
Runtime Verification for
Interconnected Medical Devices∗

Martin Leucker, Malte Schmitz, and Danilo à Tellinghusen

Institute for Software Engineering and Programming Languages,
Universität zu Lübeck,

{leucker,schmitz,tellinghusen}@isp.uni-luebeck.de

Abstract. In this tool paper we present a software development kit
(SDK) for the Open Surgical Communication Protocol (OSCP) that sup-
ports the development of interconnected medical devices according to the
recent IEEE 11073 standards for interoperable medical device commu-
nication. Building on service-oriented architecture (SOA), dynamically
interconnected medical devices publish their connectivity interface, via
which these systems provide data and can be controlled. To achieve the
safety requirements necessary for medical devices, our tool, the OSCP
Device Modeler, allows the specification of temporal assertions for the
respective data streams of the systems and generates automatically cor-
responding monitors that may be used during testing, but also during
the application in field to ensure adherence to the interface specifica-
tion. A further tool, the OSCP Swiss Army Knife, allows subscribing to
the services provided via the interfaces of the system under development
and thereby supports its debugging. The whole OSCP SDK makes heavy
use of runtime verification techniques and shows their advantages in this
application area.

1 Introduction

To enhance the overall functionality of medical devices, their interconnection is a
current trend. Within the OR.NET project1, an open protocol for the intercon-
nection of medical devices has been developed and standardized and is expected
to become a typical solution for the communication among medical devices [3].

As in many cases whenever humans’ life may depend on the correct func-
tionality of a device, there are strict rules for its development and most medical
devices have to be certified before their operation in the field is allowed.2 In
this paper we present a software development kit (SDK) comprising two tools
simplifying the development of safe and reliable medical devices. The first tool,
called MD Modeler, helps in defining a clear and precise (network) interface of
∗ This work is supported in part by the European Cooperation in Science and Tech-
nology (COST Action ARVI), the BMBF project CONIRAS under number 01IS13029,
and the BMBF project OR.NET under number 16KT1231. 1 www.ornet.org
2 Strictly speaking, a medical device with high criticality level has to be declared
as conformant to the underlying medical device by its manufacturer with consultation
of a so-called notified body checking that the conformance declaration follows the rules.
For simplicity, we use the term certification here anyway.

http://www.ornet.org


the system under development as well as giving evidence that it adheres to given
correctness properties. The second tool, called OSCP Swiss Army Knife, helps
in debugging the medical devices via its network interface.

The communication solution developed within OR.NET is called the Open
Surgical Communication Protocol (OSCP), comes in three different layers and
basically builds on top of a service-oriented architecture (SOA) with an imple-
mentation in terms of web services. The main idea is that devices within the
network of the medical units publish their services and clients may connect via
well-defined interfaces. Via these interfaces the corresponding devices can also
be controlled. As for any interface – let it be human or let it be device-driven
– a risk analysis has to be performed when developing medical devices. The
risk analysis together with corresponding risk control measures ensures that the
corresponding device is most likely only used in the intended fashion [6].

To ensure such a controlled usage of the medical device, we have proposed
1. that the interface for medical devices is formalized in a precise manner to-

gether with (temporal) constraints putting additional restrictions on its us-
age and

2. a monitoring layer ensuring the adherence to the given constraints plus fall-
back mechanisms whenever a mismatch between the actual usage at runtime
and the constraints is detected [9,13].

The first tool of our SDK, the OSCP Device Modeler, helps in realizing this
concept. Its web-based interface allows the specification of both the interface
definition as well as the additional constraints. Moreover, a Java skeleton for
the interface plus corresponding monitoring code can be synthesized automat-
ically simplifying both the development of connective medical devices as well
as the monitoring layer considerably. As the monitoring layer is synthesized au-
tomatically from high-level specifications it is expected that a certification of
the resulting system is simplified a lot, since we realized a clear separation of
concerns: the concern of checking the right properties as well as having the right
code for checking the properties. To the best of our knowledge no such tool
has existed before. Moreover we believe that our tool is the first targeting the
simplification of certification by using runtime verification techniques.

The second tool in our SDK, the OSCP Swiss Army Knife, is a network-
based debugging tool. It allows to join an existing connected set of medical
devices and to show their interfaces as well as the current values of the systems
participating in the network. Using the published information about the methods
for changing the system’s parameters it also allows to steer the corresponding
devices. The distinguishing feature of our debugging tool, however, is its ability
to check for temporal correctness properties. Interconnected devices, such as
medical devices, often follow a sequence of protocol steps for the exchange of
data. Likewise a debugging tool should support checking for the correctness of
such execution sequences. The OSCP Swiss Army Knife allows the formulation
of such correctness properties in temporal logic at runtime and to synthesize
monitors that are deployed in the network consisting of the connected medical
devices and will then check corresponding properties.



Such monitors may be used to find bugs in the system but may also be used
to identify points of interests in the execution sequence of the systems. We are
not aware of any similar tool that allows the specification of temporal patterns
to identify these points of interest at runtime. While on the one hand it is limited
to examining the system via its network interface, on the other hand our method
does – in contrast to many existing runtime verification approaches – not require
the re-compilation of the system under test and does not interfere with its main
functionality or its timing behavior.

The paper is organized as follows:
– section 2 describes the communication protocol and the basics of our runtime

verification approach and
– section 3 and section 4 introduce the two main tools of our SDK.

2 Preliminaries

OSCP consists of the data transmission technology Medical Device Profile for
Web Services (MDPWS), standardized as IEEE 11073-20702 (see [7]), and the
domain information and service model, standardized as IEEE 11073-10207 (see
[8]). MDPWS is based on a SOA and allows devices to find each other in a local
network using WS-Discovery.

The domain information provides a generic framework which is used to de-
scribe configuration parameters and measured values of a medical device in terms
of physical quantities and units. A medical device publishes this description along
with the current values in the network. Clients can subscribe to changes of these
values and are notified either periodically after a specific amount of time or
episodically for every change. Furthermore the service model is used to describe
how clients can control a medical device through its public interface.

As already stated in the introduction, we want to assert the correct temporal
behavior of the medical devices regarding their network interfaces. The devices’
state changes over time can be seen as a sequence of states. We call such a se-
quence the run of a medical device. We want to express correctness properties
regarding the run of a medical device and monitor at runtime whether the inter-
face of a medical device fulfills this correctness property. We call a finite prefix
of the run an execution of the medical device, which grows with every new state.
Doing runtime monitoring means we want to create a monitor which tells us at
every step whether the current execution satisfies the property [10,12].

Our tools support several temporal logics for the specification of the correct-
ness properties:

– ω-regular expressions,
– Linear Temporal Logic (LTL, [14]),
– Smart Assertion Logic for Temporal Logic (SALT, [1]), which adds syntactic

sugar to LTL and
– regular LTL (RLTL, [11,15]), which offers the expressiveness of regular ex-

pressions while being as applicable to the domain of temporal specifications
as LTL.



In order to evaluate the properties on executions, we adopt the LTL3 semantics
[2] to all the logics mentioned before. Hence our monitors report fulfillment or
violation of the correctness properties as soon as possible while the execution
continuously grows.

Each of the available logics uses atomic propositions as basic building blocks.
Our tools allow the specification of these propositions as comparison of variables
published by the medical device either with constants or other variables of the
same or another medical device. New states of the execution are created based
on variables changing their values. Hence along with a specification formula we
need to define the list of its change-inducing variables.

3 OSCP Device Modeler

The OSCP device description provides a generic formalism to describe the (net-
work) interface of a medical device. We enrich this description with (temporal)
constraints putting additional restrictions on its usage. At runtime the device
needs to check the adherence to these constraints.

The Device Modeler supports the process of developing network interfaces
for medical devices: It provides a graphical user interface to design a MD de-
scription and it generates source code which publishes the interface description
and the current values to the network. The generated code is also capable of
handling incoming requests changing the devices parameters and controlling the
device and contains synthesized monitors continuously enforcing the (temporal)
constraints by rejecting requests which would lead to invalid states. The gener-
ated code can either be used as network interface for a real medical device or
without further need of writing any code as a stand-alone simulator.

The Device Modeler is a web application written in Ruby on Rails. It is
equipped with a modern HTML5 front end guiding the user through the defini-
tion of the device description (see Figure 1, left). Users can create new devices
from scratch or import existing XML serializations of device descriptions. The
user input is stored in an internal database, which allows users to store and
maintain their device modelings. The back end uses Rails’ default template en-
gine ERB to generate Java code using the OSCP library OpenSDC3, which is
the reference implementation for the OSCP standard [5,4].

Along with the device description, the user can specify (temporal) correctness
properties for the device in the front end of the Device Modeler. These correct-
ness properties are synthesized in monitors: We use our library LamaConv4 to
translate the specified formula into a deterministic Moore machine using an
adopted LTL3 monitor synthesis [2]. The current valuation for all propositions
used in the formula serves as input for the monitor.

In case of any change of the devices values, the monitor compares the updated
values with the change-inducing variables of its formula. If the change induces
a new state as described in the previous section, the monitor computes the
3 sf.net/projects/opensdc/ 4 www.isp.uni-luebeck.de/lamaconv

http://sf.net/projects/opensdc/
http://www.isp.uni-luebeck.de/lamaconv


Fig. 1. Screenshot of modeling a pulse oximeter in the Device Modeler’s GUI (left)
and inspecting the running pulse oximeter with the Swiss Army Knife (right).

valuations for all its propositions using the current properties of the model.
These valuations are then used as input for the Moore machine. The output
of the monitor can naturally be used for debugging and logging purposes, but
furthermore the user of the Device Modeler can also demand that the value
changes of the defined metrics must fulfill the specified correctness properties.
Any change either through the local UI or the network layer that would break
the correctness property will be rejected in this case.

4 OSCP Swiss Army Knife

While the Device Modeler allows us to automatically synthesize monitors when
generating the code for the network interface of the device, it is also desirable
for debugging purposes to synthesize monitors checking the correct behavior of
the interconnected devices at runtime without restarting the system. The Swiss
Army Knife is a generic client which can connect to all available medical devices
in an OSCP network. It allows the user to inspect the devices’ descriptions and
current states as well as watch the state changes over time, either manually or
with synthesized monitors checking the adherence of the system to user defined
correctness properties.

In order to do this, the Swiss Army Knife subscribes to all devices available
in the local network using the OSCP library OSCLib5. It is written in Scala
and uses the C++ library OSCLib through Java SWIG6 wrappers. The GUI is
written in ScalaFX7 and consists of a tree table view displaying the hierarchical
device descriptions of all available devices (see Figure 1, right). The values of
the devices are automatically updated in the GUI by callbacks registered with
the OSCLib. Attributes of interest for the monitoring are stored in JavaFX
properties which are updated along with the GUI in the OSCLib callbacks. This
5 www.surgitaix.com/cms/osclib 6 www.swig.org 7 www.scalafx.org

http://www.surgitaix.com/cms/osclib
http://www.swig.org
http://www.scalafx.org


way multiple monitors can easily observe the same property and receive its values
in case of any change.

A monitor observes the JavaFX properties of its change-inducing variables in
order to generate a new execution state every time any of them change. Then the
monitors behave the same as the one generated by the Device Modeler described
in the last section. They evaluate the propositions based on the current values
of the involved properties. Each event handled by a monitor is displayed on the
GUI in the event log together with the current valuation of the watched variables
and the current output of the monitor is displayed in the list of monitors.

As an example consider a foot switch controlling a pump. If the foot switch’s
value changes from OPEN to PRESSED, the pump’s state must either change from
ON to OFF or from OFF to ON. Note the usage of the SALT operator nextn[2]
which translates to two nested next operators in LTL.
assert always (("@switch.value = OPEN" and next "@switch.value = PRESSED") implies

((next "@pump.value = ON" and nextn[2] "@pump.value = OFF") or
(next "@pump.value = OFF" and nextn[2] "@pump.value = ON")))

-- on change of switch.value and pump.value

The above example shows how the Swiss Army Knife can be used as a non-
invasive inspection tool in order to monitor the correct behavior of the connected
medical devices. Furthermore this generic client is able to manipulate the config-
uration parameters and take control over the available devices. Such invocations
trigger changes of the published values of the devices as well, which are again
recognized by the monitors. This way one does not have to wait for edge cases
to occur in order to monitor them, but can induce them manually.

The defined monitors can be edited at any time and can be activated and
paused independently. As described in the section on runtime verification above
the monitors can be defined in regular expressions, LTL, RLTL and SALT. The
editor supports syntax highlighting, auto-completion and in-place error annota-
tions. All defined monitors are automatically stored in a simple XML serializa-
tion and restored with every program start.

The Swiss Army Knife will be made available for evaluation, education and
teaching purpose8.

5 Conclusion

In this paper we have presented the OSCP SDK that simplifies implementa-
tion and testing of medical devices using communication libraries OpenSDC
and OSCLib. Its two tools, the OSCP Device Modeler and the OSCP Swiss
Army Knife, allow the specification of correctness properties using benefits of
the well-known established techniques of LTL3 and SALT and make use of run-
time verification to ensure safe interconnection of medical devices. The OSCP
Swiss Army Knife allows the user to synthesize and use monitors for debugging
at runtime while the OSCP Device Modeler adds monitors to the devices which
adds an additional safety layer to their network interface. Thus, both tools use
runtime verification in practical applications adding value for industrial users.
8 www.isp.uni-luebeck.de/oscp

http://www.isp.uni-luebeck.de/oscp


References

1. Bauer, A., Leucker, M.: The Theory and Practice of SALT. In: NASA Formal
Methods. LNCS, vol. 6617, pp. 13–40. Springer (2011)

2. Bauer, A., Leucker, M., Schallhart, C.: Runtime Verification for LTL and TLTL.
ACM Transactions on Software Engineering and Methodology 20(4), 14:1–14:64
(2011)

3. Birkle, M., Bergh, B.: OR.NET: Ein Projekt auf dem Weg zur sicheren dynamis-
chen Vernetzung in OP und Klinik. In: Jahrestagung der Gesellschaft für Infor-
matik e.V. (GI). vol. 208, pp. 1235–1236. GI (2012)

4. Gregorczyk, D., Bußhaus, T., Fischer, S.: Systems, Signals and Devices (SSD). In:
SDD. pp. 1–6. IEEE (2012)

5. Gregorczyk, D., Fischer, S., Busshaus, T., Schlichting, S., Pöhlsen, S.: Workshop
on Medical Cyber-Physical Systems. In: MedCPS. OASIcs, vol. 36, pp. 15–27.
Dagstuhl (2014)

6. Johner, C., Wittorf, S., Hölzer-Klüpfel, M.: Basiswissen Medizinische Software.
dpunkt.verlag (2011)

7. Kasparick, M., Schlichting, S., Golatowski, F., Timmermann, D.: Medical DPWS:
New IEEE 11073 standard for safe and interoperable medical device communi-
cation. In: Standards for Communications and Networking (CSCN). pp. 212–217
(Oct 2015)

8. Kasparick, M., Schlichting, S., Golatowski, F., Timmermann, D.: New IEEE 11073
standards for interoperable, networked point-of-care Medical Devices. In: IEEE
Engineering in Medicine and Biology Society (EMBC). pp. 1721–1724 (Aug 2015)

9. Kühn, F., Leucker, M.: OR.NET: Safe Interconnection of Medical Devices (Position
Paper). In: FHIES. vol. 8315, pp. 188–198. Springer (2013)

10. Leucker, M.: Teaching Runtime Verification. In: Runtime Verification (RV).
Springer (2012)

11. Leucker, M., Sánchez, C.: Regular Linear Temporal Logic. In: Theoretical Aspects
of Computing (ICTAC). LNCS, vol. 4711, pp. 291–305. Springer (2007)

12. Leucker, M., Schallhart, C.: A Brief Account of Runtime Verification. The Journal
of Logic and Algebraic Programming 78(5), 293–303 (2009)

13. Leucker, M., Schmitz, M.: Secured SOA for the Safe Interconnection of Medical
Devices (Position Paper). In: Software Engineering (SE). CEUR Workshop Pro-
ceedings, vol. 1337, pp. 11–14. CEUR-WS.org (2015)

14. Pnueli, A.: The Temporal Logic of Programs. In: Foundations of Computer Science
(FOCS). pp. 46–57. IEEE Computer Society (1977)

15. Sánchez, C., Samborski-Forlese, J.: Efficient Regular Linear Temporal Logic Us-
ing Dualization and Stratification. In: Temporal Representation and Reasoning
(TIME). pp. 13–20. IEEE Computer Society (2012)


	Runtime Verification forInterconnected Medical Devices

