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Abstract. This paper describes a method for combining “off-the-Sh8/AT
and constraint solvers for building an efficiédatisfiability Modulo Theories
(SMT) solver for a wide range of theories. Our method follals abstrac-
tion/refinement approach to simplify the implementationw$tom SMT solvers.
The expected performance penaltyrmt using an interweaved combination of
SAT and theory solvers is reduced bgneralisinga Boolean solution of an
SMT problem first via assignindon’t careto as many variables as possible. We
then use the generalised solution to determine a thereblfesroanstraint set
to be handed over to the constraint solver for a backgrouedrih We show
that for many benchmarks and real-world problems, thishaigtition results in
considerably smaller and less complex constraint prohlems

The presented approach is particularly useful for assemhlipractically viable
SMT solver quickly, when neither a suitable SMT solver nooaesponding in-
cremental theory solver is available. We have implementgdpproach in the
ABsoLVER framework and applied the resulting solver successfullgridn-
dustrial case-study: The verification problems arisingerifying an electronic
car steering control system impose non-linear arithmetiestraints, which do
not fall into the domain of any other available solver.

1 Introduction

Satisfiability modulo theorie§SMT) is the problem of deciding whether a formula in
quantifier-free first-order logic is satisfiable with resptra givenbackgroundtheory. For
example, one is interested whether the formta (i > 0) A (=(2i 4+ 75 < 10) V (i + j < 5))
is satisfiable in the theory of integers. In recent yeargarh on SMT has attracted a lot of
attention. SMT solvers for dedicated theories have beealdped, such as Yices [21], Math-
SAT [5], or CVC [1]. The growing efficiency of these solverstheir respective domains is
witnessed in the annual SMT competitidrt ¢ p: / / www. snt conp. or g).

Amongst others, SMT has its applications in the area of modetking and abstraction
[12], (symbolic) test case generation [19], or in the vegificn of hybrid control systems
[3, 20], to name just a few common examples. Especially feralfter, however, one is often
faced with the task of having to solve problems with respectheories that are not (yet)
supported by existing SMT solvers, althougbnstraint solvergor the required theories are



available. These powerful constraint solvers have beeeldped for dedicated theories, such
as general linear arithmetic over integer and real numi##ks [In contrast to SMT solvers,
such constraint solvers only accept a conjunction rattear #m arbitrary Boolean combination
of atoms.

In this paper, we propose a method for combining off-thdf&eolean satisfiability (SAT)
and constraint solvers without altering them to assembld@ Stivers for a wide range of dif-
ferent theories with a minimal engineering overhead, y¢i \&ireasonable practical perfor-
mance. The existing approaches to solve SMT problems canbzbvided into three main
categories. In théranslation approact23], given an SMT instance, the entire problem is
encoded as an equi-satisfiable pure SAT instance such tha@ttos to the SAT problem
translates into a solution of the original SMT instance. &ample, if the above mentioned
is solved over the 16 bitintegers, then it is straightfordvarformulatep’s constraints in terms
of bits yielding a purely propositional formula. With thewaaht of highly efficient SAT solvers
(cf. [8, 15, 16]) this approach turned out quite successhitleast for certain background the-
ories, see for example [10, 18]. However, such a translatiemives a non-obvious interplay
between the SAT solver and the encoding, where the struofuitee underlying problem is
difficult to reflect in the encoding. In thedbstraction/refinement approa¢®?], one represents
each occurring theory constraint with a Boolean variable s&bstituting these Boolean vari-
ables for their respective constraints, an abstract SAblpro is produced and solved first.
This determines the set of constraints to be satisfied. I suBoolearrepresentative vari-
able has been set to true, then the corresponding constrainieistsd, and respectively, if a
Boolean representative variable has been assigned faésethe negation of the corresponding
constraint is added to the constraint set. Finally, thisst@int set is passed on to a dedicated
solver for the background theory of the problem. If the sofirels a solution, then the original
SMT problem has been solved, and a solution has been detsintdn the other hand, if the
theory solver fails, then the Boolean abstraction is refiaatew solution for the abstract SAT
instance is computed and the process continues. lorhee solving approack®], both the
abstract Boolean problem and the theory constraints avegsimultaneously, i. e., whenever
a Boolean variable which represents a constraint is assjghe corresponding constraint or
its negation is added to the set of constraints to be satisfibis set is checked for satisfia-
bility immediately and consequently conflicts can be detgett an early stage of the search
process and can be pruned from the remaining search spaseapfnoach allows for building
highly efficient SMT solvers and is followed by most modernlto However, it requires a
tight interaction between the SAT solver and the constrsohter: the SAT solver must call
the constraint solver whenever a new constraint is addedrerdfore, the solver should be
able to handle this growing constraint set efficiently. Rartnore, when the SAT solver back-
tracks, the constraint solver must follow the backtracldtep, and remove the corresponding
constraints from the incrementally growing set. Such attigteraction complicates the in-
tegration of existing constraint solvers since they neethtrface supporting backtracking,
similar to the one described in [9]. Thus, when building oustSMT solvers using off-the-
shelf constraint solvers that do not support backtrackihig, approach is often impractical,
especially in presence of limited development resources.

Foremost for this reason, our framework, A8LVER [3], which allows the integration
of efficient SAT and constraint solvers to build-up customTSs8blvers, follows the abstrac-
tion/refinement approach. As this method proved to be ioféo the online solving approach,



we employ a simple yet surprisingly efficacious optimisatio the abstraction/refinement
scheme: once a SAT solver has determined a solution to thee&wabstraction of an SMT
problem, we firsgeneralisethis solution, before generating and solving the undegyian-
straint problem. This yields fewer and smaller constraimobfems than the traditional ap-
proach. More specifically, we use a simple greedy-algoritbrfind a minimal assignment
(but not necessarily of minimal weight) which still satisfilne Boolean abstraction, i. e., each
completion of the assignment must still satisfy the Boolalstraction. Having found such a
partial assignment, each variable is assigned either fals®, ordon't care For each repre-
sentative variable being assigned true, we add the comegmpgp constraint to the constraint
set. Respectively, for each representative variable bessmned false, we add the negation of
the constraint. All other representative variables, ia#h.yariables being assignetbn’t care
are ignored. Thus, the smaller the assignment, the smhbflecdnstraint set to be handed to
the corresponding constraint solver. Furthermore, if susaller assignment is found to be
conflicting by the theory solvers, a set of possible Boolednt®ns is invalidated by a single
assignment. The size of this set is exponential in the num@on’t cares.

Our generalisation of a SAT solver’s solution is based onetfieient computation of a
minimal solution of a given conjunctive normal form (CNF) formulauiCapproach is thus
similar in spirit to the so-called MiSAT problem and its variations [4, 6, 11], which, however,
are known to be NP-complete [6]. These complexity theoretsults imply that we cannot
hope to find any generally efficient algorithm and therefove, need to resort to heuristic
approaches which (as our benchmarks in this paper indivaiel well in most practically
relevant cases.

We have implemented the suggested optimisation within @s®&LVER framework. Even
though we have to admit that our approach does not reach tfpance of other participants
of the SMT-COMP in their respective domains, our solver teenisuccessfully applied to an
industrial case-study involving non-linear constraintsah are not supported by other solvers
(see Sec. 4). Using ABOLVER, we were able to verify properties of a car’s electronicisiee
control system whose behaviour was given by a MATLAB/Simkiimodel. Such models
typically capture the dynamics of the closed control loogplving the actual system and part
of its environment. This loop can then often, as it was in @seg; only be expressed in terms
of a non-linear equation system.

2 Abstraction and refinement for SMT

In this section, we develop the framework in which we descdbr approach. Since we are
faced with formulas which involve variables ranging ovdfatent domains, we use tgped
setting.

Domains, variables, assignments. Let ¥ be a finite set otypesandD = (D, ),ex) @
family of respectivedomains Furthermore, leV = (V,)¢cx) be a family of finite sets of
variablesof the respective type. Abusing notation, we also denot®lilge unionl J, ., D
and byV the union J, ., V,. We also call the elements &f values

B denotes th@&ooleantype as well as the domaib = {#, ff}. We always assum €
and we mostly consider the redsand integer& as additional types.

To represent partial assignments with total mappings, wednce? to denote thalon’t
care value and leD’ = {?} & (D, ),¢x) be the family of domains enriched witton't care



An assignmenis a mappingr : V — D’ assigning to all variables either a value of the
corresponding domain ¢ We call - completeiff (v) # ? for all v € V. To establish
an information preorder we set? < d for all d € D, ordering? below all domain values
and leaving these values unordered. Eatenote the reflexive closure ef. The information
preorder extends to assignmentsroy 7' iffforall v € V' 7(v) < 7/(v). Thus,r is smaller
thant’ w.r.t. <, if reassigning’ to a number of variables if results inr.

The weight|7| of an assignment is the number of values different frofy i.e., |7| =
[{r(v) # ? | v € V}|. Dually, we define théreedomof r, denoted by7|-, as the number of
don't cares in its rangelr|, = [{r(v) =7 | v € V}|.

The set of assignmengenerateddy 7, denoted by(7), is given by a set of assignments
7/ with 7 < 7/. Similarly, the set of complete assignments generated, lolenoted by(7), is
given by the set of complete assignmeritsvith 7 < 7/.

Remark 1. The number of complete assignments generated by an assignmexponential
in its freedom:|(7)| = 2I7l-.

Formulas. Let F = (F,),ex be a family of ranked function symbols aftl= (P, )sex
a family of ranked predicate symbols. The set of (typedinsis inductively defined: First,
every variable o), is a term of typer, and second, if € F, of rankn is a function symbol

of typeo anday, .. ., a, are terms of type, thenf(a4,...,a,) is a term of typer.
The set of (typedatomsis defined as follows: Ip € P, of rankn is a predicate symbol of
typeo anday,. .., a, are terms of type, thenp(ay, ..., a,) is an atom of typer. Note that

the above definition does not allow terms and atoms whichlwevtvo or more types. Each
such atom representanstraintformulated in the background theory of the respective type.
A literal is a possibly negated atomghuseis a disjunction of literals, and a formula in
conjunctive normal forn{CNF) is a conjunction of clauses. Thus, a formuglén CNF, as
considered subsequently, has the faree ;.\, c ;. (4)pij(ar, ..., an,,).
Finally, for a formulagp, we useV,, (¢) to denote the variables of typeoccurring ing.

Example 1. As a running example, we use the following formgikeonsisting of four clauses
over the variabled’;(¢) = {i, 4, k,1} andVg(¢) = {x,y}:

¢={(G>0)VyIA{~(2i+j <10)V(i+j < 5)IA{zV-(j > 0)IA{(k+(4—k)+20>T7)}

Solutions. A complete solutionf ¢ is a complete assignment to the variable¥jrsuch that
¢ evaluates tdt in the usual sense. For example, we can defias an assignment far (as
shown in Ex. 1) withr (i) = 3, 7(j) = 1, 7(k) = 0, 7(l) = 2, 7(x) = #, andr(y) = ff. This
assignmensatisfiesall clauses and assigns values other tham all variables. It is therefore
called acomplete solutionf ¢. For a given formula, the SMT problenis to decide whether
there is a complete solution far.

In general, an assignmentis asolutionof ¢ iff every complete assignment with 7 < 7/
(i.e. everyr’ € (7)) is a solution ofp. For example, an assignmentith (i) = 3, 7(j) = 1,
7(k) =7, 7(1) =2, 7(z) = t#, andr(y) = ff is also a solution for formula of Ex. 1 since
the value oft can be set arbitrarily.

The assignment is called aminimal solutioniff 7 is a solution ok and minimal w.r. t=<:
Thus, if any further variable inr is assigned, then there would be @ with 7 < 7/ which



does not satisfyp. A solutionr is a solution ofminimal weightff it is a solution and for all
solutionsr’ we havelr| < |7/|.

For example, the- above is not minimal, since’ with 7/ < 7 by settingr’(i) = 3,
7/(j) = 1, andr’(I) = 2 and assigning to all remaining variables is also a solutiongfr’ is
not only a minimal but also a solution of minimal weight tosince every solution fop must
at least assign values tpj, andi to satisfy the second and the fourth clause, respectively.

2.1 Deciding SMT by abstraction and concretisation

We integrate a Boolean SAT solver as well as constraint selfigr the occurring back-
ground theories into a combined SMT solver. Thereby, weireghe constraint solvers to
decide the satisfiability of conjunctions of possibly negitonstraints. Thus, our goal is to re-
duce the SMT problem to Boolean SAT problems and constralairsy problems. We follow
the well-known idea of solving first a Boolean abstractioofielding a constraint problem
for each type at hand.

Boolean abstraction. Given a formulag in CNF, its Boolean abstractiorabst(¢) is de-
fined as follows: Every atom;;(ai,...,an,;) is replaced by a newepresentativeBoolean
variablep;; which does not occur otherwise it Thus, := abst(¢) is of the formy =
Nier Ve, (7)pi;- The representative Boolean variables of a Boolean abistnedtist(¢) are
denoted by the sétf(abst(¢)) C Vi (abst(¢)). Since all representative variables do not occur
otherwise inp, we haveVf (abst(¢)) N V(¢) = 0.

Example 2. The Boolean abstraction @f shown in Ex. 1 is given asbst(¢) = {v1 V y} A
{=va Vuz} A {z V —ws} A {vs} with VE(abst(¢)) = {v1,...,v5}. Here, we use; as a
representative Boolean variable for the atdin> 0), andv, as representative2i + j < 10),
and so forth.

Abstract solutions. Let ¢ be a formula and) := abst(¢) its Boolean abstraction. Every
complete assignment to the variablegofields a truth value for the atoms ¢f As the atoms
are mapped to Boolean variables/inthis yields a complete assignment for the variableg.of
More formally, every assignmentto the variables i induces an assignment:= abst(7)

to the Boolean variables in by v(p;;) := (pij(ai, ..., an,;))[7] where(pi;(ay, ... an,;))[7]
denotes the truth value of the ateiy (a1, . . . , a,,; ) under assignment(if somea; is assigned
7, thenp,; is assigned as well). We have immediately:

Remark 2. Let 7 be a (complete) solution af. Thenabst(7) is a (complete) solution of

abst(¢).

Concretisation. Let conc(¢,v) = {7 : V(¢) — D’ | abst(r) = v} be the set of all
concretisationof v with respect tap. As a consequence of Remark 2, the satisfiability of
¢ can be checked by first searching for a complete solutiof abst(¢) and then checking
whether there is & € conc(¢, v) which satisfiesp. While the first problem is an ordinary
Boolean SAT problem, the second problem is a constraintlenobi.e., one has to check
whetherconstr(¢, v) = A, —¢ Pij (a1, - an ) AN 7Pis (a1, - - - an,, ) IS satis-
fiable. This suggests the abstraction/refinement appraaahtcking satisfiability of, i. e.,

to search for an abstract complete solutiofor abst(¢) and to then search for a complete
solution forconstr(¢, v). We summarise this procedure in the following lemma:



Lemma 1. ¢ is satisfiable iff there is a complete solutionof abst(¢) and constr(¢,v) is
satisfiable.

Note that the application of this lemma requires each indat@nstraint solver to be able
to handle negated atoms.

2.2 Generalisation

We adapt the approach in order to reduce the number of catiset@onstraint solvers
and such that the individually processed constraint sgtdva fewer constraints—ultimately
yielding a much better overall performance.

The simple yet efficacious idea is g@neralisea given solution obtained by a SAT solver
before considering the constraint problem. Given a coraetutiony for abst(¢), we will
obtain a minimal solution’ < v and replace with »/ in all subsequent steps.

For a not necessarily complete solutignthe constraint sebnstr(¢, v’) is exactly defined
as for a complete solution. Note, however, all constrgjngi,, . . . , a,,,) with v/(p;;) = 7 are
not part ofconstr(¢, v'). In other wordsconstr(¢, v') has|v/|- less atoms thanonstr(¢, v/)
for a complete solution. But still, the statement of Lemma 1 holds for incompleteisohs:

Lemma 2. ¢ is satisfiable iff there is a (possibly incomplete) solutignof abst(¢) and
constr(¢, ') is satisfiable.

Proof. Consider a solution’ of constr(¢, v'). If 7’ is not complete, take an arbitrary complete

solutionT with 7" < 7. Then we havép;; (a1, ..., an,,))[7] = v'(pi;) whenever/' (p;;) # 7,
i.e., v’ < abst(r). Sincev’ satisfiesabst(¢), abst(7) satisfiesabst(¢) as well and thus
satisfiesp. The other direction is immediate by Lemma 1. O

The next lemma shows that we can resort to incomplete sokitmprune the search space:

Lemma 3. Letr andv’ be solutions ofibst(¢) with v/ < v. Then satisfiability ofonstr(¢, v/)
implies satisfiability otonstr(¢, v').

Proof. Sinceconstr(¢,v’) contains a subset of the constraintscofistr(¢, v), every assign-
mentr which satisfiezonstr(¢, ) must satisfyconstr(¢, v') as well. O

Therefore if’ is a solution obbst(¢) andconstr(¢, ') is notsatisfiable, thenonstr(¢, v)
is not satisfiable for all with v/ < v. This gives rise to an efficient procedure for checking
the satisfiability of a formula:

Lemma 4. Letv’ be a set of solutions whose elements generate all completiosts of a
formulag, i.e.,J, o (V') = {v | v is a complete solution afbst(¢)}. Theng is satisfiable
iff there exists a’ € v’ such thatonstr(¢, V') is satisfiable.

Note the following important facts on the approach sketchealve: First, every’ gener-
ates an exponential number of solutions with respect taésdom|v'|; (Rem. 1). Further-
more, the number of atoms to check is reduced by the fregdimof /. Both reasons give
an intuitive explanation for the benefit of our approach eioglly confirmed in Sec. 4.

This minimisation approach suggests to find sapmalset’ of solutions to generate all
complete ones. However, as even computing a single solatiormimum weight from a given



one isNP-complete and enumerating all possible solutiongI-complete, it is infeasible to
construct such an optimal set [6].

Thus, instead of building a set of minimal solutions at the beginning, vmeinimiseeach
solution as generated by the SAT solver according to simgleistics. If the obtained minimal
solution does not yield a concrete solution, we use the SAlesto produce a new solution
outside the already visited search space. In the next seeti@ introduce the corresponding
algorithm, and we discuss its efficiency in Sec. 4.

3 Solving algorithm and minimisation

We now present ABOLVER, which implements the abstraction/refinement appradtin
generalisationfollowing the ideas that were laid out in the previous sattWe start with the
main loop of our ABoLVER framework and subsequently discuss the minimisation ékgor
which is used to generalise the arising Boolean solutions.

3.1 Main loop

ABSOLVERS main procedureolve for deciding an SMT problem is shown in Alg. 1.The
procedure takes a formutaas input and returns a solutioniff ¢ is satisfiable. To do so,
in line 2, a Boolean abstractiaft is computed before entering the main loop. Subsequently,
solve adds further clauses 0 whenever it discovers unsatisfiable conjunctions of (fbgsi
negated) constraints. In the main loop, we first computelisolv to the Boolean abstraction
¢’ (line 4). If no such solution exists (line 5), then there &xi® solution to the original SMT
instancep and the procedure returrfs (line 6).

Otherwise, following the ideas of Section 2.2, the Boolealution v is generalised by
reducing the weighlv| of v (line 8). This minimisation algorithmn{inimisation) is discussed
in Section 3.2. Using the now generalised soluticim the Boolean abstraction, we construct
the corresponding constraiadnstr(¢, v) and use a constraint solver to search for a concrete
solution (line 9). If a solutionr exists (line 10), then is indeed a solution to the original
problem¢ and accordingly, the algorithm returnss the solution.

If no suchr exists, an unsatisfiable subset of the literals@fstr(¢, v/) is constructed by
conflicts and added as a conflict clauseiq(line 13). In our implementatiorpnflicts returns
those literals which are reported to be mutually inconsidtg the employed constraint solver.

If the constraint solver does not return such an unsatisfiadrle conflicts() returns all literals
of constr(¢, v) and consequently, all of them are added into the new confiiase.

3.2 Minimisation

Let us now turn our attention to the generalisation algarithinimisation shown in Alg. 2.
It starts with a complete Boolean assignmerds returned by the functioboolean_solver,
which we have to minimise.minimisation takes a Boolean formula’ and an assignment
v which mustsatisfy ¢’ initially. The procedure maintains a set of variabléswhich are
subsequently considered for being assighe#t first, V' is initialised to the set of all variables
Vi (¢') of ¢’ (line 2).



ALG. 1 ABSOLVERS solving algorithm. ALG. 2 Iterative minimisation algorithm.

1: proc solve(¢) 1: proc minimisationg’, v)

2: ¢ := abst(o) V = Va(¢')

3:  while # do 3:  while # do

4 v := boolean_solver(¢') 4 forall clauses’; of ¢’ do

5: if v =fail then 5: L := satisfying_literals(C;, v)
6: return ff 6: if L={v}orL={-w}then
7 7:
8 8
9 9

end if ¢’ := remove_clause(C};, ¢')
v := minimisation(¢’, v) V := remove_variable(v, V')
7 := constraint_solver(constr(¢, v)) end if
10: end for
10: if 7 # fail then 11 if V =0then
11 return 7 12: return v
12: end if 13: end if
13: ¢ = ¢' A —(conflicts(7)) 14: v := select_variable(V)
14:  end while 15: assignvinvto?
16: V' := remove_variable(v, V')

17:  end while

Then, a loop is entered in which in each iteration at leastvaniable is removed frony.
This loop has two parts: In lines 4-10, the clauses which ahg satisfied by a single literal
(line 6) are removed (line 7) fromf and the corresponding variahlérom V' (line 8): As when
a constraint is satisfied by a single literal, the correspundariable cannot be assignedIf
no candidate variable remains¥n(line 11), the algorithm returns the resulting assignment
Otherwise, all variables ii¥ can be selected to be assigriedThus, the algorithm chooses
a variablev € V with select_variable (line 14) according to heuristics discussed below and
reassigng to v (line 15). Thisv is then removed fron (line 16)—and a new iteration starts.
Note that the number of iterations is bounded by the numbeaigébles.

Selection heuristics. Presumably the choice of the variable to be assigh@ohplemented

by select_variable) plays a crucial role in the efficiency of the overall decmsiorocedure.
Therefore, we experimented with the following three difietrheuristicsinput-order rule:In

the simplest form, variables are chosen according to thetstre of the input formulaPurity-
frequency rule:Pure literals are those which occur in a given formula eitirdy negative, or
only positive. In this caseglect_variable always prefers a pure variable over a non-pure one.
Representative ruleApplying this heuristic, variables that represent constsaof the back-
ground theory are preferably assignedObserve thatninimisation runs with the proposed
selection heuristics in polynomial time with respect to siee of.

It is easy to construct test cases which strongly discriteifetween these variants, as
well as test cases where the heuristics do not apply. Inieghsenough, in the benchmarks
described in the next section, which are taken from the SNBI-the heuristics performed
roughly equal. The measured differences in performance wely on a marginal scale, indi-
cating that either way good (or, bad) candidates for elitgmavere found.

Note that the minimisation algorithm is easily integratetbiother abstraction/refinement
solvers as a subsequent stdfer the Boolean part of an SMT problem has been solved by
an arbitrary SAT solver, as shown in Alg. 1.Moreover, it wbible possible (and, arguably,



sometimes even more efficient) to modify the internals of & Salver in order to obtain
a generalisation directly. However, this requires moreettgyment effort and ties the SMT
solver to a particular version of a particular tool. Additadly, most of today's competitive
SAT solvers make use of highly integrated algorithms, shahrhaking modifications to them,
even small ones, becomes a non-trivial and error-prone @sksequently, having a separate
generalisation algorithm gives us the flexibility we needj aases implementation.

4 Implementation and benchmarks

This section briefly discusses implementation details o68ABvVER and gives three kinds
of benchmarks showing the efficiency of our approach. Rivetshow the speed-up of using
the generalisation approach by comparingVvEeR without and with generalisation on ex-
isting benchmarks. Second, we compares®BVER with third-party SMT solvers that follow
both an iterative approach and an abstraction/refinemgmbaph, showing that our approach
yields an inferior but still estimable solver. Most inteiegly, we report that we indeed easily
obtained an SMT solver for non-linear arithmetic constisathat helped us to verify a car’s
electronic steering control system.

ABSsoOLVERas originally introduced in [3], is a C++ framework that, eredmbined with
the appropriate solvers, can be either used as a stand-@loheor integrated in terms of
a system library, e.g., to extend other constraint-hagdéystems. In the discussion that
follows, we refer to ABSOLVER as the framework in its original form, and ABLVERDC as
the framework that has now been extended with the iteratimémisation algorithm described
above. Currently, ABoLVERIinterfaces with LSAT [2], grasp [14] and (z)Chaff [15], adtigh
in this paper, only the latter was used to run benchmarks. cbhneretisation is handled by
specialised solvers offered by the COIN-OR library [13]sBally, the COIN-OR library is a
collection of dedicated, and more or less independentlgld@ed constraint solvers, covering,
e.g., linear arithmetic, or non-linear arithmetic, eacthvei different solver.

An input problem to ABOLVER (and, therefore, to ABoLVERDC) then consists of a
standard DIMACS [7] format SAT problem, where the backgbaanstraints are expressed
in a custom language, encoded in the DIMACS comments. Thys thie abstract part of an
ABSOLVER problem is already understood by any standard SAT solveémditurally “wrap-
per” code has to be written for processing the solver’s resat correctly. Part of the solver
“wrapper” is also the iterative minimisation algorithm thie SAT solver, i. e., each assignment
produced by the SAT solver is first generalised, before theemete solution is determined.
Moreover, the “wrapper” is also responsible for evaluatimg return values of the constraint
solver, and for adding the negated abstract solution battietonput clause, if necessary. This
design facilitates a loose integration of the individudyea However, we expect some con-
stant penalty on all benchmarks, because the “wrapperthés type or character marshalling
of input and return values to solvers, rather than accessugver’s data structures directly in
terms of, say, pointers to memory locations.

The benchmarks presented in the following sections have brecuted using a timeout
of two hours, and a memory limit of 1.2 GB on a 3.2 GHz Intel Xaystem, equipped with
2 GB of RAM. All test cases are taken from the QF_LIA suite tisapart of the SMT-LIB
benchmarks [17].



4.1 ABSOLVER vs. ABSOLVERDC 10000 F—ro—mpe ey

A direct comparison between ARLVER -
and ABsOLVERDC is shown in Fig. 1. Each 1000 F
test case is represented by a cross in the dia-
gram, where the x-coordinate reflects the runtirge 100
of ABsoLvERDC, and the y-coordinate the run8
time of ABsoLvER. Consequently, when ABZ 10
SOLVERDC outperforms ABOLVER, the corre- |
sponding cross is located within the upper left 1 |
area of the diagram. Both, the x- and y-axis show
the runtime in seconds, based on a logarithmic o4 [ 0 . o0 0 o o0 o
scale. Marks at the upper and rightmostend of 01 1 10 100 1000 10000
the diagram denote timeouts of ABLVER and ABsolverDC
ABSOLVERDC, respectively. Fig. 1 indicates
that, in all test cases, ABLVERDC is at least
as efficient as ABOLVER, and even outperforms A®LVER in roughly one quarter of the
test cases by more than an order of magnitude. Those runsnineixhibit speed ups of more
than three orders of magnitude. Note that more than 20 testsceesulted in timeouts of
ABSOLVER, whereas ABOLVERDC was still able to solve these efficiently.

FiG. 1: With and withouton't cares.

4.2 Comparison with other solvers

In Fig. 2, ABsoLVERDC is compared to CVC 3, MathSAT, and Yices. Let us use the
same type of diagram as for the comparison betwees@BERDC and ABSOLVER above,
i.e., for each test run, a cross is added in a square suchhihat tand y-coordinate reflect
the runtime of ABSOLVERDC and the other solver on a logarithmic scale, respectiviebt
surprisingly, other solvers which employ an iterative aygmh, still perform better in these
test runs than ABoLvERDC does. However, ABOLVERDC shows a comparatively stable
and reliable performance compared to these solvers. Indaetto the optimisations in place,
ABSsOLVERDC is able to solve most test runs in additional time whichn$/@reater by a
constant factor. As shown in Fig. 2a, ABLVERDC is comparable to CVC 3, since most
test runs are clustered around the diagonal line, and siotetbols are able to solve some
test cases which cannot be solved by the respective compekitg. 2b, and 2c show that
ABsoOLVERDC is clearly slower than MathSAT and Yices. However, 60%Ibbanchmarks
are solved by ABoLvERDC within a runtime which is only larger by a constant factbinis
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(a) ABSOLVERVs. CVC 3. (b) ABSOLVERVS. MathSAT. (c) ABSOLVERVS. Yices.

FIG. 2: A detailed comparison.
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is indicated by the diagonal lines, as due to the logarittsnale of the diagrams a constant
factor translates to diagonal corridors. The corridorsesent factors of 20, and 100 in Fig. 2a-
c, respectively. Note that part of this overhead is due toteh#file-based interface to the
underlying solver.

4.3 Industrial case-study with non-linear arithmetic congraints

The ABsSOLVER framework was originally developed to handle general miagthmetic
and Boolean constraints as arising in the verification of MAB/Simulink models [3]. To
the best of our knowledge, no pre-existing tools suppotteatcurring non-linear constraints
imposed by these models. Consequently, we integrated aatiped non-linear constraint
solver, as provided by the COIN-OR library, into ABLVER.

We have employed successfully ABLVERIin verifying a number of properties of a car’s
steering control system. The continuous dynamics of thérolber and its environment had
been modelled using MATLAB/Simulink, where the environmeansisted of non-linear func-
tions modelling the physical behaviour of the car. An auttadaonversion (using a custom
tool-chain) resulted in 976 CNF-clauses, and 24 (non-glimxpressions representing the con-
straints. Currently, ABOLVERn its original version is able to solve the imposed conatrai
problem in 17 seconds. On the other hand, our optimised s8lBsoLVERDC, was able to
solve the same problem in only 9 seconds, giving a speed-upughly 50%. In both cases
the employed theory solvers were COIN [13] (for the lineatpaChaff [15] (for the Boolean
part), and IPOPT [24] (for the non-linear part).

5 Conclusions

In this paper, we presented a simple yet surprisingly efifiececoptimisation to the ab-
straction/refinement approach in SMT solving. Startindhvatr ABSOLVER framework as
presented in [3], we were able to improve the performancees$olver substantially byener-
alising a SAT solver’s solution, before generating and solving theéeulying constraint prob-
lem. This yields fewer and smaller constraint problems ttientraditional approach. Our
experiments confirm that the optimisation improves theiti@thl abstraction/refinement ap-
proach and pushes the ABLVER framework in a practically applicable range.

In many fundamental domains, specialised SMT solvers ari$tABSOLVERcannot com-
pete with these solvers. However, to build an SMT solver with framework, it is sufficient
to integrate a SAT solver and non-incremental theory sela@eblack boxes.

Therefore, ABBOLVERprovides a useful trade-off point between research anddgvesnt
effort on the one hand side, and the domain of solvable pnobtn the other: With a minimum
engineering effort, we were able to build a solver for noredir arithmetic SMT problems and
to successfully apply this solver in verifying a car’s eteaic steering control system—no
other solver was able to process these non-linear contstitaéfiore. As such our framework
somewhat closes the gap between more advanced SMT solvegsdeveloped in research,
and currently arising industrial problems which are oftesdd upon hitherto unsupported
theories.

Acknowledgements. Thanks to Jinbo Huang, NICTA, for comments on an earlierivarsf
this paper.
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