
Regular Linear Temporal Logic with Past

César Sánchez1,2 and Martin Leucker3

1 Madrid Institute for Advanced Studies (IMDEA Software), Spain
2 Spanish Council for Scientific Research (CSIC), Spain

3 Technische Universität München, Germany

Abstract. This paper upgrades Regular Linear Temporal Logic (RLTL)
with past operators and complementation. RLTL is a temporal logic that
extends the expressive power of linear temporal logic (LTL) to all ω-
regular languages. The syntax of RLTL consists of an algebraic signature
from which expressions are built. In particular, RLTL does not need or
expose fix-point binders (like linear time μ-calculus), or automata to
build and instantiate operators (like ETL∗).

Past operators are easily introduced in RLTL via a single previous-step
operator for basic state formulas. The satisfiability and model checking
problems for RLTL are PSPACE-complete, which is optimal for exten-
sions of LTL. This result is shown using a novel linear size translation of
RLTL expressions into 2-way alternating parity automata on words. Un-
like previous automata-theoretic approaches to LTL, this construction is
compositional (bottom-up). As alternating parity automata can easily be
complemented, the treatment of negation is simple and does not require
an upfront transformation of formulas into any normal form.

1 Introduction

In his seminal paper [23], Pnueli proposed Linear temporal logic (LTL) [20] as
a specification language for reactive systems. LTL is a modal logic over a linear
frame, whose formulas express properties of infinite traces using two future modal-
ities: nexttime and until. Although extending LTL with past operators (e.g., [12]),
does not increase its expressive power [8], it has been widely noticed that it caters
for specifications that are shorter, easier and more intuitive [19]. For example,[17]
shows that there is a family of LTL formulas with past operators whose equiv-
alent future only formulas are exponentially larger. Likewise, recalling the clas-
sical example from [27], the specification that Every alarm is due to a fault can
easily be expressed by �(alarm → fault), where � means globally/always and
means once in the past. An equivalent formulation using only future operators
is ¬(¬fault U (alarm ∧ ¬fault)), which is, however, less intuitive. The problems
of satisfiability and model checking are PSPACE-complete [17] for LTL with and
without past operators, so the past does not seem to harm in terms of complexity.

With regards to expressivity, Wolper [32] showed that LTL cannot express all
ω-regular properties. In particular, it cannot express the property “p holds only
at even moments”. In spite of being a useful specification language, this lack
of expressivity seems to surface in practice [25]. To alleviate the expressivity

G. Barthe and M. Hermenegildo (Eds.): VMCAI 2010, LNCS 5944, pp. 295–311, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

296 C. Sánchez and M. Leucker

problem, Wolper suggested extended temporal logic (ETL) in which new opera-
tors are defined using automata, and instantiated using language composition.
ETL was later extended [31,14] to different kinds of automata. The main draw-
back of these logics is that, in order to obtain the full expressivity, an infinite
number of operators is needed. Among other consequences for its practical us-
age, this implies that ETL is not algebraic. An alternative approach consists of
adapting the modal μ-calculus [6,13] to the linear setting (νTL) [1]. Here, the
full expressivity is obtained by the use of fix point operators. In νTL one needs
to specify recursive equations to describe temporal properties, since the only
modality is nexttime, which tends to make typical specifications cumbersome.

At the same time, some studies [3] point out that regular expressions are very
convenient in addition to LTL in formal specifications, partly because practi-
tioners are familiar with regular expressions, partly because specifications are
more natural. Even though every ground regular expression can be translated
into a νTL expression [15], the concatenation operator cannot be directly rep-
resented in νTL. No context of νTL can capture concatenation. Extending νTL
with concatenation leads to fix point logic with chop (FLC) [22] that allows ex-
pressing non-regular languages, but at the price of undecidable satisfiability and
equivalence problems.

Some dynamic logics also try to merge regular expressions (for the program
part) with LTL (for the action part), for example, Regular Process Logic [9].
However, the satisfiability problem is non-elementary because one can com-
bine arbitrarily negations and regular operators. Dynamic linear-temporal logic
DLTL [10] (see also [16]) keeps the satisfiability problem in PSPACE, but re-
stricts the use of regular expressions only as a generalization of the until operator.
The until operator pUα q in DLTL is equipped with a regular expression (α) and
establishes that the until part (q) must be fulfilled at some position in which α
matches, while the first argument p must hold at all positions in between. It is
unclear then how to extend DLTL with past operators. The approach of defining
past operators using past regular expressions, presented in Section 2 for RLTL
cannot be used for DLTL since the notion of “in-between” is not clear anymore.
Another extension of LTL to regular expressions is the logic RELTL from [4].
However, this logic does not include past operators or negation. Moreover, it
requires a translation into positive normal form for the LTL part that makes
this translation not compositional. Also, the interaction of regular expressions
and linear temporal logic in RELTL is restricted to prefixes, while in RLTL we
consider more sophisticated combinations.

The popularity of regular expressions led also to their inclusion in the indus-
try standard specification language PSL [7]. While decision procedures and their
complexities for full PSL are still an area of active research, [16] shows that the
fragment of PSL that contains LTL and semi-extended regular expressions, even
though it allows more succinct specifications, leads to EXPSPACE-complete satis-
fiability and model checking problems, which may limit its practical applicability.

In this paper, we upgrade Regular Linear Temporal Logic (RLTL) [18] with
past operators. RLTL is a temporal logic that extends the expressive power of

Regular Linear Temporal Logic with Past 297

LTL to all ω-regular languages. It has an algebraic signature and fuses LTL and
regular expressions. To enrich RLTL by past operators, it suffices, as we show
here, to simply add basic past expressions, which allow the formulation of past
regular expressions. Intuitively, regular expressions with past expressions can
define finite segments of infinite strings in an arbitrary forward and backward
manner. The main contribution of RLTL comes perhaps from the simplicity of
the novel power operators, which allow the definition of most other temporal
operators and, as we show here, the treatment of past and negation while avoid-
ing non-algebraic constructs like fix-points bindings or automata instantiations.
The power operators are the key to obtain compositionality without requiring
an upfront translation to positive normal forms.

To address satisfiability and model checking for RLTL, we follow the automata
theoretic approach, but need a more sophisticated translation than in [18] to cope
with the new operators. This novel linear size translation uses 2-way alternating
parity automata on words. Besides being useful for RLTL, this translation is
also interesting for plain LTL, as it is compositional (bottom-up) unlike previ-
ous automata-theoretic approaches to LTL. As alternating parity automata can
easily be complemented, the treatment of negation is simple and does not re-
quire an upfront transformation of formulas into positive or other normal form.
A notable exception is [26], which presents another compositional translation
from LTL, but this translation generates testers instead of automata.

Building on recent automata results [5], we show here that the satisfiabil-
ity and model checking problems for RLTL (with past) are PSPACE-complete,
which is optimal for extensions of LTL.

This paper is structured as follows. Section 2 introduces RLTL. Section 3
recalls the basic definitions of LTL with past, and presents the translation into
RLTL. Section 4 describes the translation from RLTL into automata. Finally,
Section 5 contains the conclusions. Due to space limitations some proofs are
missing, but they can be easily reconstructed.

2 Regular Linear Temporal Logic

We define regular linear temporal logic (RLTL) in two stages, similarly to PSL
or ForSpec. First, we present a variation of regular expressions enriched with
a simple past operator. Then we use these regular expressions to define regular
linear temporal logic as a language that describes sets of infinite words. The syn-
tax of each of these two formalisms consists of an algebraic signature containing
a finite collection of constructor symbols. The semantics is given by interpreting
these constructors. In particular, the language of RLTL contains no fix-point
operators.

2.1 Regular Expressions with Past

We first introduce a variation of regular expressions with a past operator to
describe finite segments of infinite words. The basic elements are basic expres-
sions, which are Boolean combinations of a finite set of elementary propositions,

298 C. Sánchez and M. Leucker

interpreted in a single state (or in a single action between two states). Each set
of propositions (or equivalently, each basic expression) can also be interpreted
as a symbol from a discrete alphabet Σ that includes true (for all propositions)
and false for the empty set or propositions.

Syntax. The language of regular expressions for finite words is given by the
following grammar:

α ::= α+ α
∣∣ α ; α

∣∣ α ∗ α ∣∣ p
∣∣ −p

where p ranges over basic expressions. The intended interpretation of the oper-
ators +, ; and ∗ are the standard union, concatenation and binary Kleene-star.
There is one expression of the form −p for each basic expression p. Informally,
p indicates that the next “action”, or input symbol, satisfies the basic expres-
sion p; similarly, −p establishes that the previous action or symbol satisfies p.
Expressions of the form −p are called basic past expressions. Regular expressions
are defined using an algebraic signature (symbols like p and −p are constants,
and +, ; and ∗ are binary symbols).

Semantics. Our version of regular expressions describe segments of infinite
words. An infinite word w is a map from ω into Σ (i.e., an element of Σω). A
position is a natural number. We use w[i] for the symbol at position i in word w.
If w[i] satisfies the basic expression p, we write w[i] � p, which is defined in the
standard manner. Given an infinite word w and two positions i and j, the tuple
(w, i, j) is called the segment of the word w between positions i and j. It is not
necessarily the case that i < j or even that i ≤ j. Note that a segment consists
of the whole word w with two tags, not just the sequence of symbols that occur
between two positions. A pointed word is a pair (w, i) formed by a word w and
a position i. The semantics of regular expressions is formally defined as a binary
relation �re between segments and regular expressions. This semantics is defined
inductively as follows. Given a basic expression p, regular expressions x, y and
z, and a word w:

− (w, i, j) �re p whenever w[i] satisfies p and j = i+ 1.
− (w, i, j) �re x+ y whenever either (w, i, j) �re x or (w, i, j) �re y, or both.
− (w, i, j) �re x ; y whenever for some k, (w, i, k) �re x and (w, k, j) �re y.
− (w, i, j) �re x ∗ y whenever either (w, i, j) �re y, or for some

sequence (i0 = i, i1, . . . im) and all k ∈ {0, ..,m− 1}
(w, ik, ik+1) �re x and (w, im, j) �re y.

− (w, i, j) �re
−p whenever w[j] satisfies p and j = i− 1.

One interesting expression using past is:

notfirst def= −true ; true

which matches all segments of the form (w, i, i) that are not initial prefixes (i.e.,
i �= 0). The semantics style used here is more conventional in logic than in au-
tomata theory, where regular expressions define sets of finite words. If one omits

Regular Linear Temporal Logic with Past 299

the basic past expressions, then a given regular expression x can be associated
with a set of words L(x) ⊆ Σ+, by v ∈ L(x) precisely when for some w ∈ Σω,
(vw, 0, |v|) �re x. Following this alternative interpretation, our operators corre-
spond to the classical ones and regular expressions define precisely regular sets
of non-empty words.

The following theorem shows that only a finite bounded amount of information
is needed to determine whether a segment satisfies a regular expression. All
modified words that preserve all symbols within these bounds will contain a
corresponding matching segment.

Theorem 1 (Relevant segment). Let x be a regular expression and (w, i, j)
a segment of an infinite word for which (w, i, j) �re x. There exists bounds
A ≤ i, j ≤ B such that for every word prefix v ∈ Σ∗ and suffix u ∈ Σω, the
infinite word w′ = vw[A,B]u satisfies:

(w′, |v| + (i−A), |v| + (j −A)) �re x

Here, w[A,B] is the finite word w[A]w[A + 1] · · ·w[B].

Expressions that do not include basic past expressions −p are called future-only
regular expressions and satisfy strict bounds: A = i ≤ j = B.

Past Expressions In order to justify that basic past expressions allow to express
conditions on the input symbols previously seen we introduce a new operator for
regular expressions, by lifting basic past expressions into a past operator (·)−1:

(p)−1 def= −p (x+ y)−1 def= x−1 + y−1

(−p)−1 def= p (x ; y)−1 def= y−1 ; x−1

(x ∗ y)−1 def= y−1 + y−1 ; (x−1 ∗ x−1)

This definition is inductive, so every past expression can be transformed into an
equivalent expression without (·)−1 (but perhaps with one or more −p).

We now study some properties of past expressions, justifying that (·)−1 is a
good definition for a past construct. First, (·)−1 is its own self-inverse:

Lemma 1. Every regular expression x is semantically equivalent to (x−1)−1.

Semantic equivalence means that both expressions define precisely the same set
of segments. Intuitively, matching an expression x with a sequence of events
should correspond to matching the past expression x−1 with the reversed se-
quence of events. Since input words are infinite only on one end, this intuition
is not justified simply by reversing the linear order of symbols in an infinite
word. The following theorem formalizes this intuition of reverse by providing an
evidence of a finite portion of input that can be chopped and reversed to match
the inverse expression.

Theorem 2 (Inverse and reverse). Let x be a regular expression and (w, i, j)
a segment of an infinite word for which (w, i, j) �re x. There exists bounds

300 C. Sánchez and M. Leucker

A ≤ i, j ≤ B for which for all prefix v ∈ Σ∗ and suffix u ∈ Σω, the infinite word
w′ = vw[A,B]revu satisfies:

(w′, |v| + (B − j), |v| + (B − i)) �re x
−1

Here, w[A,B]rev is the finite word w[B]w[B−1] · · ·w[A], the reverse of w[A,B].

Finally, the following theorem justifies that if an expression x matches some
input, then the concatenation of x with its inverse x−1 must match the segment
that goes back to the initial position.

Theorem 3 (Inverse and sequential). Let x be a regular expression and
(w, i, j) a segment for which (w, i, j) �re x. Then (w, i, i) �re x ; x−1

2.2 Regular Linear Temporal Logic over Infinite Words

Regular Linear Temporal Logic expressions denote languages over infinite words.
The key elements of RLTL are the two power operators that generalize many
constructs from different linear-time logics and calculi.

Syntax The syntax of RLTL expressions is defined by the following grammar:

ϕ ::= ∅
∣∣ ϕ ∨ ϕ

∣∣ ¬ϕ ∣∣ α ; ϕ
∣∣ ϕ|α〉〉ϕ ∣∣ ϕ |α〉ϕ

where α ranges over regular expressions. Informally, ∨ stands for union of lan-
guages (disjunction in a logical interpretation), and ¬ represents language
complement (or negation in a logical framework). The symbol ; stands for the con-
ventional concatenation of an expression over finite words followed by an expres-
sion over infinite words. The operator ∅ represents the empty language (or false
in a logical interpretation).

The operators ϕ|α〉〉ϕ and its weak version ϕ|α〉ϕ are the power operators. The
power expressions x|z〉〉y and x |z〉y (read x at z until y, and, respectively, x at z
weak-until y) are built from three elements: y (the attempt), x (the obligation)
and z (the delay). Informally, for x|z〉〉y to hold, either the attempt holds, or the
obligation is met and the whole expression evaluates successfully after the delay;
in particular, for a power expression to hold the obligation must be met after a
finite number of delays. On the contrary, x |z〉y does not require the obligation
to be met after a finite number of delays. These two simple operators allow the
construction of many conventional recursive definitions. For example, the strong
until operator of LTL x U y can be seen as an attempt for y to hold, and oth-
erwise an obligation for x to be met and a delay of a single step. Similarly, the
ω-regular expression xω can be interpreted as a weak power operator having no
possible escape and a trivially fulfilled obligation, with a delay indicated by x.
Conventional ω-regular expressions can describe sophisticated delays with trivial
obligations and escapes, while conventional LTL constructs allow complex obli-
gations and escapes, but trivial one-step delays. Power operators can be seen as

Regular Linear Temporal Logic with Past 301

a generalization of both types of constructs. The completeness of RLTL with re-
spect to ω-regular languages is easily derived from the expressibility of ω-regular
expressions. In particular, Wolper’s example is captured by p|true ; true〉false.

Note that the signature of RLTL is, like that of RE, purely algebraic: the
constructors ∨ and ; are binary, ¬ is unary, the power operators are ternary,
and ∅ is a constant. Even though the symbol ; is overloaded we consider the
signatures of RE and RLTL to be disjoint (the disambiguation is clear from the
context). The size of an RLTL formula is defined as the total number of its
symbols.

Semantics. The semantics of RLTL expressions is introduced as a binary re-
lation � between expressions and pointed words, defined inductively. Given two
RLTL expressions x and y, a regular expression z, and a word w:

− (w, i) � ∅ never holds.
− (w, i) � x ∨ y whenever either (w, i) � x or (w, i) � y, or both.
− (w, i) � ¬x whenever (w, i) �� x, i.e., (w, i) � x does not hold.
− (w, i) � z ; y whenever for some position k, (w, i, k) �re z and (w, k) � y.
− (w, i) � x|z〉〉y whenever (w, i) � y or for some sequence (i0 = i, i1, . . . im)

(w, ik, ik+1) �re z and (w, ik) � x, and (w, im) � y
− (w, i) � x |z〉y whenever one of:

(i) (w, i) � y.
(ii) for some sequence (i0 = i, i1, . . . im)

(w, ik, ik+1) �re z and (w, ik) � x, and (w, im) � y
(iii) for some infinite sequence (i0 = i, i1, . . .)

(w, ik, ik+1) �re z and (w, ik) � x
The semantics of x|z〉〉y establishes that either the obligation y is satisfied at the
point i of the evaluation, or there is a sequence of delays—each determined by
z—after which y holds, and x holds after each individual delay. The semantics
of x |z〉y also allow the case where y never holds, but x always holds after any
number of evaluations of z. As with regular expressions, languages can also be
associated with RLTL expressions in the standard form: a word w ∈ Σω is in
the language of an expression x, denoted by w ∈ L(x), whenever (w, 0) � x. The
following lemma follows easily from the definitions:

Lemma 2. For every RLTL expressions x and y and RE expression z:
– x|z〉〉y is semantically equivalent to y ∨ (x ∧ z ; x|z〉〉y).
– x |z〉y is semantically equivalent to y ∨ (x ∧ z ; x |z〉y).

Again, semantic equivalence establishes that both expressions capture the same
set of pointed words. Although the semantics of the power operators is not de-
fined using fix point equations, it can be characterized by such equations, similar
to the until operator in LTL. A power expression x|z〉〉y is then characterized to
a least fix point, while x |z〉y is characterized by a greatest fix-point.

Remark 1. It should be noted that although RLTL includes complementation
it does not allow the use of complementation within regular expressions. It is

302 C. Sánchez and M. Leucker

well-known [29] that emptiness of extended regular expressions (regular expres-
sions with complementation) is not elementary decidable, so this separation is
crucial to meet the desired complexity bounds. Similarly, adding intersection to
regular expressions—the so-called semi-extended regular expresions—makes the
satisfiability problem of similar logics EXPSPACE-complete [16].

The expression ∅ is needed in RLTL for technical purposes, as a basic case of
induction; all other RLTL constructs need some preexisting RLTL expression.
The expression x ; ¬∅ that appends sequentially the negation of empty (which
corresponds to all pointed words) to a finite expression x serves as a pump of
the finite models (segments) denoted by x to all infinite words that extend it.
Pumping was a primitive operator in [18], for a simpler logic without negation.
To ease the translation from LTL into RLTL presented in the next section we
introduce some RLTL syntactic sugar:

� def= ¬∅ first def= ¬(notfirst ; �)

3 LTL with Past

In this section we show how to translate LTL (past and future) into RLTL.
Unlike in [18], the translation presented here does not require a previous trans-
formation of LTL expressions into their negation normal form. The translation
is purely linear: every LTL operator corresponds to an RLTL context with the
same number of “holes”.

We consider the following minimal definition of LTL, with an interpretation of
atomic propositions as actions. Given a finite set of propositions Prop (with p a
representative) called basic action expressions, the language of LTL expressions
given by the following grammar:

ψ ::=p
∣∣ ψ ∨ ψ

∣∣ ¬ψ ∣∣ ψ ∣∣ ψ U ψ
∣∣ ψ ∣∣ ψ B ψ

Here, ¬ and ∨ are the conventional Boolean expressions. The operators , and
U are the future operators. Finally, and B are called past operators.

Informal semantics LTL expressions define sets of pointed words. A pointed
word (w, i) satisfies a basic action expression p if action p is taken from w[i].
Boolean operators are interpreted in the conventional way. An expression x
(read next x) indicates that in order for a pointed word (w, i) to satisfy x its
sub-expression x must hold when interpreted at the next position: (w, i + 1).
Similarly, x (read previous x) holds at (w, i) if x holds at (w, i − 1) or i is
the initial position (w, 0). The operator x U y (read x until y) holds at (w, i)
whenever y holds at some future position and x holds in all positions in between.
Similarly, x B y (read x back-to y) states that x holds in all previous positions
(including the present) starting at the last position y held (or from the initial
position 0 if y does not hold in any past position).

Regular Linear Temporal Logic with Past 303

Semantics. The semantics of LTL expressions is defined inductively. Let p be
a basic expression, and x and y be arbitrary LTL expressions.

− (w, i) �LTL p whenever w[i] satisfies p.
− (w, i) �LTL x ∨ y whenever (w, i) �LTL x or (w, i) �LTL y.
− (w, i) �LTLx whenever (w, i+ 1) �LTL x.
− (w, i) �LTL x U y whenever for some j ≥ i, (w, j) �LTL y, and

(w, k) �LTL x for all i ≤ k < j.
− (w, i) �LTLx whenever either i = 0 or (w, i− 1) �LTL x.
− (w, i) �LTL x B y whenever (w, j) �LTL x for all j ≤ i, or

for some k ≤ i, (w, k) �LTL y and
for all l within k < l ≤ i, (w, l) �LTL x.

We now show how to translate LTL expressions into RLTL. First, we define
recursively a map between LTL expressions and RLTL expressions and then
prove that each LTL expression is equivalent to its image.

f(p) = p f(x) = true ; f(x)
f(x ∨ y) = f(x) ∨ f(y) f(x U y) = f(x)|true〉〉f(y)
f(¬x) = ¬f(x) f(x) = first ∨ −true ; f(x)

f(x B y) = f(x) |−true〉f(y)

The function f(·) is well-defined by construction. Since both LTL and RLTL
expressions define sets of pointed words equivalence ≡ is simply equality between
two sets of pointed words.

Theorem 4. Every LTL expression is equivalent to its RLTL translation.

A practical specification language based on LTL offers more operators than the
minimal set presented above, including other Boolean connectives and additional
future operators like �x (always x or henceforth x), ♦x (read eventually x), yRx
(y release x), etc. Additional past operators include �x (a strong version ofx),
x (has always been x), x (once x), x S y (read x since y), etc. All these can
be defined in terms of the minimal set using the following LTL equivalences [20]:

♦x ≡ true U x xR y ≡¬(¬yU¬x)
�x ≡¬♦¬x xW y ≡ (x U y) ∨ �x
x ≡ x B false �x ≡¬¬x
x ≡¬¬x x S y ≡ (x B y) ∧y

Proceeding with these equivalences, however, does not generate an LTL expres-
sion (and consequently a RLTL expression) of linear size. In particular W and
S duplicate one of their parameters. A formula with a stack of nested W or
S symbols will generate an exponentially larger formula. On the contrary, the
following direct translations into RLTL are linear:

f(xW y) = f(x) |true〉f(y) f(x S y) = f(x)|−true〉〉f(y)

The translation function f only involves a linear expansion in the size of the
original formula. Since checking satisfiability of linear temporal logic is PSPACE-
hard [28] this translation implies a lower bound on the complexity of RLTL.

304 C. Sánchez and M. Leucker

Proposition 1. The problems of satisfiability and equivalence for regular linear
temporal logic are PSPACE-hard.

4 From RLTL to Automata

We now show how to translate an RLTL expression into a 2-way Alternating
Parity Automaton of linear size that accepts precisely the same set of pointed
words. As we justify below this implies that the problems of emptiness and model
checking for RLTL are in PSPACE.

Preliminaries Let us first present the necessary definitions of non-deterministic
automata on finite words and alternating automata on infinite words.

A 2-way nondeterministic finite automaton (2NFA) is a tupleA :〈Σ,Q, q0, δ, F 〉
whereΣ is the alphabet,Q a finite set of states, q0 ∈ Q the initial state, δ : Q×Σ →
2Q×{−1,0,1} the transition function, and F ⊆ Q is the set of final states. Intu-
itively, the automaton works by reading an input tape. The transition function
indicates the legal moves from a given state and character in the tape. A transi-
tion is a successor state and the direction of the head of the tape. Our version of
2NFA operates on segments of infinite words. A run of A on a wordw ∈ Σω, start-
ing at position i0 and finishing at position in is a sequence of states and positions
i0q0i1q1i1 . . . inqn, where q0 is the initial state of A, and for all k ∈ {1, . . . n} we
have that (qk, ik − ik−1) ∈ δ(qk−1, w[ik−1]). The run is called accepting if qn ∈ F .
A 2NFA accepts a segment (w, i, j) whenever there is an accepting run starting at
i and finishing at j. There is an immediate correspondence to regular expressions:

Lemma 3. Each regular expression can be translated into an equivalent 2NFA.

In the proof of Lemma 3 the translation from regular expressions into 2NFA
follows the standard bottom-up construction used for conventional regular ex-
pressions into NFA [11] for the operators ;, ∗ and +, and the basic expressions p.
The translation of basic past expression −p is the automaton: 〈Σ, {q0, q1, q2}, q0,
δ, {q2}〉 with

δ(q0, true) = {(q1,−1)}, δ(q1, p) = {(q2, 0)}, δ(q2, true) = {},

depicted graphically:
q0

true,−1
q1

p,0
q2

This translation clearly coincides with the semantics of −p. The number of states
of the 2NFA obtained is linear in the size of the regular expression.

We define now alternating automata on infinite-words. For a finite set X of
variables, let B+(X) be the set of positive Boolean formulas over X , i.e., the
smallest set such that X ⊆ B+(X), true, false ∈ B+(X), and ϕ, ψ ∈ B+(X)
implies ϕ ∧ ψ ∈ B+(X) and ϕ ∨ ψ ∈ B+(X). We say that a set Y ⊆ X satisfies
(or is a model of) a formula ϕ ∈ B+(X) iff ϕ evaluates to true when the variables
in Y are assigned to true and the members of X\Y are assigned to false. A

Regular Linear Temporal Logic with Past 305

model is called minimal if none of its proper subsets is a model. For example,
{q1, q3} as well as {q2, q3} are minimal models of the formula (q1 ∨ q2)∧ q3. The
dual of a formula θ ∈ B+(X) is the formula θ ∈ B+(X) obtained by exchanging
true and false, and ∧ and ∨.

A 2-way Alternating Parity Automaton on Words (2APW) is a tuple A :
〈Σ,Q, q0, δ, F 〉 where Σ, Q are as for 2NFA. The transition function δ yields
a positive Boolean combination of successor states, together with a direction:
δ : Q×Σ → B+(Q× {−1, 0, 1}). The acceptance condition F that we use here
is the parity acceptance condition:

F : Q→ {0 . . . k}.

The set {0 . . . k} is called the set of colors. A 2APW operates on infinite words: a
run over an infinite word w ∈ Σω is a directed graph (V,E) such that V ⊆ Q×N

satisfying the following properties:
1. (q0, 0) is in V , and it is called the initial vertex. It may have no predecessor.
2. every non-initial vertex has a predecessor. For every (q, l) distinct from (q0, 0)

{(q′, l′) ∈ V | (q′, l′) →E (q, l)} �= ∅

3. the successors of every node form a minimal model for δ, i.e., for every vertex
(q, l), the set {(q′, l′ − l) | (q, l) →E (q′, l′)} is a minimal model of δ(q, w[l]).

The set of vertices that occurs infinitely often in an infinite path π is denoted
inf (π). A run (V,E) is accepting according to F if every maximal finite path
ends in a vertex (q, l) with δ(q, w[l]) = true and every infinite path π accepts
the parity condition:

max{i | i = F (q) for some q in inf (π)} is even.

The language L(A) of a 2APW A is determined by all strings for which an
accepting run of A exists. We measure the size of a 2APW in terms of its
number of states and its number of colors.

4.1 Complementing 2APW

Every 2APW A can be easily complemented into another 2APW A of the same
size. Let n be the number of states of A. The key observation is that A can be
transformed into an equivalent automaton with a color set {0 . . . k} satisfying
k ≤ n+ 1, by only changing the acceptance condition.

Let F be the acceptance condition for A, and let F ′ be another acceptance
condition such that,

Acc1. for every two nodes p and q, if F (p) ≤ F (q) then F ′(p) ≤ F ′(q).
Acc2. for every node p, F (p) is even if and only if F ′(p) is even.

Then, given a path π of a run of A, if q is a node occurring infinitely often
with maximum color according to F , then q is also maximum according to F ′.

306 C. Sánchez and M. Leucker

Moreover, F (q) is even if and only if F ′(q) is even. Therefore, every run of A is
accepting according to F if and only if it is also accepting according to F ′.

Consequently, the following gap reduction procedure can be applied. Assume
for some color i there is no node q with F (q) = i, but for some j < i and for
some k > i, there are such nodes F (qj) = j and F (qk) = k. Color i is called a
gap in F . The following F ′ is equivalent to F according to the conditions (Acc1)
and (Acc2) described above:

F ′(q) =

{
F (q) if F (q) < i

F (q) − 2 if F (q) > i

Similarly, if for no node q, F (q) = 0 or F (q) = 1, then an equivalent F ′ can be
defined as F ′(q) = F (q) − 2 for all q. By applying these transformations until
no gap exists we ensure that all assigned colors are consecutive, and starting
either at 0 or at 1. We use F ∗ to denote the accepting condition obtained after
repeatedly applying the gap reduction procedure. It follows that the maximum
color assigned by F ∗ can be at most n+ 1. This property ensures the following
lemma.

Lemma 4. Every 2APW can be complemented into another 2APW of the same
number of states and with highest color at most n+ 1.

Proof (Sketch). Let A be a 2APW. The following 2APW accepts the complement
language:

A : 〈Σ,Q, q0, δ, F ∗〉
where δ(q, a) is the dual of the transition δ(q, a) and F (q) = F (q)+1, with F

∗
be

the gap reduced version of F . The maximum color in F
∗

is guaranteed to be at
most n+1 (also at most 1 plus the number of colors in F ∗). It is well-known [21]
that the dualization of the transition function and acceptance condition satisfies
that L(A) = Σω \ L(A). ��

4.2 Translating from RLTL to 2APW

We are now ready to formulate the main theorem of this section:

Theorem 5. For every RLTL formula ϕ, there is a 2APW with size linear in
the size of ϕ that accepts precisely the same set of ω-words.

The proof proceeds according to the following translation from RLTL into 2APW.
The procedure works bottom-up the parse tree of the RLTL expression ϕ, build-
ing the resulting automaton using the subexpressions’ automata as components.
Our translation does not require an upfront transformation into negation normal
form. On the contrary, it is truly compositional in a bottom-up fashion. The au-
tomaton for an expression is built from the automata of its subexpressions with
all the structure preserved.

For RLTL expressions x, y and a regular expression z letAx :〈Σ,Qx, qx
o , δ

x, F x〉
and Ay : 〈Σ,Qy, qy

o , δ
y, F y〉 be two 2APW automata equivalent to x and y, and

Regular Linear Temporal Logic with Past 307

let Az : 〈Σ,Qz, qz
o , δ

z, F z〉 be a 2NFA for z. Without loss of generality, we assume
that their state spaces are disjoint, and that the coloring is minimal (F x = (F x)∗

and F y = (F y)∗) . We consider the different operators of RLTL:

– Empty: The automaton for ∅ is A∅ : 〈Σ, {q0}, q0, δ, F 〉 with δ(q0, a) =
false for every a, and F (q0) = 0 (any number works here). Clearly, the
language of A∅ is empty.

– Disjunction: The automaton for x ∨ y is:

Ax∨y : 〈Σ,Qx ∪Qy, q0, δ, F 〉

where q0 is a fresh new state. The transition function is defined as

δ(q, a) =

{
δx(q, a) if q ∈ Qx

δy(q, a) if q ∈ Qy
δ(q0, a) = δx(qx

0 , a) ∨ δy(qy
0 , a).

For F , we consider the union of the characteristic graph of the function:

F (q) =

⎧⎪⎨
⎪⎩
F x(q) if q is in Qx

F y(q) if q is in Qy

min{F x(·), F y(·)} if q = q0

Thus, from the fresh initial state q0, Ax∨y chooses non-deterministically one
of the successor states of Ax’s or Ay’s initial state. Clearly, the accepted
language is the union of the languages of x and y.

– Complementation: The automaton for ¬x is:

A¬x : 〈Σ,Qx, qx
0 , δ, F

x∗〉

where δ and F x∗ is as defined in Lemma 4, which guarantees that the lan-
guage for A¬x is the complement of that of Ax.

– Concatenation: The automaton for z ; x is:

Az;x : 〈Σ,Qz ∪Qx, qz
0 , δ, F

x〉

where δ is defined, for q ∈ Qz as:

δ(q, a) =

{∨{δz(q, a)} if δz(q, a) ∩ F z = ∅∨{δz(q, a)} ∨ qx
0 if δz(q, a) ∩ F z �= ∅

and, for q ∈ Qx as δ(q, a) = δx(q, a). Recall that Az is a 2NFA automaton.
The accepting condition is F (q) = F x(q) for q in Qx, and F (q) = 1 for q in
Qz ensuring that looping forever in z is not a satisfying path. Whenever Az

can non-deterministically choose a successor that is a final state, it can also
move to the initial state of Ax. Thus, the accepted language is indeed the
concatenation.

308 C. Sánchez and M. Leucker

– Power: The automaton for x|z〉〉y is:

Ax|z〉〉y : 〈Σ,Qz ∪Qx ∪Qy ∪ {q0}, q0, δ, F 〉
where the initial state q0 is a fresh state. The transition function δ is defined
as follows. The a successor of q0 is:

δ(q0, a) = δy(qy
0 , a) ∨ (δx(qx

0 , a) ∧
∨{δz(qz

0 , a)})
The successor of Qx and Qy are defined as in Ax and Ay, i.e., δx(q, a) for
q ∈ Qx, δy(q, a) for q ∈ Qy. For q ∈ Qz

δ(q, a) =

{∨{δz(q, a)} if δz(q, a) ∩ F z = ∅∨{δz(q, a)} ∨ q0 if δz(q, a) ∩ F z �= ∅

The construction follows precisely the equivalence x|z〉〉y ≡ y ∨ (x ∧ z;x|z〉〉y)
established in Lemma 2 and the construction for disjunction, conjunction,
and concatenation. Finally, the looping in z is prevented by assigning F (q) =
1 whenever q is in Qz, and otherwise F (q) = F x(q) or F (q) = F y(q) when-
ever q is in Qx (resp. Qy). Finally, F (q0) = 1 to ensure that an infinite path
that traverses only states from Qz and q0 is not accepting.

– Weak power: The automaton for x |z〉y is:

Ax|z〉y : 〈Σ,Qz ∪Qx ∪Qy ∪ {q0}, q0, δ, F 〉
where q0 and δ are like for Power. The states in Qy and Qx are mapped to
the same colors, as before. Now, F (q0) = 2, and F (q) = 1 for all q in Qz.
Then, a path that accepts z and visits q0 infinitely often is accepting.

Complexity. From Lemma 3 every regular expression can be translated into
a 2NFA with only a linear blow-up in size. Each of the steps in the procedure
for translating RLTL expressions into a 2APW add at most one extra state.
Therefore, the number of states in the produced automaton is at most the num-
ber of symbols in the original expression. For the colors, the only construct that
increases the number of colors is complementation. The rest of the constructs
use constant colors (1 and 2), or the union of sets of colors. Therefore, the high-
est color in a generated automaton corresponds to the largest number of nested
negations ¬ in the starting expression.

Second, the structure of the sub-automata is preserved in all stages. We do
not use automata constructions like product or subset constructions; instead
only new states and transitions are added. For the accepting condition, all op-
erations preserve the accepting condition of the automata corresponding to the
sub-expression, except for complementation. Observe also how the automaton
for ¬¬x is exactly the same automaton as for x.

Given a 2APW with n states and k colors one can generate on-the-fly successor
states and final states of an equivalent 1-way nondeterministic Büchi automaton
on words (NBW) with 2O((nk)2) states [5]. Since emptiness of NBW can be

Regular Linear Temporal Logic with Past 309

checked in NLOGSPACE via reachability [30], it follows that emptiness of 2APW
is in PSPACE. Hence, the satisfiability, equivalence and model checking problems
for RLTL are in PSPACE. Together with Proposition 1:

Corollary 1. Checking satisfiability of an RLTL formula is PSPACE-complete.

Using clever manipulation of the automata during the bottom-up construction
one can show that only 3 colors are needed, leading to a better translation into
NBW than the one presented in this paper, using only 2O(n2) states. The detailed
explanation of this advanced translation is out of the scope of this paper.

5 Conclusion and Future Work

Amir Pnueli postulated in [24]: “In order to perform compositional specification
and verification, it is convenient to use the past operators but necessary to have
the full power of ETL”. In this paper, we have introduced regular linear tempo-
ral logic (RLTL) with past operators that exactly fulfills Pnueli’s requirements,
while at the same time keeping satisfiability and model checking in the same
complexity class as for LTL (PSPACE). RLTL (with past) has a finite set of
temporal operators giving it a temporal logic flavor and allows the integration of
regular expressions. Moreover, we have introduced a novel translation of RLTL
formulas into corresponding automata, which may be of its own interest, as it is
truly compositional (bottom-up).

It should be stressed that a practically relevant specification language needs
a variety of different operators as well as macros to support engineers in the
complex job of specifying requirements. In fact, together with industrial part-
ners, the second author was involved in the development of the language SALT
[2] which acts as a high-level specification language offering a variety of differ-
ent constructs while at the same time allowing a translation to LTL. However,
the lack of regular expressions and past operators makes such a translation dif-
ficult, error prone, and leads to automata that do not reflect the structure of
the original formula and might be larger than necessary. It is therefore essential
to have a core logic that is expressive and allows a simple, verifiable transla-
tion to automata and allows a simple translation from high-level languages like
SALT. We consider RLTL to exactly meet this goal. As future work, it remains
to build corresponding satisfiability and model checking tools to push RLTL
into industrial applications. Also, some of the operators in PSL can already be
mapped into RLTL. For example, “whenever α is matched p must be true” can
be expressed as ¬(α ;¬p). The blow-up in complexity in PSL (EXPSPACE) with
respect to RLTL (PSPACE) can then fully blamed to the availability of semi-
extended regular expressions. Moreover, the sequential connective in PSL that
connects a temporal operator with a regular expression requiring the overlap
of the last symbol can be easily expressed in RLTL as (z ; true−1 ; x), which
coincides with the PSL semantics, for future regular expressions. Future study
include other PSL operators like bounded iteration and abort.

310 C. Sánchez and M. Leucker

Another interesting line of future research is to study symbolic model-checking
algorithms for RLTL.

Acknowledgements. We wish to thank the anonymous reviewers for their help-
ful comments and suggestions.

References

1. Barringer, H., Kuiper, R., Pnueli, A.: A really abstract concurrent model and its
temporal logic. In: POPL 1986 (1986)

2. Bauer, A., Leucker, M., Streit, J.: SALT—structured assertion language for tem-
poral logic. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 757–775.
Springer, Heidelberg (2006)

3. Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A., Rodeh, Y.: The
temporal logic Sugar. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, p. 363. Springer, Heidelberg (2001)

4. Bustan, D., Flaisher, A., Grumberg, O., Kupferman, O., Vardi, M.Y.: Regular
vacuity. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp.
191–206. Springer, Heidelberg (2005)

5. Dax, C., Klaedtke, F.: Alternation elimination by complementation. In: Cervesato,
I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 214–
229. Springer, Heidelberg (2008)

6. Emerson, A., Clarke, E.: Characterizing correctness properties of parallel programs
using fixpoints. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS,
vol. 85. Springer, Heidelberg (1980)

7. Fisman, D., Eisner, C., Havlicek, J.: Formal syntax and Semantics of PSL: Ap-
pendix B of Accellera Property Language Reference Manual, Version 1.1. (2004)

8. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal basis of fairness. In:
POPL 1980 (1980)

9. Harel, D., Peleg, D.: Process logic with regular formulas. TCS 38, 307–322 (1985)
10. Henriksen, J., Thiagarajan, P.S.: Dynamic linear time temporal logic. Annals of

Pure and Applied Logic 96(1-3), 187–207 (1999)
11. Hopcroft, J., Ullman, J.: Introduction to automata theory, languages and compu-

tation. Addison-Wesley, Reading (1979)
12. Kamp, H.: Tense Logic and the Theory of Linear Order. PhD thesis, UCLA (1968)
13. Kozen, D.: Results on the propositional μ-calculus. In: Nielsen, M., Schmidt, E.M.

(eds.) ICALP 1982. LNCS, vol. 140. Springer, Heidelberg (1982)
14. Kupferman, O., Piterman, N., Vardi, M.: Extended temporal logic revisited. In:

Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, p. 519. Springer,
Heidelberg (2001)

15. Lange, M.: Weak automata for the linear time μ-calculus. In: Cousot, R. (ed.)
VMCAI 2005. LNCS, vol. 3385, pp. 267–281. Springer, Heidelberg (2005)

16. Lange, M.: Linear time logics around PSL: Complexity, expressiveness, and a little
bit of succinctness. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS,
vol. 4703, pp. 90–104. Springer, Heidelberg (2007)

17. Laroussinie, F., Markey, N., Schnoebelen, Ph.: Temporal logic with forgettable
past. In: LICS 2002 (2002)

18. Leucker, M., Sánchez, C.: Regular linear temporal logic. In: Jones, C.B., Liu, Z.,
Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 291–305. Springer, Heidel-
berg (2007)

Regular Linear Temporal Logic with Past 311

19. Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Parikh, R. (ed.)
Logic of Programs 1985. LNCS, vol. 193. Springer, Heidelberg (1985)

20. Manna, Z., Pnueli, A.: Temporal Verif. of Reactive Systems. Springer, Heidelberg
(1995)

21. Muller, D., Schupp, P.: Altenating automata on infinite trees. TCS 54, 267–276
(1987)

22. Müller-Olm, M.: A modal fixpoint logic with chop. In: Meinel, C., Tison, S. (eds.)
STACS 1999. LNCS, vol. 1563, pp. 510–520. Springer, Heidelberg (1999)

23. Pnueli, A.: The temporal logic of programs. In: FOCS 1977 (1977)
24. Pnueli, A.: In transition from global to modular temporal reasoning about pro-

grams. In: Logics and models of concurrent systems, NATO ASI F-13. Springer,
Heidelberg (1985)

25. Pnueli, A.: Applications of temporal logic to the specification and verification of
reactive systems–a survey of current trends. In: Current Trends in Concurrency.
LNCS, vol. 224. Springer, Heidelberg (1986)

26. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586.
Springer, Heidelberg (2006)

27. Schnoebelen, Ph.: The complexity of temporal logic model checking. In: AiML 2002
(2002)

28. Sistla, A.P., Clarke, E.: The complexity of propositional linear termporal logics.
JACM 32(3), 733–749 (1985)

29. Stockmeyer, L.: The Computational Complexity of Word Problems. PhD thesis.
MIT (1974)

30. Vardi, M.: An automata-theoretic approach to linear temporal logic. In: Moller, F.,
Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043. Springer, Heidelberg
(1996)

31. Vardi, M., Wolper, P.: Reasoning about infinite computations. Inf. Comp. 115,
1–37 (1994)

32. Wolper, P.: Temporal logic can be more expressive. Info.& Control 56, 72–99 (1983)

	Regular Linear Temporal Logic with Past
	Introduction
	Regular Linear Temporal Logic
	Regular Expressions with Past
	Regular Linear Temporal Logic over Infinite Words

	LTL with Past
	From RLTL to Automata
	Complementing 2APW
	Translating from RLTL to 2APW

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

