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Abstract

In this paper, a brief account of the field of runtime verification is given. Starting
with a definition of runtime verification, a comparison to well-known verification
techniques like model checking and testing is provided, and applications in which
runtime verification brings out its distinguishing features are pointed out. More-
over, extensions of runtime verification such as monitor-oriented programming, and
monitor-based runtime reflection are sketched and their similarities and differences
are discussed. Finally, the use of runtime verification for contract enforcement is
briefly pointed out.

1 Introduction

Software and software systems are increasingly ubiquitous in everyday life. Be-
sides traditional applications such as word processors or spreadsheets running
on workstations, software is an important part of consumer devices such as
mobile phones or digital cameras, and functions as embedded control devices
in cars or in power plants. Especially in such embedded application domains,
is essential to guarantee that the deployed software works in a correct, secure,
and reliable manner, as life may depend on it. For example, the software within
a car’s anti-skid system must speed with exactly the right velocity to stabi-
lize the car. Moreover, for a power plant it is important that no intruder gets
control over the plant and that it works also in case of a partial break-down
of some of its parts.

Software engineering has been driven as a field by the struggle for guaranteed
quality properties ever since, but nowadays and especially in the embedded
domain, legislation and certification authorities are requiring proof of the most
critical software properties in terms of a documented verification process.

In recent years, the idea of software as services has added a new paradigm
to the architecture of software systems: They are seen more and more as
autonomous agents acting according to certain contracts. For such systems,
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verification is particularly challenging as the overall behavior of such systems
depends heavily on the involved agents, which renders the analysis of such
systems prior to execution next to impossible. One important aspect of verifi-
cation is then to check whether each party acts according to the contract they
have agreed on.

Traditionally, one considers three main verification techniques: theorem prov-
ing [12], model checking [20], and testing [49,16]. Theorem proving, which is
mostly applied manually, allows to show correctness of programs similarly as a
proof in mathematics shows correctness of a theorem. Model checking, which
is an automatic verification technique, is mainly applicable to finite-state sys-
tems. Testing covers a wide field of diverse, often ad-hoc, and incomplete
methods for showing correctness, or, more precisely, for finding bugs.

These techniques are subject to a number of forces imposed by the software to
build and the development process followed, and provide different trade-offs
between them. For example, some require a formal model, like model checking,
give stronger or weaker confidence, like theorem proving over testing, or are
graceful in case of error handling.

Runtime verification is being pursued as a lightweight verification technique
complementing verification techniques such as model checking and testing and
establishes another trade-off point between these forces. One of the main dis-
tinguishing features of runtime verification is due to its nature of being per-
formed at runtime, which opens up the possibility to act whenever incorrect
behavior of a software system is detected.

The aim of this paper is to give a brief account of runtime verification. There-
fore, we first highlight basic ideas of runtime verification and discuss dis-
tinguishing features in comparison to other verification techniques. Then, in
Section 3, we discuss runtime verification in the context of correctness prop-
erties specified in linear temporal logic. Some extensions working with more
restricted or more expressive specification languages are summarized in Sec-
tion 4. In Section 5, we sketch approaches which do not only monitor but also
intervene in the system under scrutiny. Runtime verification for contracts is
discussed in Section 6. Finally, we draw our conclusions in Section 7.

2 Runtime Verification

In this paper, we follow [25] and define a software failure as a deviation be-
tween the observed behavior and the required behavior of the software system.
A fault is defined as the deviation between the current behavior and the ex-
pected behavior, which is typically identified by a deviation of the current
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and the exspected state of the system. A fault might lead to a failure, but not
necessarily. An error, on the other hand, is a mistake made by a human that
results in a fault and possibly in a failure.

According to IEEE [1], verification comprises all techniques suitable for show-
ing that a system satisfies its specification. Traditional verification techniques
comprise theorem proving [12], model checking [20], and testing [49,16]. A rel-
atively new direction of verification is runtime verification, 1 which manifested
itself within the previous years as a lightweight verification technique:

Definition (Runtime Verification): Runtime verification is the discipline
of computer science that deals with the study, development, and application
of those verification techniques that allow checking whether a run of a system
under scrutiny satisfies or violates a given correctness property.

Runtime verification itself deals (only) with the detection of violations (or
satisfactions) of correctness properties. Thus, whenever a violation has been
observed, it typically does not influence or change the program’s execution,
say for trying to repair the observed violation. However, runtime verification
is the basis for concepts also dealing with observed problems, as we discuss in
Section 5.

2.1 Monitors

In this paper, a run of a system is understood as a possibly infinite sequence
of the system’s states, which are formed by current variable assignments, or
as the sequence of actions a system is emitting or performing. Formally, a
run may be considered as a possible infinite word or trace. An execution of
a system is a finite prefix of a run and, formally, it is a finite trace. When
running a program, we can only observe executions, which, however, restrict
the corresponding evolving run as being their prefix. While, in verification, we
are interested in the question whether a run, and more generally, all runs of
a system adhere to given correctness properties, executions are the primary
object analyzed in the setting of RV.

Checking whether an execution meets a correctness property is typically per-
formed using a monitor . In its simplest form, a monitor decides whether the
current execution satisfies a given correctness property by outputting either
yes/true or no/false. Formally, when [[ϕ]] denotes the set of valid executions
given by property ϕ, runtime verification boils down to checking whether the
execution w is an element of [[ϕ]]. Thus, in its mathematical essence, run-
time verification answers the word problem, i. e. the problem whether a given

1 http://www.runtime-verification.org
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word is included in some language. Note that often, the word problem can
be decided with lower complexity compared to, for example, the subset prob-
lem: Language containment for non-deterministic finite-automata is PSPACE-
complete [58] (which is essential for model checking, see Section 2.2), while
deciding whether a given word is accepted by a non-deterministic automaton
is NLOGSPACE-complete [41].

However, to cover richer approaches to RV, we define the notion of monitors
in a slightly more general form:

Definition (Monitor): A monitor is a device that reads a finite trace and
yields a certain verdict.

Here, a verdict is typically a truth value from some truth domain. A truth
domain is a lattice with a unique top element true and a unique bottom
element false. This definition covers the standard two-valued truth domain
B = {true, false} but also fits for monitors yielding a probability in [0, 1] with
which a given correctness property is satisfied. Sometimes, one might be even
more liberal and consider also verdicts that are not elements of a truth domain,
though we do not follow this view in this paper.

A monitor may on one hand be used to check the current execution of a
system. In this setting, which is termed online monitoring , the monitor should
be designed to consider executions in an incremental fashion and in an efficient
manner. On the other hand, a monitor may work on a (finite set of) recorded
execution(s), in which case we speak of offline monitoring .

For a monitor to be ideally suited for runtime verification, it should adhere
to the two maxims impartiality and anticipation. Impartiality requires that
a finite trace is not evaluated to true or, respectively false, if there still ex-
ists an (infinite) continuation leading to another verdict. Anticipation requires
that once every (infinite) continuation of a finite trace leads to the same ver-
dict, then the finite trace evaluates to this very same verdict. Intuitively, the
first maxim postulates that a monitor only decides for false—meaning that a
misbehavior has been observed—or true—meaning that the current behavior
fulfills the correctness property, regardless of how it continues—only if this is
indeed the case. Clearly, this maxim requires to have at least three different
truth values: true, false, and inconclusive, but of course more than three truth
values might give a more precise assessment of correctness. The second maxim
requires a monitor to indeed report true or false, if the correctness property
is indeed violated or satisfied. In simple words, impartiality and anticipation,
guarantee that the semantics is neither premature nor overcautious in its eval-
uations. See [11,9] for a more elaborate discussion of these issues in the context
of linear temporal logic.

In runtime verification, monitors are typically generated automatically from
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some high-level specification. As runtime verification has its roots in model
checking, often some variant of linear temporal logic, such as LTL [51], is
employed. But also formalisms inspired by the linear µ-calculus have been
introduced, for example in [24], which explains an accompanying monitoring
framework . Actually, one of the key problems addressed in runtime verification
is the generation of monitors from high-level specifications, and we discuss this
issue for LTL in more detail in Section 3.

2.2 Runtime Verification versus Model Checking

In essence, model checking describes the problem of determining whether,
given a model M and a correctness property ϕ, all computations of M satisfy
ϕ. Model checking [20], which is an automatic verification technique, is mainly
applicable to finite-state systems, for which all computations can exhaustively
be enumerated.

In the automata theoretic approach to model checking [65], a correctness prop-
erty ϕ is transformed to an automaton M¬ϕ accepting all runs violating ϕ.
This automaton is put in parallel to a model M to check whether M has a
run violating ϕ.

Runtime verification has its origins in model checking, and, to a certain ex-
tend, the key problem of generating monitors is similar to the generation of
automata in model checking. However, there are also important differences to
model checking:

• While in model checking, all executions of a given system are examined to
answer whether they satisfy a given correctness property ϕ, which corre-
sponds to the language inclusion problem, runtime verification deals with
the word problem.

• While model checking typically considers infinite traces, runtime verification
deals with finite executions—as executions have necessarily to be finite.

• While in model checking a complete model is given allowing to consider
arbitrary positions of a trace, runtime verification, especially when dealing
with online monitoring, considers finite executions of increasing size. For
this, a monitor should be designed to consider executions in an incremental
fashion.

These differences make it necessary to adapt the concepts developed in model
checking to be applicable in runtime verification. For example, while checking
a property in model checking using a kind of backwards search in the model
is sometimes a good choice, it should be avoided in online monitoring as this
would require, in the worst case, the whole execution trace to be stored for
evaluation.
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From an application point of view, there are also important differences between
model checking and runtime verification.

Runtime verification deals only with observed executions as they are generated
by the real system. Thus runtime verification is applicable to black box systems
for which no system model is at hand. In model checking, however, a suitable
model of the system to be checked must be constructed as—before actually
running the system—all possible executions must be checked.

If such a precise model of the underlying system is given, and, if moreover
a bound on the size of its state space is known, powerful, so-called bounded
model-checking techniques can be applied [13] for analyzing the system. The
crucial idea, which is equally used in conformance testing [66,19], is that for
every finite-state system, an infinite trace must reach at least one state twice.
Thus, if a finite trace reaches a state a second time, the trace can be extended
to an infinite trace by taking the corresponding loop infinitely often. Likewise,
considering all finite traces of length up-to the state-place plus one, one has
information on all possible loops of the underlying system, without actually
working on the system’s state space directly.

Clearly, similar correspondences would be helpful in runtime verification as
well. However, in runtime verification, an upper bound on the system’s state
space if typically not known. More importantly, the states of an observed
execution usually do not reflect the system’s state completely but do only
contain the value of certain variables of interest. Thus, seeing a state twice in
an observed execution does not allow to infer that the observed loop can be
taken ad infinitum.

Furthermore, model checking suffers from the so-called state explosion prob-
lem, which terms the fact that analyzing all executions of a system is typically
been carried out by generating the whole state space of the underlying system,
which is often huge. Considering a single run, on the other hand, does usually
not yield any memory problems, provided that when monitoring online only
a finite history of the execution has to be stored.

Last but not least, in online monitoring, the complexity for generating the
monitor is typically negligible, as the monitor is often only generated once.
However, the complexity of the monitor, i. e. its memory and computation
time requirements for checking an execution are of important interest, as the
monitor is part of the running system and should influence the system as less
as possible.
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2.3 Runtime Verification versus Testing

As runtime verification does not consider each possible execution of a system,
but just a single or a finite subset, it shares similarities with testing, which
terms a variety of usually incomplete verification techniques.

Typically, in testing one considers a finite set of finite input-output sequences
forming a test suite [53]. Test-case execution is then checking whether the
output of a system agrees with the predicted one, when giving the input
sequence to the system under test.

A different form of testing, however, is closer to runtime verification, which
is sometimes termed oracle-based testing. Here, a test-suite is only formed by
input-sequences. To make sure that the output of the system is as anticipated,
a so-called test oracle has to be designed and “attached” to the system under
test. Thus, in essence, runtime verification can be understood as this form of
testing. There are, however, differences in the foci of runtime verification and
oracle-based testing:

• In testing, an oracle is typically defined directly, rather than generated from
some high-level specification.

• On the other hand, providing a suitable set of input sequences to “ex-
haustively” test a system, is rarely considered in the domain of runtime
verification.

Thus, runtime verification can also considered as a form of passive testing.

When monitors are equipped in the final software system, one may also un-
derstand runtime verification as “testing forever”, which makes it, in a certain
sense, complete.

2.4 When to use Runtime Verification?

Let us conclude the description of runtime verification by listing certain ap-
plication domains, highlighting the distinguishing features of runtime verifica-
tion:

• The verification verdict, as obtained by model checking or theorem proving,
is often referring to a model of the real system under analysis, since applying
these techniques directly to the real implementation would be intractable.
The model typically reflects most important aspects of the corresponding
implementation, and checking the model for correctness gives useful in-
sights to the implementation. Nevertheless, the implementation might be-

7



have slightly different than predicted by the model. Runtime verification
may then be used to easily check the actual execution of the system, to
make sure that the implementation really meets its correctness properties.
Thus, runtime verification may act as a partner to theorem proving and
model checking.

• Often, some information is available only at runtime or is conveniently
checked at runtime. For example, whenever library code with no accom-
panying source code is part of the system to build, only a vague description
of the behavior of the code might be available. In such cases, runtime veri-
fication is an alternative to theorem proving and model checking.

• The behavior of an application may depend heavily on the environment of
the target system, but a precise description of this environment might not
exist. Then it is not possible to obtain the information necessary to test
the system in an adequate manner. Moreover, formal correctness proofs by
model checking or theorem proving may only be achievable by taking certain
assumptions on the behavior of the environment—which should be checked
at runtime. In this scenario, runtime verification outperforms classical test-
ing and adds on formal correctness proofs by model checking and theorem
proving.

• In the case of systems where security is important or in the case of safety-
critical systems, it is useful also to monitor behavior or properties that
have been statically proved or tested, mainly to have a double check that
everything goes well: Here, runtime verification acts as a partner of theorem
proving, model checking, and testing.

The above mentioned items can be found in a combined manner especially in
highly dynamic systems such as adaptive, self-organizing, or self-healing sys-
tems (see [39] for an overview on such approaches towards self-management).
The behavior of such systems depends heavily on the environment and changes
over time, which makes their behavior hard to predict—and hard to analyze
prior to execution. To assure certain correctness properties of especially such
systems, we expect runtime verification to become a major verification tech-
nique. More specifically, we anticipate a runtime verification based component
to be part of the architecture of such dynamic systems, as explained in more
detail in Section 5.

3 Runtime Verification of Linear Temporal Logic Specifications

In runtime verification, which is heavily inspired by model checking, a cor-
rectness property ϕ is automatically translated into a monitor. Correctness
properties specify the form of individual executions of a system and are usu-
ally formulated in some variant of linear temporal logic, such as LTL [51], as
seen for example in [35,32,31,37,38,60]. In this section, we recall the ideas of
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LTL3 as one example of a linear-time temporal logic specially designed for
runtime verification. For a technical presentation, see [10,8].

As especially in the model checking community, Pnueli’s LTL [51] is a well-
accepted linear-time temporal logic used for specifying properties of infinite
traces one usually wants to check the very same properties in runtime ver-
ification as well. However, one has to interpret their semantics with respect
to finite prefixes as they arise in observing actual systems. This approach to
runtime verification is summarized in the following rationale:

Pnueli’s LTL is a well-accepted linear-time temporal logic used for specifying
properties of infinite traces. In runtime verification, our goal is to check LTL
properties given finite prefixes of infinite traces.

Therefore, LTL3’s syntax coincides with LTL, while its semantics is given for
finite traces.

To implement the idea that, for a given LTL3 formula, its meaning for a prefix
of an infinite trace should correspond to its meaning considered as an LTL
formula for the full infinite trace, we use three truth values: true, false, and
inconclusive, denoted respectively by ⊤, ⊥, and ?. More precisely, given a
finite word u and an LTL3 formula ϕ, the semantics is defined as follows:

• if there is no continuation of u satisfying ϕ (considered as an LTL formula),
the value of ϕ is false;

• if every continuation of u satisfies ϕ (considered as an LTL formula), it is
true;

• otherwise, the value is inconclusive since the observations so far are incon-
clusive, and neither true or false can be determined.

While there are actually semantics for LTL on finite traces [42,47,29], these
use (only) two truth values. We strongly believe that only two truth values
lead to misleading results in runtime verification: As a first example, consider
a property G¬p, stating that no state satisfying p should occur. Clearly, when
p is observed, the corresponding monitor should complain. However, as long as
p does not hold, it is misleading to say that the formula is true, since the next
observation might already violate the formula. On the other hand, the formula
Fp, stating that eventually a p is observed, is fulfilled (only) when a first p

is observed. As a second example, consider the formula ¬pU init (read: not p

until init) stating that nothing bad (p) should happen before the init function
is called. If within an execution p becomes true before init , the formula is
violated and thus false (for any continuation of the current execution). If, on
the other hand, the init function has been called and no p has been observed
before, the formula is true, regardless of what will happen in the future. Besides
observing faults, for testing and verification, it is equally important to know
whether some property is indeed true or whether the current observation is
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just inconclusive and a violation of the property to check may still occur.

Originally, we proposed this three-valued semantics and its use for runtime
verification in [8]. However, some essential concepts were defined by Kupfer-
man and Vardi: In [43] a bad prefix (of a Büchi automaton) is defined as a
finite prefix which cannot be the prefix of any accepting trace. Dually, a good
prefix is a finite prefix such that any infinite continuation of the trace will be
accepted. It is exactly this classification that forms the basis of our 3-valued
semantics: “bad prefixes” (of formulae) are mapped to false, “good prefixes”
evaluate to true, while the remaining prefixes yield inconclusive.

For a given LTL3 formula, we describe in [8] how to construct a (deterministic)
finite state machine (FSM) with three output symbols. This automaton reads
finite traces and yields their three-valued semantics. Thus, monitors for three-
valued formulae classify prefixes as one of good = ⊤, bad = ⊥, or ? (neither
good nor bad). Standard minimization techniques for FSMs can be applied to
obtain a unique FSM that is optimal with respect to its number of states. In
other words, any smaller FSM must be non-deterministic or check a different
property. As an FSM can straightforwardly be deployed, we obtain a practical
framework for runtime verification.

The proposed semantics of LTL3 has a valuable implication for a corresponding
monitor. It requires the monitor to report a violation of a given property
as early as possible: Since any continuation of a bad (good) prefix is bad
(respectively good), there exists a minimal bad (good) prefix for every bad
(good) prefix. In runtime verification, we are interested in getting feedback
from the monitor as early as possible, i. e., for minimal prefixes, let them be
either good or bad. Since all bad prefixes for a formula ϕ yield false and
good prefixes yield true, also minimal ones do so. Thus, the correctness of
our monitor procedure ensures that already for minimal good or bad prefixes
either true or false is obtained. In other words, the corresponding monitor
fulfills both maxims impartiality and anticipation.

In [23], a Büchi automaton was modified to serve as a monitor reporting false
for minimal bad prefixes. However, no precise semantics in terms of LTL of the
resulting monitor was given. As such, LTL3 can be understood as a logic which
complements the constructions carried out in [23] with a formal framework.

It is natural to ask which LTL properties are monitorable at all. Pnueli and
Zaks [52] define a property as monitorable with respect to a trace whenever a
corresponding monitor might still report a violation (or satisfaction). In [10],
it has been shown that the popular belief that monitoring is only suitable for
safety properties is misleading: The class of monitorable properties is richer
than the union of safety and co-safety properties. For example, the property
ϕ ≡ ((p∨ q)Ur)∨Gp is monitorable while it is neither safe or co-safe: ppp . . .

10



satisfies ϕ but none of its prefixes u is good—and therefore ϕ is not safe.
Analogously, qqq . . . violates ϕ but none of its prefixes is bad, and hence ϕ is
not co-safe as well. But on the other hand, one can show that every prefix is
continuable to either satisfaction or violation of ϕ.

However, there remain many properties which are non-monitorable: Consider
for example the request/acknowledge property G(r → Fa) which states that
every request is finally acknowledged: any pending request might be acknowl-
edged in the next observation, so a finite trace is never sufficient to prove
a violation. Moreover, any finite trace might be continued with a new re-
quest that will never be granted, so that the formula cannot be evaluated to
true either for any finite trace. Since such properties arise often in practice,
a solution which evaluates such a property irrespectively to the inconclusive
verdict is quite ugly—raising the question of whether it is possible to refine
the inconclusive verdict into a more telling verdict.

In [9,11], we introduce a four-valued semantics for LTL which refines the in-
conclusive verdict into a presumably true and presumably false truth value,
and call the resulting logic Runtime Verification Linear Temporal Logic (RV-
LTL). In other words, RV-LTL’s semantics indicates whether a finite trace
describes a system behavior which either (1) satisfies the monitored prop-
erty, (2) violates the property, (3) will presumably violate the property, or (4)
will presumably conform to the property in the future, once the system has
stabilized. Using these truth values, we resolved the ugly situation of facing
an invariably inconclusive verdict in verifying a system at runtime: As long
as the final verdict depends on future events, an RV-LTL-based monitor dis-
plays a presumably true valuation—if no unanswered request is pending—and
presumably false otherwise.

Instead of using good/bad-prefixes as the basis for runtime verification, one
could rely on Kupferman’s and Vardi’s notion of informative prefixes [43].
Intuitively, a prefix is informative if it “explains” whether a formula holds or
not. Consider for example the formula XXX (p ∧ ¬p), saying that after three
letters, p should and should not hold. Clearly, the formula is not satisfiable
and every finite trace is a bad prefix. Nevertheless, only a trace of four letters
is considered informative, as each of the first three letters defers checking the
remaining subformula on the remaining string, and it is only with the fourth
letter to check whether it satisfies p∧¬p, which is then appearently not true.

Especially (formula) rewriting-based and alternating automata-based approa-
ches for checking correctness properties at runtime follow a semantics which
is based on informative prefixes, as for example the approaches shown in
[36,30,59]. For these works, however, the maxim of anticipation is not fulfilled,
since sometimes a violation of a property is reported “too late”, as shown in
the example. See [10] for a more elaborate discussion on this topic.
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4 Runtime Verification with Different Levels of Expressiveness

In the previous section, we have considered monitors for LTL specifications.
LTL is particularly useful when specifying restricted regular properties of dis-
crete time systems. However, many interesting properties to be monitored at
runtime are not expressible in LTL. On the other hand, we learned that re-
quest/acknowledge properties are not monitorable in the sense of [52], even
though they are expressible in LTL. In this section, we briefly describe exten-
sions, restrictions, and alternatives to the use of LTL in runtime verification.
Note that we only list a few logic-based runtime verification approaches. For
a more comprehensive list of fault-monitoring tools see [25].

Often, runtime verification is only considered for safety properties, as for ex-
ample in [37]. In simple words, an infinite word violates a safety property
[57] if and only if a finite prefix violates the property. Thus, safety properties
are monitorable. In other words, restricting a logical formalism to its safety
fragment, avoids to deal with the issue of (non-)monitorability. Similarly, re-
stricting to only past operators in linear temporal logics avoids semantic issues
with respect to the unknown future of a trace.

A typical property to check at runtime is that every file that was opened is
eventually closed. A straightforward specification in LTL would be G(open →
F close). However, when opening and closing different files, one has to make
sure that corresponding files are opened and closed. Thus, a more appropriate
specification would be

∧
x∈N G(open(x ) → F close(x )) where x ranges over

arbitrary file identifiers. An approach for monitoring LTL enriched with such
parameterized propositions is carried out in [59] within the J-LO project.

Non-regular properties are not expressible in LTL. Thus, expressing a proper
nesting of operators like calls and returns cannot be expressed in LTL. In
[56], synthesizing monitors for safety properties is described for a logic, that
considers nested calls and returns.

LOLA [24] is a monitor generation framework based on the linear µ-calculus
with future and past modalities, and with a notion of parallel streams of
output. It is well suited for synchronous systems such as digital circuits.

In [28], three-valued, anticipatory monitor synthesis procedures for various
linear-time temporal logics have been defined, including an LTL version al-
lowing to formulate properties of integer constraints [26].

In practice, often also the exact timing of events has to be checked. So far,
however, not many approaches for runtime verification of real-time properties
have been introduced. In [34], monitor synthesis based on LTL enriched with
a quantifier allowing to freeze the actual time to a variable which may be later
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on refered to is studied. In [61] and [14], fault diagnosis for timed systems is
examined, a problem that shares some similarities with runtime verification
yet is more complicated.

In [8,10], we have extended the three-valued approach also to monitoring of
real-time properties specified in the temporal logic TLTL [55]. Thus, a three-
valued semantics for TLTL is defined yielding one of true, false, or inconclusive
for a finite timed trace, i.e., a trace of events enriched with time stamps de-
noting their time of occurrence. The procedure follows the scheme for LTL3,
yet uses a region automaton-based analysis known from model checking timed
automata [5] to decide the verdict in an anticipatory manner. Note that in
contrast to the timed LTL version proposed in [34], TLTL also allows the
formulation of formulas predicting the time of the occurence of an event.

Monitor synthesis for the the logic Metric Interval Temporal Logic (MITL),
which is another popular temporal logic for specifying realtime properties,
is studied in [46]. MITL and TLTL both allow to reason on a finite set of
properties. In [45,50] monitoring of continuous signals is considered, which is
intrinsically different to observing discrete signals in a continuous time domain.

The Eagle temporal logic [6] is a basic, yet, very general specification language
suitable for monitoring correctness properties. It is based on recursive rules
over three temporal connectives: next, previous, and concatenation. It allows to
encode several other logical languages, for example future time temporal logic,
past-time logic, extended regular expressions, µ-calculus, or state machines.
It allows data-bindings, which caters for checking also real-time properties or
for collecting statistics of the observed traces.

Another recent example to strike the right balance between the expressive-
ness of the employed specification formalism and its capabilities is presented
in [21]: LARVA is a tool which generates monitors for specifications formu-
lated in terms of dynamic and communicating automata employing events and
timers—and is therefore able to handle timing as well as contextual informa-
tion.

A serious difficulty for monitoring systems that is especially apparent when
considering real time and hybrid systems is that the execution of the monitor
on the same platform on which the system is executed might influence the
overall system behaviour. Thus, a system with implanted monitors could sat-
isfy different correctness properties than the system without its monitors. In
such cases, the only simple way out is to use dedicated monitoring hardware
not affecting the observed system [64,62,63].
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5 Beyond Runtime Verification

One of the distinguishing features of runtime verification compared to other
verification techniques is due to the fact that verification, at least in online
monitoring, is performed while executing a program. This offers the possibility
to react to violations of correctness properties. More specifically, we runtime
verification allows to react on faults, before they turn into failures. This al-
lows applications of runtime verification techniques, in which other verification
techniques cannot help.

5.1 Applications

In huge systems, certain (hardware) components may fail now and then. Us-
ing monitors to check the expected behavior, such a fault may be observed
and reported. Additional code for mitigation may then react to the fault, for
example, by displaying a corresponding error message. In a certain sense, this
is similar to the well-known concept of exception handling in programming
languages, however, here, exceptions are defined by violations to correctness
properties.

However, not only reliability issues may benefit from runtime verification tech-
niques. In some cases it is easy to specify the prohibited behavior whereas it is
complicated to specify and verify the allowed behavior—corresponding to the
multiplied negation of all proscriptions. Then, it might be even impractical
to implement all these rules, whereas a go-ahead-check-and-repair strategy
might be an easy and effective solution to the problem. For example, one
might develop a web server first as an application answering each (atomic)
request in the expected manner. To make sure that the server indeed follows
a certain protocol, for example, that a user only receives a document from
some database after being logged in, may be enforced by monitors and corre-
sponding mitigation code: If the user has not logged in when trying to receive
a document (which can easily be checked by a monitor), the mitigation code
will display a login screen.

5.2 Approaches to React at Runtime

The idea of monitoring a system and reacting has appeared in different man-
ifestations in computer science. In this section, we briefly introduce three
such approaches: First, we describe fault detection, identification, and recovery
(FDIR), as an example for a traditional methodological framework. Then we
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introduce runtime reflection (RR) and monitor-oriented programming (MOP)
as current and runtime verification based approaches.

5.2.1 FDIR

The ideas outlined above, are to a certain extent covered by the popular no-
tion of FDIR, which stands for Fault Detection, Identification, and Recovery
or sometimes for Fault Diagnosis, Isolation, and Recovery or various combina-
tions thereof [22]. The general idea of FDIR is that a failure within a system
shows up by a fault. A fault, however, does typically not identify the failure:
for example, there might be different reasons why a monitored client does
not follow a certain protocol, one of them, e.g., that it uses an old version of
a protocol. If this is identified as the failure, reconfiguration may switch the
server to work with the old version of the protocol.

Crow and Rushby instantiated the scheme FDIR using Reiter’s theory of diag-
nosis from first principles in [22]. Especially, the detection of errors is carried
out using diagnosis techniques. In runtime reflection [7], runtime verification
is proposed as a tool for fault detection, while a simplified version of Reiter’s
diagnosis is suggested for identification.

5.2.2 Runtime Reflection

Monitor-based runtime reflection or short runtime reflection (RR) is an archi-
tecture pattern for the development of reliable systems. The main idea is that
a monitoring layer is enriched with a diagnosis layer and a subsequent miti-
gation layer. We only show the pattern with respect to information flow in a
conceptual manner and refer to [7] for a full presentation especially presenting
a realization for a distributed system.

Application

Logging

Diagnosis

Monitoring

Mitigation

Fig. 1. An application and the layers
of the runtime reflection framework.

The architecture consists of four layers
as shown in Figure 1, whose role will be
sketched in the subsequent paragraphs.

Logging—Recording of system events.
The role of the logging layer is to
observe system events and to provide
them in a suitable format for the moni-
toring layer. Typically, the logging layer
is realized by adding code annotations
within the system to build. However,
separated stand-alone loggers, logging
for example network traffic, can realize
this layer as well. While the goal of a
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logger is to provide information on the current run to a monitor, it may not
assume (much) on the properties to be monitored.

Monitoring—Fault detection. The monitoring layer consists of a number of
monitors (complying to the logger interface of the logging layer) which observe
the stream of system events provided by the logging layer. Its task is to detect
the presence of faults in the system without actually affecting its behavior. In
runtime reflection, it is assumed to be implemented using runtime verification
techniques. If a violation of a correctness property is detected in some part
of the system, the generated monitors will respond with an alarm signal for
subsequent diagnosis.

Diagnosis—Failure identification. Following FDIR, we separate the detections
of faults from the identification of failures. The diagnosis layer collects the
verdicts of the distributed monitors and deduces an explanation for the current
system state. For this purpose, the diagnosis layer may infer a (minimal) set
of system components, which must be assumed faulty in order to explain the
currently observed system state. The procedure is solely based upon the results
of the monitors and general information on the system. Thus, the diagnostic
layer is not directly communicating with the application.

Mitigation—Reconfiguration. The results of the system’s diagnosis are then
used in order to reconfigure the system to mitigate the failure, if possible.
However, depending on the diagnosis and the occurred failure, it may not
always be possible to re-establish a determined system behavior. Hence, in
some situations, e. g., occurrence of fatal errors, a recovery system may merely
be able to store detailed diagnosis information for off-line treatment.

5.2.3 Monitor-oriented Programming

Monitoring-Oriented Programming (MOP) [18], proposed by Feng and Rosu,
is a software development methodology, in which the developer specifies de-
sired properties using a variety of (freely definable) specification formalisms,
along with code to execute when properties are violated or validated. The
MOP framework automatically generates monitors from the specified prop-
erties and then integrates them together with the user-defined code into the
original system. Thus, it extends ideas from runtime verification by means for
reacting on detected violations (or validations) of properties to check. This
allows the development of reflective software systems: A software system can
monitor its own execution such that the subsequent execution is influenced
by the code a monitor is executing in reaction to its observations–again influ-
encing the observed behavior and consequently the behavior of the monitor
itself.

16



5.2.4 MOP versus RR

RR differs from monitor-oriented programming in two dimensions. First, MOP
aims at a programming methodology, while RR should be understood as an
architecture pattern. This implies that MOP support has to be tight to a
programming language, for example Java resulting in jMOP, while in RR, a
program’s structure should highlight that it follows the RR pattern. The sec-
ond difference of RR in comparison to MOP is that RR introduces a diagnosis
layer not found in MOP. 2

6 Runtime Verification and Contract Enforcement

The notion of contracts is getting popular in computer science. For example,
there is contract oriented programming [48] which has its origin in Hoare’s
pre- and post-conditions [40] or contracts describing the behavior of web ser-
vices and their composition [2,3,17]. Also, the operations of an organization
conforming to a body of regulations could be stated by means of contracts to
be used for later compliance checking [4,15,33]. Actually, further examples and
how to deal with them formally are given within this current special issue in
the various articles. For the discussion to come, we follow the definition given
in [54].

Definition (Contract [54]): A contract is a document which engages several
parties in a transaction and stipulates their obligations, rights, and prohibi-
tions, as well as penalties in case of contract violation.

It is important to understand this definition in detail. Reading the first part
of the definition, we see, in simple words, that a contract defines a mixture
of the expected and possible behavior of the involved parties. The last part
of this definition, however, caters also for violations to contracted behavior.
More specifically, if the behavior violates the contract, a penalty is due. Then,
however, paying the penalty can be understood as a behavior according to
the contract. Clearly, we should distinguish such behavior from situations in
which one party does neither follow the expected behavior nor does pay an a
priory agreed penalty. In that case, we say that one party breaks the contract.

Contract enforcement is the problem of monitoring contract fulfillment as
well as enforcing the penalty, when a contract violation has been observed.
Following the discussion above, we define monitoring contract breakage as the

2 Clearly, in the MOP framework, a diagnosis can be carried out in the code trig-
gered by a monitor. This yields a program using the MOP methodology and follow-
ing the RR pattern.
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problem of checking whether the contract is fulfilled or whether, in case of
contract violation, the necessary penalty is paid.

In [54], a formal language CL for contracts is introduced which allows to
specify obligations, permissions, and prohibitions over actions. Then, a trace
semantics for CL is established and used in conjunction with runtime ver-
ification techniques to generate finite-state monitoring procedures for such
contracts [44].

Likewise, in [27], checking for contract breakage is studied in the setting of
regulatory conformance. To cater for the domain specific way of formulating
conformance, linear temporal logic is extended to distinguish between obliga-
tions and permissions, and to allow statements to refer to others. Moreover,
a synthesis algorithm yielding efficient monitors for the resulting language is
introduced.

For contract enforcement, we are not aware of any architectural approach.
However, contract enforcement apparently matches runtime reflection: Moni-
toring contract fulfillment provides suitable properties to verify at runtime. In
case of a contract violation, the enforcement of penalties asks for mitigation.
However, a detailed study in this direction has to be done.

7 Conclusion

In this paper, we presented the gist of runtime verification. We have identified
that runtime verification deals with verification techniques that allow checking
whether an execution of a system under scrutiny satisfies or violates a given
correctness property. Moreover, we have learned that runtime verification has
its roots in model checking and that one of its main technical challenges is the
synthesis of efficient monitors from logical specifications.

In a certain sense, runtime verification is an old story: monitoring, software-
fault analysis, runtime checking, runtime verification, diagnosis—they all aimed
and aim at extracting an execution trace to be analyzed. The name changed
with the technology shifts in computer science—but the general idea prevailed
and proved to be successful. Currently, the focus on dependable and embed-
ded systems together with the background provided by progress in the broader
field of formal methods, especially model checking, are fertilizing the devel-
opment of runtime verification techniques and propel their application into
industry.

Moreover, the emerging paradigms of service oriented architectures, adaptive
and self-healing systems, and the use of electronic contracts ask for monitor-
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ing executions of the respective systems/contracts and subsequent reaction
in case of misbehavior, as these systems hard to analyze statically due to
their dynamic nature. Especially for these applications, runtime verification
techniques form a powerful basis.
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