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– Extended Abstract –

The general goal of query-based learning algorithms for finite-state machines is to
identify a machine, usually of minimum size, that agrees with an a priori fixed (class
of) machines. For this, queries on how the underlying system behaves may be issued.

A popular setup is that of Angluin’s L
∗ algorithm[Ang87], here adapted to the case

of finite-state machines, in which a minimal deterministic finite-state machine for a reg-
ular language is learned based on so-called membership and equivalence queries. Using
a pictorial language, we have a learner whose job is to come up with the automaton to
learn, a teacher who may answer the output for a given input string as well an oracle
answering whether the automatonH currently proposed by the learner is correct or not.
This setting is depicted in Figure 1(a) (though assume that the don’t know is not there).

In Angluin’s setting, a teacher will always answer with the correct output symbol. In
many application scenarios, however, parts of the machine to learn are not completely
specified or not observable. Then, queries may be answered inconclusively, by don’t
know, also denoted by ?.

In the full version of this paper [GL06], we study a learning algorithm (and variants
thereof), called ABSAT, ABSATI, and ABSATI2, that are designed to work with such
an inexperienced teacher. The oracle, however, does not change its functionality in the
setting discussed here (see Figure 1(a), the don’t know is new).
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(a) L
∗ versus ABSAT

bica ABSAT ABSATI ABSATI2
time time time time

fo.70 n.a. 39.50 38.57 38.69
th.55 188.87 0.45 0.43 0.43

vmebus.master.m 59.93 1627.37 693.44 93.01
ifsm2 14.08 34.82 34.36 30.78

pe-send-ifc.fc 2.33 6.93 2.75 2.07
pe-send-ifc.fc.m 0.85 6.93 2.75 1.07

rubin1200 10.24 10.28 10.26 10.02
rubin2250 64.78 64.69 64.74 63.29

vbe4a 1.94 4.31 1.86 1.56
ex2 0.78 0.78 0.76 4.67

(b) Running times compared

Fig. 1. The setup for the learning algorithms and their performance

? Part of the work has been done during the author’s stay at TU München supported by the
C F Liljewalchs fellowship, Uppsala University.



In general, two types of learning algorithms for FSMs can be distinguished, so-
called online and offline algorithms. Online algorithms, such as Angluin’s L

∗ algorithm,
query strings to the teacher. Offline algorithms get a fixed set of examples and no further
queries are allowed before computing a minimal FSM conforming to the examples.
Typical algorithms of this type are based on a characterization in terms of a constraint
satisfaction problem (CSP) over the natural numbers due to Biermann [BF72].

Faced with an inexperienced teacher, we cannot rely completely on Angluin’s algo-
rithm. We therefore define an algorithm that is a combination of an online algorithm and
an offline algorithm and is based on [OS98]. Similar to Angluin’s algorithm, we round
off the information on the automaton in question by asking queries. As queries can be
answered by ?, we may not be able to complete the information as in Angluin’s setting
to compute an FSM directly. For this, we use Biermann’s approach for obtaining an
FSM based on the enriched information. Our combination is conservative in the sense
that in case all queries are answered by either yes or no, we obtain the same efficiency
as for Angluin’s algorithm. Furthermore, the encoding in terms of CSP is optimized
based on the information collected in Angluin’s algorithm.

While in [OS01] an efficient implementation for solving the resulting CSP problem
is explained, we give an encoding as a SAT problem featuring a simple yet—as the ex-
amples show—very efficient inference algorithm by employing powerful SAT solvers.

Actually, our approach is quite similar to the one proposed in [OS98] and [OS01].
The main difference are that we use SAT solvers for solving the corresponding CSP
problem (which gives algorithm ABSAT) and that we additionally propose incremental
consistency checks (ABSATI) and an incremental construction of the CSP problem
(ABSATI2), which both improves the overall efficiency.

To validate our approach in practice, we have employed our techniques to the prob-
lem of reducing incompletely specified finite-state machines. We have implemented our
extensions within the C++ program called BICA, used in [OS98] and have reexamined
BICA as well as our three versions on the same set of examples studied in [OS98] (see
Figure 1(b)).

The overall conclusion is that although the behavior of a SAT solver is not com-
pletely predictable, our algorithms ABSATI and ABSATI2 are, for many examples,
competitive alternatives to BICA, which especially work on examples that are too com-
plex for BICA.
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