
Runtime Verification and Reflection for Wireless
Sensor Networks

Stefan Fischer
Telematics Institute

University of Lübeck, Germany
fischer@itm.uni-luebeck.de

Martin Leucker
Institute for Software Engineering and Programming Languages

University of Lübeck, Germany
leucker@isp.uni-luebeck.de

Abstract—The paper proposes to re-visit a light-weight veri-
fication technique called runtime verification in the context of
wireless sensor networks. The authors believe that especially
an extension of runtime verification which is called runtime
reflection and which is not only able to detect faults, but diagnose
and even repair them, can be an important step towards robust,
self-organizing and self-healing WSNs. They present the basic
idea of runtime reflection and possible applications.

I. MOTIVATION

One of the main characteristics of wireless sensor networks
(WSNs) is that they often operate in areas and/or in situations
where they cannot be supervised by human administrators.
It is thus of major importance that a WSN is designed
and implemented very carefully in order to avoid system
failures – which can then not be repaired, potentially resulting
in a complete loss of the system. Traditionally, verification
techniques such as theorem proving, model checking, and
testing are used to prove or at least increase the trust in the
correctness of software. Since these techniques often have very
strong requirements like the existence of formal models or
do not cover all potential errors, a technique called runtime
verification was developed about 15 years ago [1], which
complements techniques like model checking and testing and
is rather lightweight compared to them. The distinguishing fea-
ture of runtime verification is that it operates at runtime, which
makes it possible to re-act whenever a software system behaves
incorrectly. We believe that this is a very interesting feature
to be applied to autonomous and self-organized systems such
as WSNs, since it would allow to detect faults at runtime
and even realize a self-healing behavior of the overall system.
With this position paper, we point out the potential of runtime
verification and more specifically of runtime reflection [2], a
technique based on runtime verification which is specifically
focused on not only detecting failures but also finding their
reason, and outline research directions.

The rest of this paper is structured as follows: in Section II,
we first give a brief introduction into the general idea of
runtime verification and runtime reflection. In Section III, we
then present our ideas how these technologies can be applied
to operating WSNs in a way which allows detecting faults and
healing failures during runtime.

Figure 1. Architecture of the runtime reflection framework

II. RUNTIME VERIFICATION AND REFLECTION

In [3], runtime verification is defined to be the discipline of
computer science that deals with the study, development, and
application of those verification techniques that allow checking
whether a run of a system under scrutiny satisfies or violates
a given correctness property.

A run in the above sense is a possibly infinite sequence of
the system’s states. An execution of a system is defined to be
a finite prefix of a run. During runtime, it is only possible to
observe executions of the system. In contrast to traditional
verification techniques which deal with a run or rather all
possible runs of a system, runtime verification only deals with
executions which is why it can be performed during runtime
and also explains why we call it a lightweight verification
technique.

The most important tool in runtime verification is the
monitor whose job is to decide whether an execution meets
a correctness property. A monitor can be both an online
monitor and then checks, in an incremental way, the current
execution of a system, and it can also work offline and then
checks recorded executions of a system. Typically, monitors
installed on a system should be automatically generated from
some higher-level description of the system specification, for
instance in Linear Temporal Logic or variants of it.

Having said the above, it is clear that runtime verification
itself only deals with the detection of violations of correctness
properties. In order to also react to these violations, for
instance in the sense of ”repairing” them, further techniques
are necessary. One such technique, which is based on run-
time verification, is called runtime reflection (also see [2]).
Basically, runtime reflection is an architecture pattern for the

978-1-4673-6269-6/13 c© 2013 IEEE SESENA 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

35



development of reliable systems (see Figure 1). In addition
to the monitoring (and logging) layer already described con-
ceptually above, it provides further components for diagnosis
and mitigation. The diagnosis layer collects the information
from the distributed monitors and derives explanations for the
current system state. The mitigation layer uses the diagnoses
for reconfiguration of the system in order to try to bring it
back into a correct state (which obviously may not always be
possible).

III. APPLICATION TO WSNS

We believe that, following the descriptions in Section II,
runtime verification and reflection can be very useful tools
for supporting the self-organized and widely un-supervised
operation of WSNs, up to allowing for self-healing processes
of faulty system behavior. We envision the usage of run-
time verification techniques during all software development
phases, from requirement analysis to design (possibly in some
high-level logic language) and then further to simulation,
testing, implementation, and maintenance. Runtime monitors
can be automatically generated from higher-level descriptions
and then deployed on sensor nodes. Diagnosis and mitigation
layers will be designed and implemented in order to steadily
keep track of the system state, the reasons for faults and the
possibility to repair them.

We further believe that due to the nature of WSNs, realizing
this vision will be a very interesting challenge. Just to name
a few, we see the following interesting questions:

• Can monitors be created in a resource-efficient way, to
be installed on resource-constrained sensor nodes?

• How to handle situations in which a sensor node crashes
and with it its monitor? We believe that an intelligent
placement of monitors and a vice-versa surveillance could
be an interesting solution. This triggers a set of new
questions such as where to place the monitors, how to
associate them to each other, how to make as little as
possible use of bandwidth etc.

• How to and where to implement the diagnosis and
mitigation layers. Do we need central components for
these or could they also be implemented on the sensor
nodes.

• How well are logic-based languages suited for WSN
system and application specification if done by domain
experts and not computer scientists? How could they be
supported?

• How to mitigate a failure in the WSN?

IV. RELATED WORK

While runtime verification itself has been around for
roughly 15 years as of today, its application to wireless sensor
networks has been looked at about only six years ago. Well-
known approaches have been presented in [4], [5] and [6].

Herbert et al. [4] develop a method and a prototype for
invariant checking during runtime. The approach mainly con-
centrates on checking application behavior and not so much
the correctness of the software itself. Also, it has no focus
on the repair of faults itself. Sokolsky et al. [5] provide a
much more formal approach based on temporal logics, i.e.,
they develop a formal runtime verification concept. Still, they
just analyze simulator runs and do not work on real-world
deployments which, as they say themselves, might behave
much different. Wu et al. [6] also employ runtime verification,
but use a Petri-Net-based mechanism for specification and also
do not further work on solving problems automatically.

While the above are all promising approaches, we believe
that they stopped short of practically applicable solutions for
WSNs, mainly due to the following issues:

• We need more work on real-world deployments which
are much more complex than simulations.

• The next and important step is not only detecting faults,
but diagnosing their reason and, if possible, healing them
automatically.

• It seems that most approaches have not been developed
any further, which is a pity, since thze approach of
runtime verification looks very promising.

We believe that putting substantial efforts into developping
these methods further could be an important milestone on the
road to self-organizing and self-healing sensor networks. We
also believe that a transfer of these ideas into industry is of
major importance to support these developments.

REFERENCES

[1] M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, I. Lee, and
O. Sokolsky, “Formally specified monitoring of temporal properties,” in
Real-Time Systems, 1999. Proceedings of the 11th Euromicro Conference
on, 1999, pp. 114–122.

[2] M. Leucker and C. Schallhart, “A brief account of runtime verification,”
The Journal of Logic and Algebraic Programming, vol. 78, no. 5,
pp. 293 – 303, 2009. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1567832608000775

[3] A. Bauer, M. Leucker, and C. Schallhart, “Model-based runtime analysis
of distributed reactive systems,” in Software Engineering Conference,
2006. Australian, Apr. 2006, p. 10 pp.

[4] D. Herbert, V. Sundaram, Y.-H. Lu, S. Bagchi, and Z. Li,
“Adaptive correctness monitoring for wireless sensor networks using
hierarchical distributed run-time invariant checking,” ACM Trans.
Auton. Adapt. Syst., vol. 2, no. 3, Sep. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1278460.1278462

[5] O. Sokolsky, U. Sammapun, J. Regehr, and I. Lee, “Runtime verification
for wireless sensor network applications,” in Runtime Verification,
ser. Dagstuhl Seminar Proceedings, B. Finkbeiner, K. Havelund,
G. Rosu, and O. Sokolsky, Eds., no. 07011. Dagstuhl, Germany:
Internationales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, Germany, 2008. [Online]. Available: http:
//drops.dagstuhl.de/opus/volltexte/2008/1371

[6] Y. Wu, K. Kapitanova, J. Li, J. A. Stankovic, S. H. Son, and
K. Whitehouse, “Run time assurance of application-level requirements
in wireless sensor networks,” in Proceedings of the 9th ACM/IEEE
International Conference on Information Processing in Sensor Networks,
ser. IPSN ’10. New York, NY, USA: ACM, 2010, pp. 197–208.
[Online]. Available: http://doi.acm.org/10.1145/1791212.1791236

36


