not contracts: they specify the
how not what should or can happen.

I Analysis to point out potential misuse of the
language.

I Analysis for checking compliance to a contract.

3/70

Motivation for analysis of Smart Contracts

I Smart contracts deal with money and have been the
subject of many high-profile vulnerabilities.

I Smart contracts are not contracts: they specify the
how not what should or can happen.

I Analysis to point out potential misuse of the
language.

I Analysis for checking compliance to a contract.

3/70

Motivation for analysis of Smart Contracts

I Smart contracts deal with money and have been the
subject of many high-profile vulnerabilities.

I Smart contracts are not contracts: they specify the
how not what should or can happen.

I Analysis to point out potential misuse of the
language.

I Analysis for checking compliance to a contract.

4/70

What is the context for analysis?

The smart contract concrete code.

5/70

What is the context for analysis?

Actor
The smart contract concrete code + the interaction of the
user.

6/70

What is the context for analysis?

Actor

Blockchain Address Space
The smart contract concrete code + the interaction of the
user + the rest of the blockchain.

7/70

What kind of analysis is ideal?

I Pre-deployment: Ideal, certifies correctness with
respect to specification.

But difficult e.g.
state-explosion problems.

I Post-deployment: Costs gas, but precise.

7/70

What kind of analysis is ideal?

I Pre-deployment: Ideal, certifies correctness with
respect to specification.But difficult e.g.
state-explosion problems.

I Post-deployment: Costs gas, but precise.

8/70

State of pre-deployment analysis for
Ethereum

I In its infancy.
I Many code analysis tools with false positives and

false negatives, but also promising tools (e.g. KEVM).

I Our judgement:
I Static analysis can be useful, but imprecision means

we are not currently able to prove business logic
properties fully.

I Offline verification is hard, even with fully developed
tools analyses will not be able to prove some
properties for some programs.

I Our solution: RV.

8/70

State of pre-deployment analysis for
Ethereum

I In its infancy.
I Many code analysis tools with false positives and

false negatives, but also promising tools (e.g. KEVM).
I Our judgement:

I Static analysis can be useful, but imprecision means
we are not currently able to prove business logic
properties fully.

I Offline verification is hard, even with fully developed
tools analyses will not be able to prove some
properties for some programs.

I Our solution: RV.

8/70

State of pre-deployment analysis for
Ethereum

I In its infancy.
I Many code analysis tools with false positives and

false negatives, but also promising tools (e.g. KEVM).
I Our judgement:

I Static analysis can be useful, but imprecision means
we are not currently able to prove business logic
properties fully.

I Offline verification is hard, even with fully developed
tools analyses will not be able to prove some
properties for some programs.

I Our solution: RV.

8/70

State of pre-deployment analysis for
Ethereum

I In its infancy.
I Many code analysis tools with false positives and

false negatives, but also promising tools (e.g. KEVM).
I Our judgement:

I Static analysis can be useful, but imprecision means
we are not currently able to prove business logic
properties fully.

I Offline verification is hard, even with fully developed
tools analyses will not be able to prove some
properties for some programs.

I Our solution: RV.

9/70

The CONTRACTLARVA approach

I Runtime verification as a lightweight approach to
analysis.

I At the level of Solidity code.
I Specification language: Symbolic automata.

10/70

Workflow

Figure: Workflow using CONTRACTLARVA

CONTRACTLARVA can be used to:
I Check properties at runtime;
I Prevent bad behaviour at runtime; and
I Orchestrate the behaviour between different parties.

10/70

Workflow

Figure: Workflow using CONTRACTLARVA

CONTRACTLARVA can be used to:
I Check properties at runtime;
I Prevent bad behaviour at runtime; and
I Orchestrate the behaviour between different parties.

11/70

Runtime Points of Interest

I Control-flow triggers
I before: functionName(param)

1 modifier beforeEvent(uint param){
2 <transition-logic>
3 _; //function continues here
4 }

1 function functionName(uint param){
2 ...
3 }

11/70

Runtime Points of Interest

I Control-flow triggers
I before: functionName(param)

1 modifier beforeEvent(uint param){
2 <transition-logic>
3 _; //function continues here
4 }

1 function functionName(uint param){
2 ...
3 }

11/70

Runtime Points of Interest

I Control-flow triggers
I before: functionName(param)

1 modifier beforeEvent(uint param){
2 <transition-logic>
3 _; //function continues here
4 }

1 function functionName(uint param){
2 ...
3 }

12/70

Runtime Points of Interest

I Control-flow triggers
I before: functionName(param)

1 modifier beforeEvent(uint param){
2 <transition-logic>
3 _; //function continues here
4 }

1 function functionName(uint param)
beforeEvent(param){

2 ...
3 }

12/70

Runtime Points of Interest

I Control-flow triggers
I before: functionName(param)

1 modifier beforeEvent(uint param){
2 <transition-logic>
3 _; //function continues here
4 }

1 function functionName(uint param)
beforeEvent(param){

2 ...
3 }

12/70

Runtime Points of Interest

I Control-flow triggers
I before: functionName(param)

1 modifier beforeEvent(uint param){
2 <transition-logic>
3 _; //function continues here
4 }

1 function functionName(uint param)
beforeEvent(param){

2 ...
3 }

13/70

Runtime Points of Interest

I Control-flow triggers
I before: functionName(param)

1 modifier beforeEvent(uint param){
2 <transition-logic>
3 _; //function continues here
4 }

I after: functionName(param)

1 modifier afterEvent(uint param){
2 _; //function continues here
3 <transition-logic>
4 }

13/70

Runtime Points of Interest

I Control-flow triggers
I before: functionName(param)

1 modifier beforeEvent(uint param){
2 <transition-logic>
3 _; //function continues here
4 }

I after: functionName(param)

1 modifier afterEvent(uint param){
2 _; //function continues here
3 <transition-logic>
4 }

14/70

Runtime Points of Interest

I Data-flow triggers
I globalVar@(condition)

, e.g. event value@(value >
4) triggers upon the global variable value being
changed and value > 4 holding.

1 uint value;
2
3 function f(){
4 ...
5 value++;
6 }

14/70

Runtime Points of Interest

I Data-flow triggers
I globalVar@(condition), e.g. event value@(value >

4) triggers upon the global variable value being
changed and value > 4 holding.

1 uint value;
2
3 function f(){
4 ...
5 value++;
6 }

14/70

Runtime Points of Interest

I Data-flow triggers
I globalVar@(condition), e.g. event value@(value >

4) triggers upon the global variable value being
changed and value > 4 holding.

1 uint value;
2
3 function f(){
4 ...
5 value++;
6 }

15/70

Runtime Points of Interest

I Data-flow triggers
I globalVar@(condition), e.g. event value@(value >

4) triggers upon the global variable value being
changed and value > 4 holding.

1 uint value;
2
3 function f(){
4 ...
5 value++;
6 if(value > 4) valueChangeEvent();
7 }
8
9 function valueChangeEvent(){
10 <transition-logic>
11 }

16/70

Dynamic Event Automata

17/70

Dynamic Event Automata

DEA = 〈Q
Q − Explicit Monitoring States

status@(status==ContractStatus.Closed) |
payment <

min(minimumItems, delivered)*costPerItem

after:addr.transfer(amount) |
addr==seller &&

payment+ amount >= minimum*costPerItem;

after:deliveryMade(orderId) 7→
delivered += orders[orderId].orderSize;

after:addr.transfer(amount) |
addr==seller 7→ payment += amount;

18/70

Dynamic Event Automata

DEA = 〈Q,q0

q0 ∈ Q − Initial Explicit Monitoring States

start

status@(status==ContractStatus.Closed) |
payment <

min(minimumItems, delivered)*costPerItem

after:addr.transfer(amount) |
addr==seller &&

payment+ amount >= minimum*costPerItem;

after:deliveryMade(orderId) 7→
delivered += orders[orderId].orderSize;

after:addr.transfer(amount) |
addr==seller 7→ payment += amount;

19/70

Dynamic Event Automata

DEA = 〈Q,q0,B

B ⊆ Q − Bad States

start

status@(status==ContractStatus.Closed) |
payment <

min(minimumItems, delivered)*costPerItem

after:addr.transfer(amount) |
addr==seller &&

payment+ amount >= minimum*costPerItem;

after:deliveryMade(orderId) 7→
delivered += orders[orderId].orderSize;

after:addr.transfer(amount) |
addr==seller 7→ payment += amount;

20/70

Dynamic Event Automata

DEA = 〈Q,q0,B,A

A ⊆ Q − Accepting States

start

X

status@(status==ContractStatus.Closed) |
payment <

min(minimumItems, delivered)*costPerItem

after:addr.transfer(amount) |
addr==seller &&

payment+ amount >= minimum*costPerItem;

after:deliveryMade(orderId) 7→
delivered += orders[orderId].orderSize;

after:addr.transfer(amount) |
addr==seller 7→ payment += amount;

21/70

Dynamic Event Automata

DEA = 〈Q,q0,B,A, θ0

Θ - Symbolic Monitoring States
θ0 ∈ Θ− Initial Symbolic Monitoring State

uint delivered = 0;

start

X

status@(status==ContractStatus.Closed) |
payment <

min(minimumItems, delivered)*costPerItem

after:addr.transfer(amount) |
addr==seller &&

payment+ amount >= minimum*costPerItem;

after:deliveryMade(orderId) 7→
delivered += orders[orderId].orderSize;

after:addr.transfer(amount) |
addr==seller 7→ payment += amount;

22/70

Dynamic Event Automata
DEA = 〈Q,q0,B,A, θ0, t〉
Ω - Symbolic Smart Contract State
t ∈ Q × Σ× (Θ× Ω 7→ Bool)× (Θ× Ω 7→ Θ)×Q - Transitions

Condition Action

uint delivered = 0;

start

X

status@(status==ContractStatus.Closed) |
payment <

min(minimumItems, delivered)*costPerItem

after:addr.transfer(amount) |
addr==seller &&

payment+ amount >= minimum*costPerItem;

after:deliveryMade(orderId) 7→
delivered += orders[orderId].orderSize;

after:addr.transfer(amount)
| addr==seller

7→ payment += amount;

23/70

Dynamic Event Automata
DEA = 〈Q,q0,B,A, θ0, t〉
Ω - Symbolic Smart Contract State
t ∈ Q × Σ× (Θ× Ω 7→ Bool)× (Θ× Ω 7→ Θ)×Q - Transitions

Condition Action

uint delivered = 0;

start

X

status@(status==ContractStatus.Closed) |
payment <

min(minimumItems, delivered)*costPerItem

after:addr.transfer(amount) |
addr==seller &&

payment+ amount >= minimum*costPerItem;

after:deliveryMade(orderId) 7→
delivered += orders[orderId].orderSize;

after:addr.transfer(amount) |
addr==seller 7→ payment += amount;

24/70

Operational Semantics

Configurations: Q ×Θ (Explicit and Symbolic Monitor
State)

Transition Label: Σ× Ω (Event and Smart Contract State
Snapshot)

(q,e, c,a,q′) ∈ t c(θ, ω)

(q, θ)
e,ω−−→ (q′,a(θ))

q /∈ A ∪ B

(q, θ) 6e,ω−−→

(q, θ)
e,ω−−→ (q, θ)

q ∈ A ∪ B

(q, θ)
e,ω−−→ (q, θ)

24/70

Operational Semantics

Configurations: Q ×Θ (Explicit and Symbolic Monitor
State)

Transition Label: Σ× Ω (Event and Smart Contract State
Snapshot)

(q,e, c,a,q′) ∈ t c(θ, ω)

(q, θ)
e,ω−−→ (q′,a(θ))

q /∈ A ∪ B

(q, θ) 6e,ω−−→

(q, θ)
e,ω−−→ (q, θ)

q ∈ A ∪ B

(q, θ)
e,ω−−→ (q, θ)

24/70

Operational Semantics

Configurations: Q ×Θ (Explicit and Symbolic Monitor
State)

Transition Label: Σ× Ω (Event and Smart Contract State
Snapshot)

(q,e, c,a,q′) ∈ t c(θ, ω)

(q, θ)
e,ω−−→ (q′,a(θ))

q /∈ A ∪ B

(q, θ) 6e,ω−−→

(q, θ)
e,ω−−→ (q, θ)

q ∈ A ∪ B

(q, θ)
e,ω−−→ (q, θ)

24/70

Operational Semantics

Configurations: Q ×Θ (Explicit and Symbolic Monitor
State)

Transition Label: Σ× Ω (Event and Smart Contract State
Snapshot)

(q,e, c,a,q′) ∈ t c(θ, ω)

(q, θ)
e,ω−−→ (q′,a(θ))

q /∈ A ∪ B

(q, θ) 6e,ω−−→

(q, θ)
e,ω−−→ (q, θ)

q ∈ A ∪ B

(q, θ)
e,ω−−→ (q, θ)

24/70

Operational Semantics

Configurations: Q ×Θ (Explicit and Symbolic Monitor
State)

Transition Label: Σ× Ω (Event and Smart Contract State
Snapshot)

(q,e, c,a,q′) ∈ t c(θ, ω)

(q, θ)
e,ω−−→ (q′,a(θ))

q /∈ A ∪ B

(q, θ) 6e,ω−−→

(q, θ)
e,ω−−→ (q, θ)

q ∈ A ∪ B

(q, θ)
e,ω−−→ (q, θ)

25/70

Example Procurement Contract
The interface of a smart contract regulating procurement
in Solidity.

1 contract ProcurementContract {
2 enum Cont rac tSta tus {Open , Closed}
3 Cont rac tSta tus public s ta tus ;
4 mapping (uint16 => Order) public orders ;
5 . . .
6
7 function ProcurementContract (uint endDate , uint pr ice , uint

minimumItems ,
8 uint maximumItems) public { . . . }
9
10 function acceptProcurementContract () public { . . . }
11
12 function placeOrder (uint16 orderNumber , uint i temsOrdered ,
13 uint t imeOfDe l i ve ry) public { . . . }
14
15 function del iveryMade (uint16 orderNumber) public byBuyer { . . .

}
16
17 function te rm ina teCont rac t () public { . . . }
18 }

26/70

Example Procurement Contract
1. This contract is between 〈buyer-name〉, henceforth referred to as ‘the buyer’ and

〈seller-name〉, henceforth referred to as ‘the seller’. The contract will hold until
either party requests its termination.

2. The buyer is obliged to order at least 〈minimum-items〉, but no more than
〈maximum-items〉 items for a fixed price 〈price〉 before the termination of this
contract.

3. Notwithstanding clause 1, no request for termination will be accepted before
〈contract-end-date〉. Furthermore, the seller may not terminate the contract as
long as there are pending orders.

4. Upon enactment of this contract, the buyer is obliged to place the cost of the
minimum number of items to be ordered in escrow.

5. Upon placing an order, the buyer is obliged to ensure that there is enough
money in escrow to cover payment of all pending orders.

6. Upon termination of the contract, the seller is guaranteed to have received
payment covering the cost of the minimum number of items to be ordered unless
less than this amount is delivered, in which case the cost of the undelivered
items is not guaranteed.

7. Upon termination of the contract, any undelivered orders are automatically
cancelled, and the seller loses the right to receive payment for these orders.

Figure: A legal contract regulating a procurement process.

27/70

Example Procurement Contract
1. This contract is between 〈buyer-name〉, henceforth referred to as ‘the buyer’ and

〈seller-name〉, henceforth referred to as ‘the seller’. The contract will hold until
either party requests its termination.

2. The buyer is obliged to order at least 〈minimum-items〉, but no more than
〈maximum-items〉 items for a fixed price 〈price〉 before the termination of this
contract.

3. Notwithstanding clause 1, no request for termination will be accepted before
〈contract-end-date〉. Furthermore, the seller may not terminate the contract as
long as there are pending orders.

4. Upon enactment of this contract, the buyer is obliged to place the cost of
the minimum number of items to be ordered in escrow.

5. Upon placing an order, the buyer is obliged to ensure that there is enough
money in escrow to cover payment of all pending orders.

6. Upon termination of the contract, the seller is guaranteed to have received
payment covering the cost of the minimum number of items to be ordered
unless less than this amount is delivered, in which case the cost of the
undelivered items is not guaranteed.

7. Upon termination of the contract, any undelivered orders are automatically
cancelled, and the seller loses the right to receive payment for these orders.

Figure: A legal contract regulating a procurement process.

28/70

Example Procurement Contract

Upon enactment of this contract, the buyer is obliged to
place the cost of the minimum number of items to be
ordered in escrow.

start

X

addr.acceptContract() |
addr == buyer

msg.value < minimumItems*costPerItem

addr.acceptContract() |
addr == buyer

msg.value >= minimumItems*costPerItem

28/70

Example Procurement Contract

Upon enactment of this contract, the buyer is obliged to
place the cost of the minimum number of items to be
ordered in escrow.

start

X

addr.acceptContract() |
addr == buyer

msg.value < minimumItems*costPerItem

addr.acceptContract() |
addr == buyer

msg.value >= minimumItems*costPerItem

29/70

Example Procurement Contract

Upon termination of the contract, the seller is guaranteed
to have received payment covering the cost of the
minimum number of items to be ordered, unless less than
this amount is delivered, in which case the cost of the
undelivered items is not guaranteed.

30/70

Example Procurement Contract

Upon termination of the contract, the seller is guaranteed
to have received payment covering the cost of the
minimum number of items to be ordered, unless less
than this amount is delivered, in which case the cost of
the undelivered items is not guaranteed.

start

after:deliveryMade(orderId) 7→
delivered += orders[orderId].orderSize;

after:addr.transfer(amount) |
addr==seller 7→ payment += amount;

30/70

Example Procurement Contract

Upon termination of the contract, the seller is guaranteed
to have received payment covering the cost of the
minimum number of items to be ordered, unless less
than this amount is delivered, in which case the cost of
the undelivered items is not guaranteed.

start

after:deliveryMade(orderId) 7→
delivered += orders[orderId].orderSize;

after:addr.transfer(amount) |
addr==seller 7→ payment += amount;

31/70

Example Procurement Contract

Upon termination of the contract, the seller is guaranteed
to have received payment covering the cost of the
minimum number of items to be ordered, unless less
than this amount is delivered, in which case the cost of
the undelivered items is not guaranteed.

start

X

status@(status==ContractStatus.Closed) |
payment <

min(minimumItems, delivered)*costPerItem

after:addr.transfer(amount) |
addr==seller &&

payment+ amount >= minimum*costPerItem;

after:deliveryMade(orderId) 7→
delivered += orders[orderId].orderSize;

after:addr.transfer(amount) |
addr==seller 7→ payment += amount;

32/70

Handling Violation

I Finding code error at runtime is too late, given
immutability.

I Choice 1: Re-deploy a corrected smart contract to
another address.
I But bad behaviour still happened..

I We want DEAs to be a failsafe.
I Choice 2: Enforce a reparation strategy.

32/70

Handling Violation

I Finding code error at runtime is too late, given
immutability.

I Choice 1: Re-deploy a corrected smart contract to
another address.

I But bad behaviour still happened..
I We want DEAs to be a failsafe.
I Choice 2: Enforce a reparation strategy.

32/70

Handling Violation

I Finding code error at runtime is too late, given
immutability.

I Choice 1: Re-deploy a corrected smart contract to
another address.
I But bad behaviour still happened..

I We want DEAs to be a failsafe.

I Choice 2: Enforce a reparation strategy.

32/70

Handling Violation

I Finding code error at runtime is too late, given
immutability.

I Choice 1: Re-deploy a corrected smart contract to
another address.
I But bad behaviour still happened..

I We want DEAs to be a failsafe.
I Choice 2: Enforce a reparation strategy.

33/70

Reparation Strategies - Reverting

1 violation {
2 revert();
3 }

A bad state is then never reached by any of the
transactions written to the blockchain.

34/70

Yet Another DAO Bug Solution

1 function withdraw(uint _val){
2 if(balance[msg.sender] >= _val){
3 msg.sender.call()(_val);
4 balance[msg.sender] -= _val;
5 }
6 }

1 uint noOfCalls = 0;
2 function () payable{
3 if(noOfCalls < 2){
4 noOfCalls++;
5 msg.sender.withdraw(50);
6 }
7 }

34/70

Yet Another DAO Bug Solution

1 function withdraw(uint _val){
2 if(balance[msg.sender] >= _val){
3 msg.sender.call()(_val);
4 balance[msg.sender] -= _val;
5 }
6 }

1 uint noOfCalls = 0;
2 function () payable{
3 if(noOfCalls < 2){
4 noOfCalls++;
5 msg.sender.withdraw(50);
6 }
7 }

35/70

Yet Another DAO Bug Solution

1 function withdraw(uint _val){ //_val = 50
2 if(balance[msg.sender] >= _val){ // balance[msg.

sender] = 50
3 msg.sender.call()(_val);
4 balance[msg.sender] -= _val;
5 }
6 }

1 uint noOfCalls = 0;
2 function () payable{
3 if(noOfCalls < 2){
4 noOfCalls++;
5 msg.sender.withdraw(50);
6 }
7 }

36/70

Yet Another DAO Bug Solution

1 function withdraw(uint _val){ //_val = 50
2 if(balance[msg.sender] >= _val){ // balance[msg.

sender] = 50
3 msg.sender.call()(_val);
4 balance[msg.sender] -= _val;
5 }
6 }

1 uint noOfCalls = 0;
2 function () payable{
3 if(noOfCalls < 2){
4 noOfCalls++;
5 msg.sender.withdraw(50);
6 //this.balance = msg.value + 50;
7 }
8 }

37/70

Yet Another DAO Bug Solution

1 function withdraw(uint _val){
2 if(balance[msg.sender] >= _val){
3 msg.sender.call()(_val);
4 balance[msg.sender] -= _val;
5 }
6 }

start

X

after: withdraw(vall)

before: withdraw(val)
balance := this.balance

after: withdraw(val) |
this.balance != balance - val

after: withdraw(val) |
this.balance == balance - val

38/70

Yet Another DAO Bug Solution

1 function withdraw(uint _val){
2 if(balance[msg.sender] >= _val){
3 msg.sender.call()(_val);
4 balance[msg.sender] -= _val;
5 }
6 }

Program state: {this.balance = 60;}

Monitor state: {balance = 0; val = 0}

start

X

after: withdraw(vall)

before: withdraw(val)
balance := this.balance

after: withdraw(val) |
this.balance != balance - val

after: withdraw(val) |
this.balance == balance - val

39/70

Yet Another DAO Bug Solution

1 function withdraw(uint val){
2 if(balance[msg.sender] >= _val){
3 msg.sender.call()(_val);
4 balance[msg.sender] -= _val;
5 }
6 }

Program state: {this.balance = 60;} Event: withdraw(20)

Monitor state: {balance = 60; val = 20}

start

X

after: withdraw(vall)

before: withdraw(val)
balance := this.balance

after: withdraw(val) |
this.balance != balance - val

after: withdraw(val) |
this.balance == balance - val

40/70

Yet Another DAO Bug Solution

1 function withdraw(uint _val){
2 if(balance[msg.sender] >= val){
3 msg.sender.call()(_val);
4 balance[msg.sender] -= _val;
5 }
6 }

Program state: {this.balance = 60;}

Monitor state: {balance = 60; val = 20;}

start

X

after: withdraw(vall)

before: withdraw(val)
balance := this.balance

after: withdraw(val) |
this.balance != balance - val

after: withdraw(val) |
this.balance == balance - val

41/70

Yet Another DAO Bug Solution

1 function withdraw(uint _val){
2 if(balance[msg.sender] >= _val){
3 msg.sender.call()(val);
4 balance[msg.sender] -= _val;
5 }
6 }

Program state: {this.balance = 60;}

Monitor state: {balance = 60; val = 20;}

start

X

after: withdraw(vall)

before: withdraw(val)
balance := this.balance

after: withdraw(val) |
this.balance != balance - val

after: withdraw(val) |
this.balance == balance - val

42/70

Yet Another DAO Bug Solution

1 function withdraw(uint val){
2 if(balance[msg.sender] >= _val){
3 msg.sender.call()(_val);
4 balance[msg.sender] -= _val;
5 }
6 }

Program state: {this.balance = 60;} Event: withdraw(50)

Monitor state: {balance = 60; val = 20;}

start

X

after: withdraw(vall)

before: withdraw(val)
balance := this.balance

after: withdraw(val) |
this.balance != balance - val

after: withdraw(val) |
this.balance == balance - val

43/70

Yet Another DAO Bug Solution

1 function withdraw(uint _val){
2 if(balance[msg.sender] >= _val){
3 msg.sender.call()(val);
4 balance[msg.sender] -= _val;
5 }
6 }

Program state: {this.balance = 60;}

Monitor state: {balance = 60; val = 20;}

start

X

after: withdraw(vall)

before: withdraw(val)
balance := this.balance

after: withdraw(val) |
this.balance != balance - val

after: withdraw(val) |
this.balance == balance - val

44/70

Yet Another DAO Bug Solution

1 function withdraw(uint _val){
2 if(balance[msg.sender] >= _val){
3 msg.sender.call()(_val);
4 balance[msg.sender] -= val;
5 }
6 }

Program state: {this.balance = 40;}

Monitor state: {balance = 60; val = 20;}

start

X

after: withdraw(vall)

before: withdraw(val)
balance := this.balance

after: withdraw(val) |
this.balance != balance - val

after: withdraw(val) |
this.balance == balance - val

45/70

Yet Another DAO Bug Solution

1 function withdraw(uint _val){
2 if(balance[msg.sender] >= _val){
3 msg.sender.call()(_val);
4 balance[msg.sender] -= val;
5 }
6 }

Program state: {this.balance = 40;}

Monitor state: {balance = 60; val = 20;}

start

X

after: withdraw(vall)

before: withdraw(val)
balance := this.balance

after: withdraw(val) |
this.balance != balance - val

after: withdraw(val) |
this.balance == balance - val

46/70

Reparation Strategies - Legal Contract
Reparations

Upon a violation by the seller, the funds in escrow are
released to the buyer:

1 violation {
2 selfdestruct(partyB);
3 }

We can do this also for accepting states, e.g. distributing the escrow funds to both the

buyer and seller.

47/70

Handling Violation

I Finding code error at runtime is too late, given
immutability.

I Choice 1: Re-deploy a corrected smart contract to
another address.
I But bad behaviour still happened..

I We want DEAs to be a failsafe.
I Choice 2: Enforce a reparation strategy.

I But code errors should ideally be repaired..
I Choice 3: Allow mutability.

47/70

Handling Violation

I Finding code error at runtime is too late, given
immutability.

I Choice 1: Re-deploy a corrected smart contract to
another address.

I But bad behaviour still happened..
I We want DEAs to be a failsafe.
I Choice 2: Enforce a reparation strategy.

I But code errors should ideally be repaired..
I Choice 3: Allow mutability.

47/70

Handling Violation

I Finding code error at runtime is too late, given
immutability.

I Choice 1: Re-deploy a corrected smart contract to
another address.
I But bad behaviour still happened..

I We want DEAs to be a failsafe.

I Choice 2: Enforce a reparation strategy.
I But code errors should ideally be repaired..

I Choice 3: Allow mutability.

47/70

Handling Violation

I Finding code error at runtime is too late, given
immutability.

I Choice 1: Re-deploy a corrected smart contract to
another address.
I But bad behaviour still happened..

I We want DEAs to be a failsafe.
I Choice 2: Enforce a reparation strategy.

I But code errors should ideally be repaired..
I Choice 3: Allow mutability.

47/70

Handling Violation

I Finding code error at runtime is too late, given
immutability.

I Choice 1: Re-deploy a corrected smart contract to
another address.
I But bad behaviour still happened..

I We want DEAs to be a failsafe.
I Choice 2: Enforce a reparation strategy.

I But code errors should ideally be repaired..
I Choice 3: Allow mutability.

48/70

Safely Mutable Smart Contracts

49/70

Mutable Smart Contracts

I The community has found a way around immutability..

50/70

Hub-Spoke / Proxy Pattern

v1

51/70

Hub-Spoke / Proxy Pattern

msg v1

Proxy
msg

52/70

Hub-Spoke / Proxy Pattern

msg v1

Proxy
msg

v2

53/70

Hub-Spoke / Proxy Pattern

v1

Proxy
msg

v2

54/70

Hub-Spoke / Proxy Pattern

msg
v1

Proxy
msg

v2

55/70

Hub-Spoke / Proxy Pattern

msg
Proxy

msg

v2

56/70

Secured Hub-Spoke / Proxy Pattern

Monitor

msg
Proxy

msg

v2

57/70

Advantages and Disadvantages

I Advantages
I Keeping the same address.

I Misbehaviour can be dealt with by disconnection.
I Maintainability.
I Certification.

I Disadvantages + Limitations
I Extra gas to deploy interface/proxy.
I Extra gas for each transaction.
I Only safety properties.

57/70

Advantages and Disadvantages

I Advantages
I Keeping the same address.
I Misbehaviour can be dealt with by disconnection.

I Maintainability.
I Certification.

I Disadvantages + Limitations
I Extra gas to deploy interface/proxy.
I Extra gas for each transaction.
I Only safety properties.

57/70

Advantages and Disadvantages

I Advantages
I Keeping the same address.
I Misbehaviour can be dealt with by disconnection.
I Maintainability.

I Certification.
I Disadvantages + Limitations

I Extra gas to deploy interface/proxy.
I Extra gas for each transaction.
I Only safety properties.

57/70

Advantages and Disadvantages

I Advantages
I Keeping the same address.
I Misbehaviour can be dealt with by disconnection.
I Maintainability.
I Certification.

I Disadvantages + Limitations
I Extra gas to deploy interface/proxy.
I Extra gas for each transaction.
I Only safety properties.

57/70

Advantages and Disadvantages

I Advantages
I Keeping the same address.
I Misbehaviour can be dealt with by disconnection.
I Maintainability.
I Certification.

I Disadvantages + Limitations
I Extra gas to deploy interface/proxy.
I Extra gas for each transaction.
I Only safety properties.

57/70

Advantages and Disadvantages

I Advantages
I Keeping the same address.
I Misbehaviour can be dealt with by disconnection.
I Maintainability.
I Certification.

I Disadvantages + Limitations
I Extra gas to deploy interface/proxy.

I Extra gas for each transaction.
I Only safety properties.

57/70

Advantages and Disadvantages

I Advantages
I Keeping the same address.
I Misbehaviour can be dealt with by disconnection.
I Maintainability.
I Certification.

I Disadvantages + Limitations
I Extra gas to deploy interface/proxy.
I Extra gas for each transaction.

I Only safety properties.

57/70

Advantages and Disadvantages

I Advantages
I Keeping the same address.
I Misbehaviour can be dealt with by disconnection.
I Maintainability.
I Certification.

I Disadvantages + Limitations
I Extra gas to deploy interface/proxy.
I Extra gas for each transaction.
I Only safety properties.

58/70

Case Study - ERC20 Token Standard

I Used by more than 100,000 smart contracts
I Many other similar token standards, where our

approach is applicable with a few modifications.

59/70

Case Study - ERC20 Interface

1 in ter face ERC20 {
2 function t o t a lSupp l y () public constant returns (uint) ;
3
4 function balanceOf (address tokenOwner) public constant returns

(uint balance) ;
5
6 function al lowance (address tokenOwner , address spender) public

constant returns (uint remaining) ;
7
8 function t r a n s f e r (address to , uint tokens) public returns (

bool success) ;
9
10 function approve (address spender , uint tokens) public returns

(bool success) ;
11
12 function t ransferFrom (address from , address to , uint tokens)

public returns (bool success) ;
13 }

60/70

Case Study - ERC20 - Adding
Mutability/Maintainability

1 ERC20 implementation;
2
3 function totalSupply() constant returns (uint){
4 return implementation.totalSupply();
5 }

1 address owner;
2
3 function updateImplementation(address

newImplementation) public {
4 require(msg.sender == owner);
5 implementation = ERC20(newImplementation);
6 }

60/70

Case Study - ERC20 - Adding
Mutability/Maintainability

1 ERC20 implementation;
2
3 function totalSupply() constant returns (uint){
4 return implementation.totalSupply();
5 }

1 address owner;
2
3 function updateImplementation(address

newImplementation) public {
4 require(msg.sender == owner);
5 implementation = ERC20(newImplementation);
6 }

61/70

Case Study - ERC20 - Securing Versioning
with DEAs

start

before: transfer(to, tokens) 7→
preFrom = balanceOf(msg.sender);
preTo = balanceOf(to);

after: transfer(to, tokens) |
preFrom >= tokens &&

(balanceOf(msg.sender)
!= preFrom - tokens ||

balanceOf(to) != preTo - tokens)

after: transfer(to, tokens) | *

after: transfer(to, tokens) |
preFrom < tokens &&

(balanceOf(msg.sender) != preFrom ||
balanceOf(to) != preTo)

Calling transfer (i) moves the amount requested if there are enough funds; but (ii)
has no effect otherwise.

Assume balanceOf(1) == 0 and that 0.transfer(1, val) means address 0 transfers val
to 1, then:

I 0.transfer(1, 100); 1.transfer(2, 101); is violating
I 0.transfer(1, 100); 1.transfer(2, 100); is satisfying

(This property and the transferFrom property are vulnerable to re-entrancy, and thus
re-entrancy to transfer and transferFrom must be disallowed at the middle state.
This can be avoided if we match a function before and after to the same function call.)

61/70

Case Study - ERC20 - Securing Versioning
with DEAs

start

before: transfer(to, tokens) 7→
preFrom = balanceOf(msg.sender);
preTo = balanceOf(to);

after: transfer(to, tokens) |
preFrom >= tokens &&

(balanceOf(msg.sender)
!= preFrom - tokens ||

balanceOf(to) != preTo - tokens)

after: transfer(to, tokens) | *

after: transfer(to, tokens) |
preFrom < tokens &&

(balanceOf(msg.sender) != preFrom ||
balanceOf(to) != preTo)

Calling transfer (i) moves the amount requested if there are enough funds; but (ii)
has no effect otherwise.
Assume balanceOf(1) == 0 and that 0.transfer(1, val) means address 0 transfers val
to 1, then:

I 0.transfer(1, 100); 1.transfer(2, 101); is violating
I 0.transfer(1, 100); 1.transfer(2, 100); is satisfying

(This property and the transferFrom property are vulnerable to re-entrancy, and thus
re-entrancy to transfer and transferFrom must be disallowed at the middle state.
This can be avoided if we match a function before and after to the same function call.)

61/70

Case Study - ERC20 - Securing Versioning
with DEAs

start

before: transfer(to, tokens) 7→
preFrom = balanceOf(msg.sender);
preTo = balanceOf(to);

after: transfer(to, tokens) |
preFrom >= tokens &&

(balanceOf(msg.sender)
!= preFrom - tokens ||

balanceOf(to) != preTo - tokens)

after: transfer(to, tokens) | *

after: transfer(to, tokens) |
preFrom < tokens &&

(balanceOf(msg.sender) != preFrom ||
balanceOf(to) != preTo)

Calling transfer (i) moves the amount requested if there are enough funds; but (ii)
has no effect otherwise.
Assume balanceOf(1) == 0 and that 0.transfer(1, val) means address 0 transfers val
to 1, then:

I 0.transfer(1, 100); 1.transfer(2, 101); is violating

I 0.transfer(1, 100); 1.transfer(2, 100); is satisfying

(This property and the transferFrom property are vulnerable to re-entrancy, and thus
re-entrancy to transfer and transferFrom must be disallowed at the middle state.
This can be avoided if we match a function before and after to the same function call.)

61/70

Case Study - ERC20 - Securing Versioning
with DEAs

start

before: transfer(to, tokens) 7→
preFrom = balanceOf(msg.sender);
preTo = balanceOf(to);

after: transfer(to, tokens) |
preFrom >= tokens &&

(balanceOf(msg.sender)
!= preFrom - tokens ||

balanceOf(to) != preTo - tokens)

after: transfer(to, tokens) | *

after: transfer(to, tokens) |
preFrom < tokens &&

(balanceOf(msg.sender) != preFrom ||
balanceOf(to) != preTo)

Calling transfer (i) moves the amount requested if there are enough funds; but (ii)
has no effect otherwise.
Assume balanceOf(1) == 0 and that 0.transfer(1, val) means address 0 transfers val
to 1, then:

I 0.transfer(1, 100); 1.transfer(2, 101); is violating
I 0.transfer(1, 100); 1.transfer(2, 100); is satisfying

(This property and the transferFrom property are vulnerable to re-entrancy, and thus
re-entrancy to transfer and transferFrom must be disallowed at the middle state.
This can be avoided if we match a function before and after to the same function call.)

62/70

Case Study - ERC20 - Securing Versioning
with DEAs

start

before: approve(spender, tokens)

after: approve(spender, tokens) |
allowance(msg.sender, spender) != tokens

after: approve(spender, tokens) |
allowance(msg.sender, spender) == tokens

Calling approve changes the allowance to the specified amount.

63/70

Case Study - ERC20 - Securing Versioning
with DEAs

start

before:
transferFrom(from, to, tokens) 7→

preFrom = balanceOf(from);
preTo = balanceOf(to);
preAllowance = allowance(msg.sender, from);

after: transferFrom(from, to, tokens) |
(preFrom >= tokens &&
preAllowance >= tokens) &&

(balanceOf(from) != preFrom - tokens ||
balanceOf(to) != preTo - tokens ||
allowance(msg.sender, from)

!= preAllowance - tokens))

after: transferFrom(from, to, tokens) | *

after: transferFrom(from, to, tokens) |
(preFrom < tokens ||

preAllowance < tokens) &&
(balanceOf(from) != preFrom ||
balanceOf(to) != preTo ||
allowance(msg.sender, from) != preAllowance))

Calling the transferFrom (i) moves the amount requested and reduces the
allowance if there are enough funds and the caller has enough of an allowance; but (ii)
has no effect otherwise.
Assume balanceOf(1) == 0 and that 0.transfer(1, val) means address 0 transfers val
to 1, then:

I 0.approve(1, 100); 1.transferFrom(0, 1, 50); is satisfying
I but 0.approve(1, 100); 1.transferFrom(0, 1, 50); 1.transferFrom(0, 1, 51); is

violating

63/70

Case Study - ERC20 - Securing Versioning
with DEAs

start

before:
transferFrom(from, to, tokens) 7→

preFrom = balanceOf(from);
preTo = balanceOf(to);
preAllowance = allowance(msg.sender, from);

after: transferFrom(from, to, tokens) |
(preFrom >= tokens &&
preAllowance >= tokens) &&

(balanceOf(from) != preFrom - tokens ||
balanceOf(to) != preTo - tokens ||
allowance(msg.sender, from)

!= preAllowance - tokens))

after: transferFrom(from, to, tokens) | *

after: transferFrom(from, to, tokens) |
(preFrom < tokens ||

preAllowance < tokens) &&
(balanceOf(from) != preFrom ||
balanceOf(to) != preTo ||
allowance(msg.sender, from) != preAllowance))

Calling the transferFrom (i) moves the amount requested and reduces the
allowance if there are enough funds and the caller has enough of an allowance; but (ii)
has no effect otherwise.
Assume balanceOf(1) == 0 and that 0.transfer(1, val) means address 0 transfers val
to 1, then:

I 0.approve(1, 100); 1.transferFrom(0, 1, 50); is satisfying

I but 0.approve(1, 100); 1.transferFrom(0, 1, 50); 1.transferFrom(0, 1, 51); is
violating

63/70

Case Study - ERC20 - Securing Versioning
with DEAs

start

before:
transferFrom(from, to, tokens) 7→

preFrom = balanceOf(from);
preTo = balanceOf(to);
preAllowance = allowance(msg.sender, from);

after: transferFrom(from, to, tokens) |
(preFrom >= tokens &&
preAllowance >= tokens) &&

(balanceOf(from) != preFrom - tokens ||
balanceOf(to) != preTo - tokens ||
allowance(msg.sender, from)

!= preAllowance - tokens))

after: transferFrom(from, to, tokens) | *

after: transferFrom(from, to, tokens) |
(preFrom < tokens ||

preAllowance < tokens) &&
(balanceOf(from) != preFrom ||
balanceOf(to) != preTo ||
allowance(msg.sender, from) != preAllowance))

Calling the transferFrom (i) moves the amount requested and reduces the
allowance if there are enough funds and the caller has enough of an allowance; but (ii)
has no effect otherwise.
Assume balanceOf(1) == 0 and that 0.transfer(1, val) means address 0 transfers val
to 1, then:

I 0.approve(1, 100); 1.transferFrom(0, 1, 50); is satisfying
I but 0.approve(1, 100); 1.transferFrom(0, 1, 50); 1.transferFrom(0, 1, 51); is

violating

64/70

Measuring Overheads

Overheads when adding Overheads when adding Total
only versioning behavioural contracts

Transactions Gas Units Percentage Gas Units Percentage Gas Units Percentage
Setting up 1711984 65.11% 973794 37.03% 2685778 102.14%
totalSupply 4186 18.24% 734 3.2% 4920 21.44%
balanceOf 4494 18.71% 734 3.06% 5228 21.77%
allowance 4678 18.00% 756 2.91% 5434 20.91%
transferFrom 5324 5.78% 93320 101.34% 98644 107.12%
transfer 35362 71.47% 76152 153.92% 111514 225.39%
approve 5668 8.39% 43462 64.31% 49130 72.70%

65/70

Issues with Storage State

I Behavioural contracts only check/control behaviour at
the start and end of function call.

I Owner of implementation can still change the state in
between function calls.

I Solutions
1 Keep storage in separate smart contract, only

allowing it to be called as part of a function call from
the proxy.

2 Keep track of state using DEAs.

65/70

Issues with Storage State

I Behavioural contracts only check/control behaviour at
the start and end of function call.

I Owner of implementation can still change the state in
between function calls.

I Solutions
1 Keep storage in separate smart contract, only

allowing it to be called as part of a function call from
the proxy.

2 Keep track of state using DEAs.

65/70

Issues with Storage State

I Behavioural contracts only check/control behaviour at
the start and end of function call.

I Owner of implementation can still change the state in
between function calls.

I Solutions
1 Keep storage in separate smart contract, only

allowing it to be called as part of a function call from
the proxy.

2 Keep track of state using DEAs.

65/70

Issues with Storage State

I Behavioural contracts only check/control behaviour at
the start and end of function call.

I Owner of implementation can still change the state in
between function calls.

I Solutions
1 Keep storage in separate smart contract, only

allowing it to be called as part of a function call from
the proxy.

2 Keep track of state using DEAs.

66/70

Open Challenges

67/70

Failure

I It would be interesting to write properties about event
failures

I e.g. if I have a (legal) permission to perform an action
then the action failing (because of another party)
means by permission has been violated.

I We are experimenting with this, and developed a
deontic logic that handles these failed attempts at an
action (see paper in Jurix 2018).

67/70

Failure

I It would be interesting to write properties about event
failures

I e.g. if I have a (legal) permission to perform an action
then the action failing (because of another party)
means by permission has been violated.

I We are experimenting with this, and developed a
deontic logic that handles these failed attempts at an
action (see paper in Jurix 2018).

68/70

Overheads

I Overheads are substantial proportionally with
monitoring..

I Low cost of gas makes monitoring viable, but the
value of ether can be variable.

I Possible solution: Combining static analysis to prove
as much as possible of a property before
instrumentation.

68/70

Overheads

I Overheads are substantial proportionally with
monitoring..

I Low cost of gas makes monitoring viable, but the
value of ether can be variable.

I Possible solution: Combining static analysis to prove
as much as possible of a property before
instrumentation.

68/70

Overheads

I Overheads are substantial proportionally with
monitoring..

I Low cost of gas makes monitoring viable, but the
value of ether can be variable.

I Possible solution: Combining static analysis to prove
as much as possible of a property before
instrumentation.

69/70

Monitorability and Observability

I Variable change events can be hidden by delegate
calls.

I CONTRACTLARVA instruments one smart contract,
but we may interested in observing the behaviour of
others.

1 We can create a monitor smart contract that receives
events from multiple smart contracts

2 Add analysis to EVM execution, allowing a block to be
written only if it respects a certain property.

70/70

Conclusions

I We have presented CONTRACTLARVA, a tool for
monitoring smart contracts on the Ethereum
blockchain.

I www.github.com/gordonpace/contractlarva

I Allows us to verify program properties, and
orchestrate user behaviour.

I Future Work: Applications to IoT, observing failure,
parametrized monitors (too expensive?), monitors
over different smart contracts, and combinations with
static analysis.

www.github.com/gordonpace/contractlarva

	ContractLarva
	Safely Mutable Smart Contracts
	Open Challenges

