
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??,MONTH YEAR 1

Learning Communicating Automata from MSCs
Benedikt Bollig, Joost–Pieter Katoen,Member, IEEE Computer Society,Carsten Kern and Martin Leucker

Index Terms—D.2.1.b: Software Engineering / Requirements /
Specifications / Elicitation methods; D.2.10.a: Software Engineer-
ing / Design / Design concepts; I.2.6.e: Computing Methodologies
/ Artificial Intelligence / Learning / Induction ; F.1.1.a: T heory
of Computation / Computation by Abstract Devices / Models of
Computation / Automata

Abstract—This paper is concerned with bridging the gap
between requirements and distributed systems. Requirements are
defined as basic message sequence charts (MSCs) specifying posi-
tive and negative scenarios. Communicating finite-state machines
(CFMs), i.e., finite automata that communicate via FIFO buffers,
act as system realizations. The key contribution is a generalization
of Angluin’s learning algorithm for synthesizing CFMs from
MSCs. This approach is exact—the resulting CFM precisely
accepts the set of positive scenarions and rejects all negative
ones—and yields fully asynchronous implementations. The paper
investigates for which classes of MSC languages CFMs can be
learned, presents an optimization technique for learning partial
orders, and provides substantial empirical evidence indicating
the practical feasibility of the approach.

I. I NTRODUCTION

The software engineering development cycle starts with
elicitating requirements. Requirement capturing techniques of
various nature exist. Popular requirement engineering meth-
ods, such as the Inquiry Cycle and CREWS [36], exploit
use cases and scenarios for specifying system’s requirements.
Scenarios given as sequence diagrams are also at the heart
of the UML (Unified Modeling Language). A scenario is
a partial fragment of the system’s behavior given as visual
representation indicating the system components (vertically)
and their message exchange over time (horizontally). Their
intuitive yet formal nature has led to a broad acceptance by
the software engineering community, both in academia as
well as in industry. Scenarios can be positive or negative,
indicating either a possible desired or an unwanted system
behavior, respectively. Different scenarios together form a
more complete description of the system behavior.

Requirements capturing is typically followed by a first
design step of the system at hand. This step naturally ignores
many implementation details and aims to obtain an initial
system structure at a high level of abstraction. In case of a
distributed system realization this, e.g., amounts to determine
which processes are to be distinguished, what their high-level
behaviour is, and which capacities of communication channels
suffice to warrant a deadlock-free process interaction. This
design phase in software engineering is highly challengingas
it concerns a complex paradigm shift between the requirement
specification—a partial, overlapping and possibly inconsistent
description of the system’s behavior that is subject to rapid

B. Bollig is with ENS Cachan & CNRS
J.P. Katoen and Carsten Kern are with RWTH Aachen University
M. Leucker is with Technical University Munich

change—and a conforming design model, a first complete
behavioral description of the system.

The fact that target systems are often distributed compli-
cates matters considerably as combining several individual
processes may easily yield realizations that handle more than
the specified scenarios, i.e., they may over-approximate the
system requirements, or that suffer from deadlocks. During
the synthesis of such distributed design models, conflicting
requirements are detected and resolved. As a consequence, the
requirements specification is adapted by adding or omitting
scenarios. Besides, a thorough analysis of the design model,
e.g., by means of model checking or simulation, requires fixing
errors in the requirements. Obtaining a complete and consistent
set of requirements together with a conforming design model
is thus a complex and highly iterative process.

This paper considers requirements that are given as mes-
sage sequence charts (MSCs). These MSCs are basic; high-
level constructs to combine MSCs by alternative, sequential
or repetitive composition are not considered. This yields a
simple, yet still effective requirement specification formal-
ism that is expressive, easy to grasp and understand. For
the design models we focus on distributed systems where
each process behaviour is described as a finite-state machine
and processes exchange messages asynchronously via order-
preserving communication channels. These communicating
finite-state machines (CFMs [13]) are commonly adopted for
realizing MSCs [3, 7, 23–27,32, 35].

We exploit learning algorithms [4] to synthesize CFMs
from requirements given as set of (positive and negative) basic
MSCs. Learning fits well with the incremental generation of
design models as it is feasible to infer a design model on
the basis of an initial set of scenarios, CFMs are adapted in
an automated manner on adding and deletion of MSCs, and
diagnostic feedback is provided that may guide an amendment
of the requirements when establishing an inconsistency of a
set of scenarios. The use of learning for system synthesis
from scenario-based requirements specifications is not new
and has been proposed by several authors, see, e.g., [16, 33,40,
41]. The main characteristics of our approach are the unique
combination of:

(i) positive andnegativeMSCs are naturally supported;
(ii) realized processes interactfully asynchronously;

(iii) synthesized CFMsprecisely exhibit the behaviour as
specified by the MSCs;

(iv) effective optimizations tailored topartial orders like
MSCs.

Existing learning-based synthesis techniques typically con-
sider just possible and no undesired behaviours, yield syn-
chronously (or partially asynchronously) interacting automata,
and, most importantly, suffer from the fact that synthesized

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??,MONTH YEAR 2

realizations may exhibit more behaviour than specified. That
is, the obtained realizations are in fact over-approximations.

Technically speaking, this paper makes the following contri-
butions. We extend Angluin’s learning algorithm for inferring
deterministic finite automata from regular languages to a
learning algorithm that allows for synthesizing CFMs from
MSC languages, i.e., sets of words that are described by a set
of MSCs. The generalized learning algorithm is described in
detail, a general learning set-up is defined, and the correctness
and time-complexity of our algorithm are established. We then
consider existentially, and, respectively, universally bounded
CFMs, i.e., CFMs for which some, respectively all, possible
event orderings can be realized with finite communication
channels. It is shown that universally bounded deadlock-
free CFMs, existentially bounded CFMs with an a priori
fixed channel capacity, and universally-bounded weak CFMs
are all learnable. We subsequently show how the memory
consumption of our algorithm can be improved using so-called
partial order learning. Exploiting that MSCs are in fact partial
orders, this approach amounts to merging rows and columns
(in the table used for learning) such that only congruent
prefixes and suffixes need to be stored. The correctness of this
modification is shown, and it is indicated by means of several
experiments that this leads to siginificant memory savings.
These experiments are carried out with the software toolSmyle
[9], which implements several algorithms presented in this
paper. Let us summarize the user tasks of our approach:
(i) Membership queriesare posed by the learner and are

mostly handled in an automated manner. A small frag-
ment of these queries has to be answered manually. They
are calleduser queries. In this case, the user has to
classify the presented basic MSCs as either positive or
negative.

(ii) Due to the high degree of automation,equivalence
queries are rather rare. Here, the user has to check
whether the generated automaton is correct. To facilitate
this, Smyle supports testing and simulation of automata.
In case an incorrect behaviour is detected, the user has
to provide a counterexample MSC.

Organization of this paper.Section II introduces MSCs,
(several classes of) CFMs, and summarizes main realizability
results. Section III describes Angluin’s learning algorithm in
detail. Section IV constitutes the main part of this paper and
extends Angluin’s learning algorithm to enable inferring CFMs
(rather than deterministic finite automata). To that end, we
define a general learning setup and determine several CFM
classes that are learnable. Section V presents an efficiency
improvement of our learning algorithm by considering normal
forms of equivalences classes of words generated by MSCs.
Section VI describes some case studies, and shows that
congruence-based learning improves the memory consumption
with a factor of up to almost 75%. The paper closes with
discussing related work and an epilogue. A preliminary version
of this paper appeared as [8].

II. MSCS AND COMMUNICATING AUTOMATA

In this section, we introduce two fundamental concepts:
message sequence charts(MSCs) andcommunicating finite-

state machines(CFMs) [13]. The former constitute an appeal-
ing and easy to understand graphical specification formalism.
The latter, also known asmessage passing automata(MPA),
serve as design models for the system to learn and model the
communication behavior of distributed systems composed of
finite-state components.

Before we start, let us recall some basic notation and
terminology. An alphabet is a nonempty finite set whose
elements are calledactions. Finite sequences of actions are
elements ofΣ∗ and are calledwords. Sets of words are termed
languagesand are thus subsets ofΣ∗. For a wordw ∈ Σ∗

we denote bypref (w) (suff (w)) the set of all its prefixes
(suffixes, respectively) includingw itself and the empty word
ǫ. We extendpref and suff to languagesL ⊆ Σ∗ letting
pref (L) :=

⋃

w∈L pref (w) and suff (L) :=
⋃

w∈L suff (w).
We denote the powerset of a setX by 2X .

A. Message Sequence Charts

A common design practice when developing communicating
systems is to start with specifying scenarios to exemplify the
intended interaction of the system to be.Message sequence
charts (MSCs) provide a prominent notion to further this
approach. They are widely used in industry, are standardized
[29, 30], and resemble UML’s sequence diagrams [5]. An MSC
depicts a single partially ordered execution sequence of a
system. It consists of a collection of processes, which, in
their visual representation, are drawn as vertical lines and
are interpreted as top-down time axes. Moreover, an arrow
from one line to a second corresponds to the communication
events of sending and receiving a message. An example MSC
is illustrated in Fig. 1(a). The benefit of such a diagram is that
one grasps its meaning at a glance. In the example scenario,
messagesm1 and m2 are sent from processp to processq.
A further messagem originates at processr and is finally
received atq. However, one still has to reach an agreement on
the system architecture, which does not necessarily emerge
from the picture. Namely, following the MSC standard, we
assume asynchronous communication: the send and receipt of
a message might happen time-delayed. More precisely, there
is an unbounded FIFO channel in between two processes
that allows a sender process to proceed while the message
is waiting for being received. Moreover, we assume a single
process to be sequential: the events of one particular process
are totally ordered in accordance with their appearance on its
time axis. For example, regarding Fig. 1(a), we suppose that
sendingm2 occurs after sendingm1. However, as the relative
speed of the processes is unknown, we do not know ifm1 is
received beforem2 is sent. Thus, the latter two events remain
unordered.

We conclude that, in a natural manner, an MSC can be
seen as a labeled partial order (labeled poset) over its events.
Fig. 1(b) depicts the Hasse diagram of the labeled poset
that one would associate with the diagram from Fig. 1(a).
Its elements1, . . . , 6 represent the endpoints of the message
arrows and are calledevents. The edge relation then reflects
the two constraints on the order of execution of the events:
(i) events that are located on the same process line are totally

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??,MONTH YEAR 3

p q r

m1

m2

m

2

3

4

5

6 1

!(p, q, m1)

!(p, q, m2)

?(q, p, m1)

?(q, p, m2)

?(q, r, m) !(r, q, m)

(a) (b)

Fig. 1. MSC as a diagram (a) and as a graph (b)

ordered, and (ii) a send event has to precede the corresponding
receive event. Indeed, it is reasonable to require that the
transitive closure of constraints (i) and (ii) is a partial order. To
keep track of the nature of an event in the poset representation,
any such event is labeled with an action. Thus, a possible label
is either

• a send action, which is of the form!(p, q, m) meaning
that p sends a messagem to q, or

• a receive action, which is of the form?(q, p, m) and is
the complementary receive action executed by processq.

The alphabet of actions is, therefore, parametrized by
nonempty and finite setsProc of processesand Msg of
messages, which we suppose to be fixed in the following. We
suppose|Proc| ≥ 2. Recall that we assume an exchange of
messages through channels. The set ofchannelsis denoted
Ch = {(p, q) ∈ Proc × Proc | p 6= q}. The setActp

of actions that may be executed by processp is given by
Actp = {!(p, q, m) | (p, q) ∈ Ch and m ∈ Msg} ∪
{?(q, p, m) | (p, q) ∈ Ch and m ∈ Msg}. Moreover, let
Act =

⋃

p∈Proc Actp denote the set of all actions. Before we
formally define what we understand by an MSC, let us first
consider generalAct-labeled posets, i.e., structures(E,�, λ)
where E is a finite set ofevents, λ is a labeling function
of the form E → Act , and � is a partial-order relation
(it is reflexive, transitive, and antisymmetric). For process
p ∈ Proc, let �p := � ∩ (Ep ×Ep) be the restriction of� to
Ep := λ−1(Actp) (which will later be required to give rise to
a total order). Moreover, we define the relation≺msg⊆ E×E

to detect corresponding send and receive events:i ≺msg j if
there are a channel(p, q) ∈ Ch and a messagem ∈ Msg such
that

• λ(i) = !(p, q, m), λ(j) = ?(q, p, m), and
• |{i′ � i | λ(i′) = !(p, q, m′) for somem′ ∈ Msg}| =

|{j′ � j | λ(j′) = ?(q, p, m′) for somem′ ∈ Msg}|.
That is, eventsi andj correspond to a message exchange only
if the number of messages that have been sent through channel
(p, q) beforei equals the number of messages that have been
received beforej. This ensures FIFO communication.

Definition 1 (Message Sequence Chart (MSC))AnMSC is
an Act-labeled poset(E,�, λ) such that

• for all p ∈ Proc, �p is a total order onEp,
• � = (≺msg∪

⋃

p∈Proc �p)
∗, and

• ∀i ∈ E.∃j ∈ E. i ≺msg j or j ≺msg i.

See Fig. 1(a) and Fig. 2 for some example MSCs.

Stated in words, an MSC is anAct-labelled poset such
that events occurring at a single process are totally ordered,
and that event is either a send or a receive event. For these
events the order is fixed. Independent events, though, can
occur in any order. Sequential observations of labeled posets
are called linearizations. Alinearization of an Act -labeled
poset (E,�, λ) is any saturation of� to a total order�′,
i.e., ei1 �′ . . . �′ ein

, where (i1, . . . , in) is a permutation
of (1, . . . , n) such that, for allj, k ∈ {1, . . . , n}, eij

� eik

implies j ≤ k. A linearizationei1 . . . ein
corresponds to the

word λ(ei1) . . . λ(ein
) ∈ Act∗ and, by abuse of nomenclature,

we call λ(ei1) . . . λ(ein
) a linearization as well. For example,

!(r, q, m) !(p, q, m1) !(p, q, m2) ?(q, p, m1) ?(q, p, m2) ?(q, r, m)

is a linearization of the MSC in Fig. 1(a). The set of lin-
earizations of a labeled posetM will be denoted byLin(M).
This mapping is canonically extended towards setsL of partial
orders:Lin(L) =

⋃

M∈L Lin(M).

B. Communicating Finite-State Machines

MSCs constitute a visual high-level specification formalism.
They can be represented graphically and offer an intuitive
semantics (in terms of their linearizations). On the compu-
tational side, we consider automata models that reflect the
kind of communication that is depicted in an MSC. We now
turn towards an automata model that, in a natural manner,
generates collections of MSCs. More precisely, it generates
action sequences that follow anall-or-none law: either all
linearizations of an MSC are generated, or none of them.

A communicating finite-state machine (CFM) is a collection
of finite-state machines, one for each process. According to
the assumptions that we made for MSCs, we assume that
communication between these machines takes place via (a
priori) unbounded reliable FIFO channels. The underlying
system architecture is again parametrized by the setProc of
processes and the setMsg of messages. Recall that this gives
rise to the setAct of actions, which will provide the transition
labelings. In our automata model, the effect of executing a send
action of the form!(p, q, m) by processp is to put messagem
at the end of the channel(p, q) from processp to processq.
Receive actions, written as?(q, p, m), are only enabled when
the requested messagem is found at the head of the channel
(p, q). When enabled, its execution by processq removes the
corresponding messagem from the channel fromp to q.

It has been shown that the CFM model derived from
concepts explained so far has a limited expressiveness. Certain
protocols cannot be implemented without possible deadlocks
by CFMs, unless the model is enriched by so-calledcontrol
or synchronization messages[6, 12]. Therefore, we extend our
alphabet wrt. a fixed infinite supply of control messagesΛ.
Let ActΛp contain the symbols of the form!(p, q, (m, λ))
or ?(p, q, (m, λ)) where !(p, q, m) ∈ Actp (respectively
?(p, q, m) ∈ Actp) and λ ∈ Λ. Intuitively, we tag messages
with some control informationλ to circumvent deadlocks.
Finally, let ActΛ =

⋃

p∈Proc ActΛp .

Definition 2 (Communicating Finite-State Machine (CFM))
A communicating finite-state machine(CFM) is a structure

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??,MONTH YEAR 4

Ma: p q

req

req

req

req

req

(a)

Mb:
p q

req

req

req

ack

ack

(b)

Mc: p q

a

b

b

b

b

(c)

Fig. 2. Example message sequence charts

Aa:

!(p, q, req) ?(q, p, req)

Ap: Aq:

(a)

Ab:

!(p, q, req)

?(p, q, req)!(p, q, req) ?(p, q, ack)

?(q, p, req) !(q, p, ack)

Ap: Aq:

(b)

Ac: !(p, q, (req, L))

!(p, q, (req, R))

?(q, p, (req, L))

?(q, p, (req, R))

!(p, q, (req, L))

?(q, p, (req, L))

!(p, q, (req, R))

?(q, p, (req, R))

?(p, q, (ack, L))

!(q, p, (ack, L))

?(p, q, (ack, R))

!(q, p, (ack, R))

Ap:

Aq:

(c)

p q

req

p q

req

p q

ack

(d)

Fig. 3. Example communicating finite-state machines

A = ((Ap)p∈Proc, I). For any processp ∈ Proc,
Ap = (Sp, ∆p, Fp) constitutes the behavior ofp where

• Sp is a finite set of(local) states,
• ∆p ⊆ Sp×ActΛp ×Sp is the finitetransition relation, and
• Fp ⊆ Sp is the set offinal states.

Moreover,I ⊆
∏

p∈Proc Sp is the set of global initial states.

For an example CFM, consider Fig. 3(c) where{L, R} ⊂ Λ.
Let A = ((Ap)p∈Proc, I) with Ap = (Sp, ∆p, Fp) be

a CFM. The size ofA, denoted by|A|, is defined to be
∑

p∈Proc |Sp|. A configuration of A gives a snapshot of
the current state of each process and the current channel
contents. Thus, the set of configurations ofA, denoted by
ConfA, consists of pairs(s, χ) with s ∈

∏

p∈Proc Sp a global
state andχ : Ch → (Msg × Λ)∗, determining the channel
contents. The projection of a global states ∈

∏

p∈Proc Sp

to processp is denoted bysp. An execution of a send or
receive action transfers the CFM from one configuration to
another, according to theglobal transition relationof A. This
transition relation=⇒A ⊆ ConfA×Act ×ConfA is given by

the following two inference rules. The first rule considers the
sending of a messagem from p to q and is given by

(sp, !(p, q, (m, λ)), s′p) ∈ ∆p and for allr 6= p, sr = s′r

((s, χ), !(p, q, m), (s′, χ′)) ∈ =⇒A

whereχ′ = χ[(p, q) := (m, λ) ·χ((p, q))], i.e., χ′ maps(p, q)
to the concatenation of(m, λ) and χ((p, q)); for all other
channels,χ′ coincides withχ. This rule expresses that if the
local automatonAp has a transition labeled by!(p, q, (m, λ))
moving from statesp to s′p then the CFMA has a transition
from s to s′ where only thep component ofA changes its
state and the new message(m, λ) is appended to the end
of channel(p, q). Note that the control message has been
abstracted away from the action that has been encountered
when taking the transition. In other words, the transition is
labeled by an element fromAct , which follows our intuition
that elements ofΛ are only used for synchronization but do
not contribute to observable behavior.

The second rule is complementary and considers the receipt

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??,MONTH YEAR 5

of a message:

(sp, ?(p, q, (m, λ)), s′p) ∈ ∆p and for allr 6= p, sr = s′r

((s, χ), ?(p, q, m), (s′, χ′)) ∈ =⇒A

whereχ((q, p)) = w · (m, λ) 6= ǫ and χ′ = χ[(q, p) := w].
This rule states that if the local automatonAp has a transition
labeled by?(p, q, (m, λ)) moving from statesp to s′p then the
CFM A has a transition froms to s′, which is labeled with
?(p, q, m), where only thep component ofA changes its state
and the message(m, λ) is removed from the head of channel
(q, p).

A run of CFM A on a wordw = a1 . . . an ∈ Act∗ is
a sequencec0 . . . cn ∈ Conf ∗

A of configurations wherec0

is an initial configuration and, for everyi ∈ {1, . . . , n},
(ci−1, ai, ci) ∈ =⇒A. The set of initial configurations is
defined asI × {χǫ} where χǫ maps each channel onto
the empty word, representing an empty channel. The run is
acceptingif cn ∈ (

∏

p∈Proc Fp) × {χǫ}, i.e., each process
is in an accepting state and all messages have been received
yielding empty channels. Thelanguageof CFM A, denoted
L(A), is the set of wordsw ∈ Act∗ such that there is an
accepting run ofA on w.

Closure Properties of CFM Languages

We call w = a1 . . . an ∈ Act∗ with ai ∈ Act proper if

• every receive action inw is preceded by a correspond-
ing send action, i.e., for each channel(p, q) ∈ Ch,
messagem ∈ Msg , and prefix u of w, we have
∑

m∈Msg |u|!(p,q,m) ≥
∑

m∈Msg |u|?(q,p,m) where |u|a
denotes the number of occurrences of actiona in the
word u, and

• the FIFO policy is respected, i.e., for all1 ≤ i < j ≤ n,
(p, q) ∈ Ch, andm1, m2 ∈ Msg with ai = !(p, q, m1),
aj = ?(q, p, m2), and|{i′ ≤ i | ai′ = !(p, q, m) for some
m ∈ Msg}| = |{j′ ≤ j | aj′ = ?(q, p, m) for some
m ∈ Msg}|, we havem1 = m2.

A proper word w is called well-formed if it satisfies
∑

m∈Msg |w|!(p,q,m) =
∑

m∈Msg |w|?(q,p,m).

Obviously, a run of a CFM on a wordw only exists ifw is
proper, as a receive action is only enabled if the corresponding
send message is at the head of the channel. Moreover, every
word accepted by a CFM is well-formed, as acceptance implies
empty channels.

In addition, as different processes interact asynchronously
and, in general, independently, the language of a CFM is
closed under a certain permutation rewriting. For example,
consider a run of a CFM on the well-formed word

!(p, q, m1) !(p, q, m2) ?(q, p, m1) ?(q, p, m2) !(r, q, m) ?(q, r, m)

i.e., processp sends a messagem1 to processq, followed by
a messagem2, whereupon processq receives these messages
in the correct order. We observe that processq could have
received the messagem1 before sendingm2. Indeed, any CFM
accepting the above action sequence will also accept the word

!(p, q, m1) ?(q, p, m1) !(p, q, m2) ?(q, p, m2) !(r, q, m) ?(q, r, m)

where any message is immediately received. Moreover, the
action !(r, q, m) is completely independent of all the actions
that are engaged in sending/receiving the messagesm1 or m2.
Thus, a CFM cannot distinguish between the above sequences
and sequence

!(r, q, m) !(p, q, m1) ?(q, p, m1) !(p, q, m2) ?(q, p, m2) ?(q, r, m).

Actually, !(r, q, m) can be placed at any arbitrary position with
the restriction that it has to occur before the complementary
receipt ofm. Note that the three well-formed words mentioned
above all correspond to linearizations of the MSC from
Fig. 1(a).

To capture the closure properties of a CFM formally, we
identify labeled posets whose linearizations satisfy theall-
or-none law, stating that either every or no linearization is
accepted by a CFM. To this aim, we associate to any word
w = a1 . . . an ∈ Act∗ anAct-labeled posetM(w) = (E,�,λ)
such thatw is a linearization ofM(w) and a CFM cannot
distinguish betweenw and all other linearizations ofM(w).
The set of events is given by the set of positions inw, i.e.,
E = {1, . . . , n}. Naturally, any positioni ∈ E is labeled with
ai, i.e.,λ(i) = ai. It remains to fix the partial-order relation�,
which reflects the dependencies between events. Clearly, we
consider those events to be dependent that are executed by the
same process or constitute the send and receipt of a message,
since each process acts sequentially and a message has to be
sent before it can be received. Hence, let�p⊆ Ep × Ep with
Ep as before be defined byi �p j iff i ≤ j. Moreover, let
i ≺msg j if there is a channel(p, q) ∈ Ch and a message
m ∈ Msg such that

• λ(i) = !(p, q, m), λ(j) = ?(q, p, m), and
• |{i′ ≤ i | λ(i′) = !(p, q, m′) for somem′ ∈ Msg}| =

|{j′ ≤ j | λ(j′) = ?(q, p, m′) for somem′ ∈ Msg}|.

This is similar to the definition of≺msg in the previous
paragraph. Let� = (≺msg ∪

⋃

p∈Proc �p)
∗. To examplify

these notions, consider the well-formed wordw defined as
!(r, q, m) !(p, q, m1) !(p, q, m2) ?(q, p, m1) ?(q, p, m2) ?(q, r, m).
Fig. 1(b) depicts the Hasse diagram of theAct-labeled poset
M(w) = (E,�, λ). Note that M(w) is an MSC. Indeed,
we have the following two lemmas, which are considered
standard in the MSC literature (see, for example, [27]).

Lemma 1 For any MSCM, w ∈ Lin(M) is well-formed.

Lemma 2 For any well-formedw ∈ Act∗, M(w) is an
MSC. Moreover,M(w) and M(w′) are isomorphic for all
w′ ∈ Lin(M(w)).

These results suggest to introduce an equivalence relation
over well-formed words. The well-formed wordsw and w′

are equivalent, written w ≈ w′, if M(w) and M(w′) are
isomorphic. Note that this holds iffw ∈ Lin(M(w′)).

Lemma 3 ([3]) For any CFMA,

a) L(A) consists of well-formed words only.
b) L(A) is closed under≈.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??,MONTH YEAR 6

The last claim asserts that for all well-formed wordsu and
v with u ≈ v, we haveu ∈ L(A) iff v ∈ L(A). For well-
formed wordw, let [w]≈ be the set of well-formed words
that are equivalent tow wrt. ≈. For a setL of well-formed
words, let [L]≈ :=

⋃

w∈L[w]≈ be theclosure of L wrt. ≈.
The fact thatL(A) is closed under≈, allows us to assign to
A its set of MSCsL(A) := {M(w) | w ∈ L(A)}. (Here, we
identify isomorphic structures, i.e., we consider isomorphism
classes of MSCs). This is an equivalent, visual, and more
compact description of the behavior of CFMA. Observe that
Lin(L(A)) = L(A), i.e., the linearizations of the MSCs of
CFM A correspond to its word language.

C. Deadlock-Free, Bounded, and Weak CFMs

In distributed computations, the notions of determinism,
deadlock and bounded channels play an important role [6,
25, 26]. Roughly speaking, a CFM is deterministic if every
possible execution allows for at most one run; it is deadlock-
free if any run can be extended towards an accepting one.

Definition 3 (Deterministic CFM) A CFM A =
((Ap)p∈Proc , I) with Ap = (Sp, ∆p, Fp) is deterministicif,
for all p ∈ Proc, ∆p satisfies the following two conditions:
(i) If we have both (s, !(p, q, (m, λ1)), s1) ∈ ∆p and
(s, !(p, q, (m, λ2)), s2) ∈ ∆p, then λ1 = λ2 and s1 = s2.
(ii) If we have both (s, ?(p, q, (m, λ)), s1) ∈ ∆p and
(s, ?(p, q, (m, λ)), s2) ∈ ∆p, thens1 = s2.

The CFMs from Fig. 3(a) and (b) are deterministic whereas
the CFM from Fig. 3(c) is not.

Definition 4 (Deadlock-free CFM ([26])) A CFM A is
deadlock-freeif, for all w ∈ Act∗ and all runsγ of A on w,
there existw′ ∈ Act∗ and γ′ ∈ Conf ∗

A such thatγγ′ is an
accepting run ofA on ww′.

The CFMs from Fig. 3(a), (b) and (c) are deadlock-free. Note
that, however, the CFM in Fig. 3(c) will contain a deadlock if
the control messages L and R were omitted.

We obtain another essential restriction of CFMs if we
require that any channel has a bounded capacity, say,B ∈ IN.
Towards this notion, we first define when a word isB-
bounded.

Definition 5 (B-bounded word) Let B ∈ IN. Word w ∈
Act∗ is B-bounded if, for any prefixu of w and any(p, q) ∈
Ch, it holds

0 ≤
∑

m∈Msg

|u|!(p,q,m) −
∑

m∈Msg

|u|?(q,p,m) ≤ B.

This notion is extended to MSCs in the following way. MSC
M is calleduniversallyB-boundedif all words inLin(M) are
B-bounded. MSCM is existentiallyB-boundedif Lin(M)
contains at least oneB-bounded word. Similar notions are
adopted for CFMs, except that for existentially-boundedness,
it is required that for every wordu of the language, an
equivalentword v ≈ u exists that isB-bounded. The intuition
is that bounded channels suffice to accept representatives of

the language provided the actions in an CFM are scheduled
appropriately, cf. [24, 25]. Formally, the notion of bounded
CFMs is defined as follows:

Definition 6 (Bounded CFM ([24, 27]))
a) CFM A is universallyB-bounded, B ∈ IN, if L(A) is a

set ofB-bounded words. It isuniversally boundedif it is
universallyB-bounded for someB.

b) CFM A is existentiallyB-bounded, B ∈ IN, if, for every
w ∈ L(A), there is aB-bounded wordw′ ∈ L(A) such
that w′ ≈ w.

A further variant of CFMs, as considered in [3, 32, 35], does
not allow for sending control information with a message.
Moreover, they have a single global initial state:

Definition 7 (Weak CFM) A CFM A = ((Ap)p∈Proc, I) is
called weak if

• |I| = 1 and
• for every two transitions(s1, !(p, q, (m1, λ1)), s

′
1) and

(s2, !(p, q, (m2, λ2)), s
′
2), we haveλ1 = λ2.

Note that the second item requires that only one message
from Λ is used in the CFM. Intuitively, we could say that no
synchronization message is used at all, as a weak CFM cannot
distinguish between several messages.

Example 1 Consider the weak CFMsAa and Ab depicted
in Fig. 3(a) and (b), respectively, which do not use control
messages (recall that, formally, there is no distinction be-
tween control messages). The CFMAa represents a simple
producer-consumer protocol, whereasAb specifies a part of
the alternating-bit protocol. Two scenarios that demonstrate a
possible behavior of these systems are given by the MSCs
Ma and Mb from Fig. 2(a) and (b), respectively. Indeed,
Ma ∈ L(Aa) and Mb ∈ L(Ab) (thus, Lin(Ma) ⊆ L(Aa)
and Lin(Mb) ⊆ L(Ab)). Observe thatAa is deterministic,
existentially1-bounded, and deadlock-free. It is not universally
bounded as processp can potentially send arbitrarily many
messages to processq before any of these messages is received.
In contrast,Ab is universally bounded (witnessed by the bound
B = 3) and also existentially 1-bounded. As stated before, it
is also deterministic and deadlock-free.

The CFM Ac (cf. Fig. 3(c)), which is existentially1-
bounded, deadlock-free, and not deterministic, describesthe
system that is depicted informally in Fig. 3(d) in terms of
a high-level MSC: MSCs fromL(Ac) start with sending
a request message fromp to q, followed by an arbitrary
sequence of further requests, which are sent fromp to q, and
acknowledgments, sent fromq to p. Note thatAc employs
control messages to avoid deadlocks. The idea is thatL andR
inform the communication partner about which of the nodes
at the bottom (left or right) is envisaged next.

For weak CFMsA, we can identify another closure prop-
erty. Consider Fig. 4. IfL(A) subsumes the linearizations of
the MSCsM1 andM2, then those ofM3 will be contained in
L(A) as well, as the bilateral interaction between the processes
is completely independent. Formally, we define the inference

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??,MONTH YEAR 7

p q

m

M1:
r s

m

M2:
p q r s

m m

M3:

Fig. 4. Some MSCs

relation |= ⊆ 2Act∗ ×Act∗ as follows: given a setL of well-
formed words and a well-formed wordw, L |= w if, for every
p ∈ Proc, there isu ∈ L such thatu ↾ p = w ↾ p. Here,
(w ↾ p) ∈ Act∗p denotes the projection ofw onto actions of
processp. Indeed,L(A) is closed under|=, i.e., L(A) |= w

implies w ∈ L(A).
A stronger notion, which is satisfied by any weak deadlock-

free CFM is as follows. LetL ⊆ Act∗ be a set of well-formed
words and letu be a proper word (i.e., it is the prefix of some
well-formed word). We writeL |=df

u if, for every p ∈ Proc,
there isw ∈ L such thatu ↾ p is a prefix ofw ↾ p. Language
L ⊆ Act∗ is closed under|=df if L |=df

w implies thatw is
a prefix of some word inL.

Lemma 4 ([3, 32]) Let A be a weak CFM.

a) L(A) is closed under|=.
b) If A is deadlock-free, thenL(A) is closed under|=df .

Implementability Issues

Next, we collect known results on the relationship between
regular languages overAct and CFM languages.

Theorem 1 Let L ⊆ Act∗ be a set of well-formed words that
is closed under≈, and let B ∈ IN. We have the following
equivalences:

a) 1) L is regular.
2) There is a universally bounded CFMA with L = L(A).
3) There is a deterministic universally bounded CFMA

with L = L(A).
4) There is a universally bounded deadlock-free CFMA

with L = L(A).

b) 1) The set{w ∈ L | w is B-bounded} is regular, and for
all w ∈ L, there is aB-bounded wordw′ with w ≈ w′.

2) There is an existentiallyB-bounded CFMA with L =
L(A).

c) 1) L is regular and closed under|=.
2) There is a universally bounded weak CFMA with L =

L(A).

d) 1) L is regular, closed under|=, and closed under|=df .
2) There is a deterministic universally bounded deadlock-

free weak CFMA with L = L(A).

In all four cases, all directions are effective whereL is
assumed to be given as a finite automaton.

The equivalences “1)⇔ 2) ⇔ 3)” in Theorem 1a) go back
to [27], the equivalence “1)⇔ 4)” to [7]. Theorem 1b) is due
to [24]. Finally, Theorems 1c) and 1d) can be attributed to [3,
32].

TABLE I
ANGLUIN ’ S ALGORITHM L∗

L∗(Σ):
1 U := {ǫ}; V := {ǫ}; T is defined nowhere;
2 T-UPDATE();
3 repeat
4 while (T, U, V) is not (closed and consistent)
5 do
6 if (T, U, V) is not consistentthen
7 find u, u′ ∈ U, a ∈ Σ, v ∈ V s.t.:
8 row (u) = row (u′) and
9 row (ua)(v) 6= row(u′a)(v);

10 V := V ∪ {av};
11 T-UPDATE();
12 if (T, U, V) is not closedthen
13 find u ∈ U, a ∈ Σ such thatrow(ua) 6= row(u′)
14 for all u′ ∈ U ;
15 U := U ∪ {ua};
16 T-UPDATE();
17 /∗ (T, U, V) is both closed and consistent, hence,H(T,U,V)

18 can be derived∗/
19 perform equivalence test forH(T,U,V);

20 if equivalence test failsthen
21 get counterexamplew;
22 U := U ∪ pref (w);
23 T-UPDATE();
24 until equivalence test succeeds;
25 return H(T,U,V);

TABLE II
FUNCTION FOR UPDATING TABLE FUNCTION INL∗

T-UPDATE():
1 for w ∈ (U ∪ UΣ)V such thatT (w) is not defined
2 T (w) := getClassificationFromTeacher (w);

III. L EARNING REGULAR LANGUAGES

In the previous sections, we formalized the notions of sce-
narios, or MSCs, and design models, i.e., CFMs. It remains to
introduce the key concept of our synthesis approach:learning
design models from given scenarios.

Angluin’s well-known algorithm L∗ [4] learns a determin-
istic finite automaton (DFA) by querying for certain words
whether they should be accepted or rejected by the automaton
in question. In this section, we recall the algorithm and
generalize it towards learning objects that can berepresented
by DFA in a way made precise shortly. This extension allows
us to learn various classes of CFMs, as described in the
previous section.

Let us first recall some basic definitions. LetΣ be an
alphabet. A deterministic finite automaton (DFA) overΣ is
a tupleB = (Q, q0, δ, F), whereQ is its finite set ofstates,
q0 ∈ Q is the initial state, δ : Q × Σ → Q is its transition
function, andF ⊆ Q is the set offinal states. The language
L(B) of B is defined asL(B) = {w ∈ Σ∗ | δ̄(q0, w) ∈ F}
where δ̄ : Q × Σ∗ → Q is the extension ofδ to words, i.e.,
δ̄(q, ǫ) = w and δ̄(q, aw) = δ̄(δ(q, a), w). Due to well-known
automata-theoretic results, every DFA can be transformed into
a unique (up to isomorphism), equivalent, minimal DFA, i.e.,
having a minimal number of states.

Angluin’s algorithm L∗ learns or infers a minimal DFA

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??,MONTH YEAR 8

Learner

Teacher

Oracle

membership query:
w

?
∈ L

if closed and consistent:
equivalence query

L(H)
?
= Lyes or

counterexample
w ∈ (L \ L(H)) ∪ (L(H) \ L)

yes/no answer

Fig. 5. Components of L∗ and their interaction

for a given regular languageL. In the algorithm, a so-called
Learner , who initially knows nothing aboutL, is trying to
learn a DFAB such thatL(B) = L. To this end, it asks
repeatedly queries of aTeacher and anOracle1, who both
know L. There are two kinds of queries (cf. Fig. 5):

• A membership queryconsists in asking theTeacher if a
word w ∈ Σ∗ is in L.

• An equivalence queryconsists in asking theOracle

whether ahypothesizedDFA H is correct, i.e., whether
L(H) = L. The Oracle answersyes if H is correct, or
supplies a counterexamplew, drawn from the symmetric
difference ofL andL(H).

TheLearner maintains a prefix-closed setU ⊆ Σ∗ of words
that are candidates for identifying states, and a suffix-closed
setV ⊆ Σ∗ of words that are used to distinguish such states.
The setsU and V are increased on demand. TheLearner

makes membership queries for all words in(U ∪ UΣ)V , and
organizes the results into atable T = (T, U, V) where func-
tion T maps eachw ∈ (U∪UΣ)V to an element from{+,−}
where parity+ representsacceptedand− not accepted. For
word u ∈ U ∪ UΣ, let function row (u) : V → {+,−} be
given by row(u)(v) = T (uv). Such function is called arow
of T .

The following properties of a table are relevant. TableT is
• closed, if for all u ∈ U anda ∈ Σ there isu′ ∈ U such

that row (ua) = row (u′), and
• consistent, if for all u,u′∈U anda∈Σ, row(u)=row (u′)

implies row (ua)=row(u′a).
If T is not closed, there existsa ∈ Σ such thatrow(ua) 6=
row(u′) for all u′ ∈ U . In this case, we moveua to U

and ask membership queries for everyuabv with b ∈ Σ
and v ∈ V . Likewise, if T is not consistent, there exist
u, u′ ∈ U , a ∈ Σ and v ∈ V such thatrow(u) = row (u′)
and row(ua)(v) 6= row(u′a)(v). Then we addav to V and
ask membership queries for everyuav with u ∈ U ∪ UΣ.
If table T is closed and consistent, theLearner constructs a
hypothesized DFAHT = (Q, q0, δ, F), where

• Q = {row(u) | u ∈ U} with q0 the rowrow(ǫ),
• δ is defined byδ(row (u), a) = row (ua), and
• F = {r ∈ Q | r(ǫ) = +}.

The Learner subsequently submitsHT as an equivalence
query asking whetherL(HT) = L. If the answer is affirmative,

1We want to explicitly distinguish between membership (i.e., easy to
answer) and equivalence (i.e., more difficult to answer) queries. Conceptually,
there is no reason for differentiating between them.

the learning procedure is completed. Otherwise, the returned
counterexampleu is processed by adding every prefix ofu

(includingu) to U , extendingUΣ accordingly, and subsequent
membership queries are performed in order to make the table
closed and consistent, whereupon a new hypothesized DFA is
constructed, etc. (cf. Fig. 5).

The pseudo code of L∗ is given in Table I, supplemented
by Table II, which contains the table-update function whichis
invoked whenever theTeacher is supposed to classify a word.

Theorem 2 ([4]) Under the assumption thatTeacher classi-
fies/provides words in conformance with a regular languageL

over Σ, invokingL∗(Σ) eventually returns the minimal DFA
over Σ recognizingL. If n is the number of states of this
DFA and m is the size of the largest counterexample, then
the number of membership queries is inO(|Σ| · m · n2) and
the maximal number of equivalence queries isn. The overall
running time is polynomial inm and n.

Example 2 AssumeΣ = {a, b} and let L = {w ∈ Σ∗ |
|w|a = |w|b andw = uv implies |u|b ≤ |u|a ≤ |u|b + 2}, i.e.,
for any word ofL, every prefix has at least as manya’s as b’s
and at most two morea’s than b’s. Moreover, the number of
a’s in the whole word is equal to the number ofb’s. Clearly,
L is a regular language overΣ. Let us illustrate how the
minimal DFA forL is learned usingL∗. Fig. 6 shows several
tables that are computed while learningL. The first table is
initialized for U = {ǫ} and V = {ǫ}. A table entryT (uv)
with u ∈ U ∪ UΣ and v ∈ V has parity+ if uv ∈ L and−,
otherwise. For example, consider Fig. 6i). According to the
definition ofL, the empty wordǫ is contained inL and, thus,
T (ǫ) = row(ǫ)(ǫ) = +. In contrast,a and b are not inL, so
that T (a) = T (b) = row(a)(ǫ) = row(b)(ǫ) = −.

This table is not closed as, e.g.,row(a) 6= row (u) for all
u ∈ U . Hence,U has to be extended by addinga, which
invokes additional membership queries. The resulting table, cf.
Fig. 6ii) is closed and consistent and the learner presents the
hypothesis automatonH1, which, however, does not conform
to the target languageL, as, e.g.,bb ∈ L(H1) \L. Therefore,
bb and its prefixes are added toU .

The obtained table (Fig. 6iii)) is not consistent, as
row(a)(ǫ) = row (b)(ǫ) = − but row(aa′)(ǫ) 6= row(a′a′)(ǫ).
To resolve this conflict a column is added to the table, i.e.,
V ′ := V ∪ {a′} wherea′ was the conflicting suffix.

Some steps later, the algorithm comes up withH3 (cf.
Fig. 6vi)), which indeed recognizesL, i.e., L(H3) = L, so
that the learning procedure finally halts.

IV. L EARNING COMMUNICATING FINITE-STATE

MACHINES

In this section, we intend to give a learning approach to infer
CFMs from example scenarios that are provided as MSCs. Let
us first settle on a user profile, i.e., on some reasonable as-
sumptions about the teacher/oracle that an inference algorithm
should respect:

• The user can fix some system characteristics. For exam-
ple, she might require her system to be deadlock-free,
deterministic, or universally bounded.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??,MONTH YEAR 9

i)

︷︸︸︷
ǫ

ǫ +
a −
b −

closed: No
consistent: Yes

ii)

︷︸︸︷
ǫ

ǫ +
a −
b −
aa −
ab +

closed: Yes
consistent: Yes
H1:

+ −

a, b

b

a

counterex.:bb
bb ∈ L(H1)
bb 6∈ L(B)

iii)

ǫ

ǫ +
a −
b −
bb −
aa −
ab +
ba −
bba −
bbb −

closed: Yes
consistent: No

iv)

ǫ b

ǫ + −
a − +
b − −
bb − −
aa − −
ab + −
ba − −
bba − −
bbb − −

closed: Yes
consistent: Yes

H2:

+− −+

−−

a

b

b a

a, b

counterex.:aabb

aabb 6∈ L(H2)
aabb ∈ L(B)

v)

ǫ b

ǫ + −
a − +
b − −
bb − −
aa − −
aab − +
aabb + −
ab + −
ba − −
bba − −
bbb − −
aaa − −
aaba − −
aabba − +
aabbb − −

closed: Yes
consistent: No

vi)

ǫ b bb

ǫ + − −
a − + −
b − − −
bb − − −
aa − − +
aab − + −
aabb + − −
ab + − −
ba − − −
bba − − −
bbb − − −
aaa − − −
aaba − − +
aabba − + −
aabbb − − −
closed: Yes
consistent: Yes

+ - - - + -

- - - - - +

a

b

ab

a

b

a, b

H3:

L(H3) = L(B)

U {

U · Σ

{

V

V

U

{

U · Σ

{

Fig. 6. An example of an L∗ run

• She can decide if a given scenario in terms of an MSC
is desired or unwanted, thus classify it as positive or
negative, respectively.

• She can accept or reject a given system and, in the latter
case, come up with an MSC counterexample.

Roughly speaking, the user activity should restrict to classi-
fying and providing MSCs. In contrast, we do not assume
that the user can determine if a given system corresponds to
the desired system characteristics. Apart from the fact that
this would be too time consuming as a manual process, the
user often lacks the necessary expertise. Moreover, the whole
learning process would get stuck if the user was confronted
with a hypothesis that does not match her requirements, but
cannot come up with an MSC that is causal for this violation
(this is particularly difficult if the system is required to be
deadlock-free). So we would like to come up with some
guidedapproach that “converges” against a system satisfying
the requirements.

The core ingredient of an inference algorithm that matches
our user profile shall be the algorithm L∗, which synthesizes
a minimal DFA from examples given as words. To build a
bridge from regular word languages to CFMs, we make use
of Theorem 1 (page 7), which reveals strong relationships
between CFMs and regular word languages over the setAct

of actions. More specifically, it asserts that one can synthesize

• a deterministic universally-bounded CFMfrom a regular
set of well-formed words that is closed under≈,

• a universally-bounded deadlock-free CFMfrom a regular
set of well-formed words that is closed under≈,

• an existentiallyB-bounded CFMfrom a regular set of
well-formed B-bounded words that is closed under the
restriction of≈ to B-bounded words, and

• a universally-bounded deadlock-free weak CFMfrom a
regular set of well-formed words that is closed under≈,

|=, and |=df .

Towards learning CFMs, a naı̈ve idea would now be to infer,
by means of L∗, a regular word language that can be translated
into a CFM according to Theorem 1. The user then has
to classify arbitrary words over the alphabet of actions and
to deal with hypotheses that have nothing in common with
MSC languages. These activities, however, do not match our
user profile. Moreover, the user will be confronted with an
overwhelming number of membership and equivalence queries
that could actually be answered automatically. In fact, words
that do not match an execution of a CFM and hypotheses
that do not correspond to a CFM could be systematically
rejected, without bothering the user. The main principle of
our solution will, therefore, be an interface between the user
and the program (i.e., the learner) that is based on MSCs only.
In other words, the only objects that the user gets to see are
MSCs that need to be classified, and CFMs that might already
correspond to a desired design model. On the one hand, this
facilitates the user activities. On the other hand, we obtain a
substantial reduction of membership and equivalence queries.
The latter will be underpinned, in Section VI, by a practical
evaluation (cf. Table V).

Now let us turn to our adapted inference algorithm. Its core
will indeed be L∗. While L∗ does not differentiate between
words over a given alphabet, however, Theorem 1 indicates
that we need to consider a suitable domainD ⊆ Act∗

containing only well-formed words. Secondly, certain restric-
tions have to be imposed such that any synthesized CFM
recognizes a regular subset ofD. For universally-bounded
(deadlock-free) CFMs, this might be the class of all well-
formed words, whereas for existentiallyB-bounded CFMs
only regular languages ofB-bounded words are suitable. In
other words, we have to ensure that regular word languages are
learned that contain words fromD only. As for any CFMA,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??,MONTH YEAR 10

L(A) is closed under≈, the regular subsets ofD in addition
have to be closed under≈; more precisely, the restriction of≈
to words fromD. Similarly, to infer a weak or deadlock-free
CFM, we need a regular word language that is closed under
|=. In our learning setup, this will be captured by a relation
⊢ ⊆ 2D×2D whereL1 ⊢ L2 intuitively means thatL1 requires
at least one word fromL2. It is not difficult to see that this
relation suffices to cover the inference relation|=, and as will
be shown later, it can be used to capture|=df as well.

Let RminDFA(D,⊢) be the class of minimal DFA that rec-
ognize a languageL ⊆ D satisfying

• L is closed under≈D := ≈ ∩ (D ×D), and
• L is closed under⊢, i.e., (L1 ⊢ L2 ∧ L1 ⊆ L) implies

L ∩ L2 6= ∅.
A learning algorithm tailored to CFMs is now based on the
notion of alearning setupfor a class of CFMs, which provides
instantiations ofD and⊢.

Definition 8 (Learning Setup) Let C be a class of CFMs. A
learning setupfor C is a triple (D,⊢, synth) where

• D ⊆ Act∗, the domain, is a set of well-formed words,
• ⊢ ⊆ 2D × 2D such thatL1 ⊢ L2 implies (L1 is finite,

L2 6= ∅, andL2 is decidable),
• synth : RminDFA(D,⊢) → C is the computablesynthesis

function such that, for each CFMA ∈ C, there isB ∈
RminDFA(D,⊢) with [L(B)]≈ = L(synth(B)) = L(A) (in
particular, synth is injective).

The final constraint asserts that for any CFMA in the
considered class of CFMs, a minimal DFAB exists (in the
corresponding class of DFAs) recognizing the same word
language asA modulo≈.

Given the kind of learning setup that we will consider, we
now discuss some necessary changes to the algorithm L∗.
As L∗ works within the class of arbitrary DFA overAct ,
conjectures may be proposed whose languages are not subsets
of D, or violate the closure properties for≈ and⊢ (or both). To
avoid the generation of such incorrect hypothesized automata,
the language inclusion problem (is the language of a given
DFA included inD?) and the closure properties in question
are required to beconstructively decidable. This means that
each of these problems is decidable and that in case of a
negative result, areasonof its failure, i.e., a counterexample,
can be computed. Accordingly, we require that the following
properties hold for DFAB over Act :

(D1) The problem whetherL(B) ⊆ D is decidable and if
L(B) 6⊆ D, one can compute somew ∈ L(B) \ D. We
then say that INCLUSION(D) is constructively decidable.

(D2) If L(B) ⊆ D, it is decidable whetherL(B) is closed
under≈D. If not, one can computew, w′ ∈ D such that
w ≈D w′, w ∈ L(B), andw′ 6∈ L(B). We then say that
the problem EQCLOSURE(D) is constructively decidable.

(D3) If L(B) ⊆ D is closed under≈D, it is decidable
whetherL(B) is closed under⊢. If not, one can compute
(L1, L2) ∈ ⊢ (hereby,L2 shall be given in terms of a
decision algorithm that checks a word for membership)
such thatL1 ⊆ L(B) andL(B) ∩ L2 = ∅. We then say
that INFCLOSURE(D,⊢) is constructively decidable.

Let us now generalize Angluin’s algorithm to cope with
the extended setting, and let(D,⊢, synth) be a learning setup
for some classC of CFMs. The main changes in Angluin’s
algorithm concern the processing of membership queries as
well as the treatment of hypotheses. For the following de-
scription, we refer to Table III, depicting the pseudo code
of EXTENDED-L∗, our extension of L∗, and Table IV which
contains a modified table-update function that is invoked by
this extension of L∗.

TheTeacher will provide/classify MSCs rather than words.
Moreover, the equivalence test will be performed, by the
Oracle, on the basis of a CFM rather than on the basis of a
DFA. TheOracle will also provide counterexamples in terms
of MSCs.

To undertake an equivalence test, knowledge of the target
model is required as in every other learning based technique
for inferring design models. Simulating and testing are possi-
bilities to converge to a correct system implementation. Inthe
implementation of our approach [9] we provide such means
to ease the user’s burden.

To realize these changes, we exploit a new table-update
function EXTENDED-T-UPDATE (cf. Table IV). Therein, mem-
bership queries are filtered: a queryw 6∈ D is considered
immediately as negative, without presenting it to theTeacher

(lines 2,3). Faced with a queryw ∈ D, the MSCM(w) is
displayed to theTeacher (we call this auser query). His
verdict will then determine the table entry forw (line 9). Once
a user query has been processed for a wordw ∈ D, queries
w′ ∈ [w]≈D must be answered equivalently. They are thus not
forwarded to theTeacher (lines 6, 7). Therefore, MSCs that
have already been classified are memorized in a setPool (line
10).

Once tableT is closed and consistent, a hypothesized DFA
HT is determined as usual. We then proceed as follows (cf.
Table III):

1) If L(HT) 6⊆ D, compute a wordw ∈ L(HT) \
D and modify the tableT accordingly by invoking
EXTENDED-T-UPDATE (lines 18–22).

2) If L(HT) ⊆ D but L(HT) is not closed under≈D,
computew, w′ ∈ D such thatw ≈D w′, w ∈ L(HT),
andw′ 6∈ L(HT); perform the membership queries for
[w]≈. As these queries are asked in terms of an MSC by
displayingM(w) to the Teacher , it is guaranteed that
they are answered uniformly (lines 24–28).

3) If L(HT) is the union of≈D-equivalence classes but
not closed under⊢, compute(L1, L2) ∈ ⊢ such that
L1 ⊆ L(HT) and L(HT) ∩ L2 = ∅; perform mem-
bership queries for every word fromL1 (displaying the
corresponding MSCs to theTeacher); if all these mem-
bership queries are answered positively, theTeacher is
asked to specify an MSC that comes with a linearization
w from L2. The wordw will be declared “positive”.
Recall thatL2 is a decidable language (and we assume
that the decision algorithm is available) so that all MSCs
M with Lin(M) ∩ L2 6= ∅ can be enumerated until a
suitable MSC is selected (lines 30–41).

If, for a hypothesized DFAHT , we haveL(HT) ⊆ D, and
L(HT) is closed under both≈D and⊢, then an equivalence

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??,MONTH YEAR 11

query is performed onsynth(HT), the CFM that is synthe-
sized from the hypothesized DFA. In case a counterexample
MSC M is provided, the table has to be complemented
accordingly by a linearization ofM (lines 43–50). Otherwise,
synth(HT) is returned as the desired CFM (lines 51, 52).

Theorem 3 Let C be a class of CFMs, let(D,⊢, synth) be
a learning setup forC, and let A ∈ C. If the Teacher

classifies/provides MSCs in conformance withL(A), then in-
vokingEXTENDED-L∗(D,⊢, synth) eventually returns a CFM
A′ ∈ C such thatL(A′) = L(A).

Proof: We fix a classC of CFMs and a learning setup
(D,⊢, synth) for C. Moreover, letA ∈ C. By the definition
of a learning setup, there exists a DFAB ∈ RminDFA(D,⊢)
with [L(B)]≈ = L(synth(B)) = L(A). We suppose that
Teacher classifies/provides MSCs in accordance withL(A) =
L(synth(B)). On invoking EXTENDED-L∗(D,⊢, synth), a
word w ∈ (U ∪ UAct)V is classified by the table function
T depending on whetherw ∈ D and M(w) ∈ L(A) =
L(synth(B)). More precisely,T (w) = + iff w ∈ L(B), i.e.,
we actually perform L∗, and theTeacher acts in conformance
with L(B). The differences to the basic version of Angluin’s
algorithm are that (i) not every hypothesisH(T,U,V) is for-
warded to theTeacher (in that case, counterexamples can
be generated automatically), and (ii) we may add, in lines
27 and 33, several words (and its prefixes) to the table at
one go. This is, however, a modification that preserves the
validity of Theorem 2. Consequently, when the equivalence
test succeeds (line 51), then the algorithm outputs a CFM
A′ = synth(H(T,U,V)) with L(A′) = L(A).

Definition 9 (Learnability of classes of CFMs) Class C of
CFMs is learnableif there is a learning setup forC.

The sequel of this section is devoted to identify learnable
classes of CFMs. To this purpose, we have to determine a
learning setup for each class.

A note on the complexity. The total running time of the
extended algorithm can only be considered wrt. a concrete
learning setup. In particular, it heavily depends on the com-
plexity of the synthesis of a CFM from a given minimal DFA,
which tends to be very high. When studying this issue below
for several learning setups, we will therefore assume that an
equivalence check is performed on the basis of the minimal
DFA itself rather than on a synthesized CFM (cf. line 43
in Table III). This lowers the running time of the algorithm
considerably and, at the same time, is a reasonable assumption,
as in all learning setups we provide below, the minimal DFA
faithfully simulates all executions of the synthesized CFM(up
to a channel bound when considering the case of existential
bounds). So let us in the following assume the synthesis
function to need constant time.

We can now state our first learnability result:

Theorem 4 Universally-bounded CFMs are learnable.

Proof: Let C denote the class of deterministic universally-
bounded CFMs. To show thatC is learnable, we need to
determine a learning setup(D,⊢, synth) for C. First observe
that|= needs not be instantiated for this class (cf. Theorem 1a).
Let D be the set of well-formed words overAct . By Theo-
rem 1a), there is a computable mappingsynth that transforms
any regular setL of well-formed words that is closed under
≈D = ≈ (say, given in terms of a finite automaton) into a CFM
A such thatL(A) = L. To show that(D, ∅, synth) is indeed
a learning setup, it remains to establish that the problems
INCLUSION(D), EQCLOSURE(D), and INFCLOSURE(D, ∅)
are constructively decidable. Decidability of INCLUSION(D)
and EQCLOSURE(D) has been shown in [27]. For DFA, these
problems are actually solvable in linear time. The decidability
of INFCLOSURE(D, ∅) is trivial.

Together with Theorem 1a), we immediately obtain the
learnability of two subclasses:

Corollary 1 Deterministic universally-bounded CFMs and
universally-bounded deadlock-free CFMs are learnable.

Now let us have a closer look at the complexity of our
algorithm, when it is instantiated with the learning setup that
we developed in the proof of Theorem 4. In the best case,
we start with a deterministic CFM. In the following, letm
denote the maximal number of events of an MSC that is either
provided or to be classified by the user (Teacher or Oracle).

Theorem 5 Let C be the class of deterministic universally-
bounded CFMs and letA ∈ C be universallyB-bounded. The
number of equivalence queries needed to infer a CFMA′ ∈ C

with L(A) = L(A′) is at most(|A|·|Msg |+1)B·|Proc|2+|Proc|.
Moreover, the number of membership queries and the overall
running time is polynomial in|A|, |Msg |, and m, and it is
exponential in|Proc| and B.

Proof: SupposeA ∈ C is the input CFM. Without loss
of generality, we assume that the synchronization messages
from Λ that are used inA are precisely the local states of
A. Then, the number of states of the unique minimal DFAB
satisfyingL(synth(B)) = L(A) is bounded byC = |A||Proc| ·
(|Msg | · |A| + 1)B·|Proc|2 . The first factor is the number of
global states ofA, whereas the second factor contributes the
number of possible channel contents (|Msg | · |A| being the
number of messages). Hence,C constitutes an upper bound
for the number of equivalence queries. We will now calculate
the number of membership queries, which is bounded by the
size of the table that we obtain when the algorithm terminates.
Note first that the size ofAct is bounded by2|Proc|2 · |Msg |.
During a run of the algorithm, the size ofV is bounded by
C, as the execution of program line 9 always comes with
creating a new state. The setU can increase at mostC-times,
too. The number of words that are added toU in line 21 can
be bounded by2C. The length of wordsw andw′, as added in
line 27 can likewise be bounded by2C. The number of words
added in line 47 depends on the size of a counterexample that
is provided by theOracle. Note that lines 33 and 38 are of
no importance here because, as mentioned before,⊢ was not

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??,MONTH YEAR 12

TABLE III
THE EXTENSION OFANGLUIN ’ S ALGORITHM

EXTENDED-L∗(D,⊢, synth):
1 U := {ǫ}; V := {ǫ}; T is defined nowhere;
2 Pool := ∅;
3 EXTENDED-T-UPDATE();
4 repeat
5 while (T, U, V) is not (closed and consistent)
6 do
7 if (T, U, V) is not consistentthen
8 find u, u′ ∈ U, a ∈ Act , andv ∈ V such thatrow (u) = row (u′) androw (ua)(v) 6= row(u′a)(v);
9 V := V ∪ {av};

10 EXTENDED-T-UPDATE();
11 if (T, U, V) is not closedthen
12 find u ∈ U anda ∈ Act such thatrow(ua) 6= row (u′) for all u′ ∈ U ;
13 U := U ∪ {ua};
14 EXTENDED-T-UPDATE();
15 /∗ (T, U, V) is both closed and consistent∗/
16 H := H(T,U,V);

17 /∗ check closedness properties for≈D and ⊢ ∗/
18 if L(H) 6⊆ D
19 then
20 computew ∈ L(H) \ D;
21 U := U ∪ pref (w);
22 EXTENDED-T-UPDATE();
23 else
24 if L(H) is not ≈D -closed
25 then
26 computew, w′ ∈ D such thatw ≈D w′, w ∈ L(H), andw′ 6∈ L(H);
27 U := U ∪ pref (w) ∪ pref (w′);
28 EXTENDED-T-UPDATE();
29 else
30 if L(H) is not ⊢ -closed
31 then
32 compute(L1, L2) ∈ ⊢ such thatL1 ⊆ L(H) andL(H) ∩ L2 = ∅;
33 U := U ∪ pref (L1);
34 EXTENDED-T-UPDATE();
35 if T (w) = + for all w ∈ L1 then
36 M := getMSCFromTeacher(L2);
37 choosew ∈ Lin(M) ∩ L2;
38 U := U ∪ pref (w);
39 T (w) := +;
40 Pool := Pool ∪ {M};
41 EXTENDED-T-UPDATE();
42 else
43 do equivalence test forsynth(H(T,U,V));
44 if equivalence test failsthen
45 counterexampleM is provided, classified asparity ∈ {+,−};
46 choosew ∈ Lin(M) ∩D;
47 U := U ∪ pref (w);
48 T (w) := parity ;
49 Pool := Pool ∪ {M};
50 EXTENDED-T-UPDATE();
51 until equivalence test succeeds;
52 return synth(H);

instantiated for this learning setup. Summarizing, the number
of membership queries is inO((C3 + mC2) · |Act |). As for
a given minimal DFAH, one can detect in polynomial time
if L(H) ⊆ D and if L(H) is ≈D-closed, the overall running
time of the algorithm is polynomial in|Msg |, m, and|A|, and
it is exponential in|Proc| andB.

The following theorem states that the complexity is higher
when we act on the assumption that the CFM to learn is non-
deterministic.

Theorem 6 Let C be the class of universally-bounded

(deadlock-free) CFMs and letA ∈ C be universallyB-
bounded. The number of equivalence queries needed to in-
fer a CFM A′ ∈ C with L(A) = L(A′) is at most

2(|A|·|Msg|+1)B·|Proc|2+|Proc|

. Moreover, the number of member-
ship queries and the overall running time is polynomial in
m, exponential in|A| and |Msg |, and doubly exponential in
|Proc| and B.

Proof: We follow the proof of Theorem 5. AsA can
be non-deterministic, however, we have to start from the
assumption that the number of states of the unique minimal

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??,MONTH YEAR 13

TABLE IV
UPDATE THE TABLE IN EXTENDED-L∗

EXTENDED-T-UPDATE():
1 for w ∈ (U ∪ UAct)V such thatT (w) is not defined
2 if w 6∈ D
3 then T (w) := −;
4 else if M(w) ∈ Pool

5 then
6 choosew′ ∈ [w]≈D such thatT (w′) is defined;
7 T (w) := T (w′);
8 else
9 T (w) := getClassificationFromTeacher (M(w));

10 Pool := Pool ∪ {M(w)};

DFA B satisfying L(synth(B)) = L(A) is bounded by

2(|A|·|Msg|+1)B·|Proc|2+|Proc|

.

Theorem 7 For B ∈ IN, existentiallyB-bounded CFMs are
learnable.

Let C be the class of existentiallyB-bounded CFMs. We
can provide a learning setup such that, for allA ∈ C, the
number of equivalence queries needed to infer an existentially
B-bounded CFMA′ ∈ C with L(A) = L(A′) is at most

2(|A|·|Msg|+1)B·|Proc|2+|Proc|

. Moreover, the number of member-
ship queries and the overall running time are polynomial in
m, exponential in|Msg | and |A|, and doubly exponential in
B and |Proc|.

Proof: To obtain a learning setup(D,⊢, synth) for C,
let D be the set ofB-bounded well-formed words overAct .
As in the previous proof,⊢ is not needed, i.e., we set⊢
to be ∅. By Theorem 1c), there is a computable mapping
synth that transforms any regular setL of B-bounded well-
formed words that is closed under≈D into a CFM A with
L(A) = [L]≈. In order to show that(D, ∅, synth) is a learning
setup it remains to show that the problems INCLUSION(D) and
EQCLOSURE(D) are constructively decidable. This is shown
by a slight modification of the algorithm in [27] for universally
bounded languages. This goes as follows.

Let B = (Q, q0, δ, F) be a minimal DFA overAct . A state
s ∈ Q is calledproductiveif there is a path froms to some
final state. We successively label any productive state witha
channel content, i.e., a functionχs : Ch → Msg∗ will be
associated to any states ∈ Q such that:

1) The initial stateq0 and any final stateq ∈ F are
equipped withχǫ, mapping any channel to the empty
word.

2) If s, s′ ∈ Q are productive states andδ(s, !(p, q, m)) =
s′, then χs′ = χs[(p, q) := m · χs((p, q))], i.e., m is
appended to channel(p, q).

3) If s, s′ ∈ Q are productive states andδ(s, ?(q, p, m)) =
s′, then χs = χs′ [(p, q) := χs′((p, q)) · m], i.e., m is
removed from the channel(p, q).

L(B) is a set of well-formed words iff there exists a labeling
of productive states with channel functions satisfying 1)–3). If
a state-labeling violates one of the conditions 1)–3), thenthis
is due to a word that is not well-formed. This word acts as a
counterexample for the INCLUSION(D) problem. For example,

a clash in terms of productive statess, s′ ∈ Q such that
δ(s, !(p, q, m)) = s′ and χs′((p, q)) 6= m · χs((p, q)) gives
rise to a path from the initial state to a final state via the
transition (s, !(p, q, m), s′) that is labeled with a non-well-
formed word. This word then acts as a counterexample. Thus,
INCLUSION(D) is constructively decidable.

To show decidability of EQCLOSURE(D), consider a further
(decidable) property:

4) Supposeδ(s, a) = s1 and δ(s1, b) = s2 with a ∈ Actp

andb ∈ Actq for somep, q ∈ Proc satisfyingp 6= q. If
not (|χs((q, q

′))| = B andb = !(q, q′, m) for someq′ ∈
Proc and m ∈ Msg) and, moreover,(a = !(p, q, m)
and b = ?(q, p, m) for somem ∈ Msg) implies 0 <

|χs((p, q))|, then there exists a states′1 ∈ Q such that
δ(s, b) = s′1 andδ(s′1, a) = s2.

This diamondproperty describes in which case two successive
actionsa andb may be permuted. It follows that the setL(B)
of well-formed words is closed under≈D iff condition 4)
holds. This is thanks to the fact that we deal with a determin-
istic automaton. In case 4) is violated, letw andw′ be words
of the formuabv andubav, respectively. These words prove
that L(B) is not closed under≈D. Thus, EQCLOSURE(D) is
constructively decidable. Note that both INCLUSION(D) and
EQCLOSURE(D) are actually solvable in linear time.

To establish the bounds on the overall running time and on
the number of equivalence and membership queries, we refer
to the considerations in the proofs of Theorems 4 and 1.

Theorem 8 Deterministic universally bounded deadlock-free
weak CFMs are learnable.

Let C be the class of deterministic universally-bounded
deadlock-free weak CFMs. We can provide a learning setup
such that, for all universallyB-bounded CFMsA ∈ C, the
number of equivalence queries needed to infer an equivalent
CFM A′ ∈ C is at most(|A| · |Msg | + 1)B·|Proc|2 . Moreover,
the number of membership queries and the overall running
time are polynomial in|Msg | andm, exponential in|A|, and
doubly exponential inB and |Proc|.

Proof: Let D be the set of all well-formed words. Unlike
the previous proofs, we need an inference relation⊢ 6= ∅ that
respects both|= and |=df . Let ⊢ be the union of

{(L, {w}) | L |= w andL ⊆ D is finite}

(which reflects|=) and

{(L1, L2) | L1 ⊆ D is finite and
L2 = {uv ∈ D | L1 |=df

u} 6= ∅}

(which reflects |=df). Theorem 1e) provides the required
synthesis function.

Decidability of INFCLOSURE(D,⊢) has been shown in [3,
Theorem 3]. Alur et al. provide an EXPSPACE-algorithm for
bounded high-level MSCs, which reduces the problem at hand
to a decision problem for finite automata with an≈-closed
language. The latter is actually in PSPACE. The first step is
to construct from the given≈-closed DFAH a (component-
wise) minimal and deterministic weak CFMA′, by simply

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??,MONTH YEAR 14

2 1
Deadlock

channel boundB

exceeded

(H|p)p∈Proc

B-bounded fragment

Fig. 7. Schematic view of error cases for proof of Theorem 8

taking the projectionsH↾
p

of H ontoActp for anyp ∈ Proc,
determinizing and minimizing them. Then,L(H) is closed
under both|= and |=df iff A′ is a deadlock-free CFM such
that L(A′) = L(H). FromH, we can, moreover, compute a
boundB such that any run ofA′ exceeding the buffer sizeB
cannot correspond to a prefix of some word inL(H).

Thus, a partial run ofA′ that either
• exceeds the buffer sizeB (i.e., it is notB-bounded; cf.

Fig. 7, node 1), or
• respects the buffer sizeB, but results in a deadlock

configuration (cf. Fig. 7, node 2),
gives rise to a proper wordu ∈ Act∗ that is implied by
H wrt. |=df , i.e., L(H) must actually contain a well-formed
completionuv of u. Obviously, one can decide if a word
is such a completion ofu. The completions ofu form one
possibleL2. It remains to specify a corresponding setL1 for
u. By means ofH, we can, for anyp ∈ Proc, compute a
word wp ∈ L(H) such thatu ↾ p is a prefix ofwp ↾ p. We set
L1 = {wp | p ∈ Proc}.

Finally, suppose that, inA′, we could neither find a prefix
exceeding the buffer sizeB nor a reachable deadlock con-
figuration in theB-bounded fragment. Then, we still have to
check ifA′ recognizesL(H). If this is not the case, one can
compute a (B-bounded) wordw ∈ L(A′) \ L(H) such that
L(A′) |= w. SettingL2 = {w}, a corresponding setL1 can
be specified as{wp | p ∈ Proc}, as above.

Let us turn to the complexity of this particular learning
setup. We can partly follow the proof of Theorem 4. As lines
30–41 come into play, however, the complexity estimation
is more complicated. The number of equivalence queries is
bounded byC = (|A| · |Msg | + 1)B·|Proc|2+|Proc| whereA
is the CFM at hand. To compute the number of membership
queries, we have to take into account the number of words that
are added toU in lines 33 and 38 in the pseudo code of the
algorithm. To this aim, note that the number of global states
of the deterministic weak CFMA′ that we compute above
is bounded by2C·|Proc|. Moreover, the number of possible
channel contents is bounded by(|Msg | + 1)B′·|Proc|2 where
B′ = C is the maximal number of states ofH. Hence,

N := 2C·|Proc| · (|Msg | + 1)C·|Proc|2

is an upper bound for the number of configurations ofA′ that
we have to consider. Moreover,N constitutes a bound on the
length of words fromL1 as far as it concerns|=df . In turn,
L1 contains|Proc| many words. Now let us turn towards|=.
To obtain a wordw from L(A′) \L(H), we build the product

of the complement automaton ofH, which is of the same size
asH, and the configuration automaton ofA′. Thus, the length
of w, which consititutes one possibleL2, can be bounded
by C · N so thatpref (L1) contains at most|Proc| · C · N

words. Therefore, the number of membership queries is in
O((|Proc| ·N · C3 + mC2) · |Act |). Furthermore, we deduce
that the overall running time of the algorithm is polynomial
in |Msg | and m, exponential in|A|, and doubly exponential
in B and |Proc|.

Theorem 1d) provides a characterization of (deterministic)
universally bounded weak CFMs in terms of regular word
languages. LetD be the set of all well-formed words and
let ⊢ be given by{(L, {w}) | L |= w andL ⊆ D is finite}
reflecting|=. Unfortunately, the problem INFCLOSURE(D,⊢)
is undecidable [3] so that the above approach does not work for
this particular class of CFMs. One might argue that universally
bounded weak CFMs are still learnable, as their regular word
languages can be inferred with L∗. But an approach that relies
solely on L∗ requires additional expertise from a user. The
latter has to make sure by herself that the final hypothesis
corresponds to a universally bounded weak CFM. But if
we assume that the user needs some guidance and, at the
beginning, has an incomplete idea of her system, then we have,
for the moment, no means to infer universally bounded weak
CFMs.

Note that the complexity of our algorithms is, in most
cases, not worse than that of L∗ if we refer to the size
of the underlying minimal DFA. The only instance where
the complexity is exponentially higher compared to L∗ (wrt.
the size of the minimal DFA) is reported in Theorem 8.
This explosion, however, accounts for the automatic test of
hypotheses for deadlocks, which, otherwise, would have to be
carried out manually by the user.

V. PARTIAL -ORDER LEARNING

We now derive an improved algorithm that groups words
into equivalence classes so that they can be stored efficiently
without the need of memorizing all linearizations of MSCs,
their prefixes, and their suffixes explicitly. The intentionis to
reduce the amount of memory necessary for storing Angluin’s
table. Instead of storing all elements of a class of congruent
words, only one representative of each class, a normal form,
will be recorded in the table. This approach amounts to
merging rows and columns for congruent prefixes and suffixes,
respectively, and leads to a substantial reduction of the table
size as will be shown experimentally in the next section.

Let (D,≈,⊢) be a learning setup for classC of CFMs. In
order to represent congruence classes, we introduce a normal
form for both prefixes and suffixes of well-formed words.
Consider a lexicographic (i.e., strict total) ordering<lex on
Act , which is extended to words overAct in the usual way.
Let pnf , snf : Act∗ → Act∗. The functionpnf assigns to
a word w ∈ pref (D) the minimal word wrt.<lex that is
equivalent tow (to be made precise below). To words that
are not inpref (D), pnf assigns an arbitrary receive action
from Act . The mappingsnf assigns to a wordw ∈ suff (D)
its normal form, i.e., the minimum (wrt.<lex) among all

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??,MONTH YEAR 15

equivalent words, and it associates with every other word an
arbitrary send action. The precise definition goes as follows.
Let w ∈ Act∗.

• If w ∈ pref (D), then we setpnf (w) := min<lex{w
′ ∈

pref (D) | ∃v ∈ Act∗: wv ≈D w′v} where min<lex

returns the minimum of a given set wrt.<lex. Otherwise,
let pnf (w) be any arbitrary receive action.

• If w ∈ suff (D), then we setsnf (w) := min<lex{w
′ ∈

suff (D) | ∃u ∈ Act∗: uw ≈D uw′}. Otherwise,snf (w)
is an arbitrary send action.

Note that pnf (ǫ) = snf (ǫ) = ǫ and, moreover,
pnf (w) = snf (w) iff w is well-formed. The mappings
pnf and snf are canonically extended to setsL ⊆ Act∗,
i.e., pnf (L) =

⋃

w∈L pnf (w) and snf (L) =
⋃

w∈L snf (w).
We assume in the following that bothpnf and snf are
computable.
It is crucial for the application of normal forms that a given
domainD satisfies, for allu, v, u′, v′ ∈ Act∗, the following
properties:

If uv 6∈ D, thenu 6∈ pref (D) or v 6∈ suff (D). (*)

If uv ∈ D andu′v′ ≈D uv′, thenu′v ∈ D. (**)

If uv ∈ D andu′v′ ≈D u′v, thenuv′ ∈ D. (***)

Under these assumptions, which are satisfied by all the
concrete learning setups presented so far, it will indeed be
sufficient to look at normal forms when constructing a table
in the extension of Angluin’s algorithm, which may result
in significantly smaller tables. We obtain the extension of
EXTENDED-L∗, which we call PO-EXTENDED-L∗ simply by
replacing every command of the formU := U ∪ L (whereL

is an arbitrary set of words) byU := U ∪ pnf (L), and every
command of the formV := V ∪ L by V := V ∪ snf (L). In
particular, EXTENDED-T-UPDATE remains unchanged and is
taken from Table IV.

The correctness of our improved algorithm is stated in the
following theorem.

Theorem 9 Let (D,⊢, synth) be a learning setup for classC
of CFMs such thatD satisfies(*) – (***) . Moreover, letA ∈ C.
If the Teacher classifies/provides MSCs in conformance with
L(A), then invokingPO-EXTENDED-L∗(D,⊢, synth) returns,
after finitely many steps, a CFMA′ ∈ C such thatL(A′) =
L(A).

Proof: Consider an instance of(T, U, V) during a run of
EXTENDED-L∗. For w ∈ (U ∪ UAct)V , the value ofT (w)
is − if w 6∈ D. If, on the other hand,w ∈ D, thenT (w) only
depends on the classification ofM(w) by theTeacher . So let
u, v ∈ Act∗. We consider the two abovementioned cases.

• Supposeuv 6∈ D. Then, by (*), u 6∈ pref (D) or v 6∈
suff (D). Thus,pnf (u) is a receive action orsnf (v) is a
send action so thatpnf (u) · snf (v) 6∈ D.

• Supposeuv ∈ D. Then,u ∈ pref (D) andv ∈ suff (D).
By the definition of the mappingspnf andsnf , there are
u′ andv′ such thatpnf (u) · v′ ≈D uv′ andu′·snf (v) ≈D

u′v. By (**) and (***), {pnf (u) · v, u · snf (v)} ⊆ D so

that pnf (u) · v ≈D uv andu · snf (v) ≈D uv. Applying
(**) (or (***)) a second time, we obtainpnf (u)·snf (v) ∈
D. We deducepnf (u) · snf (v) ≈D uv, which implies
M(uv) = M(pnf (u) · snf (v)).

Thus, it does not matter if an entryT (w) in the table is made
on the basis ofw or on pnf (u) · snf (v), regardless of the
partitioninguv of w. In particular, if we replace, inU andV ,
every word with its respective normal form, then the resulting
table preserves consistency and closure properties. Moreover,
the DFA that we can construct given the new table is closed
and consistent is isomorphic to that of the original table.

As this replacement is precisely what is systematically done
in PO-EXTENDED-L∗, the theorem follows.

Again, the complexity of the modified algorithm depends
on the concrete learning setup. Actually, the theoretical time
complexity can in general not be improved compared to
EXTENDED-L∗. However, as the next section will illustrate,
the space complexity can be considerably reduced. In the
following, we report on positive practical experiences with
EXTENDED-L∗ and PO-EXTENDED-L∗.

Note that the idea of exploiting an independece relation for
learning is not new and appears already in [20] in the context
of grey-box checking.

VI. CASE STUDIES

We applied our learning toolSmyle [9] to several small
and moderately-sized case studies such as a part of the USB
1.1 protocol [23], thecontinuous update protocol[22], the
simple negotiation protocol[21], the well-knownalternating
bit protocol (ABP) [39] and two variants of aleader election
protocol [14]. Note that protocols such as the ABP and leader
election are error-prone and not straightforward to design
correctly from scratch. In the following, we show the learning
process for these protocols in more detail and provide statistics
for all mentioned protocols indicating the required user effort
and the reductions obtained using partial-order learning.We
like to emphasize that the protocol designs generated bySmyle
are guaranteed to be correct by construction, provided (of
course) the user-specified MSCs are correct.

Alternating bit protocol (ABP)

The main goal of the ABP [39] is to ensure the reliability
of data transmission through an unreliable FIFO channel,
i.e., data loss as well as data duplication are possible. Two
processes participate in the communication, theproducer p

and theconsumerq. The channel fromp to q is lossy whereas
the channel in the other direction is reliable. The protocol
works as follows: initially, a bitb is set to 0. Processp keeps
sending the value ofb until it receives an acknowledgment
a from q. After receivinga, processp inverts the value ofb
and sends the new value until the nexta-message is received
from q. The communication may terminate after receiving any
a (but at least one). For some example MSCs fulfilling this
specification see Figure 8i). Note that there is no reason to
distinguish between the acknowledgment messages because
the channel(q, p) is assumed to be faultless.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??,MONTH YEAR 16

p q

0

a

1

a

p q

0

a

0

p q

0

a

0

1

a

p q

0

p q

0

a

1

p q

0

a

a

1

i) Threepositiveand threenegativeexample MSCs for the ABP

1 2 3 4

5

6

7

8

9

1011

12

13

1415

!(p, q, 0) ?(q, p, 0) !(q, p, a)

!(p, q, 0)

?(q, p, 0)

!(q, p, a)

!(p, q, 0)
?(q, p, 0)

?(p, q, a)

?(q, p, 0)

!(p, q, 1)

?(q, p, 1)

!(q, p, a)

!(q, p, a)

?(q, p, 1) !(p, q, 1)

?(p, q, a)

?(p, q, a)

?(q, p, 1)

!(p, q, 0)

?(p, q, a)

?(q, p, 1) !(p, q, 1)

ii) The inferred hypothesis DFAH after 64 user queries (and 697 member-
ship queries)

Fig. 8. i) Input MSCs andii) correct and complete hypothesis DFAH

The CFM to be learned was specified as∃1-bounded.
FeedingSmylewith five positive MSCs of which three are
listed in Figure 8i) yields the correct hypothesis as depicted in
Figure 8ii). To that end, the learning algorithm internally dealt
with 2,286 membership queries of which 64 were user queries.
I.e., the 2,222 remaining queries are answered automatically
by our approach whereas in the original L∗ algorithm all of
them had to be answered manually. Note that the number of
memberhsip queries is reduced to 697 (i.e., by 69.5%) using
partial-order learning. All results on learning the ABP, also
with higher channel bounds, are given in Table V.

Leader election protocol

Leader election plays an important role in many distributed
applications. In a network of identical (up to their unique
process id calledpid for short) communicating units, one
often uses a leading entity (owning a uniqueleader token) to
control the behavior of the others. However, a problem arises
if, due to communication failures or other possible problems,
the leader token is lost. The goal of leader election protocols
is then to select a unique leader among the processes. We
consider a leader election protocol in a unidirectional ring
[14]. The protocol works as follows: one process starts sending
its pid to its clockwise neighbor who compares the value
of the receivedpid with its own. In case both values are
equal, a leader has been found and the current process declares

p1 p2 p3 leader

m 1

m 2

m 3

m 3

m 3

m leader

p1 p2 p3 leader

m 3

m 3

m 3

m 3

m leader

i) One positive and one negative scenario for the leader election protocol

0

23

4

56

7

8

9

10 11 12 13 14

15

16

17
!(p1, p2, m1)

!(p2, p3, m2)!(p3, p1, m3) ?(p2, p1, m1)

!(p2, p3, m2)

?(p3, p2, m2)
!(p3, p1, m3)

?(p1, p3, m3)

!(p1, p2, m3)

?(p2, p1, m3)

!(p2, p3, m3)

?(p3, p2, m3) !(p3, Leader, elec) ?(Leader, p3, elec)

!(Leader, p3, new r)
!(Leader, p2, new r)

!(Leader, p1, new r)

?(p1, Leader, new r)

!(p1, p2, m1)

?(p2, Leader, new r)

?(p3, Leader, new r)

ii) The inferred hypothesis DFAH after 196 user queries (and 6,864
membership queries)

Fig. 9. i) Some input MSCs,ii) hypothesisH

itself the leader by sending messagem leader. If its own
pid has a higher value, it forwards itspid to its clockwise
neighbor; otherwise, the receivedpid. Due to the high amount
of concurrency, we consider three processesp1, p2 andp3 and
allow to send only one message at each point in time.

We learned two versions of the protocol: one with only a sin-
gle election round, and one with arbitrarily many consecutive
election rounds.Smylelearned the first variant by starting with
three input MSCs. It displayed the correct hypothesis after43
user queries and 900 membership queries using partial-order
learning, a reduction of 75.1% compared to the case without
this optimization. For the second vartiant we used six input
MSCs (e.g., the first one of Figure 9i)). The correct hypothesis
depicted in Figure 9ii) was obtained after 196 user queries.
Figure 9i), for example, indicates a negative scenario. In this
setting, partial-order learning yielded a reduction of about 53%
resulting in 6,864 membership queries.

Results

The learning statistics for the considered case studies are
summarized in Table V. The first three columns detail the
total number of membership queries that were needed, and
indicate the savings obtained when learning the protocols
with partial-order learning (column w. POL) compared to the
case without (column w.o. POL). In all cases, a substantial
reduction is obtained. This also applies to the size of the tables
needed during learning. This indicates that besides a significant
reduction in the number of membership queries, significant
memory savings are obtained. The numbers clearly indicate
that on increasing channel bounds (for the ABP), the number
of membership queries quickly becomes quite high. The fourth
column indicates the number of membership queries that had

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??,MONTH YEAR 17

TABLE V
STATISTICAL RESULTS OF CASE STUDIES

#membership queries #user #equivalence #rows in table learning
Protocol w.o. POL w. POL savings queries queries |H| w.o. POL w. POL reduction setup
part of USB 1.1 488 200 59.0% 14 1 (5) 9 61 26 57.4% ∃2
continuous update 712 264 62.9% 21 1 (3) 8 89 34 61.8% ∃1
negotiation 1,179 432 63.4% 31 1 (3) 9 131 49 62.6% ∃1
ABP 2,286 697 69.5% 64 2 (4) 15 127 42 66.9% ∃1
ABP 14,432 4,557 68.4% 158 2 (13) 25 451 131 71.0% ∃2
ABP 55,131 19,252 65.1% 407 2 (22) 37 799 222 72.2% ∃3
leader election (1 round) 3,612 900 75.1% 43 1 (2) 13 301 76 74.8% ∀
leader election (≥ 1 rounds) 14,704 6,864 53.3% 196 2 (5) 17 919 430 53.2% ∀

to be dealt with by the user. These queries amount to classify
generated MSCs as either positive or negative scenarios and
are usually not very difficult to handle. The number of user
queries can be reduced significantly by providing mechanisms
(such as the logic PDL [10, 11]) to classify an entire set of
MSCs that feature a certain pattern.

Equivalence queries are harder to handle but their number
for the example protocols is rather low (cf. fifth column). The
numbers in brackets in this column indicate the number of re-
quired equivalence queries when using the standard Angluin’s
L∗ algorithm. It clearly shows that with our approach this
number is lowered significantly. As these queries require a
user-driven simulation (and/or testing) of an automaton, this
reduction is crucial and yields a substantial reduction in the
development time. With an experienced human teacher, all
case studies from Table V could be performed in a single
working day. Using PDL formulae to filter user queries [10,
11] this could be lowered to a few hours.

VII. R ELATED WORK

Synthesizing design models or programs from scenarios has
received a lot of attention. Let us distinguishbasic MSCsand
high-level MSCs(and live sequence charts(LSCs)).

Synthesis from basic MSCs

A basic MSC, as used in our paper, does neither contain
loops nor alternatives, and describes a finite set of behaviors.
Thus, a finite set of basic MSCs also describes a finite
set of behaviors. Typically, a system under development has
infinitely many behaviors, so that a finite set of scenarios in
terms of basic MSCs can only be an approximation of all these
behaviors. In fact, the learning algorithm generalizes thefinite
set of given scenarios to a typically infinite set represented
by the design model. In simple words, we synthesize design
models from finitely manyexamples.Note that two different
basic MSCs describe distinct behaviors. Thus, classifyingone
MSC as desired and one (different) as undesired cannot lead
to an inconsistentset of desired and unwanted behaviors.

One of the first attempts to exploit learning for interactively
synthesizing models from examples was proposed in [33]
where for each process in the system an automaton is inferred
using Angluin’s learning technique. A significant drawback
of this approach is that composing the resulting automata in

parallel yields a system that may exhibit undesired behavior
and may deadlock.

Damas et al. [16] use an interactive procedure of classify-
ing positive and negative scenarios for deriving an LTS for
each process. To this end, they first employ passive learning
algorithms [19, 37] to infer a global intermediate model that
exactly conforms to the given sample but which—as long as
the sample does not fulfill certain completeness properties—
does not necessarily yield a minimal system model. The global
model is subsequently transformed into a distributed system.
Then, usually additional effort is required as this projection
onto the system’s components may entail implied behavior
such that manually unwanted “[...] implied scenarios have to
be detected and excluded”. While [16] consider synchronous
communication, our approach is based on asynchronous com-
munication. This makes the systems larger but, more impor-
tantly, closer to distributed implementations. Finally, [16] is a
passivelearning approach which does not support incremental
model generation. Our approach naturally supports extensions
and amendments of requirements.

Another passive learning approach [15] uses grammatical
inference to derive a formal model of a process from a given
stream of system events. In contrast to our and the afor-
mentioned approaches, this method only works with positive
data. Though this procedure may require less user effort than
ours, it builds on the restrictive assumption that the events of
the process are monitorable by the learner. The authors also
shortly comment on detecting concurrency by searching for
unrelated events but leave it for future work to improve their
approach.

Similar to [28], [34] propose to use filters, i.e., automated
replies to queries, for reducing the number of membership
queries that—due to the high number of questions—is usually
infeasible for human teachers to answer. The general idea is
to exploit additional knowledge of an expert teacher which for
each negatively answered membership query specifies prefixes
or suffixes for which negative membership is known. In their
approach they employ these filters for membership as well as
equivalence queries, but conclude that for equivalence queries
no substantial improvements are obtained. This result is in
contrast to our approach which considerably decreases this
number.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??,MONTH YEAR 18

Synthesis from (high-level) MSCs

The synthesis from scenarios given using richer formalisms,
e.g., MSCs with loops and alternatives, high-level MSCs,
or live sequence charts has received quite some attention.
The underlying assumption is that not only several exam-
ples of the expected behavior are given but that the given
behavior (mostly) corresponds to the system behavior. Then,
the technical question arising is how to translate from a
scenario-based formalism to a state-based formalism. One
of the initial works along this line is [31], which sketches
the translation from (high-level) MSCs to statechart models.
Similarly, [41] presents a rigorous approach for synthesizing
transition systems from high-level MSCs.

The question whether the behavior given by a finite set of
MSCs or high-level MSC can in fact be realized by weak
CFMs or CFMs is studied, respectively, in [2], [3], and [26].
In simple words, it turns out that the set of scenarios has to
meet certain restrictions to be realizable and that the question,
whether it is realizable or not is often undecidable.

Note that describing desired and unwanted behavior in
terms of high-level MSCs would allow for inconsistent sets
of scenarios as also different high-level MSC may describe a
common subset of behaviors.

The works [3, 7, 23–27,32, 35] synthesize CFMs from par-
ticular classes of finite automata, which can be seen as
generalizations of high-level MSCs. Recall that results from [3,
7, 24, 27, 32] together constitute Theorem 1, which, however, is
only an ingredient of our algorithms. Our objective is actually
to synthesize these particular finite automata that, in turn,
allow for constructing a CFM.

In [40], a synthesis technique is proposed that constructs
behavior models in the form of modal transition systems
(MTS) and is based on a combination of safety properties and
scenarios. MTSs distinguish required, possible and proscribed
behavior and can thus be seen as design models that are more
abstract compared to the CFMs that are synthesized using our
approach.

Damm and Harel [17] pointed out that the expressiveness of
(high-level) MSCs is often inappropriate to specify complete
system behavior and introduced the richer notion of live
sequence charts (LSCs). Harel’s play-in, play-out approach for
LSCs [18] allows us to execute the possible behavior defined
in terms of LSCs, which essentially results in a programming
methodology based on LSCs. A similar, executable variant of
LSCs, triggered MSCs, is presented in [38].

All the previously mentioned approaches are based on a
rather complete, well-elaborated specification of the system to
be, such as MSCs with loops or conditions, high-level MSCs,
triggered MSCs, or LSCs, whereas for our synthesis approach
only basic MSCs have to be provided as examples, simplifying
the requirements specification task.

VIII. C ONCLUSION AND FUTURE WORK

This paper generalized Angluin’s learning algorithm for
synthesizing a DFA from positive and negative samples to a
procedure that infers a CFM from a set of negative and positive
basic MSCs. This yields an exact approach —the resulting

CFM precisely accepts the positive MSCs and rejects the
negative ones— and is applicable to various classes of CFMs
such as various types of deterministic universally-bounded
(weak) CFMs and existentially bounded CFMs. Note that our
learning setting is also applicable to other classes such as,
e.g., the causal closure as defined by Adsul et al. [1]. It
remains to study whether the class of existentiallyB-bounded
(deadlock-free) weak CFMs is learnable. For the deadlock-free
case, one needs to generalize a result by Lohrey, who shows
that one can decide whether a globally-cooperative HMSC is
implementable as a deadlock-free CFM [32, Theorem 3.5].

We have shown the feasibility of our approach by reporting
on some experiments that we carried out with our toolSmyle2.
By exploiting the properties of partial orders (as MSCs) a
significant reduction of the memory consumption could be
achieved. Alternative improvements are, e.g., to reduce the
number of user queries by using a logic to specify a priori
undesired partial behaviour, e.g., in case of the ABP “no bit
change without prior acknowledgement”. First results towards
using PDL [11] to this purpose have been recently reported
in [10]. The latter paper also describes how to embedSmyle
into an incremental software engineering process.

Possible directions for future work are to support co-regions
in basic MSCs, to realize the algorithms for weak CFMs, and
to investigate further classes of learnable CFMs.

IX. A CKNOWLEDGMENT

This work is partially supported by EGIDE/DAAD-
PROCOPE (Procope 2008/2009) and the DFG Research Train-
ing Group AlgoSyn. We would thank our student assistants
David Piegdon and Stefan Schulz (both RWTH Aachen Uni-
versity) for their support in tool development. Moreover, we
thank the anonymous reviewers for their valuable suggestions.

REFERENCES

[1] B. Adsul, M. Mukund, K. N. Kumar, and V. Narayanan. Causalclosure
for MSC languages. InFSTTCS, volume 3821 ofLNCS, pages 335–347.
Springer, 2005.

[2] R. Alur, K. Etessami, and M. Yannakakis. Inference of message
sequence charts.IEEE TSE, 29(7):623–633, 2003.

[3] R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification
of MSC graphs.Th. Comp. Sc., 331(1):97–114, 2005.

[4] D. Angluin. Learning regular sets from queries and counterexamples.
Inf. Comput., 75(2):87–106, 1987.

[5] J. Araújo. Formalizing sequence diagrams. InProceedings of the
OOPSLA Workshop on Formalizing UML. Why? How?, 1998.

[6] N. Baudru and R. Morin. Safe implementability of regularmessage
sequence chart specifications. InSoftware Engineering, Artificial Intelli-
gence, Networking and Parallel/Distributed Computing (SNPD), volume
2380 ofLNCS, pages 210–217. Springer, 2003.

[7] N. Baudru and R. Morin. Synthesis of safe message-passing systems.
In FSTTCS, volume 1664 ofLNCS, pages 277–289. Springer, 2007.

[8] B. Bollig, J.-P. Katoen, C. Kern, and M. Leucker. Replaying play in
and play out: Synthesis of design models from scenarios by learning.
In TACAS, volume 4424 ofLNCS, pages 435–450. Springer, 2007.

[9] B. Bollig, J.-P. Katoen, C. Kern, and M. Leucker.Smyle: A tool
for synthesizing distributed models from scenarios by learning. In
CONCUR, volume 5201 ofLNCS, pages 162–166. Springer, 2008.

[10] B. Bollig, J.-P. Katoen, C. Kern, and M. Leucker. SMA—The Smyle
Modeling Approach. InCEE-SET 08 (IFIP), LNCS. Springer, 2009. To
appear.

2The Smyletool is freely available for exploration at:
http://www.smyle-tool.org/.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??,MONTH YEAR 19

[11] B. Bollig, D. Kuske, and I. Meinecke. Propositional dynamic logic for
message-passing systems. InFSTTCS, volume 4855 ofLNCS, pages
303–315. Springer, 2007.

[12] B. Bollig and M. Leucker. A hierarchy of implementable MSC
languages. InFORTE, volume 3731 ofLNCS, pages 53–67. Springer,
2005.

[13] D. Brand and P. Zafiropulo. On communicating finite-state machines.
J. of the ACM, 30(2):323–342, 1983.

[14] E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes.Commun. ACM,
22(5):281–283, 1979.

[15] J. E. Cook and A. L. Wolf. Discovering models of softwareprocesses
from event-based data.ACM TOSEM, 7(3):215–249, 1998.

[16] C. Damas, B. Lambeau, and P. Dupont. Generating annotated behavior
models from end-user scenarios.IEEE TSE, 31(12):1056–1073, 2005.

[17] W. Damm and D. Harel. LSCs: Breathing life into message sequence
charts.Formal Methods in System Design, 19:1:45–80., 2001.

[18] D.Harel and R. Marelly.Come, Let’s Play: Scenario-Based Program-
ming Using LSCs and the Play-Engine. Springer, 2003.

[19] P. Dupont. Incremental regular inference. In L. Micletand C. de la
Higuera, editors,Int. Coll. on Grammatical Inference: Learning Syntax
from Sentences (ICGI), volume 1147 ofLNCS, pages 222–237. Springer,
1996.

[20] E. Elkind, B. Genest, D. Peled, and H. Qu. Grey-box checking. In
FORTE, volume 4229 ofLNCS, pages 420–435. Springer, 2006.

[21] U. Endriss, N. Maudet, F. Sadri, and F. Toni. Logic-based agent
communication protocols. InWorkshop on Agent Communication
Languages, pages 91–107, 2003.

[22] U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol conformance for
logic-based agents. InIJCAI, pages 679–684, 2003.

[23] B. Genest. Compositional message sequence charts (CMSCs) are better
to implement than MSCs. InTACAS, volume 3440 ofLNCS, pages
429–444. Springer, 2005.

[24] B. Genest, D. Kuske, and A. Muscholl. A Kleene theorem and model
checking algorithms for existentially bounded communicating automata.
Inf. Comput., 204(6):920–956, 2006.

[25] B. Genest, D. Kuske, and A. Muscholl. On communicating automata
with bounded channels.Fund. Inf., 80(2):147–167, 2007.

[26] B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state high-
level MSCs: Model-checking and realizability.Journal on Computing
and System Sciences, 72(4):617–647, 2006.

[27] J. G. Henriksen, M. Mukund, K. N. Kumar, M. Sohoni, and P.S.
Thiagarajan. A theory of regular MSC languages.Inf. Comput.,
202(1):1–38, 2005.

[28] H. Hungar, O. Niese, and B. Steffen. Domain-specific optimization in
automata learning. InCAV, volume 2725 ofLNCS, pages 315–327.
Springer, 2003.

[29] ITU-TS Recommendation Z.120anb: Formal Semantics of Message
Sequence Charts, 1998.

[30] ITU-TS Recommendation Z.120 (04/04): Message Sequence Chart,
2004.

[31] I. Krüger, R. Grosu, P. Scholz, and M. Broy. From MSCs toStatecharts.
In DIPES, volume 155 ofIFIP Conf. Proc., pages 61–72. Kluwer, 1998.

[32] M. Lohrey. Realizability of high-level message sequence charts: closing
the gaps.Th. Comp. Sc., 309(1-3):529–554, 2003.

[33] E. Mäkinen and T. Systä. MAS – An interactive synthesizer to support
behavioral modeling in UML. InICSE, pages 15–24. IEEE CS Press,
2001.

[34] A. L. Martins, H. S. Pinto, and A. L. Oliveira. Using a more powerful
teacher to reduce the number of queries of the L* algorithm inpractical
applications. InEPIA, LNCS, pages 325–336. Springer, 2005.

[35] R. Morin. Recognizable sets of message sequence charts. In STACS,
volume 2285 ofLNCS, pages 523–534. Springer, 2002.

[36] B. Nuseibeh and S. Easterbrook. Requirements engineering: a roadmap.
In ICSE, pages 35–46. ACM, 2000.

[37] J. Oncina and P. Garcı́a. Inferring regular languages in polynomial
updated time. In4th Spanish Symp. on Pattern Recognition and Image
Analysis, volume 1 ofMachine Perception and Artificial Intelligence,
pages 49–61. World Scientific, 1992.

[38] B. Sengupta and R. Cleaveland. Triggered message sequence charts.
IEEE TSE, 32(8):587–607, 2006.

[39] A. S. Tanenbaum.Computer Networks. Prentice Hall, 2002.
[40] S. Uchitel, G. Brunet, and M. Chechik. Behaviour model synthesis from

properties and scenarios. InICSE, pages 34–43. IEEE CS Press, 2007.
[41] S. Uchitel, J. Kramer, and J. Magee. Synthesis of behavioral models

from scenarios.IEEE TSE, 29(2):99–115, 2003.

Benedikt Bollig received his PhD degree from
Aachen University of Technology (RWTH Aachen)
in 2005. A revised version of his thesis on au-
tomata models and logics for message sequence
charts has been published by Springer. In 2003/2004,
the German Academic Exchange Service (DAAD)
funded his six-month research stay at Birmingham
University. Since 2005, Benedikt is a CNRS full-
time researcher. His research interests are centered
around logics for specification, formal languages
and automata, with a focus on applications in the

synthesis and verification of concurrent and timed systems.

Joost-Pieter Katoenis a full professor at the RWTH
Aachen University and is associated to the Univer-
sity of Twente. His research interests are concur-
rency theory, model checking, timed and probabilis-
tic systems, and semantics. He co-authored more
than 100 journal and conference papers, and re-
cently published a comprehensive book (with Chris-
tel Baier) on “Principles of Model Checking”.

Carsten Kern received his Diploma in computer
science in 2005 from RWTH Aachen University.
In August 2009 he successfully defended his dis-
sertation at the chair of Software Modeling and
Verification at the RWTH Aachen University where
he is employed for another two months. His current
research interests cover learning of nondeterministic
and communicating automata.

Martin Leucker is currently a professor at the Tech-
nische Universität München for Theoretical Com-
puter Science and Software Reliability. He obtained
his Ph.D. at RWTH Aachen, Germany, and worked
afterwards as a Postdoc at the University of Philadel-
phia, USA, and, within the European Research and
Training Network on Games, at Uppsala University,
Sweden. He pursued his Habilitation at TU München
while being a member of Manfred Broy’s group on
Software and Systems Engineering. He is the author
of more than 60 reviewed conference and journal

papers ranging over software engineering, formal methods,and theoretical
computer science.

