
INFINITY 2003 Preliminary Version

Network Invariants for Real-Time Systems

Olga Grinchtein 1 Martin Leucker 2

IT Department
Uppsala University
Uppsala, Sweden

Abstract

We extend the approach of model checking parameterized networks of processes by
means of network invariants to the setting of real-time systems. We introduce timed
transition structures (which are similar in spirit to timed automata) and define a
notion of abstraction which is safe with respect to linear temporal properties. We
strengthen the notion of abstraction to allow a finite system, then called network
invariant, to be an abstraction of networks of real-time systems. In general the
problem of checking abstraction of real-time systems is undecidable. Hence, we
provide sufficient criteria, which can be checked automatically, to conclude that
one system is an abstraction of a concrete one. Our method is based on timed
superposition and discretization of timed systems. We exemplify our approach by
proving mutual exclusion of a simple protocol inspired by Fischer’s protocol, using
Weizmann’s model checker TLV.

Key words: model checking, network invariants, parameterized
systems, superposition

1 Introduction

Model-checking is a method for verifying concurrent systems in which the
computations of a high-level description of a system are compared to those
formulated by a logical requirement specification to establish that they are
compatible. Checking linear temporal logic (LTL) specifications of finite-state
systems is well understood. Faced with concurrent systems consisting of an
arbitrary number of processes working in parallel, however, model checking
is more challenging, since we have to deal with unboundedly many states. A
fruitful approach for checking these parameterized systems, as they are often
called, is by use of abstraction and network invariants.

1 Email: Olga.Grinchtein@it.uu.se
2 Email: Martin.Leucker@it.uu.se This author is supported by the European Research
Training Network “Games”.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

The idea of abstraction is to check a smaller finite-state system instead of
the original one. If the smaller system provides more computations, compris-
ing those of the original one, every linear temporal logic property it satisfies,
also holds for the original system. For branching-time logics, similar ideas work
if we restrict the logic to a universal fragment [6]. Abstractions of original sys-
tems may either be found manually or using ideas of abstract interpretation.
In the first case, one has to prove that the abstract system indeed comprises all
computations of the original one. Basic principles underlying the construction
of abstract models are understood from e.g., [8,7,9].

Verification by means of network invariants was introduced in [19] and
turned into a working method in [14]. In a nutshell, the idea can be sketched
as follows. Suppose we have a finite-state process Φ, e.g., repeatedly requesting
and releasing some resource. We want to reason about a setting in which an
arbitrary number of instances of Φ work in parallel. In other words, we study
the system Φ1 ‖ · · · ‖ Φn, where the number n of instances of Φ is not known
in advance. While for every n, we deal with a finite system, it is clearly not
possible to check the system iteratively for all n.

Using the idea of abstraction, it suffices to find a finite-state system ΦA

which satisfies our requirement specification and which abstracts Φ1 ‖ · · · ‖
Φn for arbitrary n. Similar to induction over natural numbers, the latter is
implied—with some further constraints—if ΦA is an invariant, i.e., ΦA is an
abstraction of Φ as well as of ΦA ‖ ΦA. The first item shows that Φ ‖ · · · ‖ Φ
can be abstracted by ΦA ‖ · · · ‖ ΦA, which can further be abstracted by ΦA,
using the second requirement.

In this way, checking a parameterized system is reduced to finding a pos-
sible network invariant that satisfies the requirement imposed on the param-
eterized system and proving that it is indeed a network invariant. Finding
a possible invariant is usually carried out manually, and checking whether it
satisfies the requirement specification can be done automatically using model
checking. Proving that a system is a network invariant can be reduced to
checking abstraction, which can be done automatically for finite-state sys-
tems. This approach is elaborated for checking linear-time specifications of
fair discrete systems in [13] where also techniques for finding invariants are
discussed.

Traditional techniques for model checking do not admit explicit model-
ing of time, and are thus unsuitable for analysis of real-time systems. Alur
and Dill introduced timed automata to model behaviour of real-time systems.
Furthermore, model-checking techniques were developed [4].

In this paper we study the problem of reasoning about parameterized timed
systems. To the best of our knowledge, this is the first approach for studying
network invariants in the sense of [19] for networks of timed systems.

We follow the outline of [13], in which parallel systems of fair discrete
systems were examined, but enrich the underlying systems with clocks to
model timed behaviour. We extend the notion of abstraction and network

invariant to the timed setting. A main contribution of the paper is a procedure
for checking whether a given timed transition structure is an abstraction of
another one.

We introduce timed transition structures which are similar to timed au-
tomata. The main differences are that we distinguish private and global
variables and that communication is by shared variables instead of message
passing. Thus, our communication model is closer to Java-like concurrent
programming languages.

We say that ΦA is an abstraction of Φ if ΦA comprises at least the computa-
tions of Φ. The idea is used, e.g. in [1]. We show that our notion of abstraction
is safe with respect to linear temporal logic, i.e., linear-time properties of an
abstract system also hold for a concrete one. Provided further environmental
behaviour is taken into account, we show that checking whether a system is a
network invariant can be reduced to proving abstraction.

Note that although clocks can be understood as real valued variables, they
are different from ordinary data variables since time progresses for all clocks
synchronously. If time δ passes for clock x, then it also passes for clock y.
Treating clocks just as real valued variables would disregard this “hidden”
correlation of clocks and lead to wrong conclusions. This implicit dependency
of clocks is one of the obstacles to overcome when extending the approach of
networks invariants to the setting of real-time systems.

We provide sufficient criteria, which can be checked automatically, to con-
clude that a system is an abstraction of a concrete one. Our method is based
on timed superposition [12]. The superposition of Φ and ΦA is a structure
similar to a timed transition structure, whose computations can be projected
to computations of Φ and ΦA, where as best as possible, ΦA tries to follow the
moves of Φ. We show that if the superposition satisfies certain LTL properties,
ΦA is indeed an abstraction of Φ.

To check whether a superposition satisfies LTL properties, we use the no-
tion of discretization of timed transition structures, developed by [10] and [5],
which have an infinite state space, to obtain finite-state systems, maintaining
satisfaction of LTL properties. This allows us to use standard verification
tools, like TLV [16].

As a by-product, our work also clarifies so-called module checking in the
setting of real-time systems.

Our approach is exemplified by proving mutual exclusion of a simple pro-
tocol inspired by Fischer’s protocol, using Weizmann’s model checker TLV

[16].

We restrict ourselves to finite domains of data variables. Using predicate
abstraction (see [11], [13]), it should be possible to extend our results to sys-
tems with variables ranging over infinite domains.

Systems similar to our timed transition structures have been studied in [15].
The approach is based on automatic abstraction, but is limited to checking
safety properties of timed systems with integer time domain. A different

approach for studying parameterized systems is presented in [2] and [3]. It is
based on finite symbolic representation of infinite sets of states and computing
pre-images and convergence. It was shown that reachability for such systems
is decidable if each process has a single clock. Our method is also applicable
for verifying liveness properties of systems with an arbitrary number of clocks.

Since we develop our theory in the setting of LTL, our notion of abstraction
is based on set inclusion of computations. When considering branching-time
logics, simulation becomes natural for defining abstraction. This approach was
studied for timed systems [18] and it was shown that simulation is decidable.
The question of network invariants, however, was not addressed. Note that
simulation is a stronger relation than language inclusion, i.e., it might be easier
to find a network invariant when abstraction is based on language inclusion
rather than on simulation.

In the next section we define timed transition structures. Section 3 recalls
the syntax and semantics of LTL (in the timed setting). In Section 4 we
develop the verification scheme using network invariants, we define discretiza-
tion of timed transition systems and prove that our discretization is correct
with respect to LTL properties. We illustrate our approach in Section 5. We
conclude the paper by summing-up our results.

2 Timed Transition Structures

A time domain I is a totally ordered monoid with a least element equal to the
neutral element. Usually, we consider I = R+, the set of nonnegative reals,
and I = IN, the set of natural numbers (including 0).

A clock, denoted by x, x1, . . . , is a variable which is interpreted over a time
domain. Given a finite set of clocks C = {x1, . . . , xn}, a clock valuation is a
function v : C → I that assigns to every clock x ∈ C a time. If I = R+,
we denote by bv(x)c (respectively �v(x)�) the integer (fractional) part of x
with respect to a given clock valuation v. Let v + t and v↓reset for t ∈ I
and reset ⊆ C denote the clock valuations that satisfy (v + t)(x) = v(x) + t
for all clocks x ∈ C and, respectively, (v ↓reset)(x) = 0 for x ∈ reset and
(v↓reset)(x) = v(x) for x /∈ reset .

If C is a set of clocks, the set XC of clock constraints is the set of Boolean
combinations of atomic formulas of the form x ∼ c, where ∼∈ {<,≤, >,≥}
and c ∈ IN.

Definition 2.1 A tuple Φ = (D, C, W, O, Θ, λ, Π) is a timed transition struc-
ture (TTS) where

• D = {d1, . . . , dr} is a finite set of discrete variables ranging over finite
domains. Let D be the set of (data) valuations where a (data) valuation
maps the variables in D to their domain.

• C = {x1, . . . , xn} is a finite set of clocks, each ranging over R+. Clocks
cannot be data variables.

d=0
s=0

d=0
s=1

d=1
s=1

[x ≤ 2]
[x≥1]
s:=1 d := 1

Fig. 1. Example

• Additional to the clocks in C, a TTS has a master clock, denoted by now ,
which is not modified by any transition. We denote by C̄ the union of C
with now .

• We call V = D] C̄ 3 the set of system variables and S = D × RC̄
+ the set

of states of Φ. Thus, a state is of the form (κ, v) where κ is a valuation and
v is a clock valuation, which assigns to every clock in C̄ a time. We denote
s(d) and s(c) the value of variable d and value of clock c in state s.

• W ⊆ V is a finite set of owned variables, which cannot be modified by the
environment.

• O ⊆ V is a finite set of variables which the environment can observe. We
require V = W ∪ O. We require now to be observable, i.e., now ∈ O.

• Θ is the initial condition, which is a set of assertions (first-order formula)
over states characterizing the initial states. It is required that at initial
states all clocks are equal to 0.

• λ ⊆ D × D × XC × 2C is the transition table. An entry (κ, κ′, g , reset) ∈ λ
should be read as: move from state with valuation κ to a state with valuation
κ′ if the guard g is satisfied, and reset the clocks listed in reset .

• Π = ∨κ∈Dϕκ → pκ is the time-progress condition, where φκ is an assertion,
which holds at the state with valuation κ and pκ ∈ XC for κ ∈ D.

We call variables in O also global variables, the ones in O−W shared, and
the elements of W − O local variables. Global, shared, and local clock and
data variables are defined in the expected manner.

Example 2.2 A simple example of a TTS is shown in Figure 1. We have
(data) variables d and s. d indicates that a resource is busy and might also be
changed by other processes running in parallel while s just identifies whether
the system is in the initial phase or has started. We set d as observable while
s is assumed to be local. We have a single clock x. From the initial state
where s and d equal 0, the system can proceed to the next state, if at least
one time unit has elapsed. Sometimes, we add a label like s := 1 to an edge
to stress that exactly the variable s has changed when taking this transition.
In the second state, the system can remain until time reaches 2, or, it moves
to the third state where the value of d is flipped.

Let us fix a TTS Φ = (D, C, W, O, Θ, λ, Π) (with |C̄| = n) for the rest of

3 X] Y denotes the disjoint union of X and Y .

this section. For a TTS, we distinguish two types of transitions,
λ

−→RT and
tick
−→RT , both subsets of S × S. We write s = (κ, v)

λ
−→RTs′ = (κ′, v′) iff there

exists (κ, κ′, g, reset) ∈ λ such that v |= g, v′ |= pκ′, and v′ = v↓reset . In
other words, we move from s to s′ if the time progress condition of κ′ and
the transition’s guard is satisfied and reset the clocks listed in reset . In this

case, we call s′ a λ-successor of s. We write s = (κ, v)
tick
−→RTs′ = (κ′, v′) iff the

transition is only caused by some time delay δ, that is, if κ′ = κ and there is
a δ > 0, such that v′ = v + δ and ∀0 ≤ t ≤ δ : v + t |= pκ. In this case, we
call s′ a tick-successor of s. Thus, a timed transition structure Φ induces an
infinite-state transition system, denoted by [Φ]RT = (S,−→RT) with states S

and transition relation −→RT =
λ

−→RT ∪
tick
−→RT .

A run of Φ is a finite or infinite sequence of states π = s0, s1, . . . such
that s0 � Θ (initiality) and for each j ≥ 0 sj−→RTsj+1 (consecution). If
furthermore the value of now grows beyond any bound (time divergence), we
call π a computation of Φ. Formally, we require that for every c ∈ R+ there is
a j ∈ IN such that sj(now) > c. When comparing computations of two timed
transition structures, we are usually only interested in observable variables.
Let ocomp(Φ) = {π|O | π is a computation of Φ} where for a computation
π = s0, s1, . . . we denote by π|O the sequence s0|O, s1|O, . . .

If a TTS is running in parallel with an environment (for example other
instances of the same process), the environment might change shared data
variables or reset shared clocks. We therefore study also the computations of a
TTS when put into an arbitrary environment. Let λenv = {(κ, κ′, true, reset) |
κ(d) = κ′(d) if d ∈ W and reset ∩ W = ∅} denote possible changes of an

environment respecting owned variables. We write s = (κ, v)
λenv−→RTs′ = (κ′, v′)

iff there exists (κ, κ′, true, reset) ∈ λenv with v′ = v↓reset .

A modular run of Φ is a finite or infinite sequence π = (s0, λ)(s1, m1) . . .
of states and markers in {λ, env , tick} such that s0 � Θ (initiality) and

for each j ≥ 0 sj
λ

−→RTsj+1 and mj+1 = λ, sj
λenv−→RTsj+1 and mj+1 = env

and not sj
λ

−→RTsj+1, or sj
tick
−→RTsj+1 and mj+1 = tick . π is called a mod-

ular computation, if time diverges. We denote by mocomp(Φ) = {π |O |
π is a modular computation of Φ} the set of modular computations restricted
to observable variables. For a modular computation π = (s0, m0)(s1, m1) . . .
we denote by π|O the sequence (s0|O, m0)(s1|O, m1) . . .

Let Φ1 = (D1, C1, W1, O1, Θ1, λ1, Π1) and Φ2 = (D2, C2, W2, O2, Θ2, λ2, Π2)
be two TTSs with D1 ∩ C2 = D2 ∩ C1 = ∅. We say that Φ1 and Φ2 are
composable if W1 ∩W2 = ∅, W1 ∩O2 = ∅ and W2 ∩O1 = ∅. In other words, Φ1

and Φ2 own different variables and have only observable variables in common.
The parallel composition of Φ1 and Φ2, denoted by Φ1 ‖ Φ2, is defined if
Φ1 and Φ2 are composable and is the TTS Φ = (D, C, W, O, Θ, λ, Π), where
D = D1 ∪ D2, C = C1 ∪ C2, W = W1 ∪ W2, O = O1 ∪ O2 Π = Π1 ∧ Π2,
Θ = Θ1 ∧Θ2, and λ is the largest relation in D×D×XC × 2C that projected
onto the variables of Φi conforms with λi for i ∈ {1, 2}. Note that the parallel

composition is commutative, i.e., Φ1 ‖ Φ2 = Φ2 ‖ Φ1.

To simplify our presentation, we silently assume that whenever we build
the parallel composition of two TTSs, they are composable.

3 Linear Temporal Logic

As a requirement specification language we use a stutter-invariant version of
linear temporal logic (LTL). A model for a temporal formula p is an infinite
sequence of states π = s0, s1, . . . , where each state s provides an interpretation
for the variables in p. A state formula is constructed out of propositions stating
properties of observable data variables and time variables, where the latter are
restricted to clock constraints, and the Boolean operators ¬ and ∨. A temporal
formula is constructed out of state formulas to which we apply the Boolean
operators and the temporal operator U (until). As opposed to general LTL,
we do not consider a next-state operator, since the notion of next state is not
clear in the setting of (dense) timed systems.

Given a model π, we present an inductive definition for the notion of a
temporal formula p holding at a position j ≥ 0 in π, denoted by (π, j) |= p.

• For a state formula p, (π, j) |= p ⇔ sj |= p,

• (π, j) |= ¬p ⇔ (π, j) 6|= p,

• (π, j) |= p ∨ q ⇔ (π, j) |= p or (π, j) |= q,

• (π, j) |= pU q ⇔ ∃k ≥ j(π, k) |= q and for every i such that j ≤ i < k,
(π, i) |= p.

As usual, additional temporal operators can be defined, such as 3p =
true Up and 2p = ¬3¬p.

If (π, 0) |= p, we say that π satisfies p and write π |= p. A formula p is
called valid, if p holds on all models.

Given a TTS Φ and a temporal formula p, we say that p is Φ-valid denoted
by Φ |= p if p holds on all models that are computations of Φ. The notion
extends to modular validity by considering modular computations instead.

4 Verification by Network Invariants

In this section, we define the concept of network invariants for parameterized
systems built-up from timed transition structures. We reduce the problem to
model checking certain formulas of the superposition of two timed transition
structures. For the latter, we show how to construct discretized systems that
can be checked using a standard LTL model checker.

4.1 Network Invariants and Continuous Time

Given two TTSs Φ and Φ′, we say that they are comparable, if O = O′,
O ∩ W = O′ ∩ W ′, that is, they have the “same” observable variables. To

d = 0 d = 1

d := 1

d := 0

Fig. 2. Example

simplify our presentation, let us fix two comparable TTSs Φ and ΦA for this
section. We start by defining the notion of abstraction for timed transition
structures.

Definition 4.1 We say that ΦA is an abstraction of Φ, denoted by Φ vRT ΦA,
iff ocomp(Φ) ⊆ ocomp(ΦA) and call Φ the concrete system and ΦA the abstract
system.

Thus, ΦA is an abstraction of Φ, if for every computation of the concrete
system projected to observable variables, there is a computation of the abstract
system with the same projection. It is easy to see that the abstraction relation
is transitive.

Example 4.2 The TTS shown in Figure 2 is an abstraction of the one ex-
plained in Example 2.2. We recall that d was the only observable vari-
able in the previous example and that the only observable computation is
(d = 0)(d = 0)(d = 1)(d = 0)(d = 1) This is obviously contained in the
observable computation of the TTS shown in Figure 2.

The abstraction relation is safe in the following sense:

Theorem 4.3 Let p be an LTL formula. If ΦA |= p and Φ vRT ΦA then
Φ |= p.

Note that the other direction is not true in general, i.e., if ΦA does not
satisfy a property p, Φ still might do so.

The basic idea of network invariants is captured by the following theorem:

Theorem 4.4 If Φ and ΦA satisfy

(I1) Φ vRT ΦA,

(I2) for all TTSs Ψ we have Φ ‖ Ψ vRT ΦA ‖ Ψ,

(I3) ΦA ‖ ΦA vRT ΦA, and

(I4) for all TTSs Ψ we have (ΦA ‖ ΦA) ‖ Ψ vRT ΦA ‖ Ψ,

then Φ ‖ · · · ‖ Φ vRT ΦA.

Proof. Φ ‖ · · · ‖ Φ can be abstracted by ΦA ‖ Φ ‖ · · · ‖ Φ due to (I2).
Because of commutativity this is equal to Φ ‖ ΦA ‖ Φ ‖ · · · ‖ Φ. This can,
again because of (I2), be abstracted by ΦA ‖ ΦA ‖ Φ ‖ · · · ‖ Φ. Iterating
this argument and using transitivity of the abstraction relation, we get that
Φ ‖ · · · ‖ Φ vRT ΦA ‖ · · · ‖ ΦA. Note that we silently assumed to have more

0 1

[x > 1]
d := 0

(a) Φ

0 1

[x = 1]
d := 0

(b) ΦA

0 1

[x > 1]
d := 1

(c) Ψ

Fig. 3. Example

than one copy of Φ. For a single copy (I1) gives the same argument. Using
(I3) and (I4), it can be easily seen that ΦA ‖ · · · ‖ ΦA vRT ΦA. Altogether,
this means Φ ‖ · · · ‖ Φ vRT ΦA. 2

Note that the previous theorem can be simplified in the following way:
Take Ψ to be a copy of Φ but removing unobservable variables, then Φ ‖ Ψ
equals Φ. Thus (I2) implies (I1) and (I4) implies (I3). 4

Theorem 4.4 suggests the following strategy to verify properties of a net-
work: Find an abstraction ΦA, check whether it satisfies the properties in
question and prove (I1)–(I4). However, (I2) and (I4) are not constructive in
the sense that it requires to check for all TTSs Ψ. Therefore, we are after a
stronger abstraction relation making the approach effective.

Definition 4.5 We say that ΦA is a modular abstraction of Φ, denoted by
Φ vM ΦA, iff mocomp(Φ) ⊆ mocomp(ΦA).

Modular abstraction is what we are looking for:

Theorem 4.6 If Φ vM ΦA then for all TTSs Ψ we have

Φ ‖ Ψ vRT ΦA ‖ Ψ

Proof. We give a sketch of the proof. Given a computation of Φ ‖ Ψ for
an arbitrary system Ψ, we can construct a modular sequence by marking
transitions of Ψ as environmental moves. Modular abstraction states that,
when restricting this sequences to observable variables of Φ, it is also one of
ΦA restricted to observable variables. A careful study now shows that with
transitions of Ψ this sequence can be concretized to a computation of ΦA ‖ Ψ.2

The previous theorem yields (I2) and, taking Φ = ΦA ‖ ΦA also (I4).
Although it seems straightforward, it only holds because we required clock
now to be observable:

Example 4.7 Consider the TTSs Φ, ΦA, and Ψ shown in Figure 3 without
the implicit observable clock now . In all modular computations of Φ and ΦA

restricted to observable variables we observe that 0 is assigned to d. We would
conclude that Φ vM ΦA. However, one computation of Φ ‖ Ψ is d = 1; d = 0,
which is not possible in ΦA ‖ Ψ. Requiring now to be observable reveals that
Φ 6vM ΦA.

4 Taking Ψ to be an “empty” TTS will serve the same duty.

How to show that Φ vM ΦA? Using results from timed automata, it is
easy to see that this question is undecidable, unlike in the case for discrete
systems. We therefore concentrate on sufficient conditions. We use the idea
of superposition (extended to the timed setting), followed by discretization of
time.

The superposition of two TTSs Φ and ΦA is a TTS assuring that ΦA tries
best in simulating Φ. Furthermore, we allow extra determinization conditions
to be provided by the user. We add a Boolean data variable mis, which is
true iff it was not possible for ΦA to follow Φ or the user’s determinization
condition is too limiting.

Definition 4.8 For two composable and comparable timed transition struc-
tures Φ = (D, C, W, O, Θ, λ, Π) and ΦA = (DA, CA, WA, OA, ΘA, λA, ΠA) we
define their superposition sp(Φ, ΦA, Θd, λd) to be the timed transition struc-
ture ΦS = (DS, CS, WS, OS, ΘS, λS, ΠS) where

• DS = D ∪ DA] {mis}, CS = C ∪ CA,

• WS = W ∪ WA ∪ {mis}, OS = O ∪ {mis} = OA ∪ {mis},

• ΘS = (Θ ∧ ΘA ∧ Θd ∧ (mis = false)) ∨ (Θ ∧ ¬(ΘA ∧ Θd) ∧ (mis = true)),
ΠS = Π ∧ ΠA,

• Θd is an assertion over DS, such that Θ → Θd|D,

• λd ⊆ DS ×DS ×XCS
× 2CS , such that (κ, κ′, g, reset) ∈ λ implies that there

is (κ̂, κ̂′, ĝ, r̂eset) ∈ λd with κ̂|D = κ, κ̂′
|D = κ′, g → ĝ, and r̂eset |D = reset ,

• λS = λ̂S ∩ λd where λ̂S ⊆ DS ×DS ×XCS
× 2CS with (κ, κ′, g, reset) ∈ λ̂S if

one of the following holds:
(i) if κ(mis) = false no mismatch has occurred yet. We distinguish:

· if there is a g′ such that (κ|D, κ′
|D, g′, reset |C) ∈ λ, let gΦ be the dis-

junction of all such g′. Let gΦA
be the disjunction of all g′ such that

(κ|DA
, κ′

|DA
, g′, reset |CA

) ∈ λA, where the empty disjunction is false.
Then we require g = gΦ ∧ gΦA

and κ′(mis) = false, stating that both
guards of the systems are satisfied and no mismatch is found, or, g =
gΦ ∧¬gΦA

and κ′(mis) = true describing the case that Φ could move but
not ΦA, so that a mismatch is found

· or, taking an environmental transition, we require g = true, κ(d) = κ′(d)
if d ∈ W , reset ∩ W = ∅, and κ′(mis) = false

(ii) if κ(mis) = true then we require g = true, κ = κ′, and reset = ∅

In simple words, the superposition unites the variables of both structures,
combines the initial and progression condition in a conjunctive way and allows
steps in both systems to be taken synchronously (item i). If one step is possible
in Φ but not in ΦA, we move to a state in which mis = true (item ii) and stay
there.

Theorem 4.9 Let Φ and ΦA be two comparable timed transition structures.
Let λd and Θd be user-defined determinization conditions. If sp(Φ′, ΦA, Θd, λd)

satisfies

ΦS |= 2((¬Π ∨ ΠA) ∧ mis = false) (1)

then Φ vM ΦA.

In (1) we also check the progress condition to guarantee that ΦA can cope
with all tick -transitions of Φ

It now remains to check ΦS |= 2((¬Π ∨ΠA) ∧mis = false). To be able to
use a standard LTL model checker, we employ discretizations of TTSs.

4.2 Discretization of Timed Transition Structures

In this subsection we associate to a timed transition structure a finite state
transition system satisfying the same linear-time properties. This allows us
to use LTL model checkers for finite-state machines for analyzing timed tran-
sition structures. We use the discretization given in [10] and [5], though our
presentation is different.

First, we define the standard region equivalence relation [4] ' on clock
valuations as follows: Let K denote the greatest constant appearing in guards
and invariant conditions of timed transition structure. We let v ' v ′ iff for all
x, y ∈ C,

• v(x) > K iff v′(x) > K,

• if v(x) ≤ K, then b(v(x))c = bv′(x)c and �v(x)� = 0 iff �v′(x)� = 0, and,

• if v(x) ≤ K and v(y) ≤ K, �v(x)� ≤ �v(y)� iff �v′(x)� ≤ �v′(y)�.

The equivalence class of a valuation v with respect to ' is called a clock
region and is denoted by [v].

By definition, every clock region can uniquely be identified by the integer
values of the clocks together with an ordering of their fractional parts. In
other words, for valuations v and v′ and sequences 0 ∼1 �v(xi1)� ∼2 · · · ∼n

�v(xin)� < 1 and 0 ∼′
1 �v′(xi1)� ∼′

2 · · · ∼′
n �v′(xin)� < 1 we have v ' v′ iff

bv(xi)c = bv′(xi)c and ∼i=∼′
i, where ∼i,∼′

i∈ {<, =} for i ∈ {1, . . . , n}.

The order of fractional values of clocks can be stored in an array of slots
containing clocks (see Figure 4(a)). The first slot contains all clocks x with
�v(x)� = 0 and the remaining slots are filled according to the order of the
fractional values. 5 While in general n+1 slots would suffice, we take, for sim-
plicity, 2n slots. We distinguish even and odd slots and follow the convention
that whenever one of the fractional values is 0, we only use even slots, while
we use odd slots if all fractional values are greater than 0, and draw the array
in a two dimensional fashion (Figure 4(b)). It is now obvious that all region
equivalence classes can be represented using K-times 2n slots plus one slot for
clocks with value K and one for clocks with value greater than K. Figure 4(c)
shows the setup for K = 2 and n = 3.

5 Of course, this representation is not unique without imposing further restrictions.

x1

x2
x3 x4 x5

0 < < < < 1

(a) slots

x1

x2
x3 . . .

x5

0
even

1

odd

2n − 1

(b) 2n slots

x1

0

x2 x3

1 K

> K
(c) time domain

Fig. 4. Slots and discrete time domain

It is now straightforward to define a discretized semantics of a timed tran-
sition structure. Let ∆ = 1

2n
be the discretization step. The discretized time

domain I∆ is defined as I∆ = {s∆ | s ∈ IN, 0 ≤ s ≤ 2nK+1} (see Figure 4(c).
For j ∈ {0, . . . 2n − 1} we say that clock x occupies slot j if �v(x)� = j∆ and
call the value of x even (odd) iff j is 0 or even (odd, respectively).

The discretized transition system of Φ, denoted by [Φ]DT , is a finite state
transition system (SDT , ΘDT ,−→DT) where the set of states is SDT = D ×
IC̄

∆, the initial state condition ΘDT agrees with Θ, and −→DT , the transition

relation, is defined as −→DT =
λ

−→DT ∪
tick
−→DT . The latter relations are

defined as

• s = (κ, v)
tick
−→DTs′ = (κ, v′) iff s

tick
−→RT (κ, v + ∆) and v′ = v+̇∆, where

x+̇y
4
=min{x + y, K + ∆} extends to valuations as expected.

• s = (κ, v)
λ

−→DTs′ = (κ′, v′) iff (κ, v)
λ

−→RT (κ′, v′′) and,
· if there are clocks x with v(x) = 0 and y with odd value then even and odd

slots are used and we adjust the fractional part to use only even slots: Let
j ∈ {0, . . . , 2n−1} be an odd slot which is not occupied by any clock. For
v′′(x) < K, we set v′(x) = v′′(x) + ∆ if x occupies a slot in {1, . . . , j − 1},
v′(x) = v′′(x)−∆ if the occupied slot of x is greater than j. If x occupies
slot 0 or v(x) > K, we let v′(x) = v′′(x).

· else only even slots and slot 0 are used or all slots are odd, and we let
v′ = v′′.

A run of [Φ]DT is any infinite path of it starting in an initial state. A
computation of [Φ]DT is a run in which infinitely many tick -transitions are
taken.

Let us check that Φ and [Φ]DT can be identified with respect to com-
putations. Let (κ, v) ≡ (κ′, v′) iff κ = κ′ and v ' v′. For a computation
π : s0, s1, . . . of Φ, let π̄ be the sequence π̄ : s̄0, s̄1, . . . which is a subsequence
of π in which subsequent states of π are compressed to a single state when
they are equivalent with respect to ≡. That is, π̄ : si0 , si1 , . . . and satisfies
0 = i0 < i1 < . . . , for k, k′ ∈ {ij, . . . , ij+1−1} we have sk ≡ sk′, sij 6≡ sij+1

, and
for all j, s̄j ≡ sij . We call two computations π, π′ of Φ stuttering-equivalent,
denoted by π ≡ π′, iff for π̄1 = s̄0, s̄1, . . . and π̄2 = s̄′0, s̄

′
1, . . . and all i ≥ 0

we have s̄i ≡ s̄′i. Note that π̄ is stuttering equivalent to π and that π̄ can be
considered as a minimal element of all sequences stuttering equivalent to π.

The notion of stutter equivalence carries over to computations of discretized
timed transition systems in the expected manner. We now easily see ([10], [5])

Lemma 4.10 [Φ]DT preserves qualitative behaviour of Φ, that is, for each
computation π1 of Φ, there exists a computation π2 of [Φ]DT such that π̄1 ≡ π̄2,
and vice versa.

Given a TTS Φ and a temporal formula p, we say that p is Φ-valid ([Φ]DT -
valid) denoted by Φ |= p ([Φ]DT |= p), if p holds on all models which are
computations of Φ ([Φ]DT , respectively).

It is obvious that stutter equivalent computations satisfy the same LTL
formulas. Together with Lemma 4.10 this implies:

Theorem 4.11 For every TTS Φ and LTL formula p we have Φ |= p iff
[Φ]DT |= p.

Note that there are different versions for discretizing a timed-transition
structure. We found this one, however, easy to realize in verification tools like
TLV. Given a timed transition structure, one can define tick -transitions con-
sisting of adding time with possible adjustment in a straightforward manner.
To cope with our adjusted notion of computation, we added a binary data vari-
able dt to the underlying system, which is swapped whenever a tick -transition
is taken. Adding as fairness-constraint that infinitely often dt must be 0 as
well as 1, the notion of a fair run coincides with our notion of computation.

4.3 The Final Approach

We sum-up our approach in Table 1. Steps i, ii, and v have to be carried out
manually, while the remaining items can be done automatically.

5 Example

We construct a network invariant for a simple protocol in the spirit of Fischer’s
protocol [17] but modified to show certain particularities in finding invariants.
Fischer’s protocol is used to guarantee mutual exclusion in a concurrent sys-
tem consisting of an arbitrary number of processes using clocks and a shared
variable.

Our protocol consists of an arbitrary number of instances of the process
shown in Figure 5. α ≤ β are two arbitrary integer values. Processes Φ1 and
Φ2 can be distinguished from Φ := Φ3 and we study the network N = Φ1 ‖
Φ2 ‖ Φ ‖ · · · ‖ Φ. Each process has a local clock xi and an owned variable
loci ∈ {1, . . . , 7} indicating the current control location loci = 5 is the initial
state. The processes communicate via a shared variable d. Furthermore, every
process has a variable i acting as a process identifier. Control states 1–4 are
patterned after Fischer’s protocol, while 5–7 are added to show the need for
adding further clocks in invariants, as we will point out below.

Given a system N = Ψ ‖ Φ ‖ · · · ‖ Φ and requirement
specification p. Goal: Show N satisfies p. Solution:

(i) define possible network invariant ΦA

(note: ΦA must be comparable with Φ)

(ii) define determinization conditions Θ1
d and λd

1

(often no restriction is required)

(iii) construct SP 1 as discretization of sp(Φ, ΦA, Θ1
d, λd

1)

(iv) Model check [SP 1]DT |= 2((¬Π ∨ ΠA) ∧ mis = false)
(then Φ vM ΦA)

(v) define determinization conditions Θ2
d and λd

2

(often no restriction is required)

(vi) construct SP 2 as discretization of sp(ΦA ‖ ΦA, ΦA, Θ2
d, λd

2)

(vii) Model check [SP 2]DT |= 2((¬Π ∨ ΠA) ∧ mis = false)
(then ΦA ‖ ΦA vM ΦA, and, with (4), ΦA is a network

invariant)

(viii) Model check [Ψ ‖ ΦA]DT |= p (shows Ψ ‖ ΦA |= p)

Table 1
Verifying network of processes

When a process is in state 1, it may proceed to state 2, when d equals 0,
indicating that no process requested to enter the critical section (state 4). If so,
it resets its clock xi. It may remain in state 2 at most α time units. Processes
Φ1 and Φ2 (identified by i = 1 and i = 2, respectively) proceed to state 3
requesting the critical section by setting d to i. The other processes just set d
to 3 instead of i as in Fischer’s protocol. We have to make this modification to
get equal processes Φ3, Φ4, . . . If a process can enter the critical section after
a given time bound β, it moves to state 4, otherwise it proceeds in state 3 or
move to state 1. Leaving the critical section, the process moves back to state
1 resetting d.

States 5, 6, and 7 are added to show an example of the hidden dependencies
between clocks. State 7 is only reachable if another process in parallel sets
d = 4 (by moving from 5 to 6), enabling the guard of the current process
to move from 5 to 7). However, since clocks increment simultaneously, this
cannot happen, as we will prove.

We would like to show that neither process Φ1 nor Φ2 can reach state 7 and
that never both of them are in state 4, a standard mutual-exclusion property.
It can be formalized by

p = 2(loc1 ≤ 6 ∧ ¬(loc1 = 4 ∧ loc2 = 4))

5

7 6

1 2

4 3

xi ≤ α

[xi ≤ β ∧ d = 4] [xi > β]d := 4

[d = 0]
xi := 0

[d < 4 ∧ i ≤ 2]
xi := 0, d := i

[d < 4 ∧ i > 3]
xi := 0, d := 3

[¬φ]

[φ ∧ xi > β]

[φ]d := 0

φ = ((i ≤ 2 ∧ d = i) ∨ (i > 3 ∧ d = 3))

Fig. 5. An adaption of Fischer’s protocol

Our goal is to construct a network invariant ΦA satisfying Φ ‖ · · · ‖ Φ vM

ΦA and Φ1 ‖ Φ2 ‖ ΦA � p.

A natural possible network invariant, denoted by Φc
A , is shown in Fig-

ure 6(a). Its state space consists of all possible values of d and the transitions
set d according to the destination state. Since ΦA should abstract Φ3, states
1 and 2 (which are shown as a single state to simplify the presentation) are
only reachable by environmental moves. We add to Φc

A a clock x to follow the
timing constraints imposed by Φ when moving to states 0 or 4. To preserve
p, we must reset clock x, when 3 is assigned to d.

We can check automatically that Φ vM Φc
A. However, if we try to show

that Φc
A ‖ Φc

A vM Φc
A we obtain a counterexample: Consider the run of

Φc
A[1] ‖ Φc

A[2] given by 6

(d = 0, x[1] = 0, x[2] = 0) → · · · → (d = 0, x[1] > β, x[2] > β)

→ (d = 3, x[1] = 0, x[2] > β) → (d = 4, x[1] = 0, x[2] > β)

There is a run s0, . . . , si, . . . of Φc
A[3] such that si(d) = 0 and si+1(d) = 3.

Then, since every transition in Φc
A which modifies value d to 3 resets x, it

is not possible to take a transition from si+1 to si+2 such that si+2(d) = 4.
Therefore Φc

A is not network invariant.

We obtain a network invariant ΦA for example by adding a clock y to Φc
A

which is never reset and modified by Φc
A such that transitions, which set d = 4

depend only on the new clock. This invariant is shown in Figure 6(b). We can
check successfully that Φ vM ΦA and ΦA ‖ ΦA vM ΦA, using the approach
developed in the previous section.

Note that in all cases, we did not have to give determinization conditions
when constructing superpositions.

6 Conclusion

In this paper, we presented a method for checking linear temporal logic prop-
erties of networks of timed systems. Our approach is based on network in-

6 We use the postscript [i] to distinguish local variables of instances of Φ.

0 3

1, 2 4

x := 0

d := 3
x := 0

[x > β]
d := 4

x := 0

d := 0

[x > β]
d := 4

[x > β]
d := 4

[x ≤ β]
d := 0 d := 3

x := 0

(a) abstraction

0 3

1, 2 4

x := 0

d := 3
x := 0

[y > β]
d := 4

x := 0

d := 0

[y > β]
d := 4

[y > β]
d := 4

[x ≤ β]
d := 0 d := 3

x := 0

(b) network invariant

Fig. 6. (Possible) network invariants

variants, previously studied for untimed systems. The main ingredients are
discretization of superposition to check that a network of processes can be
abstracted by a single timed system.

Acknowledgement: We thank B. Jonsson, Y. Kesten, A. Pnueli, and E.
Shahar for pointing out this problem, for fruitful discussions, and for hints on
using TLV.

References

[1] Abadi, M. and L. Lamport, The existence of refinement mappings, Theoretical
Computer Science 82 (1991), pp. 253–284.

[2] Abdulla, P. A. and B. Jonsson, On the existence of network invariants for
verifying parameterized systems, in: Correct system design-recent insights and
advances, Springer, 1999 .

[3] Abdulla, P. A. and B. Jonsson, Model checking of systems with many identical
timed processes, Theoretical Computer Science 290 (2002), pp. 241–264.

[4] Alur, R., Timed automata, in: Proc. 11th International Computer Aided
Verification Conference, Lecture Notes in Computer Science 1633 (1999), pp.
8–22.

[5] Asarin, E., M. Bozga, A. Kerbrat, O. Maler, M. Pnueli and A. Rasse, Data
structures for the verification of timed automata, in: O. Maler, editor, Hybrid
and Real-Time Systems (1997), pp. 346–360.

[6] Clarke, E., O. Grumberg and D. Long, Model Checking and Abstraction, in:
Proceedings of the 19th Annual ACM Symposium on Principles of Programming
Languages, ACM, New York, 1992, pp. 342–354.

[7] Clarke, E. M., O. Grumberg and D. Long, Model checking and abstraction, in:
POPL92, 1992.

[8] Cousot, P. and R. Cousot, Abstract interpretation: A unified model for static
analysis of programs by construction or approximation of fixpoints, in: POPL77,
1977, pp. 238–252.

[9] Dams, D., O. Grumberg and R. Gerth, Abstract interpretation of
reactive systems: Abstractions preserving ∀CTL∗,∃CTL∗ and CTL∗, in: Proc.
IFIP working conference on Programming Concepts, Methods and Calculi
(PROCOMET’94), 1994.

[10] Gollu, A., A. Puri and P. Varaiya, Discretization of timed automata, in:
Proceedings of the 33rd IEEE conferene on decision and control, 1994, pp. 957–
958.

[11] Graf, S. and H. Saidi, Construction of abstract state graphs with PVS, , 1254

(1997).

[12] Jonsson, B., Compositional specification and verification of distributed systems,
ACM Transactions on Programming Languages and Systems 16 (1994),
pp. 259–303.

[13] Kesten, Y. and A. Pnueli, Control and data abstraction: The cornerstones of
practical formal verification, Software Tools for Technology Transfer 2 (2000),
pp. 328–342.

[14] Kurshan, R. P. and K. L. McMillan, A structural induction theorem for
processes, Information and Computation 117 (1995), pp. 1–11.

[15] Lesens, D. and H. Säıdi, Abstraction of parameterized networks, in: F. Moller,
editor, Infinity’97, Second International Workshop on Verification of Infinite
State System, Electronic Notes in Theoretical Computer Science 9 (2000).

[16] Pnueli, A. and E. Shahar, A platform combining deductive with algorithmic
verification, in: Rajeev Alur and Thomas A. Henzinger, editors, Proceedings
of the Eighth International Conference on Computer Aided Verification CAV,
Lecture Notes in Computer Science 1102 (1996), pp. 184–195.

[17] Schneider, F. B., B. Bloom and K. Marzullo, Putting time into proof outlines,
in: de Bakker, Huizing, de Roever and Rozenberg, editors, Real-Time: Theory
in Practice, LNCS 600, 1992.

[18] Taşıran, S., R. Alur, R. P. Kurshan and R. K. Brayton, Verifying abstractions
of timed systems, in: U. Montanari and V. Sassone, editors, CONCUR ’96:
Concurrency Theory, 7th International Conference, Lecture Notes in Computer
Science 1119 (1996), pp. 546–562.

[19] Wolper, P. and V. Lovinfosse, Verifying properties of large sets of processes with
network invariants, in: Proceedings of the International Workshop on Automatic
Verification Methods for Finite State Systems, Lecture Notes in Computer
Science 407 (1989), pp. 68–80.

	Introduction
	Timed Transition Structures
	Linear Temporal Logic
	Verification by Network Invariants
	Network Invariants and Continuous Time
	Discretization of Timed Transition Structures
	The Final Approach

	Example
	Conclusion
	References

