
Integration of Runtime Verification into
Metamodeling for Simulation and Code

Generation (Position Paper)

F. Macias1, T. Scheffel2, M. Schmitz2, and R. Wang1

1 Bergen University College, Norway
{fernando.macias,rui.wang}@hib.no

2 Institute for Software Engineering and Programming Languages,
University of Lübeck, Germany

{scheffel,schmitz}@isp.uni-luebeck.de

Abstract. Runtime verification is an approach growing in popularity to
verify the correctness of complex and distributed systems by monitoring
their executions. Domain Specific Modeling Languages are a technique
used for specifying such systems in an abstract way, but still close to
the solution domain. This paper aims at integrating runtime verification
and domain specific modeling into the development process of complex
systems. Such integration is achieved by linking the elements of the system
model with the atomic propositions of the temporal correctness properties
used to specify monitors. We provide a unified approach used for both the
code generation and the simulation of the system through instance model
transformations. This unification allows to check correctness properties
on different abstraction levels of the modeled system.

1 Introduction
Modeling is a well-established practice in the development of big and complex
software systems. Some of the more widespread approaches (e.g. Unified Modeling
Language, UML) comprise the use of several general-purpose modeling languages.
The models created with each of these modeling languages are then interconnected
or related to one another. In recent years, general-purpose modeling languages
are being replaced by Domain Specific Modeling Languages in many cases [6].
These languages define the structure, semantics and constraints for models related
to the same application domain [12]. Among the reasons for the adoption of
DSMLs one can mention their understandability by domain experts, capacity for
high-level abstraction, user friendliness and tailoring to the problem space [6].
Besides, DSMLs inherit some of the advantages of general-purpose modeling,
such as an improvement of efficiency for development and simulation.

However, the use of DSMLs does not completely shield the produced software
from bugs or man-made mistakes. Software failures may still occur on complex
systems due to a variety of reasons such as design errors, hardware breakdown or
network problems. These failures require that verification methods are integrated
into the development process. The use of such methods during the specification

This work is supported in part by the European Cooperation in Science and Technology
(COST Action ARVI) and the BMBF project CONIRAS under number 01IS13029.

{fernando.macias,rui.wang}@hib.no
{scheffel,schmitz}@isp.uni-luebeck.de


2 F. Macias, T. Scheffel, M. Schmitz, R. Wang

of a system can greatly improve their reliability. Unfortunately, testing is seldom
exhaustive and cannot always guarantee correctness. An exhaustive option to
check every execution path is model checking. But this alternative may suffer
the state space explosion problem [10], especially relevant in distributed systems
due to their inherent non-determinism. Yet another possibility in the system
verification domain is to use runtime verification (RV). RV can cope with the
inadequacies of testing by reacting to systems’ failures as soon as they occur [9].
Also, it is a much more lightweight technique when compared to model checking,
since only one execution path is checked. RV can be used to check whether an
execution of a system violates a given correctness property. Such checking can
be typically performed by using a monitor [10]. In its simplest form, a monitor
decides whether the execution of a system satisfies a given correctness property
by outputting either true or false. With runtime verification, the actual execution
of the complex system may then be easily checked to ensure that the program
does not violate given correctness properties.

This paper aims to effectively integrate runtime verification and domain
specific modeling into the development of complex systems. This integration is
achieved by linking the elements of domain specific models with the temporal
correctness properties.
Related work. Using models and runtime verification during the development of
complex systems is not new. For example, in [8], common concepts of runtime
models and the provision of a basis for the metamodeling are described, and a
metamodeling process for runtime models is presented, which guides the creation
of metamodels combining design time and runtime concepts. In [3], a system
modeling approach is developed to allow design-time system models to be reused
by an autonomous system, and a runtime verification framework is also proposed.
A combination of runtime verification and a specific DSML has been used in [5].
The authors used their own modeling framework for component-based systems
and extended it by an RV framework. Their approach has a similar direction,
but our approach aims at modeling more abstractly while keeping the possibility
of verifying low-level properties, with any DSML.

The rest of this paper is organized as follows: Section 2 recaps some basic
notion of RV and DSMLs which are used throughout the paper. Section 3 presents
the main contribution of this paper: the integration of runtime verification and
DSMLs. Finally, a conclusion and an outlook are given in the last section.

2 Background
We view a system as having a state consisting of a set of atomic propositions.
Thereby each atomic proposition can either be true or false, and the state of the
system at a certain point in time is given by the current value of each atomic
proposition. Thus, a run of the system can be seen as an infinite sequence of
those states and an execution is a finite prefix of such a run. In RV, we specify
correctness properties based on the atomic propositions and generate monitors
from them. With this, monitor statements about the correctness of the current
execution of the system can then be made.



Integration of Runtime Verification and Metamodeling 3

...

DSML

Model

Snapshot

LT
L

(L
in

g.
ex

te
ns

io
n)

Property

Subformula

M

State Simulation

System
Specification

ontologically typed

ontologically typed

ontologically typed

ontol. typed

ontol. typed

linguistically typed

Fig. 1. Underlying multilevel model hierarchy with linguistic extension. Correctness
properties of the system can be formulated in LTL, which is connected with the model
as a linguistic extension. The property can be translated into a monitor, which accepts
prefixes of the words in the language of the property. The System Specification is the
abstraction layer of the most specific models which is used for the code generation. A
Snapshot of the Model together with the not yet fulfilled Subformula or a State of the
Monitor forms one state of the Simulation.

To be compatible with this view of a system, we define a multilevel modeling
hierarchy [1] where the DSML and the actual model of the system are included.
Moreover, the hierarchy includes instances of the system model that represent
the particular state of the system at a given point in time (see Fig. 1). As
presented in [11], this hierarchy borrows the concepts of multilevel modelling (with
ontological typing relations), deep metamodelling [1] and linguistic extension [15]
(hence the linguistic typing relations). To avoid ambiguities, we call the instances
of the system model snapshots. A snapshot is also a model, and contains the set
of active elements of the system. The way in which the system evolves during
the simulation is described using model transformations (MT) that generate a
new snapshot from the previous one. See [20] and [7] for similar approaches. In
a simplistic way, this MTs remove elements which are not active anymore and
create new active ones (see Fig. 2). To link both RV and DSMLs, we associate the
atomic propositions, used in RV, with the current state of the system, represented
as a snapshot of a domain specific model.

This is done by matching: this concept is defined as finding a particular set
of elements in the current snapshot (match) or not (no match) in [11].

3 Combining RV and DSMLs
DSMLs used for behavior generally have concepts along the lines of actions being
executed and connections among them that define the flow sequence in which
the actions are executed. In this section, we introduce our approach using an
example DSML which is a simple realization of both kinds of concepts. Together
with this DSML, we define the integration of its behavioral semantics with the
evaluation of temporal properties. We achieve such integration by linking the
elements of the DSML with the atomic propositions used in Linear Temporal



4 F. Macias, T. Scheffel, M. Schmitz, R. Wang

::Task

::Input

::Task ::Task

::Input

Snapshot n Snapshot n + 1

Fig. 2. Sketch of the model transformation for transition triggering. A transition is
triggered (its instance appears in a new snapshot) if it is connected to a task and an
input in the model, which have active instances in the current snapshot.

Logic (LTL) formulas. All these parts are included in the modeling hierarchy
depicted in Fig. 1.
3.1 Example of behavioural DSML
The DSML used in the example defines three types of elements:

Input Used to incorporate information from the environment into the model.
Inputs allow the system to react to external stimuli, such as sensor information
in a robot. Hence, inputs appear in a snapshot when any of the aforementioned
happens, and disappear afterwards. Their appearance cause generally a change
of state in the system (new snapshots).

Task A specific action or set of actions executed by the system. A task is running
if an instance of it appears in the current snapshot. Multiple tasks can run
at the same time.

Transition Represents the order in which tasks are executed. Every transition
is connected to a source and a target task, and associated to one input. When
the source task is running (i.e. appears in the current snapshot) and the
associated input appears, the transition is triggered. After a transition is
triggered, a new snapshot is generated in which the transition and the target
task start running. Notice that a task may have more than one incoming
transition, as well as multiple outgoing transitions. In the first case, as soon
as any of the incoming transitions is fired, the target of that transition is
activated. In the second case, all of the transitions with the same input are
fired at the same time. That is, the target tasks of all fired transitions start
running in parallel.

When the system is simulated, new snapshots are generated using model
transformations. These transformations are not explained in detail here due to
space limitations. A richer example similar to ours can be found in Table III
of [16]. We adapted the syntax that the authors use in our example. Generally
speaking, these model transformations are responsible for the simulation of inputs
appearing, transitions being fired and tasks finishing (disappearing). Figure 2
shows an illustrative example of the MT for the triggering of a transition.

Inputs are used in our DSML to model all the possible happenings that may
cause a change of state. The monitors used to evaluate temporal properties
require that a snapshot is generated only when there is a change of state of the
system, i.e. no two consecutive snapshots are the same. Besides, the monitors
need to be aware of any registered input, even if it does not trigger any transition.



Integration of Runtime Verification and Metamodeling 5

Hence, inputs are modeled as triggers for transitions, but the appearance of an
input in a snapshot is independent from the transitions that it may trigger.

Note that the execution of our system does not include any notion of time. In
some cases it is nevertheless useful to model the expiration of a certain amount
of time. We do this by introducing timers which raise a timeout after a specified
time. A timer may be started on activating a task. In the model we abstract away
from the time passing by and represent timeouts as regular inputs. The timeout
inputs can be used like any other input in order to trigger a transition. In a
nutshell, this allows us to handle time while keeping the discrete LTL semantics
defined on a sequence of states.

3.2 Linking a DSML with temporal properties

As presented in [11], we implement the syntax of a temporal logic as a linguistic
extension. This extension is orthogonal to the model hierarchy composed by the
DSML, the particular system model, and the current snapshot (see Figure 1).

The key concept of a linguistic extension for our work is the possibility to
connect any type of element or set of elements in the modeling hierarchy to the
model representing a temporal property. In this work, we will connect single
elements in the snapshots to the temporal properties. As a consequence of this
way of modeling LTL properties, an atomic proposition is a fragment of a model
instance that may appear in a snapshot. The atomic propositions are evaluated
as follows: If at least one match of the fragment appears in the current snapshot
of the system, the atomic proposition is evaluated to true otherwise to false.

This connection of elements and atomic propositions allows us to look at the
sequence of snapshots of a system as the execution of that system, from both RV
and modelling points of view. So we can do runtime verification with temporal
logics in a natural way based on those snapshots because they represent the
states of the system during the execution. An example for this can be seen in
Figure 3. In this example we modeled a robot driving around. The figure shows
how inputs are part of the model of the system, and at the same time are linked
to the atomic propositions of the LTL formula. The correctness property given in
Figure 3 states that obstacles found in front of the robot disappear if the robot
moves backwards. Otherwise the robot has found a moving obstacle coming after
it. This property describes the environment of the robot and hence is specified
using atomic propositions linked to inputs. Atomic propositions can be linked to
tasks in the same way if the property expresses the behavior of the robot in a
more direct way.

The connection of the atomic propositions to the elements enables us to
expand our approach to different LTL semantics like LTL3 [2] in order to report
final fulfillment or violation of the correctness properties as soon as possible when
monitoring. Also, we can expand to LTL extensions like timed LTL [14] that
allows us to express real-time properties or add other theories for using variables
instead of only boolean propositions [4], and quantified propositions [19].

Notice that the possibility of connecting any element (or set of them) to
atomic propositions greatly enriches LTL via its atomic propositions.



6 F. Macias, T. Scheffel, M. Schmitz, R. Wang

GoFwd

GoBck

GoBck

TurnL

TurnR

Obstacle

Border

TimeoutG(obs → X (¬ obs U to)

Input

Start

Task
Transition

Fig. 3. Modeling of the behavior of a robot with an attached correctness property
detecting moving obstacles. The robot can move forwards (GoFwd), move backwards
(GoBck) and turn left or right (TurnL, TurnR). The transitions are activated by the
inputs and activate the subsequent task. Obstacle and Input represent sensor inputs
and Timeout represents the expiration of a timer started by GoBck, TurnL and TurnR.
That is, Timeout is used to represent the amount of time that a Task takes to finish.

4 Conclusion and Outlook
Our approach integrates behavioral models of DSMLs and correctness properties
for RV through the whole software engineering process of design, simulation and
code generation. For design, we provide a framework which allows to specify
correctness properties as a linguistic extension of the DSML modeling hierarchy.
In the simulation, a monitor and a model can be executed at once by synchronizing
the model simulation and the monitor execution. Thereby the simulation is defined
as a sequence of snapshots which are enriched with atomic propositions based
on the match of certain elements in the snapshots. Finally, this synchronization
between correctness properties and model execution is reused in order to execute
the monitors and the designed system in the generated code for the target platform.
The connection between the correctness property and the modeled behavior of
the system is kept consistent throughout the whole software engineering process.

We implemented this approach in Eclipse EMF1 and generated Python code
for the ev3dev platform2 in order to control Lego EV3 robots. The Python code
for the monitors is generated by using the LTL3 semantics with the logic and
automata library LamaConv3.

We plan to extend this approach for designing and verifying asynchronous
distributed systems. Such systems generally have a huge state space generated
by the environmental influence because of the high asynchronous fashion. Hence
static verification approaches become difficult to use. With metamodeling, such
systems can be designed in a more abstract way and monitors can be connected
on multiple abstraction layers to the agents they should observe. To achieve
such extension, we need to be able to model single agents of the distributed
system and connect their actions with each other such that we can model their
communication. Our goal is to increase the applicability of existing approaches
of RV for asynchronous distributed systems like the ones in [13], [18] and [17] by
combining them with DSMLs as presented in this paper.

1 eclipse.org/modeling/emf 2 ev3dev.org 3 isp.uni-luebeck.de/lamaconv

http://eclipse.org/modeling/emf
http://ev3dev.org
http://isp.uni-luebeck.de/lamaconv


Integration of Runtime Verification and Metamodeling 7

References
1. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. Soft-

ware & Systems Modeling 7(3), 345–359 (2008)
2. Bauer, A., Leucker, M., Schallhart, C.: Runtime Verification for LTL and TLTL.

ACM Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011)
3. Callow, G., Watson, G., Kalawsky, R.: System modelling for run-time verification

and validation of autonomous systems. In: System of Systems Engineering (SoSE).
pp. 1–7. IEEE (2010)

4. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. Software Tools
for Technology Transfer (STTT) 18(2), 205–225 (2016)

5. Falcone, Y., Jaber, M., Nguyen, T.H., Bozga, M., Bensalem, S.: Runtime verification
of component-based systems in the BIP framework with formally-proved sound and
complete instrumentation. Software & Systems Modeling 14(1), 173–199 (2015)

6. Fowler, M.: Domain-specific languages. Pearson Education (2010)
7. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling

and analysis using GROOVE. Software Tools for Technology Transfer (STTT)
14(1), 15–40 (2012)

8. Lehmann, G., Blumendorf, M., Trollmann, F., Albayrak, S.: Meta-modeling runtime
models. In: Models in Software Engineering, LNCS, vol. 6627, pp. 209–223. Springer
(2010)

9. Leucker, M.: Teaching runtime verification. In: Runtime Verification (RV). LNCS,
vol. 7186, pp. 34–48. Springer (2011)

10. Leucker, M., Schallhart, C.: A brief account of runtime verification. The Journal of
Logic and Algebraic Programming 78(5), 293–303 (2009)

11. Macias, F., Rutle, A., Stolz, V.: A Property Specification Language for Runtime
Verification of Executable Models. In: Nordic Workshop on Programming Theory
(NWPT). pp. 97–99 (2015), Tech. Rep. RUTR-SCS16001, School of Computer
Science, Reykjavik University

12. Mellor, S.J.: MDA distilled: principles of model-driven architecture. Addison-Wesley
Professional (2004)

13. Mostafa, M., Bonakdarpour, B.: Decentralized runtime verification of LTL specifi-
cations in distributed systems. In: Parallel and Distributed Processing Symposium
(IPDPS). pp. 494–503. IEEE (2015)

14. Raskin, J., Schobbens, P.: The Logic of Event Clocks – Decidability, Complexity
and Expressiveness. J. Autom. Lang. Comb. 4(3), 247–286 (1999)

15. Rossini, A., de Lara, J., Guerra, E., Rutle, A., Wolter, U.: A formalisation of deep
metamodelling. Formal Aspects of Computing 26(6), 1115–1152 (2014)

16. Rutle, A., MacCaull, W., Wang, H., Lamo, Y.: A metamodelling approach to
behavioural modelling. In: Behaviour Modelling-Foundations and Applications. pp.
5:1–5:10. ACM (2012)

17. Scheffel, T., Schmitz, M.: Three-valued asynchronous distributed runtime verifi-
cation. In: Formal Methods and Models for Codesign, MEMOCODE. pp. 52–61.
IEEE (2014)

18. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient Decentralized Monitoring of
Safety in Distributed Systems. In: Software Engineering (ICSE). pp. 418–427. IEEE
(2004)

19. Stolz, V.: Temporal assertions with parametrized propositions. J. Log. Comput.
20(3), 743–757 (2010)

20. Wang, H., Rutle, A., MacCaull, W.: A formal diagrammatic approach to timed
workflow modelling. In: Theoretical Aspects of Software Engineering (TASE). pp.
167–174. IEEE (2012)


	Integration of Runtime Verification into Metamodeling for Simulation and Code Generation (Position Paper)

