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Preface

This volume contains the extended abstracts of the talks presented at the 30th Nordic Workshop
on Programming Theory held on October 24-26, 2018 in Oslo, Norway.

The objective of Nordic Workshop on Programming Theory is to bring together researchers
from the Nordic and Baltic countries interested in programming theory, in order to improve
mutual contacts and co-operation. However, the workshop also attracts researchers outside this
geographical area. In particular, it is targeted at early- stage researchers as a friendly meeting
where one can present work in progress. Typical topics of the workshop include:

• semantics of programming languages,

• programming language design and programming methodology,

• programming logics,

• formal specification of programs,

• program verification,

• program construction,

• tools for program verification and construction,

• program transformation and refinement,

• real-time and hybrid systems,

• models of concurrency and distributed computing,

• language-based security.

This volume contains 29 extended abstracts of the presentations at the workshop including
the abstracts of the three distinguished invited speakers.

Prof. Andrei Sabelfeld, Chalmers University, Sweden
Prof. Erika Ábrahám, RWTH Aachen University, Germany
Prof. Peter Ölveczky, University of Oslo, Norway

After the workshop selected papers will be invited, based on the quality and topic of their
presentation at the workshop, for submission to a special issue of The Journal of Logic and
Algebraic Methods in Programming.

We thankfully acknowledge support from the Norwegian Research Council and the project
IoTSec - Security in IoT for Smart Grids, as well as support from the Department of Informatics
through the ConSeRNS Strategic Research Initiative for Concurrent Security and Robustness for
Networked Systems and the SIRIUS Center for Research-driven Innovation addressing problems
of scalable data access in the oil and gas industry.

October 24, 2018
Oslo

Daniel S. Fava
Einar Broch Johnsen

Olaf Owe
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Symbolic Computation Techniques

in SMT Solving

Mathematical Beauty meets Efficient Heuristics

Erika Ábrahám

RWTH Aachen University, Germany

Abstract

Checking the satisfiability of quantifier-free real-arithmetic formulas
is a practically highly relevant but computationally hard problem. Some
beautiful mathematical decision procedures implemented in computer al-
gebra systems are capable of solving such problems, however, they were
developed for more general tasks like quantifier elimination, therefore their
applicability to satisfiability checking is often restricted. In computer sci-
ence, recent advances in satisfiability-modulo-theories (SMT) solving led
to elegant embeddings of such decision procedures in SMT solvers in a
way that combines the strengths of symbolic computation methods and
heuristic-driven search techniques. In this talk we discuss such embed-
dings and show that they might be quite challenging but can lead to
powerful synergies and open new lines of research.
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Design and Validation of Cloud Storage Systems

using Rewriting Logic

Peter Ölveczky

University of Oslo, Norway

Abstract

To deal with large amounts of data while offering high availability and
throughput and low latency, cloud computing systems rely on distributed,
partitioned, and replicated data stores. Such cloud storage systems are
complex software artifacts that are very hard to design and analyze. We
argue that formal specification and model checking should be beneficial
during their design and validation. In particular, I propose rewriting logic
and its accompanying Maude tools as a suitable framework for formally
specifying and analyzing both the correctness and the performance of
cloud storage systems. This talk gives an overview of the use of rewriting
logic at the University of Illinois’ Assured Cloud Computing center on in-
dustrial data stores such as Google’s Megastore and Facebook/Apache’s
Cassandra. I also briefly summarize the experiences of the use of a dif-
ferent formal method for similar purposes by engineers at Amazon Web
Services.
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Breaking and Fixing IoT Apps

From Attacks to Formal Methods for Security

Andrei Sabelfeld∗

Chalmers University, Sweden

Abstract

IoT apps empower users by connecting a variety of otherwise uncon-
nected services. Unfortunately, the power of IoT apps can be abused
by malicious makers, unnoticeably to users. We demonstrate that pop-
ular IoT app platforms are susceptible to several classes of attacks that
violate user privacy, integrity, and availability. We estimate the impact
of these attacks by an empirical study. We suggest short/medium-term
countermeasures based on fine-grained access control and long-term coun-
termeasures based on information flow tracking. Finally, we discuss gen-
eral trends and challenges for the Web of Things and, in particular, the
role of formal methods in securing it.

∗Parts of the talk are based on joint work with Iulia Bastys and Musard Balliu.
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A verified proof checker for higher-order logic
Oskar Abrahamsson1

Chalmers University of Technology, Sweden
aboskar@chalmers.se

Abstract

We present a verified mechanized checker for proofs in higher-order logic (HOL). The
proof checker is implemented in CakeML, and utilizes the Candle theorem prover kernel
to check logical inferences. The checker reads proofs in the OpenTheory article format,
meaning that proofs produced by several commonly used HOL proof assistants are sup-
ported. The proof checker is implemented and verified using the HOL4 theorem prover,
and comes with a proof of soundness.

1 Introduction

In this work, we present a verified proof checker for proofs in higher-order logic. The proof
checker is implemented in effectful CakeML, which is synthesized from a monadic HOL spec-
ification using a proof-producing synthesis mechanism [2]. The checker operates on proofs in
the OpenTheory article format, and utilizes the verified Candle theorem prover kernel [4] to
perform all logical inferences.

We verify the correctness of the proof checker, and prove a soundness theorem. This theorem
guarantees that any theorem produced as a result of a successful run of the tool is a theorem
in HOL. Together with the end-to-end correctness theorem of the CakeML compiler [6] this
implies that the proof checker is sound down to the machine code which executes it.

We start by providing some background information on the techniques used in the imple-
mentation and verification of the checker (§2). We then provide a high-level overview of how
the proof checker is implemented (§3), and state a theorem about the soundness of the proof
checker, and explain, at a high level, how the soundness theorem is proven using the existing
soundness theorem of the Candle kernel (§4). Finally, we comment on running the checker on
article files (§5).

2 Background

Our efforts to produce a verified proof checker are made possible largely by the following results.

(i) The OpenTheory framework enables proof recording in several HOL ITP systems, and
provides an abstract stack machine for replaying such proofs. We construct a logical
specification of the stack machine in monadic HOL.

(ii) The Candle theorem prover kernel is used to perform logical inferences within the
OpenTheory framework, and its soundness result is used as a basis for the soundness
result of the proof checker.

(iii) The CakeML compiler ecosystem is used to synthesize effectful CakeML code from the
monadic specification of the OpenTheory article checker. The verified compiler is also
used to compile the verified CakeML code to concrete machine code within HOL4.

4
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OpenTheory The OpenTheory framework [3] provides a means for sharing logical theories
between interactive theorem provers (ITPs) that use HOL as their logic. An OpenTheory
article checker reads in a text file consisting of low-level operations on a stack machine where
the operations are primitive inferences and term constructors/destructors of HOL.

Candle The Candle theorem prover kernel is a verified implementation of HOL light in HOL4
by Kumar et al. [4]. The kernel is implemented as monadic HOL functions, and is proven sound
with respect to a formal semantics which builds on Harrison’s formalization of HOL light [1].

CakeML CakeML is a language in the Standard ML family of functional programming lan-
guages. The CakeML language has a formal semantics, and supports most features present in
Standard ML, such as references, I/O, and exceptions. The CakeML ecosystem consists of the
CakeML language, a fully verified compiler which is able to bootstrap itself inside the logic, and
a proof-producing synthesis mechanism which is able to synthesize (effectful) CakeML functions
from (monadic) HOL functions.

3 Approach
Here is a high-level overview of the steps taken to achieve our result of a verified proof checker.

(i) We begin by specifying the OpenTheory stack machine in HOL4 as monadic functions.
The stack machine performs bookkeeping of theorems, constants and types, and calls on
the Candle kernel to perform logical inferences.

(ii) We synthesize semantically equivalent CakeML code from the specification in step (i)
using the proof-producing mechanism described in Ho et al. [2].

(iii) We prove a series of correctness results for the OpenTheory proof checker. Using the exist-
ing Candle soundness theorem, we prove that any valid sequent produced by a successful
run of the proof checker is in fact true by the semantics of HOL.

(iv) The CakeML compiler is used to compile the stateful CakeML code from (ii) to executable
machine code. The compilation is carried out wholly within the HOL4 logic, and produces
a theorem that the resulting machine code satisfies the specification from (iii).

4 End-to-end correctness
In this section, we explain one of the main soundness theorems that we have proved for the proof
checker. The theorem is stated in terms of the specification of the article reader, reader_main.
Here is the theorem:

` is_set_theory µ⇒
reader_main fs init_refs cl = (T,outp,refs,fstate) ⇒
∃ s.

fstate = SOME s ∧
(∀ asl c. mem (Sequent asl c) s.thms ⇒ (thyof refs.the_context,asl) |= c) ∧
refs.the_context extends init_ctxt ∧
outp = add_stdout fs (msg_success s refs.the_context)

The key points of the theorem are the following:

2
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- The predicate is_set_theory assumes the existence of a powerful enough set theory to
express the semantics of HOL light (see [4] for a discussion). This assumption is required
to replace a syntactic entailment in the theorem by a semantic entailment.

- The HOL function reader_main is the main specification of the proof checker. It takes
as input a model of a UNIX file system, an initial state for the Candle kernel, and the
command-line arguments with which the proof checker was called.

- The Boolean value T implies that (a) the proof checker was given a valid input file, and
(b) it processed all input without printing an error message.

- The string outp is the output printed by the checker to stdio. Here, msg_success is a
message containing the context (i.e. constant- and type definitions, and axioms) of the
Candle kernel final state, and all sequents constructed by the proof checker (residing in
the stack machine post-state s).

- Finally, all sequents constructed by the proof checker during a successful run will reside
in the OpenTheory stack machine post-state s, and these sequents are actually true by
the semantics of HOL. Moreover, the context refs.the_context is the result of a series of
valid updates of the initial context.

The theorem shown above can be connected to the compiler correctness theorem (see §3),
and thus become a statement about the generated machine code, since the CakeML compiler
can be run inside the HOL4 logic. See Kumar et al. [5] for a discussion.

5 Results
Our proof checker has been used to check some articles from the OpenTheory standard library.
All checked theories were successfully processed without errors. When compared against the
OpenTheory toolset [3], our verified checker runs a factor of 7 times slower on average. A
significant portion of this slowdown is caused by poor I/O performance.

Acknowledgments. The original implementation of the OpenTheory stack machine in
monadic HOL was done by Ramana Kumar, who also provided helpful support during the
course of this work. The author would also like to thank Magnus Myreen for feedback on this
text. Finally, the author thanks the anonymous reviewers for their helpful comments.
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The Complexity of Identifying Characteristic Formulae∗†

Luca Aceto1,2, Antonis Achilleos1, Adrian Francalanza3, and Anna Ingólfsdóttir1

1 School of Computer Science, Reykjavik University, Reykjavik, Iceland
2 Gran Sasso Science Institute, L’Aquila, Italy

3 Dept. of Computer Science, ICT, University of Malta, Msida, Malta

Abstract

We examine the complexity of determining whether a modal formula (possibly with
recursion operators) characterizes a process up to bisimulation equivalence.

1 Introduction

Characteristic formulae are formulae that characterize a process up to some notion of be-
havioural equivalence or preorder, which in our case is bisimilarity: a formula ϕ is characteristic
for a process p when every process q is bisimilar to p exactly when it satisfies ϕ. A construction
of characteristic formulae for variants of CCS processes [9] was introduced in [6]. This con-
struction allows one to verify that two CCS processes are equivalent by reducing this problem
to model checking. Similar constructions were studied later in, for instance, [1, 10,12].

We are interested in detecting when a formula is characteristic for a certain process. We call
this the characterization problem and we determine its complexity. We focus on a representative
collection of logics, including a selection of modal logics without recursion and maxHML, the
max-fragment of µHML [8], a variant of the µ-calculus [7], which consists of the µHML formulae
that only use greatest fixed points. These formulae are sufficient to provide characteristic
formulae for any state in a finite labelled transition system.

Similar to the characterization problem is the completeness problem, which asks whether
a given formula is complete, meaning that any two processes that satisfy it are bisimilar to
each other. Therefore, a complete formula is characteristic if and only if it is satisfiable. As
we see in the following sections, the completeness problem tends to have the same complexity
as validity. The techniques that we use to determine the complexity of completeness for modal
logics without fixed points were presented in [2], but we extend these techniques for the case
of maxHML and show that the completeness problem for this fragment is EXP-complete. The
EXP-completeness of the characterization problem is an immediate corollary.

2 Background

Definition 1. The formulae of that we consider are constructed using the following grammar:

ϕ,ψ :: = p | ¬p | tt | ff | X | ϕ ∧ ψ | ϕ ∨ ψ
| 〈α〉ϕ | [α]ϕ | µX.ϕ | νX.ϕ

where X comes from a countably infinite set of logical variables LVar, α from a finite set of
actions, Act, and p from a countable set of propositional variables, P .

∗This extended abstract is partly based on results from [2].
†This research was supported by the project “TheoFoMon: Theoretical Foundations for Monitorability”

(grant number: 163406-051) and the project “Epistemic Logic for Distributed Runtime Monitoring” (grant
number: 184940-051) of the Icelandic Research Fund.
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We interpret formulae on the states of a labelled transition system (LTS). An LTS is a
quadruple 〈Proc,Act,→, V 〉 where Proc is a set of states or processes, Act is the set of
actions, →⊆ Proc × Act × Proc is a transition relation, and V : P → 2Proc determines
on which states a propositional variable is true. We assume that our LTS contains all the
possible finite behaviours and only those. State nil represents any state that cannot transition
anywhere: ∀α∀s.nil 6 α−→ s. The size of a state s is |s|, the number of states that can be reached
from s by any sequence of transitions, and |ϕ| is the length of ϕ as a string of symbols. All our
complexity results are with respect to these measures.

Formulae are evaluated in the context of an LTS and an environment, ρ : LVar → 2Proc,
which gives values to the logical variables. For an environment ρ, variable X, and set S ⊆ Proc,
ρ[X 7→ S] is the environment which maps X to S and all Y 6= X to ρ(Y ). The semantics for
our formulae is given through a function J·K:

Jtt, ρK = Proc, Jff, ρK = ∅, Jp, ρK = V (p), J¬p, ρK = Proc \ V (p), JX, ρK = ρ(X)

Jϕ1 ∧ ϕ2, ρK = Jϕ1, ρK ∩ Jϕ2, ρK J[α]ϕ, ρK =
{
s
∣∣ ∀t. s α−→ t implies t ∈ Jϕ, ρK

}
Jϕ1 ∨ ϕ2, ρK = Jϕ1, ρK ∪ Jϕ2, ρK J〈α〉ϕ, ρK =

{
s
∣∣ ∃t. s α−→ t and t ∈ Jϕ, ρK

}
JνX.ϕ, ρK =

⋃{
S
∣∣ S ⊆ Jϕ, ρ[X 7→ S]K

}
JµX.ϕ, ρK =

⋂{
S
∣∣ S ⊇ Jϕ, ρ[X 7→ S]K

}
A formula is closed when every occurrence of a variable X is in the scope of recursive operator
νX or µX. Henceforth we consider only closed formulae. As the environment has no effect
on the semantics of a closed formula ϕ, we write s |= ϕ for s ∈ Jϕ, ρK. Depending on how
we further restrict our syntax, and the LTS, we can describe several logics. Without further
restrictions, the resulting logic is the µ-calculus. If we do not allow any propositional variables,
the resulting logic is µHML, and if we further disallow the recursive operators, the resulting
logic is HML. If we allow propositional variables, but only one action and no recursive operators
(or recursion variables), then we have the basic modal logic K, and further restrictions on the
LTS can result in a wide variety of modal logics. For example, logic D has all the restrictions
of K, but furthermore, nil is not allowed as a state, while for logic S4, the transition relation
must be reflexive and transitive — for more on Modal Logic, see [3, 4]. For convenience and
brevity, we examine the logics HML, D− that has all the restrictions of both HML and D, and
maxHML that allows only the formulae of µHML that do not use the operator µX. For more
details on our techniques — mostly on non-recursive logics — the reader can see [2].

In the context of these logics, we call a formula ϕ characteristic for state s when s |= ϕ and
for every state t, s ∼ t if and only if t |= ϕ, where ∼ stands for bisimilarity without accounting
for variables. The characterization problem is the following: Given a formula ϕ and a state s,
is ϕ characteristic for s? A formula ϕ is called complete when for all states s and t, if s |= ϕ
and t |= ϕ, then s ∼ t. The completeness problem is: Given a formula ϕ, is ϕ complete?

3 The Complexity of Completenes and Characterization

Proposition 1. The completeness and characterization problems for D− are in P.

Proof. For D−, all states are bisimilar, so all formulae are complete; for more, see [2].

It is known that satisfiability for the min-fragment of the µ-calculus (on one action) is EXP-
complete. It is in EXP, as so is the satisfiability problem of the µ-calculus [7]. Furthermore,
this fragment suffices [11] to describe the PDL formula that is constructed by the reduction

2
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used in [5] to prove EXP-hardness for PDL, therefore the reduction can be adjusted to prove
that the min-fragment of the µ-calculus is EXP-complete. Therefore, validity for the min-
and max-fragments of the µ-calculus (on one action) is EXP-complete. To see that this lower
bound transfers to minHML and maxHML, it suffices to use one extra action to represent
propositional variables (for example, variable xi can be replaced by 〈α〉itt).

Proposition 2. The completeness problems for HML and maxHML are PSPACE-hard and
EXP-hard, respectively.

Proof. We prove the theorem for the case of µHML by a reduction from minHML-validity. First,
notice that

∧
α∈Act[α]ff is complete and it is satisfiable by process nil. Given a minHML-

formula ϕ, there are two cases. If nil |= ¬ϕ, then ϕ is not valid and we set ϕc = tt.
Otherwise, let ϕc = ¬ϕ ∨

∧
α∈Act[α]ff. For the second case, if ϕ is valid, then ϕc is equivalent

to
∧
α∈Act[α]ff, which is complete; if ϕc is complete, then only nil satisfies it and therefore,

ϕ is valid. Thus, in both cases, ϕ is valid if and only if ϕc is complete.

Theorem 3. The completeness problems for HML and maxHML are PSPACE-complete and
EXP-complete, respectively.

Notice that in the proof of Proposition 2, the reduction could have returned both ϕc and nil,
instead of just ϕc. Furthermore, as model-checking has a lower complexity than completeness,
checking if ϕ is characteristic of s is at most as hard as checking if ϕ is complete. Therefore,
the same complexity bounds hold for the characterization problem of HML and maxHML.
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1 Motivation
Most Online Social Networks (OSNs) today have privacy settings that allow users to define their pref-
erences in what concerns the use of their data. This usually includes aspects related to whom can have
access to which information but it is limited in a number of ways. For example, OSNs such as Facebook
and Instagram may only describe who is the direct audience of a given item (post, message, picture,
etc.), meaning that it only concerns who have access to the item based on the explicit relationships the
user has previously defined. In many cases it involves only one level in the relationship order (e.g.,
friends) or two levels (e.g., friends of friends). Additionally, users might be interested in defining pri-
vacy policies that limit the access to other users not directly connected with us beyond two levels, as it
is the case whenever somebody who originally got access to the information wants to (re)share it.

Another issue is who decides whom has access to the information. Today, in the majority of the
OSNs the owner, who has the piece of information in her profile, is the one solely defining and regulating
the privacy settings. Many other users are also concerned with the posted item, so they should also have
a say in who may access to it or not. Ideally, there should be a mechanism allowing all the involved
users to take a decision collaboratively. Current implementations of social networks do not allow a fine
grained enforcement in case the posted item concerns many users, and the privacy settings usually do
not allow for setting limits when a user wants to share the item got access to. Moreover, it is quite
common that the involved users’ privacy settings are in contradiction so there is a need to solve the
conflicts before deciding who has access to the shared object.

While OSNs are considered to be a collaborative environment where most of activities involve some
users, current access control mechanisms suffers from collaborative policy limitations. This lack of
collaborative policies for access control violates the privacy of all the users who share a particular
content with the owner by delegating the full responsibility over their privacy settings to the owner.

The main contribution of this paper is a framework to the problem of posting and sharing items in
OSNs whenever multiple users are involved. Additionally,we have deployed our solution and provide a
proof-of-concept implementation using [4] which is an open source OSN.

2 A Collaborative Access Control Framework for OSNs
We briefly introduce here the components of our framework: OSN model, privacy policy specification,
requirements for a conflict resolution strategy and the algorithms for collaborative decisions.

2.1 OSN Model
OSNs are typically structured as graphs, where vertices represent users and items and the edges of the
graph represent connections between nodes. Concretely, vertices in the model are split into users, items,

1

10



A Runtime Enforcement Mechanism for Collaborative Privacy Policies in OSNs H. Alshareef, R. Pardo and G. Schneider

and groups. Relationship types represent connections between vertices in the graph. For example, social
relationships between users such as friends, colleagues, family and so forth; or relationships between
users and items or groups such as Alice is the owner of post p, Bob is mentioned in p, Carol owns group
g, or David is a member in g. For simplicity in the rest of the paper and without loss of generality we
assume that there can only exist one relationship between any two vertices in the graph. Similarly to
[6], we define a set of controllers types:
Owner. An owner is a user who owns all items located in her profile.
Stakeholder. A stakeholder is a user who is tagged or mentioned in an item.
Contributor. A contributor is a user that posts an item in a profile different than hers.
Originator. A user is considered to be an originator when an item is shared from her profile.

2.2 Setting of our Collaborative Privacy Policy Framework

1 (The Privacy Policy Specification) This specification contains access specification, data specification
and access control policies. In our framework each controller can identify a set of users who can access
her data and who cannot, the so-called accessors. The controller can specify her permitted and denied
accessors by three parameters: user names, group names and relationship types. These accessor types
help the controller to customize her access control policy. Regarding data specification, our model
focuses on the users item and assigns a level of sensitivity to the item based on how much a disclosure
would harm the user. Sensitivity levels of shared items help to effectively solve conflicts between
controllers. Finally, the access control policies of a given item contain the policy of each associated
controller who has relationship with the item.

2 (Requirements for A Conflict Resolution Strategy) Inferring fuzzy trust, controllers weight scheme
and accessors’ weight scheme are the principles that we use to combine the different individual privacy
policies (i.e., the conflict resolution strategy). Users explicitly identify a trust value for those with whom
they have a direct relationship expressed in a trust graph. When users are not directly connected, we
adopt the Lesani and Bagheri [7] approach to calculate the trust between two users. Controllers’ weight
scheme is a method to determine priorities and impact levels of a controller’s access control policy.
We use the principle that people who are close to each other tend to be similar [1, 5], to weight each
controller. In our framework not all accessors are equal because they are specified differently; thus, we
weight the accessors based on how they are authorized or denied. In response to this assumption, we
adopt the most-specific-takes-precedence principle to weight our accessors [2, 3].

2.3 Algorithms of Collaborative Privacy Decisions

PermittedandDeniedAccessors and Sharing are the main algorithms behind our collaborative privacy
management of posted and shared items. The PermittedandDeniedAccessors produces a final set of
accessors who are permitted to view the item -the so-called viewers- and those who are denied. When a
viewer (or controller) is granted a permission to share the item with her social network, she is then called
the disseminator. The Sharing algorithm produces sets of users who are allowed to disseminate the item
and who are not. We do not claim that the algorithms we present are the right ones, as different decision
could be taken depending on whether one might want to privilege privacy over utility or vice-versa. This
trade-off between privacy and utility may be stretched or relaxed by playing with the weights that may
be associated to different aspects of our decision algorithms.

2
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2.4 Implementation
We have implemented2 our solution in the open source social network Diaspora [4], and we have tested
the system by creating a complex social graph to show the most interesting features that our approach can
address. Note that currently Diaspora does not offer any privacy settings, so our work could eventually
have great impact in practice if our solution is adopted by the community.
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Abstract

Attribute-based access control (ABAC) has several advantages over the traditional ac-
cess control models such as the mandatory access control (MAC), discretionary access
control (DAC), role-based access control (RBAC), and so on. ABAC uses the attributes of
the involving entities (i.e., subjects, objects, environments, actions) to provide the access
control. Despite various advantages offered by ABAC, it is not the best fit for distributed
and heterogeneous environments, where the attributes of an entity do not necessarily match
(syntactically) those used in the access policies. Therefore, another type of access control
called semantic attribute-based access control (SABAC) has emerged that tries to asso-
ciate syntactically different but semantically equivalent attributes in different domains by
combining the semantic technologies with the ABAC. Over the last decade, a number of
research efforts have been conducted in developing semantic attribute-based access control
schemes. However, there exists no survey paper on SABAC schemes giving an overview of
the existing approaches. Hence, this paper comprehensively reviews the conducted research
efforts for developing SABAC. The main goal of this paper is to provide a comprehensive
summary of the conducted research studies that is useful for researchers who want to enter
and make contribution to this field. The paper identifies the open problems and possible
research entry points by demonstrating the advantages and disadvantages of the previous
works.

Attribute-based access control (ABAC) is a successor of the role-based access control
(RBAC), where involving entities (e.g., subject, object, action, and environment) have some
attributes and the access control is provided based on these attributes. Under the ABAC model,
there is no need to assign capabilities to subjects (e.g., users, groups, roles, etc.) in advance.
Receiving an access request, the access decision would be made based on the attributes of the
requested object (resource), attributes of the requester (subject), conditions of the environment
(e.g., time of the day, authentication level, location, etc.), attributes of the desired action, and
predefined access control policies. ABAC has several advantages over the traditional access
control models such as MAC, DAC, RBAC, and so on. ABAC has reached the maturity of
OASIS standards with XACML 3.0 (eXtensible Access Control Markup Language, version 3.0)
and SAML 2.0. The XACML standard provides a policy language, which is sufficiently fine-
grained and declarative, as well as an architecture for ABAC. The standard also specifies the
process by which the requests are evaluated based on the defined policies.

ABAC is supposed to be a proper solution in open and distributed systems. However, since
such systems are heterogeneous, the attributes of a requester (subject) may not necessarily
match those specified in the policies defined for accessing services or data (objects). For ex-
ample, an e-healthcare system may represent adult patients with an attribute “Adult”, while
patients may want to demonstrate this by providing something like a license (e.g., by an at-
tribute “hasDriverLicense”) or an attribute “age”. In a typical attribute-based access control
mechanism, this issue should be considered when defining a policy, which in turn makes the
management of policies a very complicated and error-prone task. In other words, the policy
administrator needs to consider all the possible synonyms (semantically) of each attribute by
defining several policies (for the same object) or one general policy. Consequently, when a
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change occurs in a policy, a large number of policies need to be updated accordingly. There-
fore, it can be concluded that ABAC needs to be extended to be suitable for heterogeneous
environments. In order to address such problems, another type of access control called the
semantic attribute-based access control (SABAC) is proposed as an extension of ABAC. The
idea behind the SABAC is the combination of ABAC with the semantic technologies. In other
words, the aim of SABAC schemes is making decisions semantically as well as considering the
semantic relationships for inferring new policies (i.e., implicit policies) from the defined policies
(explicit ones). Hence, by specifying the access polices at a conceptual level and making deci-
sions with the help of the semantic inference, the access control mechanism can be improved
significantly.

In ABAC (and SABAC), different entities are involved in controlling access. These entities
(i.e., the subject, object, action, and environment) and their attributes and relationships can be
defined formally and in a format that is readable by machine, using an ontology. An ontology
can be created using ontology markup languages such as DAML+OIL [9], RDF [14], OWL [2],
and RDF Schema (RDFS) [4]. However, if some specific relations need to be held under some
conditions, then it is difficult to express them using these ontology markup languages. Such an
issue can be handled using the rules. Hence, several rule markup languages, such as XRML [15],
SRML [19], RuleML [3], and SWRL [10] have been proposed for this purpose. Most of the exist-
ing SABAC schemes use the SWRL, which combines the Horn logic rules and OWL ontologies,
as the rule markup language. It is a popular rule markup language as most of reasoners and
rule engines (e.g., Pellet [18], Drools [17], Jess [8], Protégé [16], etc.) support it. Therefore,
when we talk about the semantic technologies, it means ontologies plus rules.

In order to specify the access policies, we need policy languages. Several policy languages
such as XACML [1], XRBAC [11], and Ponder [5] have been proposed for the specification of
access policies. However, they do not consider semantics and thus are not suitable for hetero-
geneous environments, where different systems and domains may use different terminologies.
For heterogeneous environments, another type of policy languages (such as KAoS [20], Rei [13],
Rein [12], XACML+OWL [7], EXAM-S [6], etc.) have emerged that are based on semantic
technologies. However, most of them work based on the knowledge represented by ontologies
while complex non-monotonic rules cannot be represented by an ontology. We have found that
most of the existing SABAC schemes use the XACML policy language along with a rule markup
language like SWRL.

Over the last decade, a number of semantic attribute-based access control schemes have been
proposed for different contexts. However, there exists no survey paper on semantic attribute-
based access control (SABAC) schemes giving an overview of the existing approaches. There-
fore, it is difficult to get knowledge about the existing techniques for SABAC and the advan-
tages/disadvantages of applying each technique. In order to provide a comprehensive reference
on SABAC identifying the benefits/drawbacks of the existing approaches and the trends and
gaps in this field of study, this paper reviews all the conducted research studies on SABAC
systematically and in depth.
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Abstract

Online test case generation directly executes the system under test, by calling functions
of its application programming interface (API). Such direct API testing can be extended
by calling an adapter layer instead of the system. This unifies offline and online testing and
also opens the door to different types of applications of test case generation. These include
generation data structures instead of code, interfacing with systems that do not have an
API, including systems with a graphical user interface, and even model-based simulation.
We give a new view on this problem by looking at our past work.

1 Introduction

Model-based testing derives concrete test cases from an abstract test model [7, 11]. Test deriva-
tion techniques can be divided into online testing and offline testing [11]. In online testing,
the test generation (derivation) tool connects directly to the system under test (SUT) to ex-
ecute test cases. In offline test generation, test derivation tool first generates an intermediate
representation of test cases that is turned into executable tests later [11].

In online testing, test sequences generated by the model are often direct function calls to
an application programming interface (API) with concrete data. If test cases are generated
offline, or not in a format that can be directly used to invoke the SUT, they first have to be
adapted to the SUT, by using the Adapter design pattern [8]. An adapter is an intermediate
software layer that converts abstract inputs and outputs from and to a test tool into the right
form for the SUT [1] (see Figure 1). Adaptation can be a time-consuming task [12]. However,
it also provides an opportunity to extend the use cases of model-based test tools to new types
of applications. Four such cases are presented in this paper.

This paper is based on our experience, but covers generic techniques. Past results were
obtained using tools Modbat [2, 5] and Randoop [9], but generalize to other test case generation
tools. We show that test adaptation, often seen as a burden [12], allows us to interface with
systems that are otherwise not easily amenable to test automation.

behavior
Model Tool Adapter

abstract output

abstract input

concrete output

concrete input
SUT

Figure 1: Model-based testing with an adapter.
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Adapter type Implementation sketch Role of adapter
Data structure data = new DataObject(...); data.addItem(...); Creation of data in the right format
API-less system connection.send("GET /index.html HTTP/1.1"); Interaction via specific protocol
GUI robot.mouseMove(...); leftClick(); Interface to system-specific GUI
Simulation environment.setDelay(...); Simulation orchestration and control

Table 1: Examples of different adapter types, shown in pseudo code.

2 Adaptations

Table 1 illustrates the different adapter types with code snippets that implement actions as
concrete commands that the system can use. We explain each case in the following.

2.1 Data structure generation

Satisfiability (SAT) solvers are the core reasoning engines of many verification systems. Hence,
such solvers have to be trustworthy, despite themselves being very advanced pieces of soft-
ware. We empirically showed that model-based testing is extremely useful for building reliable
solvers [6], using Modbat to test incremental SAT solvers [5]. To generate test data, random
input formulas are passed to a SAT solver via its API [5, 6]. At each test step, the formula is
either extended by another clause, or the solver is called on the generated formula. The adapter
takes over the role of translating test actions into the creation and use of data structures.

2.2 API-less/networked systems

Networked systems may provide a library through which a client communicates with a server. If
this is the case, model-based testing can directly access that API [3]. To test services that rely
solely on a given protocol (such as HTTP) but which cannot be called directly as a function,
an adapter is needed. The adapter uses the protocol of the SUT internally, but provides an
interface to this protocol so test actions represent protocol usage as calls to the adapter. An
adapter may provide its own code to implement a protocol [4] or use another tool to interface
with the SUT, as in offline testing [6].

2.3 GUI testing

In system testing, it is common to interact with the SUT via its graphical user interface (GUI).
Test automation requires an adapter that provides access to the structure and elements of the
GUI as well as the ability to send events (e. g., mouse movements and clicks, touch events) to
the SUT. The implementation of an adapter providing these capabilities is usually specific to
a particular GUI technology (e. g., JavaFX, Microsoft WinForms), and often made available in
form of a technology specific “robot” library. Adapters on top of these libraries can support
specific interactions and facilitate test case generation and model-based testing [10].

2.4 Model-based simulation

The behavior of the SUT may be affected by the physical environment outside the software.
These environments change across the time unexpectedly, due to factors such as network delay
or sensor failures. Simulations can test SUTs under such conditions. Model-based simulation
describes simulators of environments as models. In this approach, model actions trigger changes
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in the environment by updating simulation parameters [13]. The adapter interfaces with the
simulation environment and also sets up and shuts down the simulation.

3 Conclusion

Model-based test generators often have to be adapted to concrete software execution environ-
ments. This adaptation is often time-consuming to implement. However, the same concept can
be taken further by adapting test actions to data structure creation, interfaces with API-less
systems, GUIs, or even a simulation environment. An adapter can represent a system interface
or protocol at the right level of abstraction for the test tool. This enables the use of test case
generation tools in new ways, and in settings that are not an obvious target for them.
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Abstract

Reasoning with bit-vector (BV) arithmetic is an important problem in verification. Suc-
cessful techniques for unbounded arithmetic, e.g., Craig interpolation, have turned out to
be hard to generalise to machine arithmetic. We present a new approach to BV interpola-
tion that works by lazy translation of bit-vector constraints to unbounded arithmetic. The
present extended abstract is a shortened version of a upcoming conference publication [1].

1 Introduction

The inference of program invariants over machine arithmetic, or bit-vector (BV) arithmetic, is
an important problem in verification, with Craig interpolation being one of the commonly used
techniques. Over the last 15 years, efficient interpolation techniques have been developed for a
variety of logics and theories, including propositional logic and linear real arithmetic [6], and
Presburger arithmetic [2]. BV arithmetic has turned out notoriously difficult to handle in Craig
interpolation. Decision procedures for BV are predominantly based on bit-blasting, resulting
in that extracted interpolants stay on the level of propositional logic and are difficult to map
back to compact high-level BV constraints. An alternative interpolation approach translates
BV constraints to unbounded integer arithmetic formulas [5], but is limited to linear constraints
and tends to produce integer formulas that are hard to solve and interpolate.

We introduce a new Craig interpolation method for BV arithmetic, focusing on arithmetic
BV operations including addition, multiplication, and division. Like [5], we compute inter-
polants by reducing BVs to unbounded integers; unlike earlier approaches, we define a calculus
that carries out this reduction lazily. By initially representing BV operations as uninterpreted
predicates, which are replaced by Presburger arithmetic expressions on demand, our approach
can dynamically choose between multiple possible encodings. The calculus also includes native
rules for non-linear constraints and BV equations, so that formulas can often be proven with-
out having to resort to a full encoding as integer constraints. Our approach gives rise to both
Craig interpolation and quantifier elimination (QE) methods for BV constraints, with both
procedures displaying competitive performance in our experiments.

This extended abstract summarizes previous work and introduces future directions. For a
more detailed description we refer the reader to the paper to be presented at FMCAD 2018 [1].

2 Translations

Our base calculus is a sequent calculus for classical first-order logic (with quantifiers) combined
with equalities and inequalities of Presburger arithmetic (PA). BV formulas are translated
eagerly to the combination of a BV core language and non-linear integer arithmetic (NIA).

The NIA fragment consists of PA extended by a ternary multiplication predicate ×, with the
semantics that the third argument represents the result of multiplying the first two arguments,
i.e., ×(s, t, r) ⇔ s · t = r. The BV core language is PA extended with a family of binary
predicates Pbv = {bmodb

a | a, b ∈ Z, a < b}. The semantics of bmodb
a is to relate any x ∈ Z to

its remainder modulo b− a in {a, . . . , b− 1}: bmodb
a (s, r) ⇔ a ≤ r < b ∧ r ≡ s (mod b− a).
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Figure 1: Translation of BV Formulas

The main idea of our approach is to lazily translate constraints from the NIA fragment
or from the BV core language to Presburger arithmetic, thereby enabling calculus rules to
dynamically choose between multiple possible encodings of the BV operations. For instance,
occurrences of bmodb

a can either be eliminated by enumerating possible overflow cases, replaced
by a simple equality when only one case is possible, or translated to the full PA encoding of a
remainder operation. Afterwards, previous techniques for Craig Interpolation [2] and Quantifier
Elimination (for Presburger arithmetic) can be applied. The whole scheme is shown in Fig 1.

We also introduce new calculus rules for deriving linear constraints from NIA formulas, for
example by deriving implied equalities with Gröbner Bases. The rules are necessarily incomplete
for proving that an NIA formula is valid, but complete for finding satisfying assignments.

Example 1. We consider one of the examples from [5], the interpolation problem A ∧B:

A = ¬bvule8(bvadd8(y4, 1), y3) ∧ y2 = bvadd8(y4, 1)

B = bvule8(bvadd8(y2, 1), y3) ∧ y7 = 3 ∧ y7 = bvadd8(y2, 1)

An eager encoding into LIA would typically add variables to handle wrap-around semantics,
e.g., mapping y′4 = bvadd8(y4, 1) to y′4 = y4 + b1− 28σ1 ∧ 0 ≤ y′4 < 28 ∧ 0 ≤ σ1 ≤ 1. Additional
variables tend to be hard for interpolation, and the LIA interpolant presented in [5] is the
formula ILIA = −255 ≤ y2 − y3 + 256b−1 y2

256c; the formula can be mapped back to a pure BV
formula. Our calculus finds the simpler interpolant I ′LIA = y3 < y2 for this problem.

To prove the unsatisfiability of A ∧B, translation to our BV core language gives:

Acore = ψA ∧ bmod2w

0 (y4 + 1, c1) ∧ c1 > y3 ∧ y2 = c1

Bcore = ψB ∧ bmod2w

0 (y2 + 1, c2) ∧ c2 ≤ y3 ∧ y7 = 3 ∧ y7 = c2

where ψA = in8(y2)∧ in8(y3)∧ in8(y4)∧ in8(c1) and ψB = in8(y2)∧ in8(y3)∧ in8(y7)∧ in8(c2)
are domain constraints, and inw(x) =def (0 ≤ x < 2w). Unsatisfiability of Acore ∧Bcore can be
proven by splitting over possible cases of bmod2w

0 :

. . . , 0 ≤ c2 < 256, y2 + 1 = c2 ` . . . , 0 ≤ c2 < 256, y2 + 1 = c2 + 256 `
. . . , bmod2w

0 (y2 + 1, c2) `
bmod-split

Due to y7 = 3∧y7 = c2, the cases reduce to y2 = 2 and y2 = 258, thus contradicting Acore, Bcore.
Once a closed proof has been found, the interpolant I ′LIA can be extracted using rules from [2].
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3 Experiments

Figure 2: Runtime of math and ilp32 semantics

Verification of C Programs We present
results of running the Eldarica model
checker1 on a benchmark set of 551 C pro-
grams, assuming 32 bit wrap-around integer
semantics (ilp32), and using the implemen-
tation of our calculus in Princess2 as inter-
polation procedure. The benchmarks are the
programs used in [4] for evaluating different
predicate generation strategies.

As a comparison, we also verified the pro-
grams assuming mathematical integer seman-
tics, i.e., with unbounded integers and no
overflows. The experiments showed that our
interpolation approach for BVs can solve almost as many programs in 32 bit semantics as
with mathematical semantics, with a similar number of CEGAR iterations, with interpolants
of comparable size, and with only a small runtime overhead (Fig. 2, times in seconds).

4 Towards Interpolation for Full Bit-Vector Logic

Up to this point, BV functions such as extract and concat are not handled in our calculus, and
neither are bit-wise operations like bvand or bvxor. We plan to extend our method to such
functions by extending the core language with a further set P ′bv = {extract [l:r] | l, r ∈ N, l ≥ r}
of binary predicates expressing the extraction of l − r + 1 bits from a bit-vector:

extract [l:r](s, t) ⇔ 0 ≤ t < 2l−r+1 ∧
(
∃y, z ∈ N. 0 ≤ z < 2r ∧ s = 2l+1y + 2rt + z

)
Similarly to bmodb

a , the extract [l:u] predicates can lazily be handled with additional calculus
rules, rephrasing procedures for the polynomial core BV fragment [3]. Combined with our
interpolating calculus for PA and uninterpreted predicates [2], such rules yield an interpolation
procedure for the core fragment. Bit-wise operations can be encoded eagerly using extract [l:u].
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Higher-Dimensional Timed Automata
Extended Abstract

Uli Fahrenberg

École Polytechnique, Palaiseau, France∗

We introduce a new formalism of higher-dimensional timed automata, based on van Glabbeek’s
higher-dimensional automata and Alur’s timed automata. We prove that their reachability
is PSPACE-complete and can be decided using zone-based algorithms. We also show how
to use tensor products to combat state-space explosion and how to extend the setting to
higher-dimensional hybrid automata.

In approaches to non-interleaving concurrency, more than one event may happen concurrently.
There is a plethora of formalisms for modeling and analyzing such concurrent systems, e.g., Petri
nets [16], event structures [15], configuration structures [23], or more recent variations such as
dynamic event structures [5] and Unravel nets [7]. They all share the convention of differentiating
between concurrent and interleaving executions; using CCS notation [14], a|b 6= a.b+ b.a.

For modeling and analyzing embedded or cyber-physical systems, formalisms which use real
time are available. These include timed automata [4], time Petri nets [13], timed-arc Petri
nets [12], or various classes of hybrid automata [2]. Common for them all is that they identify
concurrent and interleaving executions; here, a|b = a.b+ b.a.

We are interested in formalisms for real-time non-interleaving concurrency. Hence we would
like to differentiate between concurrent and interleaving executions and be able to model and
analyze real-time properties. Few such formalisms seem to be available in the literature. (The
situation is perhaps best epitomized by the fact that there is a natural non-interleaving semantics
for Petri nets [11] which is also used in practice [8,9], but almost all work on real-time extensions
of Petri nets [12,13,19,21] use an interleaving semantics.)

We introduce higher-dimensional timed automata (HDTA), a formalism based on the (non-
interleaving) higher-dimensional automata of [22] and [17] and the timed automata of [3, 4]. We
show that HDTA can model interesting phenomena which cannot be captured by neither of the
formalisms on which they are based, but that their analysis remains just as accessible as the one
of timed automata. That is, reachability for HDTA is PSPACE-complete and can be decided
using zone-based algorithms.

In the above-mentioned interleaving real-time formalisms, continuous flows and discrete
actions are orthogonal in the sense that executions alternate between real-time delays and
discrete actions which are immediate, i.e., take no time. (In the hybrid setting, these are usually
called flows and mode changes, respectively.) Already [20] notice that this significantly simplifies
the semantics of such systems and hints that this is a main reason for the success of these
formalisms (see the more recent [21] for a similar statement).

In the (untimed) non-interleaving setting, on the other hand, events have a (logical, otherwise
unspecified) duration. This can be seen, for example, in the ST-traces of [22] where actions
have a start (a+) and a termination (a−) and are (implicitly) running between their start and
termination, or in the representation of concurrent systems as Chu spaces over 3 = {0, 1

2 , 1},
where 0 is interpreted as “before”, 1

2 as “during”, and 1 as “after”, see [18]. Intuitively, only if
events have duration can one make statements such as “while a is running, b starts, and then
while b is running, a terminates”.

∗Supported by the Chaire ISC : Engineering Complex Systems – École polytechnique – Thales – FX – DGA –
Dassault Aviation – DCNS Research – ENSTA ParisTech – Télécom ParisTech
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x, y ← 0 x ≥ 2; y ← 0

y ≥ 1;x← 0 x ≥ 2 ∧ y ≥ 1

x ≤ 4; y ← 0

a

y ≤ 3
x← 0

b
x ≥ 2
y ≤ 3b

x ≤ 4 ∧ y ≥ 1

a

x ≤ 4 ∧ y ≤ 3
ab

x, y ← 0 x ≥ 2; y ← 0

y ≥ 1;x← 0 x ≥ 2 ∧ y ≥ 1

x ≤ 4; y ← 0

a

y ≤ 3
x ≥ 1
x← 0

b
x ≥ 2
y ≤ 3b

x ≤ 5 ∧ y ≥ 1

a

1 ≤ x ≤ 4 ∧ y ≤ 3
ab

Figure 1: Two two-dimensional timed automata

In our non-interleaving real-time setting, we hence abandon the assumption that actions are
immediate. Instead, we take the view that actions start and then run during some specific time
before terminating. While this runs counter to the standard assumption in most of real-time
and hybrid modeling, a similar view can be found, for example, in Cardelli’s [6].1

Given that we abandon the orthogonality between continuous flows and discrete actions,
we find it remarkable to see that the standard techniques used for timed automata transfer to
our non-interleaving setting. Equally remarkable is, perhaps, the fact that even though “[t]he
timed-automata model is at the very border of decidability, in the sense that even small additions
to the formalism [. . . ] will soon lead to the undecidability of reachability questions” [1], our
extension to higher dimensions and non-interleaving concurrency is completely free of such
trouble.

Figure 1 gives a few examples of two-dimensional timed automata. The first models two
actions, a and b, which can be performed concurrently. It consists of four states (0-cubes), four
transitions (1-cubes), and one ab-labeled square (2-cube). This HDTA models that performing
a takes between two and four time units, whereas performing b takes between one and three
time units. To this end, we use two clocks x and y which are reset when the respective actions
are started and then keep track of how long they are running.

In the second HDTA of Fig. 1 (where we show changes to the first in red), invariants have
been modified so that b can only start after a has been running for one time unit, and if b
finishes before a, then a may run one time unit longer. Hence an invariant x ≥ 1 is added to the
two b-labeled transitions and to the ab-square (at the right-most b-transition x ≥ 1 is already
implied), and the condition on x at the top a-transition is changed to x ≤ 5. Note that the left
edge is now permanently disabled: before entering it, x is reset to zero, but its edge invariant is
x ≥ 1. This is as expected, as b should not be able to start before a.

This abstract is based on work which has been presented at ADHS 2018 [10]. Compared to
this paper, we now have a much more precise idea of the translation from HDTA to standard
timed automata and of higher-dimensional timed languages.
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1 Introduction

Pay-on-demand resource provisioning is an important driver for cloud computing. Virtualized
resources in cloud computing open for resource awareness, such that applications may contain
resource management strategies to modify their deployment and reduce resource consumption.
The ABS language supports the modelling of deployment decisions and resource management
for active objects. In this paper, we present a CPN model [3, 4] of the deployment fragment
of ABS [5]. A key characteristics of our approach is that the compact modelling supported by
CPNs allowed us to develop a CPN model capable of simulating any ABS program by only
changing the initial marking. The main benefit of our approach is the ability to use model
checking techniques to identify starvation of resource aware active objects, and to synthesise
reconfiguration sequences that eliminates starvation and which in turn can be used to automat-
ically obtain load-balancer implementations.

2 The CPN model

In [1] the authors presented a CPN, modelling the concurrency of ABS. In the current work, we
present a new CPN, taking as input tokens that can be produced from the model introduced
in [1] (the imperative part of ABS). As it was the case in [1], active objects are represented
as tokens and we add information concerning the cost of each process and the deployment
component where active objects are located. This information, together with the deployment
semantics of ABS can be used to verify starvation freedom of active objects and explore resource
management strategies.

In the rest of the paper, we use a running example inspired from cellphone clients behaviour
in order to illustrate the relation between the CPN model and ABS programs and to show how
we can use the model checker of CPN Tools for load balancing scenarios.

The average demand on phone calls and SMS messages from cellphone clients during the
year is relatively low and the available resources suffice in a current distribution. There are
some particular moments of the year like, for example, around the midnight of new year’s eve,
where this behaviour changes and a large number of SMS is requested by the clients while the
call requests are negligible. Then, the initial distribution is not adequate, since there is a lack
of resources for the SMS and an overplus for the calls.

The above scenario has been implemented in ABS [5]: telephone and SMS servers have been
realised with the two corresponding classes and the operational cost annotated at the beginning
of the statements. Cellphone clients have been implemented with corresponding classes allowing
objects to make method calls to the SMS and telephone services.
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Figure 1: CPN module for process execution

Details on the implementation of the CPN model as well as the abstraction relation between
ABS program configurations and CPN markings and a full proof supporting the soundness of
the model can be found in a technical report [2]. Here, in Fig. 1, we provide a part of the model
representing the resource consumption caused by the process execution. As we mentioned above,
tokens are tuples representing active objects and they contain the object id, the deployment
component where the object is located and a list of the processes together with the corresponding
costs. These ”object-tokens” can be located either to the place Busy Objects or to the place
Starving Objects. Place Current State keeps track of the available resource distribution. Based
on that, transitions Fully Executable or Partially Executable can fire depending on whether the
available resources suffice for the full execution of a process or not, moving the corresponding
objects to the appropriate place (resp. Busy Objects or Starving Objects place). We can use this
property of the model at the state space exploration for detecting starvation freedom or ask for
resource distribution which lead to starvation free states, as we will see in the next section.

3 Resource Analysis and Load Balancing

The first important information related to resource management is whether the current resource
distribution provides sufficient resources for the full execution of the processes the objects have
in their process pools. In other words, we need to check for starvation freedom. By model
construction, place Starving Objects keeps track of the starving objects, if any. For the analysis,
we implement Standard ML queries in CPN Tools. For our new year’s eve midnight telephone
and SMS services example, CPN Tools returns a non-empty list containing several states which
imply that starvation is possible, so an interesting question is whether there exists a resource
reallocation strategy leading to starvation freedom. For that, we need to check for the existence
of any terminal SCC containing states where there are no starving objects and then ask for a
path leading to that state. Such a path contains the following resource transfers:

[Component Reconfiguration‘Reconfigure

(1, {b = true, cap = 1, config = [(1, 1), (2, 2)], fromdc = 1, todc = 2})

2
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(1, {b = true, cap = 3, config = [(1, 0), (2, 3)], fromdc = 2, todc = 1})

(1, {b = true, cap = 2, config = [(1, 3), (2, 0)], fromdc = 1, todc = 2})]

where, variables fromdc and todc indicate the source and the target deployment component
of each transfer and cap the amount of the resources we need to move.

1 class Balancer(DC telcomp, DC smscomp) {
2 Unit run() {
3 telcomp!transfer(smscomp,1);
4 await duration(2,2);
5 smscomp!transfer(telcomp, 3);
6 await duration(2,2);
7 telcomp!transfer(smscomp,2);}}
8 {// Main block

9 . . . // deployment components, etc. as before

10 new Balancer(telcomp,smscomp);}

Figure 2: Implementation of Load Balancer.

From the above path information we can implement very easily a load balancer like the
one of Fig. 2. We assume the telephone service to be located to the deployment component
”telcomp” (in the model represented with integer ”1”) and the SMS service to the deployment
component ”smscomp” having as an identifier in the model the integer ”2”. Lines 3, 5, and 7 in
Fig. 2 correspond to the relevant values of the variables fromdc and todc from the above path.

Our present work extends [1] by taking as input the communication status of resource aware
active objects and performing resource analysis. We demonstrated how to statically construct
a load balancer. A direction for future work will be to extend the model to support dynamic
load balancing and investigate optimal vertical scaling using the CPN model checker. Another
direction will be to perform a comprehensive experimental evaluation on a larger set of ABS
programs.
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1 Introduction

Most security breaches nowadays occur not by breaking cryptographic protocols or through
buffer overflow, but through various forms of “social engineering,” such as phishing emails,
malicious apps and web sites, and so on. Furthermore, web applications typically interact with
human users. To reason about security in modern systems, we must therefore include the hu-
mans as key parts of the security process, which requires defining new models of such processes.
For example, in standard crypto-protocol formalisms, the behavior of each node/actor is typi-
cally given as a sequence of actions. This is not sufficient if we include humans in the system,
since humans may exhibit nondeterministic behaviors (does the user click on the link, or not?
does the user perform an action in the wrong way?).

Security ceremonies [3] extend cryptographic protocols with models of human users. Actor-
network procedures (ANPs), introduced by Pavlovic and Meadows, are one of the more popular
ways of formalizing security ceremonies (see, e.g., [1, 2, 4, 5, 7, 8]), and procedure derivation logic
(PDL) [4, 8] allows us to reason logically about ANPs. In essence, ANPs define the possible
behaviors as partial orders over events, and PDL formulas allow nodes to assert the order of
events in a protocol run (e.g., “if n received m, then some node must previously have sent m”).

A security ceremony typically includes different kinds of nodes, such as computers, humans,
and authentication devices like smart cards, random generation numbers, biometric devices, and
so on. One key thing is that different actors may have very different capabilities: a computer
can encrypt and decrypt messages whereas humans cannot; a biometric device can capture
biometric information, whereas a random number generator used in e-banking cannot; and so
on. In addition, a security ceremony may include many forms of communication: the visual
channel between a user and her computer screen is authenticated (but not necessarily secret,
since someone else may also look at my screen), whereas the channel between a user’s computer
and her e-bank is both authenticated and secret, assuming appropriate use of cryptography.

ANPs are a fairly simple and general formalism, and does not support specifying that
different nodes have different capabilities. We therefore define extended ANPs (E-ANPs), which
extend ANPs by allowing the user to specify the capabilities of the different nodes, and add to
ANP’s send and receive events explicit events for: (a) learning things from previously received
messages, and (b) creating new knowledge from existing knowledge and the node’s capabilities.

PDL supports reasoning about the temporal order of events, and does not allow us to reason
about the knowledge of the nodes at certain times; for example, a node that has the capability
to decrypt an encrypted message can only do so if it currently knows the decryption key for
the message. To reason about possible behaviors of security ceremonies more accurately, we
should be able to keep track of the knowledge of each node throughout the run of the ceremony.
We therefore change PDL to allow reasoning about E-ANPs as follows: (i) the atoms in our
new logic E-PDL are no longer events, but are instead pairs 〈event, knowledge〉 of an event and
the global knowledge at the time point when the event takes place; (ii) a new set of axioms
axiomatize the properties of E-ANPs, including what is being learnt.
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2 E-ANP and E-PDL

The static part of an actor-network procedure (ANP) [6, 8] is defined as an actor-network, which
consists of a (possibly hierarchical) network of nodes and channels between them. An actor-
network procedure extends an actor-network by adding a process, which defines the behaviors
of each subsystem. ANPs assume an algebraic theory (Σ, E) of parametric operations, such as
encryption, decryption, creating a nonce, etc. An event or action has the form a[t], where a is
an event identifier and t its parameter. Important event identifiers are send and receive.

The (local) behaviors of a system are given by a process ρ, which is defined as a partially
ordered multiset of localized events. Formally, a process F is a pair F = 〈FE,FP〉 : F→ E×P,
where (F,→) is a well-founded partial order, representing the structure time, E is the set of
events, and P are the nodes/subsystems. Informally, eP → e′Q if the event e must happen at P
before e′ happens at Q; that is, there are two time points f1 and f2 where f1 → f2, FE(f1) = e,
FE(f2) = e′, FP(f1) = P , and FP(f2) = Q. A run can be seen as a partially ordered multiset of
localized events that extends the internal synchronizations to the whole network. For notational
convenience, it is often assumed that an event takes place at most once.

We define an extended ANP (E-ANP) to be a pair (A,C) where:

• A is an ANP such that the different capabilities of the devices and their algebraic prop-
erties are included in its underlying algebraic theory (Σ, E), and where apply to to learn
and apply to are event identifiers (for learning events), and

• C is a capability distribution C : N → P(Σ) assigning to each node n in A its capabilities.

The extended procedure derivation logic (E-PDL) extends and modifies PDL to reason not
only about the temporal order of events, but also of the knowledge of the participants at each
time point. A knowledge assignment KA is a function KA : N → P(TΣ) that assigns to each
node n the set of terms known by n.

Assuming that an event takes place at at most one time point, the E-PDL formulas are
first-order logic formulas with atomic propositions including pairs 〈e1 , ka1 〉 and 〈e1 , ka1〉 →
〈e2 , ka2〉—denoting that the event ei took place at some time point fi and that the knowledge
assignment at the end of time point fi was kai; the latter also denotes as usual that e1 preceded
e2. The axioms of E-PDL are shown in Table 1 can be summarized as follows:

• Equality: If a node p knows t, it also knows all E-equivalent terms t′.

• Send: If a node p sends a term t, then t is part of its knowledge (t ∈ KA(p)) at the end
of the current point in time. Furthermore, nothing is learnt in the entire system during
this time point (nothingLearnt(...)).

• Receive: If a node p receives t, then t is included in its knowledge (t ∈ KA1(p)) at the
end of the current time point. Furthermore, t was sent by some node X at some earlier
time point. In addition, the only change in knowledge caused by the receive event is that
p has learnt the term t (and all the E-equivalent terms) (onlyLearnt(...)).

• Learn: If node p learns a term t (which is the only item added to the global knowledge)
from a term u using an operation O and the terms u1, . . . , un, i.e., O(u, u1, . . . , un) =E x,
then the terms {u, u1, . . . , un} ⊆ KA(p) are part of p’s knowledge at the time in which
the event takes place, and the operation O is part of p’s capabilities.

• Creation: If a node p creates a term O(t1, . . . , tn), then p knows this term at the end of the
current point in time (and O(t1, . . . , tn) is the only new thing learnt). Furthermore, the
node p has the capability to perform the operation O (O ∈ C(p)), and knows t1, . . . , tn.

• Knowl.Preservation: If a node p knows t, it will also know t at all later time points.
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Equality ∀t, t′, p . t ∈ KA(p) ∧ t =E t′ =⇒ t′ ∈ KA(p)

Send 〈send(z)p,KA〉 =⇒ z ∈ KA(p) ∧ nothingLearnt(〈send(z)p,KA〉)

Receive 〈receive(z)p,KA1〉 =⇒ z ∈ KA1(p) ∧ onlyLearnt(〈receive(z)p,KA〉, z, p)
∧ (∃q,KA2. 〈send(z)q ,KA2〉 → 〈receive(z)p,KA1〉)

〈(apply O to u toLearn t)p,KA〉
=⇒ t ∈ KA(p) ∧ O ∈ C(p)

Learn ∧ (∃ u1, . . . , un. {u1, . . . , nn} ⊆ KA(p) ∧ O(u, u1, . . . , un) =E t)
∧ onlyLearnt(〈(apply O to u toLearn t)p,KA〉, t, p)

〈(applyOp O to t1, . . . , tn)p,KA〉
Creation =⇒ O(t1, . . . , tn) ∈ KA(p) ∧ O ∈ C(p) ∧ {t1, . . . , tn} ⊆ KA(p)

∧ onlyLearnt(〈(applyOp O to t1, . . . , tn)p,KA〉, O(t1, . . . , tn), p)

Knowl.Preservation 〈e1,KA1〉 → 〈e2,KA2〉 =⇒ KA1(p) ⊆ KA2(p)

Table 1: E-PDL Axioms

The formula onlyLearnt(〈e,KA〉, t, p) denotes that the only knowledge added to the system as
a resulting of the event e being performed is that p learnt t (and all E-equivalent terms) can
be defined as follows. Basically, if q knows u then either p = q and u =E t, or q knew u when
an earlier event e2 took place, or q knew u initially (u ∈ KA0(q)):

onlyLearnt(〈e,KA〉, t, p) , ∀u, q. u ∈ KA(q)
=⇒ (u =E t ∧ p = q) ∨ u ∈ KA0(q) ∨ ∃e2,KA2. 〈e2,KA2〉 → 〈e,KA〉 ∧ u ∈ KA2(q).

The formula nothingLearnt(〈e,KA〉) denotes that nothing was learnt by performing e:

nothingLearnt(〈e,KA〉) ,
∀t, q. t ∈ KA(q) =⇒ t ∈ KA0(q) ∨ (∃e2,KA2. 〈e2,KA2〉 → 〈e,KA〉 ∧ t ∈ KA2(q)).
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Abstract

With ever increasing availability of verified stacks capable of guaranteeing end-to-end
correctness on applications—like compilers (CakeML, CompCert) or even critical software
systems (seL4)—one can now realistically write a program, along with a proof describing
any desirable property, and have it compiled into a correct executable implementation of the
original program. However, most of these approaches can only really deal with sequential
programs and provide no support for reasoning about the correctness of multiple (con-
current) programs. To address these shortcomings, we propose a choreographic language
where the behavior of a system consisting of several endpoints, is described on a global
level, that can be subsequently projected and compiled into its individual components. We
are developing an end-to-end proof of correctness that ensures i) the deadlock-freedom of
the generated set of endpoints and ii) the preservation of all behavior of the system down
to the binary level. Our implementation uses the verified CakeML compiler as a backend
and takes advantages of its verified stack.

This extended abstract presents our ongoing work on connecting choreography languages
with verified stacks. Our overarching goal is to develop an environment where programmers
can write communicating systems as high-level protocol descriptions in the style of Alice →
Bob notation, and then, easily generate executable code that is formally verified to correctly
implement the protocol down to the machine-code level. To achieve our goal, we connect these
two strands of work to provide both a convenient abstraction for representing such systems,
and strong guarantees about their behaviour.

1 -- choreography

2 A[item] → B.x

3 B[price(x)] → A.y

4

5 -- projection A

6 send(B,item)

7 receive(B,y)

8

9 -- projection B

10 receive(A,x)

11 send(B,price(x))

Figure 1: price-query chore-
ography

Choreographies present a global description of the in-
teractions of a system in terms of the messages exchanged
between its components [1] (endpoints). Its syntax resem-
bles the description of a protocol, but it provides a more
concrete definition of the system. For example, in lines 2
and 3 of Figure 1, A sends B the name of an item and B sends
back its price by evaluating price(x). This choreography,
while simple, completely captures the interaction between
A and B, abstracting away individual operations like send

and receive as communications (→).
Choreographies can be thought of as protocol descrip-

tions, in the sense that they are descriptions that a set of
programs—in the form of threads, processes, servers, etc—
implement, and that as a whole, should exhibit the intended
behaviour. Nevertheless, making sure a system complies
with its specification is in general no easy task, and we have
seen time and time again examples of protocols being implemented poorly [2]. What distin-
guishes choreographies is that they are programming languages, and hence provide concrete
enough descriptions to generate implementations directly from them.
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Endpoint projection (EPP) [6] generates an implementation for a choreography by trans-
lating each endpoint into a program, that when joined through parallel composition with all
the others, should exhibit the same interactions as the original specification. This correctness
property is know as the endpoint projection theorem (EPP theorem). Additionally, choreogra-
phies prevent any mismatch between send and receive operations by construction, since the
language constructs for interaction describe the action of both parties. This in turn implies
deadlock-freedom, which extends to any projected implementations thanks to the EPP theorem.
This combination of features and guarantees is what makes choreographies a good candidate
for describing communicating systems, and an interesting subject for our verification efforts.

Verified stacks aim to produce a set of tools and techniques—involving a combination of
interactive theorem provers, SMT-solvers, and other tool-chains—that allow users to describe
programs, and through a mechanized process, generate a representation in a target language
(usually binary) while providing some formal guaranties about the behaviour of the resulting
program w.r.t. the initial specification. Some examples of verified stacks are compilers like
CakeML [4] and CompCert [5]. They provide a proof of correctness that guarantees that the
observable behaviours of the generated executables are compatible with the behaviours of the
source programs. Other approaches, like the seL4 microkernel [3], target specific programs and
can include proofs of additional properties like security or deadlock-freedom.

By connecting a choreography language with a verified stack, one could provide end-to-
end guarantees about communicating systems, using a simple and expressive interface with
convenient properties. However, most EPP results in the literature target modelling languages
like the π-calculus rather than concrete programming languages, and make no attempt to extend
the results to executable representations of the protocol participants. Furthermore, there is
limited support for representing (concurrent) interactions in most verified stacks, which restricts
their usability to only sequential programs. We aim to address these issues by providing i) to
the best of our knowledge, the first mechanized proof of the EPP theorem, ii) a proven correct
choreographic compiler, and iii) a novel approach for dealing with open system specifications.

Choreography

Endpoint calculus

EPC without choice

EPC with payload size

Figure 2: Roadmap

Our implementation uses the HOL4 theorem prover and is
comprised of a choreographic language definition that gets pro-
jected using EPP to endpoints expressed in a process algebra
which is similar to value-passing CCS, but also features explicit
locations, internal and external choice, and a more concrete rep-
resentation of data and local computations that is amenable to
code generation. From there, a sequence of verified refinements
of the endpoints gradually translates each process into concrete
CakeML code. The first step eliminates the internal and exter-
nal choice primitives by encoding them using send, receive and
if-statements. The second step compiles from a process algebra
where messages can have unlimited length to a process algebra
where messages have a (configurable) maximum payload size by
introducing a protocol which sends messages in smaller chunks.
The (by now sequential) code at each location is translated into
a functional program in the CakeML language. Finally, we can
use the verified CakeML compiler [8] as a backend to compile the
functional representation into concrete machine code for main-
stream architectures (including x86-64 and ARMv8) such that the
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machine code preserves the observable behaviour of the CakeML
program. By connecting the correctness proofs for each of these
intermediate steps, we can obtain a top-level correctness statement that the communication
behaviour and deadlock freedom properties of the choreography are preserved down to the
machine code that runs it.

Local computations (e.g: price(x) in Figure 1) are shallowly embedded as functions in
higher-order logic, hence can be directly translated by CakeML’s proof-producing synthesis
tool [7], or left underspecified to model external components. Finally, the underlying send and
receive operations are implemented using CakeML’s foreign function interface, which allows
their use to be back-end agnostic (sockets, IPC, etc).

A high-level roadmap of our work is described in Figure 2, where each arrow signals a
proof of semantic correspondence between the intermediate representations. Downwards arrows
are semantic preservation proofs, and upward arrows are semantic reflection. Dashes account
for sections pending verification. Additionally, proofs of confluence, deadlock-freedom, and
structural congruence laws are in place for the semantics of our choreography language, and an
extension for the CakeML FFI is being develop to allow for parameterized send and receive

specifications.

In conclusion, by building on top of a flexible and robust verified stack like CakeML, and
taking advantage of the strong guarantees and ease of use of choreographies, we believe this
work will make the task of developing and maintaining verified systems a much more simple
and cost-effective one.
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Introduction

In today’s dominant user interface programming paradigm, programmers write handler func-
tions to respond to user interaction events. They must coordinate responses so that UI behavior
is consistent in all possible event orderings and timings. This is recognized as a complex, costly,
and difficult programming task [3]. Further, since UI logic has no tangible representation as
an algorithm or a component, code that manages user interactions is not reusable.

Our prior work on UI programming [1] shows that user interface behaviors can be expressed
as reusable algorithms, parameterised over a multi-way dataflow constraint system. Our vision
is a programming model, where GUI fragments are components, and GUIs are compositions
of these fragments, each defined by a constraint system. The composition of UIs thus builds
on the composition of constraint systems, which is the focus of this paper: an investigation of
semantical underpinnings of multi-way constraint systems. The goal is a formal framework
to serve as a basis for designing (GUI) algorithms over constraint systems and for modular
reasoning about constraint systems, a step towards compositionality in GUI programming.

Background: dataflow constraint systems in GUIs

A dataflow constraint describes a relation amongst variables and means to satisfy that relation.
The latter is a set of functions, constraint satisfaction methods, that compute values of some of
the constraint’s variables, using others as inputs. A collection of constraints to be satisfied
simultaneously is a constraint system. There are many variations of dataflow constraint solvers
and systems [5, 4, 6], and many uses, most prominently perhaps GUI widget layout. Our use
of constraints in GUIs is described in [1].

Figure 1 shows an idealized GUI for resizing an image, which we use as an example. The
image’s initial width and height are determined at the launch of the dialog. The user can
specify a new width and height relative to the initial values, or directly as the number of pixels.
Further, the user can request that the GUI preserves the initial aspect ratio.

The variables are dependent on each other: changing the value of one triggers changes
in others, so that the GUI returns to a consistent state. The dependencies and the consistent

Figure 1: An example GUI implemented using a constraint system.

∗This work was supported in part by NSF grant CCF-1320092.

34



Semantics of Multi-Way Dataflow Constraint Systems Haveraaen and Järvi

wi wa

wr

c1
hiha

hr

c2

c3

(a)

wi wa

wr

m1

m2 hiha

hr

m3

m4

m5

m6

(b)

Figure 2: The constraint system arising from the GUI of Figure 1. Figure a depicts the relations
(c1, c2, and c3) amongst the variables in the system. Figure b shows the relations split into
functional dependencies. A dashed ellipsis marks the set of methods that together implement
a constraint’s relation; for example, applying either of the methods m3 or m4 satisfies c2.

states are expressed by the constraint system in Figure 2. The variables wi, wr, and wa are
bound, respectively, to the initial, relative, and absolute width fields, and hi, hr, and ha to the
corresponding height fields. Figure 2a shows the three constraints in the system: c1 enforces
the relation wa = wi ∗wr, c2 the relation ha = hi ∗hr, and c3 the relation wr = hr. The c3 constraint
is only active if the initial aspect ratio should be retained. These relations are decomposed into
sets of functional dependencies (methods), shown in Figure 2b. Solving a dataflow constraint
system boils down to selecting one method from each constraint such that they can be executed
in an order that does not invalidate already enforced constraints, and then executing them.

In practice the constraints’ relation is implicit, defined indirectly by the constraint sat-
isfaction methods that the programmer writes. Questions about the composability of con-
straints reduce to questions about the graphs formed by connecting methods via their common
variables—and they ignore the semantics of the constraints. Hence this paper.

Syntax and Semantics of Constraints and Constraint Systems

The programming language for constraint systems is defined with set theoretic semantics for an
interface, a set of declarations of types and functions. The basic syntactic module is an interface.
An interface I declares a set of types Typ(I) and a set of operations (or functions) Fun(I) in the usual
way. The expressions of type t ∈ Typ(I) on an interface I with variables V is a set EI,V,t, generated
in the usual way. We denote the set of all type correct expressions as EI,V = ]t∈Typ(I)EI,V,t,
and extend typ : Nam(V)→ Typ(I) to a function typ : EI,V → Typ(I). A substitution on variables
s : V→ EI,X is a function from Nam(V) to EI,X such that typ(v) = typ(s(v)) for all v ∈Nam(V).
A substitution on variables s : V→ EI,X extends to a substitution on expressions s′ : EI,V→ EI,X
by recursing to subexpressions. The composition of a substitution r : X→ EI,Y and s : Y→ EI,Z
is a substitution r;s : X→ EI,Z defined by r;s(x) = s′(r(x)), for all x ∈ X.

The modelµ : I→Set of an interface I defines a setµ(t) for every t ∈Typ(I) and a total function
µ( f ) : µ(t1)×· · ·×µ(tk)→ µ(t) for every function f : t1, . . . , tk→ t ∈ Fun(I). An allocation a : V→ µ
of values to variables V for an interface I with model µ defines a value a(v) ∈ µ(typ(v)) for all
v ∈Nam(V). We define the semantics [[_]]µ,a,t : EI,V,t→ µ(t) of expressions of type t ∈ Typ(I) and
allocation a in the usual way.

Constraints formulate requirements on allocations of variables. An equational constraint on
variables V over an interface I is a pair e1 = e2 where e1,e2 ∈ EI,V and typ(e1) = typ(e2). Let µ be a
model for I. The equational constraint e1 = e2 holds for an allocation a : V→µ iff [[e1]]µ,a = [[e2]]µ,a.

Let I be an interface and V a collection of variables for I. The constraints on variables V over
I is a set CI,V generated by an equational constraint e1 = e2 on variables V over an interface I,
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where e1,e2 ∈ EI,V and typ(e1) = typ(e2); a conjunction c1&c2, disjunction c1|c2, and negation ¬c1
of a constraints c1,c2 ∈ CI,V; and constant constraints FALSE and TRUE.

Let µ be a model for I. For a given constraint c ∈ C and an allocation a : V → µ, the
semantics of c, [[c]]µ,a defines when c holds or not. When c is an equational constraint e1 = e2
then [[c]]µ,a = ([[e1]]µ,a = [[e2]]µ,a); when a conjunction c1&c2 then both c1 and c2 must hold for c to
hold; when a disjunction c1|c2 then at least one of c1 and c2 must hold for c to hold; etc.

A substitution s : V→ EI,X can be applied to a constraint c ∈ CI,V. Then s(c) ∈ CI,X is the
constraint obtained by replacing each expression e in c by s(e).

In this abstract we state without elaborating that constraints, allocations, and models can be
put together to form an institution [2] where the signatures are sets of typed variables and the
signature morphisms are substitutions. Institution theory can be interpreted as a framework
for modular reuse of specification and code. We use this interpretation to provide a module
framework for constraint systems, and achieve flexible composition of constraints.

Example 1. The two constraint system primitives in the image scaling GUI, one between wa,
wi, and wr, and the other between ha, hi, and hr, can be constructed from the same constraint
system primitive (we assume vi , 0) G = 〈{vi : int,va : int,vr : float},bvivrc= va, {(va := bvivrc), (vr :=
va/vi)}〉, using the substitutions sw : {vi,va,vr} → {wi,wa,wr} and sh : {vi,va,vr} → {hi,ha,hr}. Their
composition is a constraint system primitive whose constraint defines the GUI’s consistent
states and whose methods provide the means to bring the GUI into such a state:

sw(G) & sh(G) = 〈{wi : int,wa : int,wr : float,hi : int,ha : int,hr : float},
bwiwrc = wa & bhihrc = ha,

{(wa := bwiwrc), (wr := wa/wi), (ha := bhihrc), (hr := ha/hi)}〉.

To obtain a constraint system primitive for the same GUI but requiring equal scaling for
width and height, we use substitutions rw : {vi,va,vr} → {wi,wa,a} and rh : {vi,va,vr} → {hi,ha,a}:

rw(G) & rh(G) = 〈{wi : int,wa : int,hi : int,ha : int,a : float},
bwiac = wa & bhiac = ha,

{(wa,ha := bwiac,bhiac), (wa,a := bwi(ha/hi)c,ha/hi),
(ha,a := bhi(wa/wi)c,wa/wi)}〉.
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Goguen & Burstall institution theory [1] captures the structure of many approaches to soft-
ware and information systems, e.g., ontologies, modeling and formal specifications. Institution
theory also provides powerful institution independent structuring mechanisms, allowing exten-
sive reuse within and between institutions. Such structuring is considered ‘good practice’ for
many reasons, including separation of concerns, ease of reuse of specification-text, and improved
theorem proving support.

However, solving practical problems still hits issues of structuring and reuse beyond the
classical mechanisms. Though immaterial to foundational theory, lack of support causes lengthy
writing of boilerplate code or repeated adaptation from one context to another. Take for
example the ‘challenge’ to specify in first order logic that a sort s has at least five elements,
presented here in Casl [4] syntax:

spec SortWithMinimum5Elements =
sort s
ops c1, c2, c3, c4, c5 : s
• ¬ c1 = c2 ∧ ¬ c1 = c3 ∧ ¬ c1 = c4 ∧ ¬ c1 = c5 ∧
¬ c2 = c3 ∧ ¬ c2 = c4 ∧ ¬ c2 = c5 ∧
¬ c3 = c4 ∧ ¬ c3 = c5 ∧
¬ c4 = c5

end

We observe that writing out this standard pattern of axioms becomes awkward for larger
numbers, and may easily introduce errors in a conceptually simple specification. Thus, we
propose that specifications involving such patterns should automatically be generated. More
concisely, we claim that, like in programming, also in specification there are recurring problems
for which there exist ‘standard solutions.’ These can and ought to be addressed by ‘patterns.’

In order to be useful, one would require such solutions to be ‘flattenable,’ i.e., to be syntactic
sugar. This would allow the specifier to expand a ‘macro,’ possibly with tool support, in order to
check if the generated axioms actually look as expected. Furthermore, it would appear natural
for such a pattern to take selected signature elements (e.g., the sort and a list of constants for
defining any number of distinct constants) as their arguments. Such arguments would ‘steer’
the patterns’ use in the concrete application context. For example, we can lift a set of functions
on elements to functions on arrays. An n-ary function would lift to a function on n arrays.
To specify the effect of lifting, the lifting pattern needs to identify the element type and set of
functions to be lifted, as well as the array type, the index type and function.

In recent work [2], we proposed a framework for creating institution specific structuring
mechanisms, syntactic theory functors (STFs). STFs subsume the standard institution inde-
pendent structuring mechanisms, and open up new ways of reusing existing and structuring new
specifications. This allows building a rich institution incrementally from a simple institution
and appropriate STFs, very much needed when developing ontologies or specification languages
for a new domain. Richer institutions yields more versatility to the Distributed Ontology,
modeling and specification Language (DOL), which provides structuring and interoperability
between any institution based formalism.

37



Specifying with STFs Haveraaen and Roggenbach

Definition 1 (Syntactic Theory Functor (STF)). We call a functor F on a theory (Σ,Φ)
consisting of a signature Σ and a set of logical formulae Φ to be syntactic if the application of
F can be decomposed into component expressions, namely

• Fsig : Sig→ Sig is the effect of F on the signature, i.e., Fsig(Σ) = F (Σ,Φ)1,

• Fbase : Σ → for(Fsig(Σ)) is the base axiom giving the properties of the constructed speci-
fication for a signature Σ, and

• Ffor : for(Σ)→ for(Fsig(Σ)) is the effect of F on each formulae on the signature Σ.

STFs exhibit a number of useful properties, including

Theorem 1 (Elementary properties of STFs).

• Syntactic theory functors are additive, i.e., F (Σ,Φ1 ∪ Φ2) = F (Σ,Φ1) ∪ F (Σ,Φ2).

• The identity functor on theories is a syntactic theory functor.

• Syntactic theory functors compose.

Concerning our above example, the distinctness of a given set of constants can be defined
by an STF called Frees,C , where s is a sort and C is the desired set of distinct constants, all of
type s:

Frees,C,sig(Σ,Φ) = Σ ∪ 〈{s}, C, ∅, ∅〉,

Frees,C,base(Σ,Φ) =
⋃

c,c′∈C,c 6=c′

{c 6= c′},

Frees,C,for(Σ,Φ) = Φ.

Using this functor, we can now alternatively specify sort s to have at least five elements,
presented here in Casl syntax augmented by STFs:

Frees,{c1,c2,c3,c4,c5}({})

where {} denotes the empty Casl specification. This specification using the Free STF is
semantically equivalent to SortWithMinimum5Elements. Note that there are further STFs
available in order to solve this problem, e.g., Free′s,n, which takes the number n of elements
required in sort s as a parameter and does not require the specifier to provide names of constants
that shall denote the elements present in the carrier set. The natural advantage of Free′ over
Free is that it requires less to write by the specifier, however, often one will want to know the
concrete names of the constants involved.

In our NWPT contribution we will demonstrate that systematic use of STFs makes writing
specifications easier, as there is (1) less text to write and (2) the specifier can concentrate on
the essential, new new things to be considered. Furthermore, using STFs makes reading and
comprehending of specifications easier, as (1) specifications become shorter and (2) standard
constructions are named as such, i.e., the reader can concentrate on the fundamentally new,
non-standard elements.

To this end, we will further develop the concepts presented in [2] and, in particular, we will
experiment with and analyse STF specification practice. Here, we will study various approaches
concerning partiality (error algebras, ok-predicates, ...) and order sorting as surveyed by [5], the
technique of “plainification” which uses preconditions for functions in algebraic specifications
[3], and also present concrete examples such as specifying money conversion and analyse how
STFs can help writing ‘better’ specifications.

2
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Abstract

We investigate the use of hardware-based tracing facilities for the purpose of detecting
potential data races. Modern processors offer advanced facilities for introspection of control
flow, such as the Intel Processor Trace (IntelPT), or the CoreSight TraceMacrocell on
ARM processors. Information about data such as memory addresses has to either be
logged explicitly by the running code through additional trace packets in the hardware
trace (only available on ARM), or on a different software-based channel.

Due to the high trace data volume and the need for instrumentation, we present here our
approach for minimising the amount of necessary instrumentation that our stream-based
implementation of the lockset algorithm requires, through the help of static analysis.

Multicore processors have become commonplace. They offer speed boosts in two ways in modern
IT: on the one hand, different tasks can run concurrently on multiple cores, sharing operating
system resources. On the other hand, developers have the option of tailoring their applica-
tions to make use of multiple cores by explicitly introducing concurrency, usually in the form of
threading. These threads by their very definition have the possibility to affect each other: mem-
ory is shared between threads, and synchronization APIs allow for higher levels of abstraction.
For programs, for example, written in the C programming language, a careful combination of
modification of shared data and locking/synchronization is necessary.

Using those concurrency constructs and their interactions incorrectly leads to widely dis-
cussed problems, such as deadlocks [1] and data races [4]. While the first type of problem is
easily detectable at runtime, the latter is more insidious. Traditionally, these types of software
defects have been approached from two sides: static analysis checks the source code and re-
ports potential errors. To that end, over-approximations of the behaviour of the program are
used (e.g. in terms of variable accesses and lock operations), which may lead to uncertainties
on whether a particular behaviour will actually occur during runtime due to general issues on
decidability. In contrast to analyzing the code before it actually runs, dynamic analysis looks
at the actual behaviour of a program. Although this only gives a limited view on the behaviour
of the actually executed code, it allows for the precise reporting of actual occurrences, which
can be used to predict potential erroneous behaviour across different runs.

Here, we present an approach to dynamic data race monitoring that reduces the amount
of instrumentations required by using hardware-based tracing facilities. As these facilities only
provide control-flow information, but no information about the manipulated data, they cannot
replace instrumentation in general. At runtime, we then combine both sources of information
to run the lockset algorithm [5] and detect potential for data races. The algorithm itself is
expressed and executed in the stream-based specification language TeSSLa [3] which provides
a suitable match for the events generated by the instrumentation and the hardware.

∗This work was partially supported by the European Horizon 2020 project COEMS under grant agreement
no. 732016 (https://www.coems.eu/).
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Dynamic data race detection with TeSSLa. The standard definition of a data race is as
follows [5]: a data race in the multi-threaded program exists when two or more threads access the
same memory location concurrently, at least one of the accesses is a write and the threads are not
using any synchronization mechanism to control their accesses to that memory. One of the most
frequently used algorithms for finding possible data races is the lockset algorithm, introduced
and implemented in Eraser [5]. We have chosen this algorithm because it is commonly used
by the state-of-the-art static [6] and dynamic tools [7] and it is suitable for implementation
in TeSSLa. The lockset algorithm finds data races by checking if a program follows a certain
locking discipline. In particular, it enforces that every shared variable is always protected by
some set of locks and this set of locks must be held by any thread accessing the variable. The
lockset algorithm needs relevant events with respect to locking (which thread is taking which
lock), and memory accesses (which thread is reading from or writing to a memory location).

In [2], we have shown how to specify the lockset algorithm in the stream-based specification
language TeSSLa. We use a software-based instrumentation, which works very much along
the lines of other runtime checkers, such as ThreadSanitizer [7], using the LLVM Compiler
Infrastructure. Every event that the software instrumentation generates, contains at least the
information about source code location, type of access (variable read/write, function call, lock
or thread operation), and the identity of the executing thread. Depending on the type, the
event is augmented with information such as the memory location for a read or write access,
any offset and size of the access, and lock operations.

This poses the challenge that memory accesses are almost indiscriminately instrumented,
leading to a high volume of events that the dynamic analysis has to process. As instrumentation
has overhead, minimizing the number of instrumentations without compromising race detection
would thus improve performance of the application being monitored.

Reducing dynamic overhead through static analysis A feature of modern mainstream
CPUs such as Intel and ARM is now a built-in tracing facility that goes beyond performance
counters that have traditionally been found on CPUs. High-volume trace data about the
executed instructions are made available to monitoring tools. To achieve a high data rate, this
instruction trace is compressed in the following way (simplifying a bit, eliding synchronization
frames etc.): only on encountering a conditional branch an event is generated in the form of a
single bit, indicating whether the branch has been taken or not. Additional information may
be included e.g. for function calls and returns. This trace is then stored e.g. in a ring buffer and
exported, and has for example been used in a sampling-based approach to race detection [8].

The trace in the compressed format is only intelligible with the corresponding binary (object
code), as events have to be mapped to the corresponding assembler statements, and possibly
instructions in between two events have to be synthesized. Most notably, any data (values)
that is not hard-coded into the binary (such as constants being loaded into registers), is absent.

For our data race detection, that means we need to either reconstruct vital information
from the trace, or use instrumentation in addition when this is not possible. An example target
for reconstruction are accesses to global variables: accesses to them (and e.g. arrays) can be
generalized to first loading a base address, and then having the actual memory access with a
constant offset to this base, and are hence prime candidates for reconstruction from the trace.
Indirect accesses to dynamically allocated memory (through pointers) however pose a challenge,
as the base is not a constant. A further complication are obtaining arguments to function calls
such as the locking/unlocking operations.
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Contribution. Here, we optimise the full instrumentation of memory accesses and lock-
operations presented in [2] by eliding event-generation, when those events can be reconstructed
from the control flow trace. During the preprocessing phase, we derive static information about
the data for each of the relevant operations (Load/Store/Lock/Unlock). In those cases where
our conservative approximation yields a unique result, i.e. where the data belonging to an
operation is statically decidable, we do not emit an instrumentation, but rather store which
generated instruction-fragment has which effect in terms of the lockset algorithm for subsequent
use during the dynamic phase.

Then, during execution, we receive an interleaved stream of events from the instrumentation,
and instruction-trace events from which we reconstruct the corresponding lockset-event. A
technical challenge in the current Intel Processor Trace (Intel PT)-based setup is that we receive
instrumentation events and control-flow events on separate, unsychronized streams.

This combination should allow us to avoid some of the performance penalties of purely
software-based data race checkers such as Thread Sanitizer [7], at the cost of some static analysis
up front, as well as moving the data race checking out of the context of the running program.
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Introduction. Method contracts [6] enable compositional reasoning about method calls in a
synchronous setting. However, in an asynchronous setting the called object may be executing
other processes between the call time and the execution time of a method. The generalization
of method contracts to asynchronous communication in a concurrent setting is not well under-
stood. In this paper we generalize method contracts for synchronous, sequential execution to
asynchronous method calls in concurrent Active Object languages [4].

Synchronous Method Contracts. Method contracts are an established formalism for spec-
i�cation and deductive veri�cation of object-oriented languages (e.g., [3, 6]). These contracts
are abstractions of method executions and describe (1) the context a method relies on as a
precondition and (2) the guarantees the method provides as a postcondition. In a synchronous
setting, a precondition pre describes the heap and the method parameters at the moment of the
call. A postcondition post describes the heap (including any side e�ects of method execution
on the heap) and the return value at termination. To show that a method m satis�es a method
contract (pre,post), we prove that if pre holds at the point when m is called, then post holds
immediately after m terminates.

Active Objects. Active objects with asynchronous method calls use a more complex call
mechanism than context switches, which gives rise to four challenges:

1. Call Time Gap. There is a delay between the execution of a call statement and the start
of the execution of its associated process. During this delay, the called object (�callee�)
may execute1 other processes. Even if a precondition holds at method invocation time, it
does not necessarily hold at activation time when the method actually begins to execute.

2. Strong Encapsulation. Each object has exclusive access to its �elds. The caller object
cannot access �elds of the callee; and is thus not able to evaluate the precondition of an
invoked method if the precondition depends on the �elds of the callee.

3. Interleaving. In concurrent active object languages, processes may interleave at suspen-
sion points. At these points it is challenging to know which properties about the heap
can be relied on and which must be guaranteed.

4. Return Time Gap. Active objects use futures to decouple method calls from reading
the return value. A future is a �mailbox� generated and associated with the asynchronous
call. To read the return value, an object synchronizes with the future, which can also
be shared with other objects. Another object which reads the future, need not know
which method was used to resolve the future. It is generally not possible to know which
postcondition held at the time when a future was resolved.

1For Active Objects, only one process is active in an object at any given time.
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Asynchronous Method Contracts. To address challenges (1) and (2), we split the precon-
dition into a parameter precondition and a heap precondition. Method parameters cannot be
changed by other objects and their values are by de�nition accessible to the caller. Therefore,
the part of the precondition that talks about method parameters can and must be established
by the caller. On the other hand, the caller cannot know which other processes might change
the heap before the method starts to execute and even if it would know, it could not access
the �elds of the callee. The heap precondition must be established by the last active process
executed on the callee prior to the actual method execution and can only be guaranteed by the
callee. The callee needs to describe the potentially active processes between the method call and
the method execution. We extend heap preconditions with a concurrency context consisting of
two context sets with methods: methods that may run in parallel with the considered method
and those that must have �nished before the considered method can be executed.

To address the remaining challenges, we extend the possible scope of contracts from start
and end points of method execution to any synchronization point. This is natural in an active
object setting, because the e�ect of a method execution needs to be known and analyzed when
interleaving occurs and when the return value is resolved, not when it is read.

For (3), we introduce suspension contracts that specify the behavior of the contract during
suspension and contain the methods possibly ran last during suspension and a condition for
their last state: During suspension other tasks may be executed on the object and, since they
share the same memory, data races are possible. However, these data races are localized and
can only occur at method start and suspension points. This is due to that all ABS methods
run uninterruptedly either to completion or suspension. Only the �nal state at these points is
relevant when analyzing local data races. This justi�es to specify active objects with generalized
synchronous contracts, rather than using a general purpose mechanism, e.g., separation logic.

For (4) we specify a resolve contract at each synchronization point, which contain the set
of methods that are permitted to resolve a future. This abstract only presents our approach to
solve (1), (2). For full details and how to deal with (3), (4) we refer to our report [5].

Specifying State in an Asynchronous Setting As discussed above, we split the precondi-
tion of asynchronous method contracts into a parameter precondition and a heap precondition.
The parameter precondition is guaranteed by the caller, who knows the appropriate synchro-
nization pattern. It is part of the interface declaration of the callee and exposed to the world.
The heap precondition is guaranteed by the callee and is declared in a class and not exposed.

The indirect control of the caller over the callee's state via method calls is part of the control
�ow of the class: A method is expecting a certain concurrency context, in addition to its memory
context. A concurrency context is part of the contract as two context sets containing methods:

• Each of the methods in succeeds must guarantee the heap precondition and at least one
of them must have run before the speci�ed method starts execution.

• Each of the methods in overlaps must preserve the heap precondition of the speci�ed
method. Between the termination of the last method from succeeds and the start of the
execution of the speci�ed method, only methods from overlaps are allowed to run.

As a default, these contexts contain all methods. In this case the heap precondition degenerates
into a class invariant and has to be guaranteed by every process at each suspension point.

Example 1. Consider the following interface and class declaration. Class C has an internal
counter r and declares a method m that divides its parameter by the counter. The counter must
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be strictly positive and must have been increased at least once before calling m, while getVal can
be read arbitrarily often before doing so. We use a JML-style [3] speci�cation language.

1 interface I {

2 /∗@ requires True; @∗/
3 Unit n();

4 /∗@ requires True; @∗/
5 Int getVal();

6 /∗@ requires i > 0; @∗/
7 Rat m(Int i);

8 }

9 class C(Int r) implements I {

10 /∗@ requires r >= 0; @∗/
11 Int n() { r = r + 1; }

12 Int getVal() { return r; }

13 /∗@ requires r > 0;
14 succeeds {n}; overlaps {getVal}; @∗/
15 Rat m(Int i) { return i/r; }

16 }

The code fragments below represent di�erent main blocks using a C instance c. The left fragment
fails to verify the context sets speci�ed above: Due to reordering, method m can be executed
�rst, so condition succeeds{n} fails. The middle fragment fails as synchronizing only on getVal

does not guarantee that n has terminated when getVal returns. The right fragment veri�es.

1 c!n();

2 c!getVal();

3 c!m();

1 c!n();

2 await c!getVal();

3 c!m();

1 await c!n();

2 c!getVal();

3 c!m();

Postconditions and Propagation. As in JML, the postcondition is speci�ed with a ensures

clause in the contract of the methods, which is a formula over the �elds and parameters of the
class and method, as well as a special keyword for the return value. Contrary to JML, however,
an additional step is used between speci�cation and proof obligation generation: The context
sets are used to propagate preconditions. Propagation adds the precondition of a method to
the postconditions of all the methods in its succeeds sets and as invariants of all the methods
in its overlaps sets. E.g., in the above example the contract of method C.n gets the additional
clause ensures r > 0; from the context set succeeds{n} of C.m. This strengthening ensures
that C.m's precondition is established by all processes that can possibly run directly before it.

Veri�cation. Pre- and postconditions are veri�ed as a Dynamic Logic proof obligation, sim-
ilar to the veri�cation of JML contracts [1], but the context sets are veri�ed by external static
analyses: Must-Have-Happened and May-Happen-In-Parallel analyses [2] are used that the
order of method calls speci�ed in the context sets is ensured by the given program.
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Introduction
Security for distributed systems is a critical issue since a large number of

users and systems are affected by such systems. Challenges of information flow
analysis of distributed systems depend on the communication paradigms used
and their semantics. The ”actor paradigm” [1] is a model advocated for design-
ing distributed systems, in particular, it offers modular and compositional de-
sign and analysis. In addition to the actor model, the object-oriented paradigm
has become popular because of its facilities for program structuring and reuse of
code. These two paradigms are combined in the so-called ”active object” model,
where the objects are concurrent and autonomous, communicating with other
objects by “asynchronous methods” [3].

We briefly discuss communication paradigms in active object languages us-
ing the syntax of the ABS (abstract behavioral specification) language [5]. A
synchronous and blocking call of method m on a remote object o has the form
x := o.m(e) where e is the list of actual parameters. The caller is blocked
until the callee returns the value, leading to unnecessary waiting. One way of
avoiding blocking is achieved by using futures proposed in [2] and exploited in
MultiLisp [4], ABCL [8], and several other languages [3]. A future is a read-only
placeholder which eventually will contain the return value from an asynchronous
method call [4, 7]. When a remote method call is made, a future object with
a unique identity is created. The caller may continue with other computations
while the callee is computing the return value. When the return value is com-
puted, it is stored in the future object. The future is then said to be resolved.
In a call statement f := o!m(e), f is a future variable used to hold the future
identity of the call, and the symbol “!” indicates an asynchronous method call.
In the case of first-class futures, a future identity can be passed to objects de-
siring the return value of the method call, even before the value is computed.
Thus, a future can be distributed to many active objects in a system.

The prevalence of futures in active object languages [3] highlights the sig-
nificance of investigating inherent security and privacy issues related to futures.
Futures might contain highly sensitive data, while in the case of first-class fu-
tures, any object that has a reference to it can access the content. Inside an
object, high-sensitive data might be leaked from futures to low-secure variables,
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and be transmitted to low-security actors, observable by an attacker. Conse-
quently, it is critical to track futures and analyze their information flow security.

Information flow security challenges regarding futures
Future variables give a level of indirectness in that the retrieval of the result

of a call is no longer syntactically connected to the call, compared to future-
free languages. For instance when the future is received as a parameter, it
may not statically correspond to a unique call statement. And different call
statements may have different secrecy levels. One may overestimate the set of
call statements that correspond to this given future parameter, but it requires
access to the whole program. Therefore, when allowing futures as parameters,
static information flow analysis would be imprecise, because the set of external
calls that may result in an actual parameter is not statically given, and these
calls are not uniform with respect to secrecy levels. In this case, one must
consider the worst case possibility (i.e., the highest secrecy level) for the set of
possible corresponding call statements, which is too conservative and severely
limits statically acceptable information passing and call-based interaction, or
requires dynamic checking.

In addition, the future concept comes with a notion of future identity, but
not a notion of associated caller, callee. Identities of the caller and callee could in
principle be incorporated in the future identity, but only at run-time. At static
time there is no information about the caller and the creator of a future. This
opens up for third party information with indirect/implicit handling of sensitive
information. Static information flow regarding futures is too conservative. It
causes unnecessary rejection of programs, especially when the complete program
is not statically known as is usually the case in distributed systems. To address
this problem, we propose an approach based on the notion of ”wrappers” [6].
By wrapping futures and all objects receiving futures (recipient objects) as pa-
rameters or return values, we can prevent leakage of information from futures
with high-sensitive data at the cost of dynamic checking.

We statically identify futures and recipient objects in the program. Then at
dynamic time wrappers around them monitor and control communicated mes-
sages to or from these objects. When a low security object attempts to access
a high secured future, the access should be rejected because of incompatible se-
crecy levels. The idea of wrappers is a permissive and precise dynamic approach,
using the run-time environment to track information flow and monitoring the
execution inside an object to prevent security violations. We modify the run-
time environment, i.e., add another component to the environment to keep the
secrecy levels of variables and change the operational semantic rules in a way
to track flow-sensitive information flow dynamically. Fig. 1 exemplifies infor-
mation flow analysis regarding futures and wrappers. An asynchronous method
call toward object O creates future f , arrows 1, 2. Then it is passed to object
P as a parameter of a method call. The future f , object O′, and the recipient
object P are wrapped by wrappers, marked in red, which checks whether it is
safe to let them get the future value.

2
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Figure 1: Information flow security regarding wrappers.

Conclusion
Futures are invented as a flexible way for sharing results and communication;

however, their security and privacy are problematic. The notion of wrappers has
been developed for safety of objects [6]. We here exploit wrappers for dealing
with information security, by extending the runtime system with secrecy levels
and apply dynamic checking for securing the use of futures.
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[5] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core
language for abstract behavioral specification. In Formal Methods for Components
and Objects, pages 142–164. Springer, 2011.

[6] O. Owe and G. Schneider. Wrap your objects safely. Electronic Notes in Theoretical
Computer Science, 253(1):127–143, 2009.

[7] Y. Yokote and M. Tokoro. Concurrent programming in concurrent SmallTalk. In
Object-oriented concurrent programming, pages 129–158. MIT Press, 1987.

[8] A. Yonezawa, editor. ABCL: An Object-oriented Concurrent System. MIT Press,
Cambridge, MA, USA, 1990.

3

48



An Executable Modeling Language for

Context-Dependent Self-Adaptive Systems

Sigurd Kittilsen1, Jacopo Mauro2, and Ingrid Chieh Yu1

1 Department of Informatics, University of Oslo, Oslo, Norway

{sigurki, ingridcy}@ifi.uio.no
2 University of Southern Denmark, Odense, Denmark

mauro@imada.sdu.dk

Extended Abstract

Self-adaptive systems are designed to deal with a continuously changing environment at run-
time. They self-evaluate and adapt to meet new emerging situations that are not necessarily
considered or planned before deployment, and continue their operations without the need for
human supervision. It is expected that a self-adaptive system shall change its behavior in re-
sponse to its perception of the environment and the system itself. The cause of the change
may be internal causes (e.g., reached some failure state) or from the system's external context
(e.g., changing weather condition or increasing service requests). The process of deciding how
to react is often relevant to achieve a goal or objective that constitute the reason for building
such a system. The demand for applications exhibiting self-adaptive properties is increasing in
multiple domains, for example in Autonomous systems and IoT, Service-oriented computing,
and agent systems. Software has been identi�ed as the main enabling technology for achiev-
ing self-adaptivity and several challenges related to the designing and development of adaptive
systems remain. Such challenges include �nding a suitable level of abstraction to model and
represent adaptive systems with corresponding environments [2, 3]. In particular, �exibility is
one of the main concerns to achieve adaptation since hard-coded mechanisms make adapting
long-running systems complicated. For this reason, there is a need for mechanisms that can
dynamically specify the behavior in terms of high-level goals, following a more declarative ap-
proach rather than an imperative one. In addition to the modeling aspect, there is a need for
analysis techniques to be able to give evidence that the system operates correctly and meets
the desired expectation.

In our work, we try to address these challenges by looking into how engineering self-adaptive
systems can bene�t from formal methods and model-based engineering. Early in the develop-
ment process, our approach aims at settling questions such as: Is my goal speci�cation precise
enough to drive an e�ective adaptation? Is the chosen adaptation strategy for the applica-
tion adequate? In what way does the non-deterministic and uncertain environment a�ect the
adaptation of the system? In what range of environments is my goal reachable?
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Figure 1: Self-adaptive system interacting with the environment.

As depicted in Figure 1, there is typically a two-way communication going on in self-adaptive
systems. They behave di�erently depending on the state of the environment, and the environ-
ment is a�ected by the actions performed by the adaptive systems.

A well-known technique for enabling self-adaption is through the MAPE-k control loop [1],
which will be essential to our work. MAPE-k is an acronym expressing the di�erent stages in
the loop. First, the adaptive system monitors (M) its environment through for example sensors.
Then, the sensored data is analyzed (A), followed by a planning (P) phase that decides which
actions to execute (E) depending on the gathered knowledge (k) and the system goals.

In this work, we propose a formal executable modeling language for self-adaptive systems.
To achieve this, we extend Real-Time ABS [4], a modeling language that already combines
actors with object-oriented structuring concepts and with cooperative concurrency, which allow
complex synchronization between concurrent activities to be expressed. We also bene�t from
Real-Time ABS's support of the explicit modeling of deployment decisions for timed, resource-
restricted models. However, ABS lacks language constructs to talk about important concepts
in this area, like environments, system actions, and system-goals and the operational semantic
does not consider the feedback processes typical for adaptive systems.

We will present the syntax and semantics of the extension, and show how the language
supports simulation of self-adaptation to give predictions of applications' runtime adaptability.
We will explain how we capture the communication between the adaptive system and the
environment, and how the internal adaption of the system is modeled. The main idea is to
integrate the MAPE-k loop into the operational semantics of the language. In this way, the
execution �ow will follow the di�erent steps of the adaption loop while communication between
the systems(s) and the environment keeps the monitored values up to date. We believe our
design provides the developer with a high degree of modularity. The adaption-strategy as well
as the di�erent actions, and the environment itself can be replaced independently to simulate
the system in di�erent scenarios.

This is only the �rst step of our ongoing work. We plan on implementing our formal
semantics into the back-ends of Real-Time ABS, which will enable the simulation of real use
cases from our industrial partners in the Sirius-Center [5]. In the future, we will facilitate other
types of analysis to complement the simulation. Examples of this could be static analysis to
check for instance the reachability of goals. We also want to extend the language further, to
be able to capture more complex adaptive behavior, e.g., multiple (possibly con�icting) goals,
learning capabilities, and dynamically evolving actions and environments.
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(Univ. Oslo), and Koen Claessen (Chalmers Univ.). Parts of this text were originally published in [1].

1 Introduction

Railway capacity is complex to define and analyze (see e.g. [2] or [3]), and existing tools and meth-
ods used in practice require comprehensive models of the railway network and its timetables. Design
engineers working within the limited scope of construction projects report that only ad-hoc, experience-
based methods of capacity analysis are available to them. Designs have subtle capacity pitfalls which
are discovered too late, only when network-wide timetables are made – there is a mismatch between the
scope of construction projects and the scope of capacity analysis, as currently practiced.

We consider one central problem that occurs when designing the layout and control systems for
railway stations: Does the station infrastructure have the capacity to handle the amount of trains and the
desired traveling times to provide adequate service in transportation of goods and passengers?

As an example, consider the question of crossing trains on a railway station. Figure 1 shows two
sequences of movements which result in such a crossing. There are a number of details of the railway
design which can cause this scenario to become infeasible (or take an unacceptably long time), such
as signal placement, detector placement, correct allocation and freeing of resources, track lengths, train
lengths, etc. More precisely: given a railway station track plan including signaling components, rolling
stock dynamic characteristics, and a performance/capacity specification, verify whether the specification
can be satisfied and find a dispatch plan as a witness to prove it.
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Plan 1: Plan 2:
S1

S2

S1

S2

Figure 1: Two alternative plans for achieving a
crossing of two trains on a two-track station. The
green areas show track segments which are cur-
rently occupied by a train going from left to right,
while the pink areas show track segments which
are currently occupied by a train going from right
to left.

Pre-processor:
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activation sequence

Simulator (DES):
execute planned

sequence up to time limit

Input

Route/conflict
abstraction

Infrastructure graph
representationCandidate plan

Eliminate plan prefixUNSAT SAT

Fig. 4: Conceptual diagram of CEGAR architecture. Infras-
tructure, routes, train types, and movement specifications are
transformed into (1) the planner’s abstract representation, con-
taining only elementary routes and train lengths, and (2) the
detailed graph representation used in the simulator component.

verification in railway construction projects is outlined in
Fig. 5. The manual, source code and test cases are available
online2. The tool uses the MiniSAT v2.2.0 solver.

The tool is complementary to other verification techniques
in railway design, such as static layout verification [23], [24],
[25], static interlocking verification [26], [24], interlocking
program verification [27], and timetable analysis [17].

The following input documents are used:
• Operational scenarios defining the performance proper-

ties to verify. Examples are given in Sec. II-B.
• Infrastructure given in the railML format [28], [29]. In

our case studies we used the RailCOMPLETE software,
a plugin for the widely used AutoCAD drafting software.
Using a model taken directly from the drafting program
means that no additional model preparation is needed.

• Elementary routes (optional), given in a custom format
which is compatible with the upcoming railML interlock-
ing format. Although subject to design, a decent guess
of the content can be straight-forwardly derived from
the infrastructure by listing resources in paths between
adjacent signals, so this input is optional.

• Dispatch plans (optional) corresponding to each opera-
tional scenario. The verification tool can produce dispatch
plans fulfilling the performance specification, so this input
is optional.

An advantage of the separation of planner and simulator
is that each component can be used separately. The planner
alone may be used to enumerate different possibilities for train
movements, which might be used in an operational testing
situation. The simulator alone may be used to debug the
execution of a specific dispatch plan to examine performance
deficiencies, and educationally for demonstrating the workings
of the railway system. Put together, the components provide
automated verification, which is the main goal of our efforts.

2https://luteberget.github.io/rollingdocs and https://github.com/koengit/
trainspotting
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Fig. 5: Verification tool chain overview. Yellow boxes rep-
resent input documents. Note that only infrastructure and
operational scenarios are strictly required – interlocking tables
can be derived, and dispatch plans can be synthesized. Blue
boxes represent programs. The green box represents the output
document from the simulator, which is a history of events
which is the witness that proves the performance requirement.

It would also, in principle, be possible to use one of the com-
mercial simulation packages, such as OpenTrack or RailSys,
provided that all input and simulation control can be given
though a programmable interface (API).

A. Timing Evaluation using Simulation

Given a specific dispatch plan, we evaluate the time needed
for executing it using discrete event simulation (DES), where a
set of concurrent processes operate on a shared system state.
Processes execute by reading or writing to the shared state,
firing events, and then going to sleep until a specific event fires
or a given amount of time has passed. When all processes are
sleeping, the simulation timer is advanced to the earliest time
when a process is scheduled to wake up.

Our DES for railway simulation has the following processes:
1) Elementary route activation (corr. Sec. II-A2): waits for

resources, allocates them, sets switches to given positions and
starts the following sub-processes:
• Release trigger: listens to a trigger detection section

which is designated as the release trigger for a partial
route. After the detection section has first been occupied,
and later freed, resources are released for use in other
elementary routes.

• Signal catcher: sets the route entry signal to the ’pro-
ceed’ aspect, then waits for a given trigger section to
become occupied before setting the signal to back ’stop’.

2) Train (corr. Sec. II-A3 and Sec. II-A4): evaluates move-
ment authority using information from signals currently in
sight, and takes one of the following actions: accelerate, brake,
or coast/wait. Braking curves from velocity limitations are
calculated, representing the train driver’s plan for when to start
braking. A guaranteed minimum time until further action is
required from the driver is calculated by taking the minimum
time until one of the following happen (see also Fig. 6):

Figure 2: asdf

As an example, we use the crossing scenario (Figure 1 shows a solution). Trains traveling in opposite
directions can visit this station simultaneously.

movement passengertrain { visit #p_in [b1]; visit #p_out [b2] }
movement goodstrain { visit #g_in [b2]; visit #g_out [b1] }
timing p_in < g_out timing g_in < p_out

Similar specifications, and combinations of such specifications, are relevant in most railway con-
struction projects. Since we typically only need to refer to locations such as model boundaries and
loading/unloading locations, these specifications are not tied to a specific design, and can often be re-
used even when the design of the station changes drastically.

3 Separating dispatch from train dynamics

4 Dispatch Planning using SAT

To verify capacity specifications like the crossing example above, we extract an abstracted version of
the railway infrastructure consisting of the different commands that can be given to the control system.
These commands are called elementary routes.

We can then encode an instance of the planning problem into an instance of the Boolean satisfiability
problem (SAT). We consider the problem a model checking problem, and use the technique of bounded
model checking (BMC) to unroll the transition relation of the system for a number of steps k, expressing
state and transitions using propositional logic.

Using BMC for planning works by asserting the existence of a plan, so that when the corresponding
SAT instance is satisfiable, it proves the fulfillment of the performance requirements and gives an ex-
ample plan for it. When unsatisfiable, we are ensured that there is no plan within the number of steps
k. In practice plans with higher number of steps are not of interest; i.e., the bound k is chosen based on
practical considerations (twice the number of trains was sufficient in our case study). The SAT instance
is built incrementally by solving with k − 1 steps and then adding the kth step if necessary.

A state i of the system in the planner component is represented by giving each route rj an occupancy
status oirj : it can be free (oirj = Free) or it can be occupied by a specific train tk (ojri = tk).

2

Figure 1: An example plan achieving a crossing
of two trains on a two-track station. Green areas
are currently occupied by a train going from left
to right, while pink areas show are currently oc-
cupied by a train going from right to left.
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tructure, routes, train types, and movement specifications are
transformed into (1) the planner’s abstract representation, con-
taining only elementary routes and train lengths, and (2) the
detailed graph representation used in the simulator component.

verification in railway construction projects is outlined in
Fig. 5. The manual, source code and test cases are available
online2. The tool uses the MiniSAT v2.2.0 solver.

The tool is complementary to other verification techniques
in railway design, such as static layout verification [23], [24],
[25], static interlocking verification [26], [24], interlocking
program verification [27], and timetable analysis [17].

The following input documents are used:
• Operational scenarios defining the performance proper-

ties to verify. Examples are given in Sec. II-B.
• Infrastructure given in the railML format [28], [29]. In

our case studies we used the RailCOMPLETE software,
a plugin for the widely used AutoCAD drafting software.
Using a model taken directly from the drafting program
means that no additional model preparation is needed.

• Elementary routes (optional), given in a custom format
which is compatible with the upcoming railML interlock-
ing format. Although subject to design, a decent guess
of the content can be straight-forwardly derived from
the infrastructure by listing resources in paths between
adjacent signals, so this input is optional.

• Dispatch plans (optional) corresponding to each opera-
tional scenario. The verification tool can produce dispatch
plans fulfilling the performance specification, so this input
is optional.

An advantage of the separation of planner and simulator
is that each component can be used separately. The planner
alone may be used to enumerate different possibilities for train
movements, which might be used in an operational testing
situation. The simulator alone may be used to debug the
execution of a specific dispatch plan to examine performance
deficiencies, and educationally for demonstrating the workings
of the railway system. Put together, the components provide
automated verification, which is the main goal of our efforts.

2https://luteberget.github.io/rollingdocs and https://github.com/koengit/
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Fig. 5: Verification tool chain overview. Yellow boxes rep-
resent input documents. Note that only infrastructure and
operational scenarios are strictly required – interlocking tables
can be derived, and dispatch plans can be synthesized. Blue
boxes represent programs. The green box represents the output
document from the simulator, which is a history of events
which is the witness that proves the performance requirement.

It would also, in principle, be possible to use one of the com-
mercial simulation packages, such as OpenTrack or RailSys,
provided that all input and simulation control can be given
though a programmable interface (API).

A. Timing Evaluation using Simulation

Given a specific dispatch plan, we evaluate the time needed
for executing it using discrete event simulation (DES), where a
set of concurrent processes operate on a shared system state.
Processes execute by reading or writing to the shared state,
firing events, and then going to sleep until a specific event fires
or a given amount of time has passed. When all processes are
sleeping, the simulation timer is advanced to the earliest time
when a process is scheduled to wake up.

Our DES for railway simulation has the following processes:
1) Elementary route activation (corr. Sec. II-A2): waits for

resources, allocates them, sets switches to given positions and
starts the following sub-processes:
• Release trigger: listens to a trigger detection section

which is designated as the release trigger for a partial
route. After the detection section has first been occupied,
and later freed, resources are released for use in other
elementary routes.

• Signal catcher: sets the route entry signal to the ’pro-
ceed’ aspect, then waits for a given trigger section to
become occupied before setting the signal to back ’stop’.

2) Train (corr. Sec. II-A3 and Sec. II-A4): evaluates move-
ment authority using information from signals currently in
sight, and takes one of the following actions: accelerate, brake,
or coast/wait. Braking curves from velocity limitations are
calculated, representing the train driver’s plan for when to start
braking. A guaranteed minimum time until further action is
required from the driver is calculated by taking the minimum
time until one of the following happen (see also Fig. 6):

Figure 2: Conceptual diagram of solver CEGAR
architecture. Inputs are transformed into (1) plan-
ner abstraction and (2) detailed simulation model.
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2 Station performance requirements
To capture typical performance and capacity requirements in construction projects, we define an oper-
ational scenario S = (V,M,C) as follows:

1. A set of vehicle types V , each defined by a length l, a maximum velocity vmax, a maximum
acceleration a, and a maximum braking retardation b.

2. A set of movements M , each defined by a vehicle type and an ordered sequence of visits. Each
visit q is a set of alternative locations {li} and an optional minimum dwelling time td.

3. A set of timing constraints C, which are two visits qa, qb, and and a maximum time difference.
As an example, we use the crossing scenario (Figure 1 shows a solution). Trains traveling in opposite

directions can visit this station simultaneously1.
movement passengertrain { visit #p_in [b1]; visit #p_out [b2] }
movement goodstrain { visit #g_in [b2]; visit #g_out [b1] }
timing p_in < g_out timing g_in < p_out

Similar specifications, and combinations of such specifications, are relevant in most railway con-
struction projects. Since we typically only need to refer to locations such as model boundaries and
loading/unloading locations, these specifications are not tied to a specific design, and can often be re-
used even when the design of the station changes drastically. Verification of these properties amounts to
planning in a mixed discrete/continuous domain.

3 Separating dispatch planning from train dynamics
We have investigated logic-based approaches for the problem described above. The PDDL+ [4] lan-
guage was designed to express planning problems in mixed discrete/continuous domains. Each discrete
change needs a planning step, and our test case problem instances would need hundreds of steps to be
solvable. We were only able to solve the most trivial test cases using the SMTPlan+ solver.

In response, we have developed a CEGAR-style tool which exploits the limited number of control
system commands to make an abstraction of the planning problem, see Figure 2. This approach exploits
the separation between the work that a dispatcher does (choosing which routes trains take) from the work
that a train driver does (choosing when to start accelerating or braking based on available information
about the path currently ahead). The dispatcher’s planning can be solved by encoding the planning
problem into SAT, see Figure 3, while the train movements and train driver behavior can be simulated
using discrete event simulation [5], see Figure 4.

Figure 3: The planner component takes an ab-
stracted view of the railway infrastructure. Lines
represent elementary routes with traveling direc-
tion given by the arrows. Boxes indicate routes in
conflict, i.e. only one of them can be in use at a
time.
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Critical time
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Figure 4: The train driver’s decisions to acceler-
ate/brake/coast happens at intersections between
acceleration/braking/speed restriction curves.

1For details of the input file formats, see https://luteberget.github.io/rollingdocs/usage.html
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4 Dispatch planning using SAT
We can encode the dispatch planning problem into an instance of the Boolean satisfiability problem
(SAT). We consider the problem a model checking problem, and use the technique of bounded model
checking (BMC) to unroll the transition relation of the system for a number of steps k, expressing state
and transitions using propositional logic.

Using BMC for planning works by asserting the existence of a plan, so that when the corresponding
SAT instance is satisfiable, it proves the fulfillment of the performance requirements and gives an ex-
ample plan for it. When unsatisfiable, we are ensured that there is no plan within the number of steps
k. In practice plans with higher number of steps are not of interest; i.e., the bound k is chosen based on
practical considerations (twice the number of trains was sufficient in our case study). The SAT instance
is built incrementally by solving with k − 1 steps and then adding the kth step if necessary.

A state i of the system in the planner component is represented by giving each route rj an occupancy
status oirj : it can be free (oirj = Free) or it can be occupied by a specific train tk (ojri = tk).

A dispatch plan is produced directly from the occupancy status oirj of states by taking the difference
between consecutive states and then dispatching any trains and routes which become active from one
state to the next. Constraints on states ensure that (1) the plan is viable for execution (i.e., correctness),
e.g. conflicting routes are not activated simultaneously (trains cannot collide), and (2) that the plan
fulfills performance specifications.

5 Extensions
The SAT-based planning approach described above is part of a growing tool set for agile verification of
railway designs, to aid the railway engineer while the design is still undergoing major revisions.

We are using the planner as a basis to extend in the following ways:

Simulation: To measure the time it takes to execute dispatch plans, one can use a discrete event sim-
ulation which represents the dynamic behavior of trains much more detailed than is tractable to
model in an automated solver, see Figure 4. Commercial operational simulation packages such a
OpenTrack [6] or LUKS [7] may be used for greater level of detail.

Optimization: The planner can be used to detect whether some equipment in the design is redundant.
If a plan can be found which does require any use of certain pieces of signalling equipment, these
pieces can be considered for removal from the design.
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Choreographies are high-level descriptions of communicating systems, inspired by the “Alice
and Bob” notation for security protocols, where the behaviours of participants is defined from
a global viewpoint. The hallmark of these descriptions is the communication primitive [7].
For example, the communication term s.b -> r.f reads “process s sends the bit b to process
r, which handles the received message using the local function f”. The idea is that correct
local implementations of the processes described in a choreography (s and r) can then be
automatically generated, yielding certified implementations.

The choreography models explored so far have the unrealistic assumption that communications
never fail, which limits their correctness guarantees in the real world.

Solving this problem is challenging, because there is no “one size fits all” solution for handling
failures in choreographies. For example, in choreographies for the Internet of Things, some com-
munications between sensors and a collector might be expendable [4, 5], whereas in choreographies
for parallel computing some communications must be performed to reach a correct result [1]. In
general, depending on the underlying failure model and software requirements, the programmer
might need to specify different recovery strategies for different communications in the same
choreography. Further, the sender and receiver of a communication might have different local
recovery strategies. For example, to implement the communication s.b -> r.f, we might want s
and r to have different retry policies in case of failures: s would use exponential backoff between
failed send attempts, while r would just wait for a fixed amount of time (timeout strategy).

In this talk we present Robust Choreographies (RC) a new programming model that brings
choreographies all the way to being applicable to settings with realistic communication failures
[6]. Differently from previous work on choreographies, all send and receive actions might fail in
RC, modelling potential connection problems and/or timeouts on both ends.

The key novelty of RC is that the semantics of the choreographic communication primitive
is programmable: communication is not offered as a primitive, but rather can be implemented
using procedures. For example, we can define a parametric procedure comAMO that implements
an at-most-once communication using an exponential backoff strategy for the sender and a
timeout strategy for the receiver as follows.

1 def comAMO(s,f,r,g)
2 k:s -> r in // declare a communication from s to r and name it k
3 sendExpBackoff(k,s,f); // sender strategy for k
4 recvTimeout(k,r,g) // receiver strategy for k

The procedure comAMO takes as formal parameters: the sender process s with its local function f
to generate the payload, and the receiver process r with its local function g to handle the received
payload. The communication that should take place is declared by the choreographic notation
k:s -> r and named k. The implementations of the respective send and receive strategies for
k are delegated to the procedures sendExpBackoff and recvTimeout. To implement our bit
communication s.b -> r.f in RC as an at-most-once communication, we can simply invoke
comAMO(s,b,r,f).

RC has communication primitives to send and receive messages:
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1 k <- s.f; // s evaluates f and sends the result for k
2 r.g <- k; // r receives the message for k and handles it with g

Communications are asynchronous and may fail. A successful send action implies that the sent
message is now handed over to the communication stack of the sender, which will attempt at
transmitting the message to the receiver. If transmission succeeds, the message reaches the
receiver and is stored by the communication stack of the receiver in a dedicated memory. A
successful receive action means that a message has been consumed by the intended receiver, i.e.,
the message has been successfully delivered—this requires that transmission was successful. A
receive action fails if it is executed when there is no message that it can consume. This models
that there may be connection problems on the end of the receiver or that a timeout occurred on
the receive action. We assume that communication and node failures are transient, meaning
that failing to interact with a node does not impede eventually doing it in later retries. We leave
persistent failures to future work. Processes can query their stack for the status of a message by
means of the following guards:

3 if s.k! then C1 else C2 endif // chooses C1 if the last send by s for k succeeded
and C2 otherwise

4 if r.k? then C1 else C2 endif // chooses C1 if the last receive by r for k succeeded
and C2 otherwise

Aiming at providing a foundational choreography model, RC is designed around few simple
primitives yet it is expressive enough to implement common recovery strategies. For instance,
we can use the procedure sendWhile (and its dual for receiving) to implement sendExpBackoff
(and recvTimeout) or any strategy that follows the same pattern: repeatedly attempt to
communicate until successful or a certain condition is no longer verified.

1 def sendWhile(s, k:s->r, f, g, f’)
2 if s.g ∧ ¬s.k! then // if s can try to send k
3 k <- s.f; // s computes the payload with f and sends it
4 s.f’; // s updates its status by running f’ (e.g. step a counter)
5 sendWhile(s,k,f,g,f’);
6 endif

We can also implement more complex communication primitives, like those in [3, 5]. For instance,
below is a procedure that iteratively attempt at sending some messages until the sender stack
accepts all of them using a round-robin strategy.

1 def sendAll(s,k1,f1,...,kn,fn)
2 if s.k1! then
3 sendAll(s,k2,f2,...,kn,fn) // omit this line to get sendAny
4 else
5 k1 <- s.f1;
6 sendAll(s,k2,f2,...,kn,fn,k1,f1)
7 endif

By omitting the recursive call at Line 3 we obtain a similar procedure that instead stops as soon
as any of the messages is sent.

The evocative notation for expressing communications typical of choreographies is readily
recovered by means of some syntax sugar; below are some examples.

2
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1 k:s.f ->t r.g // each party gives up after timeout t for t > 0.
2 k:s.f ->n r.g // each party gives up after n attempts for n > 0
3 k:s.f ->* r.g // each party makes an unbounded number of attempts.

Many choreography models can be compiled to RC. For instance, we can recover the
language of Procedural Choreographies (PC) [2], which abstracts from communication failures,
“as a library”. Translating PC programs into RC is a matter of rewriting a few symbols, e.g.,
s.f -> r.g in PC becomes s.f ->* r.g in RC.

In this talk:
• We present RC, formalise its semantics, and show how it captures different failure models
thus allowing programmers to deal with different kinds of systems such as: local Inter-
Process Communication (IPC) mechanisms (like unnamed pipes in POSIX systems, shared
memory, or file-based communications), reliable message delivery protocols (like TCP,
under the assumption that there are no connection resets or similar issues), unreliable
message delivery protocols (like UDP).

• We illustrate the programming model and expressiveness of RC by implementing common
recovery strategies and distributed protocols.

• We introduce a simple type system that checks that communications have consistent
implementations (parties are connected, payload types are respected, and communication
attempts are matched) and prove that well-typed programs enjoy progress, i.e., they either
terminate or diverge.

• We define a formal translation (a compiler, if you like) from choreographies in RC to a
more standard process model, i.e., an asynchronous variant of the π-calculus equipped
with standard I/O actions that might fail. These asynchronous fallible I/O actions are the
only way processes may interact: there is no shared memory or agreement primitive. We
prove that, if the original choreography is well-typed, the synthesised code is operationally
equivalent and enjoys progress.

References
[1] L. Cruz-Filipe and F. Montesi. Choreographies in practice. In FORTE, volume 9688 of

LNCS, pages 114–123. Springer, 2016.

[2] L. Cruz-Filipe and F. Montesi. Procedural choreographic programming. In FORTE, LNCS.
Springer, 2017.

[3] L. Cruz-Filipe, F. Montesi, and M. Peressotti. Communication in choreographies, revisited.
In SAC. ACM, 2018. To Appear.

[4] H. A. López and K. Heussen. Choreographing cyber-physical distributed control systems for
the energy sector. In SAC, pages 437–443. ACM, 2017.

[5] H. A. López, F. Nielson, and H. R. Nielson. Enforcing availability in failure-aware commu-
nicating systems. In FORTE, volume 9688 of Lecture Notes in Computer Science, pages
195–211. Springer, 2016.

[6] F. Montesi and M. Peressotti. Choreographies meet communication failures. CoRR,
abs/1712.05465, 2017.

[7] W3C WS-CDL Working Group. Web services choreography description language version 1.0.
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/, 2004.

3

57



A Language for Modelling Privacy

Ian Oliver

Nokia Bell Labs
Espoo, Finland

ian.oliver at nokia-bell-labs.com

Abstract

A language for modelling information flow from a privacy perspective is required in
information system engineering. We present such a language based on a data flow model
with annotations and rules linking privacy ontologies with said model. A graphical syn-
tax with a näıve and informal semantics has sufficed in current usage but lacks a strong
semantic basis for successful and meaningful integration with programming languages and
other development tools. The need for the semantics and an outline of the structuring is
outlined.

1 Introduction

Privacy is a hot topic and while amply catered for regarding legal aspects, privacy as an aspect
of the information system engineering process and artefacts is little more than a collection
of various methodologies and processes [2, 3]. We introduce a small, graphical language for
the expression of the flow of data through an information system coupled with an ontology of
concepts for the expression of information type, usage, purpose and provenance, as well as rules
for the inference of privacy issues and relationship to a requirements model.

There have been relatively few attempts at languages which explicitly address privacy and
information flow at either a modelling or programming level. One has been Jeeves [10] which
addresses the explicit inclusion of policies to guide the results of queries and functions. However
Jeeves is (by design) too low-level for the system modelling and possible simulation of infor-
mation flows and concentrates on a policy based approach which has a number of issues when
applied at a higher-level of abstraction [4]. Another attempt has been to provide a modelling
language with an MDA-style model transformation in [1] similar to that earlier made in [6].

The language presented here was developed with both the system engineer/architect and
privacy legal in mind through a set of concepts backed by ontologies to allow both communities
to reason about the information flow, system architecture and privacy.

This paper briefly introduces the concepts and provides a basis for a formal semantics and
is aimed to open up discussion on what formalism is most suitable for such a heterogenous
language, either in the modelling or programming domain. The full graphical language and
associated privacy ontologies are described in [6] and only a very short extract is presented
below to provide some structure to the semantics.

2 Syntax and Towards a [Formal] Semantics

Figure 1 shows a simple example denoting the flow of data via some camera application to some
storage. The data is collected from what the camera ‘sees’ on behalf of a data subject1.

Information flows are annotated by their contents using various ontologies [5] that attempts
to bridge the gap between programming language structures and types and the ubiquitous
‘type’ personal data. The top-level information class is shown in figure 2 and an example of a
diagram annotated by usage classifications in 3.

1A data subject as defined by the EU GDPR is any person whose personal data is being collected, held or
processed
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Figure 1: Example Data Flow

Figure 2: Top Level Information Type Classes

A model is defined as a set of nodes, flows and functions for extracting the source and
target of flows and annotations of any element (Nodes ∪ Flows), and a usual set of rules, eg:
∀f : Flows, src(f)! = targ(f) which is generalised as the flows are acyclic [8] over the model2.

Model : (Nodes, F lows, src, targ, annotations)

Annotations refer to the structured labelling of elements, for example, the usages of the
data in the storage elements (fig.3), or annotation of data flow content (fig.1). Annotations
are structured according to a set of ontologies (Data Type, Usage, Provenance, Purpose etc) -
these ontologies are defined using description logic but limited, generally, to ALC(F)H. These
constitute the first set of rules over the model.

We can define the semantics of some processes as a second set of rules which define the
behaviours of certain elements under certain conditions. For example, for a process node
(Process v Node), the outputs must refine the inputs:

∀n : Process

let inp = {f : Flows • targ(f) = n|annotationdataType(f)}
let out = {f : Flows • src(f) = n|annotationdataType(f)}
out v inp

Figure 3: Example Usage Annotation in a DFD

2In the full syntax we have a specific type of ‘reverse’ flow for this explicit occurrence, eg: marketing flows
back to the data subject.

2
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A third class of rules of the model is given by the behaviour of certain ontologies. For
example, usages of data must (should!) decrease through the model:

∀n : Process

∪ {f : Flows • targ(f) = n|annotationusage(f)} ⊆
∪ {f : Flows • src(f) = n|annotationusage(f)}

A fourth class of rules deal with certain ontological conditions such as equivalences and
implications between certain ontological elements. A canonical example is taken from the data
type ontology where certain machine identifiers can be geolocated, for example, IP addresses
can be equivalent Locations in types of type with some interesting effects upon the system.

There are other constructs such as the logical partitioning of models which we have not
discussed here but have particular meaning in the analysis of the model.

Finally under analysis the models are mapped to further constructs - similarly defined using
ontologies - for requirements management and risk analysis [9]. These are discussed in more
detail in [7].

3 Conclusions and Future Work

We have introduced a small, graphical and informally defined language for the expression of
information flows with respect to privacy. We have also show the link between the data flow and
ontological structures for privacy as well as their mapping to requirements and risk structures.

While having some structure to the rules of the model we lack a full and proper formal
semantics. While for most industrial applications the informal rules suffice, it does complicate
the implementation of tools supporting this modelling language.
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Software services are ubiquitous. They are accessed from PCs, mobile devices, car cockpits,
control panels in production plants, etc. They control the physical actions of machines and
money transfers; they handle personal information [GK17, Uni] and support decisions and
activities, be they political, professional or private. They aggregate news and social media
posts, recommend books and holiday destinations. We routinely place life, liberty and property
in their hands. The work presented here is part of an effort [Ros18a, Ros18b] to ensure that
services are worthy of that trust: we want to verify, as far as possible, the preservation of safety
and security properties under composition of software services.

The main contribution we present here is a transformational semantics of gRPC [Goo]1 in
BIP [BBB+11]. Source to source transformations are a common part of a BIP based develop-
ment process [BBB+11]. gRPC is a remote procedure call technology and interface definition
language used for connecting software services using a standardised binary on-the wire format
with support for backwards-compatible changes and for various programming languages. gRPC
is used internally by Google to connect their various services [The], and has also been adopted
by other organisations like Netflix [Net] (to replace their internal RPC solution), Cisco [Cis]
(to configure BGP routers, which are used for routing between Internet Service Providers) and
Cockroach Labs [The] (for their open source cloud based distributed SQL server).

Let us now look at a simple example of a gRPC interface definition:

1 syntax = "proto2";

2 message Int {required uint32 content = 1;}

3 service Echo {rpc echo (Int) returns (Int);}

It specifies first a message type Int, which here just contains one required unsigned 32 bit integer
(uint32) entry called content. The 1 in the message entry is a numeric identifier the same way
content is a textual one and is used to encode data in the binary on-the-wire format of gRPC .
In general a message could be a record with optional, required and repeated entries, with groups
of alternatives and with nesting of messages.

The gRPC code then goes on to specify a service Echo offering a single remote procedure
call (rpc) called echo both takes and returns a message of the type Int we just defined.

BIP (Behavior-interaction-priority) [BBB+11] is a framework for developing and verifying
component based systems with a strong separation of concerns between communication pat-
terns, the internal behaviour of components participating in the communication patterns, and
scheduling priorities. It specifies components, multi-party communication patterns and prior-
ities in a Domain Specific Language and can bind to functions and types defined in general
purpose programming languages, typically C++.

1Here we always use gRPC in the standard way with protocol buffers, and treat the two as a single concept.
gRPC documents mostly assume the use of protocol buffers.
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We will now show excerpts from a translation of the above gRPC echo server into BIP ,
the purpose being to give the reader a first impression of the BIP language and a hint at the
principles of our translation, not to give a complete understanding of the resulting components.
The BIP concepts we will present are atomic components with control state and data, and
ports, which are exposed by components and to which in a composite system BIP ’s connectors
would attach. The reader will notice that the BIP translation is much longer than the gRPC
specification, since it has to spell out properties that in gRPC are common to all services and
can therefore be left implicit; the BIP version could be considered more low level.

4 extern data type uint32

7 extern function bool doneEcho(EchoState state)

8 extern function bool failedEcho(EchoState state)

9 extern function readEchoState(uint32 content , EchoState state)

10 extern function writeEchoState(EchoState state , uint32 content)

11 extern function uint32 readEchoError(EchoState state)

We bind to some C++ types and and functions we will use in the atomic components; below
we will show excerpts of one of the components.

25 port type Echo_Comp_Accept(uint32 client , string_map client_metadata ,

uint32 deadline , uint32 content)

We define a port type for transferring the argument field content, as well as associated meta-
information for the remote procedure call. The port type will later be instantiated as a com-
munication port of a component. In reality we would usually have several fields to transfer.

29 atom type Echo_Comp ()

30 data uint32 client

31 data string_map client_metadata

We see the beginning of an atomic component type containing some data fields. BIP has atomic
and composite components.

40 export port Echo_Comp_Accept accept(client , client_metadata , deadline ,

arg_content)

44 place READY , COMPUTING

45 initial to READY

46 on accept from READY to COMPUTING do {

47 writeEchoState(state , arg_content);

48 done = false; failed = false;}

We see more details of the component: it contains a port of the type defined above. We see
an atomic component is essentially a Petri net – in this simple case a state machine – with
a finite number of places (states), with an initial transition and with transitions triggered by
communicating over a port (on accept . . . ). There could also be purely internal transitions.

We associate with the transition an action calling an external function and setting two
variables. The external function here is meant to initialise the state of the internal variables
from the argument (field arg content) which should have been set over the exposed port.

The BIP system naturally lends itself to our goals. It generates actual deployable software.
It allows for incremental development and model-checking of component based systems, i.e.,
the system tries to avoid re-checking properties that can’t be affected by changes [BBB+11].
The BIP ecosystem also includes tools for transforming component based systems into more
efficient monolithic systems while maintaining the advantages of modular development and
model-checking [BJS10], for model-checking of observed efficiency properties on a specific plat-
form [NBB+15] and for modelling dynamic architecture reconfiguration [BBBS18]. All of these
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features are of particular interest in the world of software services, where change between dif-
ferent atomic or distributed architectures or change of service providers based on Quality of
Service properties (e.g., response time, scalability, availability) are among the main advantages
of the Services Computing approach.

We give a simple correctness argument. To do so, we first develop formal semantics for
a subset of gRPC in terms of simple automata, based on the official informal specification
[Goo]. As is usual, transition from the formal to the informal is the crucial step where both
the correctness and usefulness of our approach need to be examined. Seeing the equivalence
between the automata and the generated BIP code, both in terms of data and the structure of
the underlying transition systems, is then straightforward. We will further discuss an example
of how security properties can be checked in our setting.

This semantics-preserving translation and our verification example are first steps to a verifi-
cation framework for Services Computing which we want to develop within the BIP ecosystem.
Since gRPC does not specify the actual computations, but only interfaces and communica-
tion patterns, the results of the translation are general BIP components which need further
refinement into the actual implementation. That implementation can then be compiled into a
service communicating via gRPC with other services developed with or without our framework.
The framework should be easily extensible to interface definition languages and communication
technologies other than gRPC , by giving semantics-preserving translations analogous to ours.
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Abstract

How robust is a healthcare system? How does a patient navigate the system and what is
the cost (money, time, loss of productivity, decrease in quality of life) incurred from the first
symptoms to getting cured? How will it fare in the wake to a sudden epidemic or a disaster?
How are all of these affected by administrative decisions such as allocating/diminishing
resources in various areas or centralising services? These are the questions motivating our
study on a formal prototype model for a healthcare system. We propose that a healthcare
system can be understood as a distributed system with independent nodes (healthcare
providers) computing according to their own resources and constraints, with tasks (patient
needs) being allocated in queues between the nodes. We construct in this paper an Event-
B model capturing the basic functionality of a simplified healthcare system: patients with
different types of medical needs being allocated to suitable medical providers, waiting for
their turn for multi-step treatments depending on their needs.

1 Introduction

Healthcare systems are highly complex environments involving many different stakeholders
(e.g., clinicians, patients, administrators) with highly diverse objectives (e.g., driven by medical
concerns, need of effectiveness, need of efficiency, focus on costs or on service availability).
Changes in a healthcare system are almost always driven by economical or administrative
constraints and it is highly difficult to predict their consequences on the overall patient-focused
quality of the system. We are interested in this paper in describing some of this complexity
by building a formal model capturing the basic architecture of a healthcare system (medical
providers with specific capabilities, and the connections between them) and the way patients
navigate the system to have their medical needs met. The model captures the connections
between the users and their first point of contact (local clinics), and the connections between the
providers, from the small local units to the highly-specialized units, with the aim of capturing
the path of a user through the system from general nurse advise to sophisticated treatments
by specialist teams. The user is assumed to have registered at the nearest primary provider.
Depending on the needs of the user, the primary provider suggests the preferred secondary
provider where the required service could be obtained. A user can have multiple needs and a
provider can be connected to many other providers. At each provider the patients are allocated
in a waiting queue, which advances according to the capacity of that provider. A patient will
stay longer in the queue for more difficult medical problems, with her needs being addressed
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step-by-step until solved. In this prototype model we only include three generic categories of
medical needs, differentiated through the treatment iterations that a patient must go through
depending on her type of medical need.

The model we build in this paper uses the state-based Event-B formalism [2]. Event-B is an
extension of the B-method [1], with elements of Action Systems [3], TLA [5], and UNITY [4], in-
troduced for modelling and reasoning about systems and software. All Event-B models discussed
in the paper are available at http://users.abo.fi/ipetre/health-eventb-model.zip.

2 Refinement-based construction of the Event-B model

The overall structure of our healthcare model is illustrated in Figure 1. We developed the model
in three layers, represented by the machines M0, M1, and M2. These layers are linked by the
refinement relation: M0vM1vM2. Machine Mi sees the context Ci, for all i ∈ {1,2,3}. The
three contexts are linked by the extension relation, so that C0 is extended by C1, which is then
extended by C2.

CONTEXT C0
SETS

Users
Providers
Needs
Services

CONSTANTS
Provider2Service
Need2Service
p2p
u2p
u2needs

CONTEXT C1
CONSTANTS

Common
Accute
LongTerm
NeedImpact
QueueType
ElemType
iterate
n2s

CONTEXT C2
CONSTANTS

Capacity

MACHINE M0
VARIABLES

user_needs
queue
cured_patients
patients_getting_treatment

EVENTS
Initialisation
enter_queue
solve_need

MACHINE M1
VARIABLES

first
last
next
QueueStay
queuesize
globalcost
cost_per_patient

EVENTS
Initialisation
enter_empty_queue
enter_queue
solve_need_stay_in_queue
exit_queue

MACHINE M2
VARIABLES

provider_queue
firstP
lastP
nextP
queuesizeP

EVENTS
Initialisation
enter_empty_queue
enter_queue
solve_need_stay_in_local_queue
exit_local_queue

se
es se
es

se
es

is extended by is extended by

is refined by is refined by

Figure 1: Overview of the model development.

Our basic model M0 is concerned with defining the main elements of our healthcare system
prototype: users, which may have various medical needs, and healthcare providers which provide
different types of services to the admitted patients. These are defined in context C0 as shown
in Figure 1. The constants in C0 are used to model the different facilities provided by the
healthcare unit. For example each healthcare provider has a list of specific services that they
can offer. This is modelled in M0 through constant Provider2Service. The other services such
as medical need, a primary provider for each user, relationship between user to provider and
provider to provider are also modelled in M0 with the help of constants defined in C0.

Model M0 has 2 other events in addition to initialisation: enter queue and solve need.
Event enter queue models the insertion of a user-needs-provider tuple into the healthcare sys-
tem, to be treated while the event solve queue selects a non-empty subset patients from queue,
removes them from the queue and adds them into the set of cured patients. Thus in the
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model M0 we define the sets and main variables that appear in our system, allocate patients
in the system queue based on the ability of providers to treat them and treat patients non-
deterministically. Even though very abstract, we model the fact that patients that enter the
system are either under treatment (in queue) or cured (in cured patients).

In the second model M1 we have two aims. First, we model the queue of patients as a
first-come-first-served structure, rather than as a set as was done in M0. Second, their stay in
the system depends also on the type of medical need they have. We store the waiting time per
patient, as well as the global waiting time of the entire queue.

Machine M0 is refined to machine M1 via a superposition refienement: we add seven new
variables in this machine and refine the events in M0 to assign appropriate values to these
new variables. We also have new events in M1 such as event solve need stay in queue which
models one treatment step and event exit queue which selects an arbitrary set of patients in
the top of the queue that are cured, and takes them out of the queue, by updating accordingly
all the relevant variables.

We introduce in the model M2 the capacity of each provider. Patients are considered in
the providers’ own queues and they are treated only when these providers have resources (e.g.,
available doctors). This is the object of our third refinement.

Event-B turned out very useful in ensuring the consistency of the models. Model M0 had
13 proof obligations (of which 12 automatically discharged), while M1 had 53 (of which 35 were
automatically discharged), while M2 had 55 (of which 37 were automatically discharged).

3 Discussion

We constructed in this paper a prototype, EventB-based formal model of a healthcare system
consisting of health service providers of various types, and patients with various types of needs.
The main motivation in building such a model was to be able to reason formally about global
measures of a healthcare system’s quality and robustness, such as average waiting times under
“normal” and under “stress” system loads, average duration from disease onset to curation for
disease of different intensities. We also aimed to be able to measure the effect of various types
of service cuts or service reorganisations on these measures of quality/robustness. The work
so far covered the construction of a prototype model of a simplified healthcare system. The
work is now in progress on using this model towards measures of quality and robustness in this
model.
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1 The Global Consistency Challenge

Contemporary software development does not simply comprise writing a single program but it
usually involves a multitude of interrelated and heterogeneous artifacts: source code files, re-
quirements specifications, database schema, external interface specifications, program libraries,
etc. Consistency Management among these artifacts is arguably the most crucial activity of
the software development process. Furthermore, it is also crucial for the operation of software
systems, i.e. multiple systems have to work together and exchange information consistently.
Tools and frameworks for local consistency checking, e.g. syntax checkers, database integrity
constraints, form validators, etc., are widely established and used. However, consistency is not
limited to a single artifact but has to be maintained globally, e.g., use cases from a require-
ments specification should correspond to implemented functionality of the program, entities in
a class diagram should correspond to database tables, etc. The whole process gets even more
challenging as the artifacts are usually distributed over organizational and technical domains.

Global consistency maintenance is hence a key challenge that has to be addressed in Software
Engineering to fulfil expectations in major trends like eHealth, Industry 4.0 automation and
cyber-physical systems. Furthermore, it is one of the key factors for the success of Model Driven
Software Engineering (MDSE) [8].

2 Conceptual Framework

MM

... M ′
2 ...

... M ′
1 M2 ...

I ′1 M1 I ′2

I1

τ

ρ

τ

δ δ

τ

ρ

τ
δ δ

ρ

τ

τ
ρ

τ
ρ

δ

Figure 1: Global Consistency Maintenance
Framework

First, one needs a vision of a conceptual framework
that captures all involved artifacts of the software
development process in which consistency mainte-
nance is performed. In the spirit of MDSE, these
artifacts will be called models, i.e abstract repre-
sentations of software artifacts. A model can be
an executable piece of program code, a colloquial
system requirements description, a class diagram
and many more.

Next, there are relationships between models.
One important relationship, which has extensively
been studied in the MDSE community [2] is con-
formance (denoted by τ in Fig. 1): A model (called
metamodel) gives rise to a model language; i.e., a class of models (called instances) that ad-
here to rules imposed by the metamodel. A metamodel is associated with an environment or
system: e.g., a programming language specification defines the class of all programs written
in this language. The other important relationship we call for correspondence (denoted by ρ
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in Fig. 1). It occurs when multiple models share the same concepts; i.e., describing some real
world phenomena from different views. For example, a real world entity may be represented
in a class diagram as well as a table in database scheme. Finally, all models are subject to
change (denoted by δ in Fig. 1), which may happen due to new requirements, changed laws and
regulations, etc. This represents the third relationship type between models in this framework.

Together these concepts form the notion of a Global Consistency Maintenance framework. In
figure 1, an example of such a framework containing models on three ”levels”, e.g. metamodels
(MM), models (M1,M2, ...) and instances (I1, I2, ...) having binary correspondence relations
among them is sketched. However, a general framework is not limited to three metalevels and
binary correspondence relations; i.e., it might be multi-level and/or include multi-ary relations.
Moreover, the main challenge is to maintain consistency w.r.t. changes; i.e., (a) checking
conformance and correspondence relations, and (b) restoring them if necessary in the demeanor
of changes. In this work we propose solutions to address this challenge. However, the support
of the full-fledged setting (2c) is still subject to future work.

3 Consistency Maintenance

Consistency Maintenance can be divided into two subtasks: (i) Consistency checking, which can
in turn be divided into conformance checking (do models adhere to syntactical and semantical
rules of the metamodel?) and correspondence checking (are models free of contradictions?), and
(ii) Consistency restoration, which can in turn be divided into various scenarios as depicted in
fig. 2. The scenario Update Propagation (2a) for the case of binary ρ has been well treated by
the cross-disciplinary research field bidirectional transformations (bx) [1, 7]. The general multi-
ary situation only recently came into focus and is still an open field [8]. The scenario Instance
Adaptation (2b) has been treated in databases under the topic schema/instance adaptation [4]
and in the MDSE community as metamodel/model co-evolution [5]. So far, to our knowledge,
there are no approaches that deal with conformance and correspondence at the same time (2c)
in a setting that comprises conformance relations between multiple levels and general multi-ary
correspondence relations.

This work is associated with the authors work in [9], which represents a first step towards
this general framework: It is based on the Diagram Predicate Framework (DPF) [6], a formalism
for MDSE. DPF is capable of representing models (by means of graphs) on arbitrary levels and
formalizes the conformance relation by typing and satisfaction of diagrammatic constraints. In
[9] a notion of correspondence is added, which is expressed by multi-ary graph spans, i.e. an
auxiliary model R is introduced that connects related models by graph morphisms. Consistency
of the correspondence relation is expressed by diagrammatic constraints imposed on a merged
view over this relation. The resulting framework is capable of consistency checking but is
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δ′?

ρ′?
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Figure 2: Multi Modeling Situations
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Figure 3: Consistency Restoration Procedure

lacking a consistency restoration mechanism. Thus, the next stage of our work is to establish
such a mechanism. The idea is to exploit Completion Rules [3], i.e. equipping constraints with
transformation rules that repair inconsistent instances. Completion Rules can be classified as
an Instance Adaptation approach.

Figure 3 depicts the proposed consistency restoration procedure: Let M1, , . . . ,Mn be a col-
lection of models that are in a correspondence relation, expressed by a multi-span R. To check
consistency by means of the method introduced in [9], one first has to construct the merged
view M+ over the correspondence by a colimit construction. The resulting comprehensive
merged view M+ is then checked against a comprehensive metamodel MM+ that comprises
inter-model constraints which tell whether the correspondence can be considered as consistent.
Such a comprehensive metamodel MM+ could in turn be constructed by calculating the merge
of respective metamodels MM1, . . . ,MMn. If M+ does not conform to MM+, completion rules
are applied to yield an updated M ′+. Altogether a local change (e.g. on model M1), which
caused global inconsistency, is repaired in the virtual merge M+ and the effect is then propa-
gated back into all other local models M2, . . . ,Mn (localization). Our current research focuses
on this restoration procedure, under which criteria it is applicable, its formal foundations given
by categorical universal constructions, restrictions on the type of supported models (e.g. data
models, behavioral specifications, etc.), and its relationship to existing consistency restoration
frameworks.
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Introduction
With the adoption of information technology in almost all areas of our life, the collection and
processing of personal data have intensified. This development depends on the trustworthy func-
tioning of information and communication technologies (ICT) to support individual’s personal
rights and democratic values of society [1]. To address the challenges of data protection and
privacy of individuals within European Union (EU) and European Economic Area (EEU), the
European Union Parliament approved the General Data Protection Regulation (GDPR) [2].
The major focus of the GDPR is on the consent and purpose of collection, processing, and
sharing of the personal data. GDPR also restricts who (role) can access this personal data,
allowing access to only the authorized “principals” (i.e., the controllers and the processors).
Moreover, the GDPR regulations (Article 25 [2]) call for means to establish privacy by design,
i.e., identifying the privacy requirements early at the design stage and embedding them into
the subsequent implementation that handles the personal data.

In this paper, we suggest a methodology for privacy by design, which integrates necessary
safeguards into the information processing by using language-based mechanisms. Particularly,
we enforce memory safety using a type-system based approach. GDPR compliance is defined
in natural language, and is therefore difficult to check in practice for a given program. Cer-
tain aspects of GDPR can be expressed by means of static concepts, while others can only be
expressed at run-time, such as user-defined changes in privacy restrictions. Our ambition here
is to capture a meaningful static GDPR notion, by formulating policies that can be checked
statically. We consider static concepts such as method names, sets of methods names, inter-
faces, co-interfaces (as explained below) and access rights given by read/write/increment. In
particular, we focus on the concepts of role and purpose, as they express key aspects of GDPR
specific privacy policies. We do not formalize the concept of consent, since changes in consent
are dynamic by nature. However, consent can implicitly be seen as the presence of a policy.

To formalize our approach we use a high-level kernel language for object-oriented, dis-
tributed systems, inspired by the Creol [3] concurrency model, because it has a modular se-
mantics and allows us to focus on the information flow at high level of abstraction. The
Creol language has earlier been extended with basic secrecy level (high and low) [4], but not
privacy notions. We give policies for private data as well as objects encapsulating private
information. A policy will put restrictions on what kind of principals may access the pri-
vate information, also on why (for what purpose) the information can be accessed, and what
kind of operations are allowed on this data i.e., restricting who, why and what. The who,
why and what restrictions correspond to role, purpose and access. For a data value with
private information, the associated policy is given by a set of triples (role; purpose; access)
where role is given by an interface, purpose is given by a set of functions/methods (or al-
ternatively any, denoting any purpose), and access restriction is given as a super-policy (de-
scribed later). For an object encapsulating private information, the associated policy is given
by a set of interfaces, using an augmented syntax where each interface has a co-interface,
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describing the who-part and where the set of associated methods define the how-part. The
co-interface gives restrictions on the callee object, only objects supporting the co-interface may
call methods in the interface. Thus for a call o.m(. . .), the current object (this) must sup-
port the co-interface of a (super)interface of o that has m among its methods. For a function
application f(. . .) resulting in type T with policy P , the resulting value must comply with P .

::{write}

::{read&incr}

::{read} ::{incr}

Figure 1: Access hierarchy

We allow read as a purpose, meaning
all methods with read access. Similarly,
purpose increment denotes all methods
that do increment operations on the
data, and purpose read&incr denotes all
methods with read and increment ac-
cess, see Figure [1]. The default pol-
icy triple (subject; any; read) is implic-
itly included in every policy, where sub-
ject is the identity of the person who the
private information is about. This gives
the subject read access to information
about himself. In order to make use of subject policy triples at static time, the static checking
will try to detect if subject is the same as this or caller, considering also explicit testing. To
enforce these policies, we extend Creol’s type system. This way the policy accompanies the
data, and support in complying with the obligations of privacy by design [Article 25, 1(a)] [2]
and privacy by default [Article 25, 1(b)] [2].

Any

I1: AddPresc{
makePresc();} I2: GetPresc{

getPresc();}

I3: GetMyPresc{
getMyPresc();}

I4: PatientData{
makePresc();
getPresc();
getMyPresc();}

Figure 2: Healthcare Example

The static checking is done by a
static typing system based on the kind of
privacy policies outlined here. The rules
involve the legal formation of expres-
sions and function application as well
as the imperative object-level where re-
quirements to remote call are central. As
mentioned interfaces use co-interfaces to
specify roles, given by a with clause,
and access is restricted by clauses such
as :: read and :: incr, relative to a pur-
pose.

Similarly, the policy for data types
is specified by sets of policy triples of
the form (role; purpose; access). The
static analysis includes static informa-
tion about the subject of any private
information. This approach is useful
in avoiding inadvertent implementation
mistakes and facilitate showing compli-
ance with default privacy policies. We
include a small example to illustrate the
methodology, and its pictorial represen-
tation is given in Figure [2].

2
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A Health Care Example
Here Doctor, Nurse, Patient, PatientData are interfaces. A PatientData object contains data for
a number of patients, and can be accessed by doctors and nurses, based on different policies. Pa-
tients interact with Doctors and Nurses and may also access their own patient data. Patient data
of type Presc is labeled with polices:{(doctor; treatment; read&incr), (nurse; treatment; read)},
and implicitly (subject; any; read). This policy allows (i) a patient to access his own data, (ii)
gives read and increment access to the doctor for treatment purpose, and (iii) gives read-only
access to the nurse for treatment purpose. Treatment is declared by the keyword purpose and
interfaces can be annotated by such purposes, implying that all methods of the interface have
that purpose. This allows an open ended specification of purposes, which is practically use-
ful, allowing the purpose of policies made early depend on methods and interfaces declared later.

purpose treatment
interface AddPresc with Doctor{Void makePresc(Patient p, String presc)} in treatment
interface GetPresc with Nurse {String getPresc(Patient p)} in treatment
interface GetMyPresc with Patient {String getMyPresc()}
interface PatientData extends AddPresc, GetPresc, GetMyPresc {}

class PATIENTDATA() implements PatientData {
type Presc == Map[Patient, List[String]]

::{(doctor; treatment; read&incr), (nurse; treatment; read)}
// here patient is the subject of the prescription data

Presc presc := emptymap;
with Doctor Void makePresc(Patient p, String newpresc) {presc[p] :+ newpresc;}
with Nurse String getPresc(Patient p) {return last(presc[p]);}
with Patient String getMyPresc() {return last(presc[caller]);} ... }

The co-interface of a method is given after the with keyword. It defines the minimal interface
of a caller, which may be referred to by the caller parameter inside the method body. This
allows us to talk about privileges of a caller. The use of co-interface ensures callee objects
only with correct roles can invoke methods that access sensitive data. For example, if a nurse
invokes makePresc() or getMyPresc(), the call would not pass the static test. Further details
are omitted, including the privacy control of data types, such as maps (Map[key, data]). We
use + for sequence append, and the statement x :+ v abbreviates x := x+v for x of a type with
a + operation. Note that the ::incr and ::read restrictions are statically checked by inspecting
changes on fields in the corresponding method bodies, allowing :+ in the former case.

References
[1] G. Danezis, J. Domingo-Ferrer, M. Hansen, J.-H. Hoepman, D. L. Metayer, R. Tirtea, and

S. Schiffner, “Privacy and data protection by design-from policy to engineering,” arXiv preprint
arXiv:1501.03726, 2015.

[2] “European parliament and the council of the european union.” Accessed: 2018-09-01.
[3] E. B. Johnsen, O. Owe, and I. C. Yu, “Creol: A type-safe object-oriented model for distributed

concurrent systems,” Theoretical Computer Science, vol. 365, no. 1-2, pp. 23–66, 2006.
[4] T. Ramezanifarkhani, O. Owe, and S. Tokas, “A secrecy-preserving language for distributed and

object-oriented systems,” J. Log. Algebr. Meth. Program., vol. 99, pp. 1–25, 2018.

3

72



Graph Algebras and Software Engineering

Uwe Wolter, Department of Informatics, University of Bergen, Norway

The latest trend in software engineering regards models as first-class entities of the software devel-
opment process. This trend has led to a branch of software engineering, often called Model-Driven
Engineering (MDE), which promotes modelling as the main activity of software development and pursues
the shift of paradigm from code-centric to model-centric.

The different kinds of models, exploited in Software Engineering and, especially, in MDE, appear often
as graph-based structures. Generalized Sketches [Mak97, DK97] are a universal and flexible mathematical
specification formalism for those graph-based structures. Starting from generalized sketches, we developed
in Bergen, during the last decade, the so-called Diagram Predicate Framework (DPF) to describe different
kinds of graph-based structures and their semantics in a uniform way, thus providing a formal ground to
relate, extend and integrate different diagrammatic modelling techniques and to define and implement
meta-modelling, version control and model transformations, for example [DW08, RRLW10, RRLW12,
RdLG+14].

Operations on graph-based structures are omnipresent in Software Engineering and, especially, in
MDE. However, a proper and adequate formalization of those operations has been missing until lately.
As a first essential step towards such a formalization, we introduced in [WDK18] the concept of graph
algebra that generalizes the traditional concept of algebra.

Graph algebras are not ”algebras of graphs”, as they have been described and studied in [CG99,
BCG+10], for example. ”Algebras of graphs” are special traditional algebras where the carrier is a set of
(finite) graphs. In contrast, the carrier of a graph algebra is one single graph1 that will be often infinite
in applications. Graph operations, i.e., operations in a graph algebra, describe how certain finite parts
of the carrier graph can be ”computed” based on other finite parts of the carrier graph. In traditional
algebra the arity of an operation is described by a finite set of ”input positions”, while the input and
output arity, respectively, of a graph operation is described by a finite graph.

To illustrate the concept of graph algebra and its potential role in Software Engineering, we consider
a graph D representing a class diagram with three classes Project, Department, Employee and three
references dep, d empl, p empl:

Project
dep //

p empl

))
Department

d empl // Employee

The reference dep provides for each project the departments controlling it. d empl gives us for each
department all the employees working for this department while p empl informs us about all the employees
involved in a certain project.

To describe the semantics of ’class diagrams with references’, we can utilize a graph algebraM where

the nodes in the corresponding infinite carrier graph M are finite sets A (of objects) and the edges A
f−→ B

in M represent multimaps (set-valued functions) f : A→ ℘(B) between finite sets. The semantics of the
class diagram D, at a certain point in time, will be then a certain interpretation of D in M, i.e., a graph
homomorphism2 state : D→ M. This ”state” may change over time.

One thing we can do in class diagrams is to navigate through paths of references. This kind of navi-
gation is semantically based on the composition of multimaps3. Therefore, our graph algebra M should

1A graph G = (GV , GE , scG, tgG) consists of a set GV of nodes, a set GE of edges, and two maps scG, tgG : GE → GV .
2A homomorphism ϕ = (ϕV , ϕE) between two graphs G = (GV , GE , scG, tgG) and H = (HV , HE , scH, tgH) consists of

two maps ϕV : GV → HV and ϕE : GE → HE such that scG;ϕV = ϕE ; scH and tgG;ϕV = ϕE ; tgH.
3The composition f ; g : A → ℘(C) of two multimaps f : A → ℘(B) and g : B → ℘(C) is defined by f ; g(a) :=

⋃
{g(b) |

b ∈ f(a)} for all a ∈ A.

73



comprise, besides other operations, a composition operation. An input of the composition operation

should be a sequence A
f→ B

g→ C of two connected edges in M while the output should be an edge from
A to C.

This means that we declare in the signature for our graph algebra M an operation symbol comp

together with an input arity graph I and an output arity graph O

iv1
ie1 // iv2

ie2 // iv3
� � ιcomp // iv1

ie1
//

oe

((
iv2

ie2
// iv3

where we include, for simplicity reasons, the whole graph I into the graph O. The corresponding graph
operation compM in M computes than for each ”actual input” (binding), i.e., for each graph homomor-
phism b : I→ M, a unique ”actual output”, i.e., a graph homomorphism compM(b) : O→ M. Operations
shouldn’t have side effects thus we require that the following triangle of graph homomorphisms commutes

I �
� ιcomp //

b ��
=

O

compM(b)
��

M

The commutativity requirement entails that the composition operation needs to compute only the ”edge
value” compM(b)(oe) and that this ”edge value” should be an edge from
compM(b)(iv1) = b(iv1) to compM(b)(iv3) = b(iv3). We can define now the graph operation compM

by means of the composition of multimaps:

compM(b)(oe) := b(ie1); b(ie2) for all b : I→ M.

However, what about to represent composition syntactically on the level of class diagrams. In our
example, we could introduce a new edge from Project to Employee to represent the composition of dep
and d empl, for example.

Formally this can be described by (1) considering the declaration of the arity of comp, i.e., the inclusion
graph homomorphism ιcomp : I ↪→ O, as a graph transformation rule, (2) choosing a match for the left-hand
side I of the rule in the present graph D, i.e., a graph homomorphism m : I→ D, and (3) constructing an

extension D′ of D by constructing the pushout of the span D
m← I

ιcomp−→ O of graph homomorphisms

I �
� ιcomp //

m

��
PO

O

m∗

��
D �
�

ι∗comp

// D′

In our example we chose the (only) match m : I → D uniquely represented by the assignment (ie1 7→
dep, ie2 7→ d empl). The corresponding rule application introduces then a new fresh edge from Project
to Employee representing the composition of dep and d empl. The derived reference new informs us
about all the employees in any of the departments controlling a certain project.

Project
dep //

p empl

))

new

33Department
d empl // Employee

This derived reference can be used now, for example, to formalize the constraint ”An employee involved
in a project must work in one of the controlling departments” (see [RRLW12]).

It may be not obvious, but the pushout construction is just a straightforward generalization of the
construction of terms in the traditional algebraic setting: Given an n-ary operation symbol ω and a

2
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binding for the corresponding n ”input positions”, i.e., an n-tuple (t1, . . . , tn) of terms, we generate a
new term ω〈t1, . . . , tn〉. The crucial observation is that the syntactic expression ω〈t1, . . . , tn〉 serves two
purposes. First, it encodes the information what ”rule” and what ”match” has been used to generate the
new data item. Second, by doing so, it creates a ”fresh name” identifying the new data item uniquely.

In the setting of graph algebras an operation application will, in general not compute a single data
item but one data item for each ”output item” in O \ I. So, in this new setting we have to use syntactic
expressions encoding as well the ”rule” and the ”match” as the ”output item” in O \ I to identify gen-
erated new data items uniquely (compare [WDK18]). In our example we could use an expression like
〈oe, comp, 〈ie1 7→ dep, ie2 7→ d empl〉〉 or its shorthand 〈oe, comp, 〈dep, d empl〉〉, for example, to denote
the fresh edge new uniquely.

In full analogy to terms, any interpretation state : D → M of the original class diagram D extends
uniquely to an interpretation state : D′ → M of the extended class diagram where

state(new) = state(〈oe, comp, 〈dep, d empl〉〉) = compM(state(dep), state(d empl))(oe).

The derived reference new = 〈oe, comp, 〈dep, d empl〉〉 enables as now to check if the constraint ”An
employee involved in a project must work in one of the controlling departments” is satisfied by the
present state state : D→ M of the original (!) class diagram D:

state(p empl)(P ) ⊆ state(new)(P ) for all P ∈ state(Project).
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Abstract

Conflict-free replicated data types (CRDTs) are widely used in eventually consistent
systems to reduce concurrency control. However, it is not always suitable for applications
which require stronger consistency. Thus, programmers need to constrain the consistency
levels on their own, increasing the possibilities of programming errors. In this paper, we
introduce a method which enhances the consistency level of CRDTs by adding constraint
operations. Our method provides observable atomic consistency as an enhancement for
otherwise eventually-consistent CRDTs. We also provide a high-level programming inter-
face to improve the efficiency and accuracy of distributed programming.

1 Introduction

Conflict-free replicated data types (CRDTs) [4, 3] are widely used in industrial distributed
systems. The property of the data types is mathematically proven to be able to merge or
resolve concurrent updates. Thus, CRDTs are ideal for achieving high availability for replicated
shared data and also guarantee strong eventual consistency. However, the primary challenge
of programming with CRDTs is that they only ensure eventual consistency and are restricted
in the defined operations. For example, a read operation may return outdated data before the
replicas finally converge, which might cause program errors and thus needs to be taken care of
by the application developers themselves.

In this paper, we address this challenge by extending CvRDTs with additional constraint
operations, called totally-ordered operations. The idea is to provide a method to force data to
merge when a specific operation is invoked. If all replicas remain consistent up to this point, we
say the system guarantees observable atomic consistency. We first give a motivational example
in Section 2, then introduce observable atomic consistency in Section 3, and explain the user
interface in Section 4; Section 5 summarizes related work, and Section 6 concludes.

2 Motivation

One of the typical examples of CRDTs is the grow-only counter (also called GCounter). It is
widely used in real-time analytics and distributed gaming. However, it only supports increment
and mergable operations which limits the application scenarios; e.g., it lacks a “reset” operation.
“Reset” is necessary for setting the counter back to its initial default state. In current popular
implementations, such as Riak DT, this is not supported, though.

∗This extended abstract is based on a paper [5] accepted for publication at the 8th ACM SIGPLAN Inter-
national Workshop on Programming Based on Actors, Agents, and Decentralized Control (AGERE 2018).
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Thus, we need an implementation of a resettable counter to set the counter values in all the
replicas to the initial state. The “reset” operation needs to be defined as a particular operation
for CRDTs, so that the state can be forced to be reset.

In particular, when the system invokes the “reset” operation, it needs to make sure that all
the replicas in the system reach the same state before any other operations take effect. Thus,
it is necessary to define a new consistency model for the system to handle such an additional
operation. We introduce such a consistency model in the following.

3 Observable Atomic Consistency

Now we introduce the definition of observable atomic consistency which is used to restrict the
consistency levels for additional operations. The content of this section is mainly taken from
our forthcoming paper [5].

Definition 3.1 (CvT order). Given a set of operations U = C ∪ T where C ∩ T = ∅, a CvT
order is a partial order O = (U,≺) with the following restrictions:

• ∀u, v ∈ T such that u 6= v. u ≺ v ∨ v ≺ u

• ∀p ∈ C, u ∈ T. p ≺ u ∨ u ≺ p

• ∀l,m, n ∈ U such that l ≺ m,m ≺ n. l ≺ n

Definition 3.2 (Cv-set). Given a set of operations U = C ∪ T where C ∩ T = ∅, a Cv-set Ci

is a set of C operations with the restriction that:

• ∀p, q ∈ Ci ⇒ p ⊀ q ∧ q ⊀ p

• ∀p ∈ C \ Ci. ∃q ∈ Ci such that p ≺ q ∨ q ≺ p

In the definitions above, the set of operations C stands for the set of original CRDT opera-
tions and the set T stands for the set of additional totally-ordered operations.

Definition 3.3 (Local atomic consistency (LAC)). A replicated system provides local atomic
consistency (LAC) if each site i applies all operations according to a linear extension of the
CvT order.

Definition 3.4 (Observable atomic consistency). A replicated system provides observable
atomic consistency (OAC) if it provides local atomic consistency and for all p ∈ C, u ∈ T . (a)
p ≺PO u in program order (of some client) implies that p ≺ u in the CvT order, and (b)
u ≺PO p in program order (of some client) implies that u ≺ p in the CvT order.

A complete explanation of the concepts above and a proof of state convergence can be found
in our companion technical report [6].

4 Implementation and User Interface

Observable atomic consistency provides a stronger consistency guarantee for additional totally-
ordered operations than eventual consistency for CRDTs while achieving higher availability
for CRDT operations than atomic consistency. Due to the space limitations, we include the
consistency protocol and the implementation based on the Akka [2] framework in our paper [5].

Here we show a small example of the user interface for using the additional constraint
operations.
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1 class CounterClient extends Protocol[GCounter] {

2 val CounterClientBehavior: Receive = {

3 case Incr => self forward CvOp("incr")

4 case Reset => self forward TOp("Reset")

5 ...

6 }

7 }

For the user interface, the additional constraint totally-ordered operations such as “Reset”
are sent via the TOp() message handler and the system guarantees OAC as defined in Section 3,
which hides the implementation details from the application developer.

5 Related Work

A closely related consistency model which also enhances eventual consistency is RedBlue consis-
tency [1]. Red and blue operations are two kinds of operations in their system. Red operations
are totally ordered while the blue ones can commute globally. In this sense, RedBlue consistency
maintains a local view of the system. In OAC, the CvRDT updates can only commute inside a
specific scope, namely, within one Cv-set. This restricts the flexibility of CvRDT updates, but
at the same time provides a globally consistent view of the state.

6 Conclusion and Future Work

We devised a novel “observable atomic consistency (OAC)” model for enhancing the consis-
tency level of additional operations for CRDTs. OAC provides a consistent view of the system
and guarantees correct system behavior as long as developers correctly classify their operations.
In our companion technical report, we also show in the experimental evaluation that the sys-
tem providing OAC significantly reduces coordination compared with atomic consistency while
maintaining the availability of convergent operations. In future work, we would like to provide
operational semantics of the protocol, enabling proofs for distributed programs using OAC.
Moreover, we would like to investigate type systems enabling safe transitions between different
consistency levels.
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