
The LearnLib in FMICS-jETI

Tiziana Margaria
Chair of Services and
Software Engineering,
University of Potsdam,

margaria@cs.uni-potsdam.de

Harald Raffelt Bernhard Steffen
Chair of Programming Systems

University of Dortmund, Germany
harald.raffelt@cs.uni-dortmund.de

steffen@cs.uni-dortmund.de

Martin Leucker
Institut für Informatik

TU München
München, Germany
leucker@in.tum.de

Abstract

The FMICS-jETI platform is a collaborative, service-
based demonstrator of tools and techniques for the anal-
ysis of industrial critical systems. It is the FMICS Working
Group contribution to the Verified Software Initiative.

In this paper, we extend the scope of the FMICS-jETI
platform to address the integration ofheterogeneous and
legacy tools and technologies. We show how to integrate
1) CORBA, a language independent standard for the inter-
operability of heterogeneous functionalities distributed over
a network, 2) active model learning technologies, via the
LearnLib, as a model extrapolation technique that uses test-
ing to explore a black box system and CORBA as a commu-
nication mechanism, and 3) third party applications built
on top of the LearnLib, in this case Smyle, a tool that syn-
thesizes design models by learning from examples, that uses
the LearnLib as learner core.

1 Introduction

One of the goals of FMICS, the ERCIM Working Group
on Formal Methods for Industrial Critical Systems (FMICS)
[45], is to transfer and promote the use formal methods tech-
nology in industry. The ongoing Verified Software Initiative
Grand Challenge [16] offers a great opportunity to reach
this goal, resulting in a more robust and solid software in-
dustry. The FMICS-jETI platform1 concretizes the collec-
tive effort of the FMICS WG by offering a collaborative
demonstrator of the FMICS techniques and tools based on
the jETI technology2. FMICS-jETI provides as repository a
collection of verification tools stemming from the activities
of the FMICS working group and facilities to orchestrate
them in a remote and simple way. At the same time FMICS-
jETI itself is a contribution to the VSI repository and thus

1jeti.cs.uni-dortmund.de/fmics/index.php
2jabc.cs.uni-dortmund.de/plugins/jeti_en.html

to the Grand Challenge.
We focus on correctness at the model level, rather than at

the software (more generally at the coding) level. An ade-
quate repository should therefore contain not only analyzed
or proven correct software, but principallytools(themselves
software artifacts) that help establishing the correctness of
the software in question starting from the requirements,
specifications, and models.

Based on jETI [40], the new generation of ETI [38, 23],
the core FMICS partners have set up the FMICS-jETI plat-
form as a collaborative, service-based demonstrator that

• illustrates the wide applicability of the jETI technol-
ogy for lightweight remote integration of tools into the
repository

• shows how to provide tools to the repository, by regis-
tration and remote provision,

• demonstrates how to experiment with local and remote
tools to solve cooperative verification tasks

• shows how to orchestrate different tools (possibly a
mix of local and remote ones) which were not origi-
nally designed to cooperate, to address more complex
case studies. This may require the availability of me-
diators, to cover semantic gaps between the tools.

FMICS-jETI so far includes verification tools based on
model checking techniques, like GEAR [3, 17], applica-
tions of model checking to dataflow analysis, as in [22, 12],
and parallel model checking [7].

In this paper, we show how to extend the scope of the
FMICS-jETI platform to address the integration ofhetero-
geneous and legacy tools and technologies. We are in fact
integrating

• CORBA, a language independent standard for the
interoperability of heterogeneous functionalities dis-
tributed over a network



Figure 1. Smyle Classic and jETI-FMICS Version

• active model learning technologies, via the Learn-
Lib [42, 36] as a model extrapolation technique that
uses testing to explore a black box system and CORBA
as a communication mechanism, and

• third party applications built on top of the LearnLib, in
this case Smyle [4], a tool that synthesizes design mod-
els by learning from examples, that uses the LearnLib
as learner core.

These tools and techniques have been successfully used
before outside the jETI technology. We are currently using
this case study as a blueprint for guidelines on how to bring
CORBA-compliant tools and complex, communicating
applications into (FMICS-)jETI.

In the following, we first present the current and the
jETI-based architecture (in Sect. 2), then we recall the es-
sential description of the jABC/jETI platform (in Sect. 3),
before detailing on the ongoing integration of CORBA ap-
plications via its interface description language (in Sect. 4).
We then briefly present the LearnLib (in Sect. 5 and 6)
and Smyle (in Sect. 7) from the point of view of a typical
FMICS-jETI user. We finally conclude in Sect. 8.

2 LearnLib/Smyle Architecture Overview

The communication architecture of Smyle and the
LearnLib is depicted in Fig. 1.

Currently, a Smyle user directly interacts with Smyle,
that in turn communicates with the LearnLib directly, via
the CORBA interface. Thereby the LearnLib acts as

CORBA server and Smyle acts as the client. Remote
method invocations of the Learnlib are hard-wired in the
sources of Smyle, so there is no flexibility in modifying,
extending, or evolving Smyle without programming effort.

Within FMICS-jETI we envisage a looser, service based
coupling of Smyle and the LearnLib. In this service-
oriented setting, the LearnLib as well as the Smyle services
are integrated into the jETI-FMICS platform as collections
of (possibly remote) services that provide platform inde-
pendent learning and model discovery functionalities. The
Smyle developer interacts with the FMICS-jETI platform
via the GUI of the jABC/jETI environment, and is respon-
sible for designing the Smyle process by combining basic
services offered by Smyle and the LearnLib into an orches-
tration or choreography that serves the desired purpose.

This approach offers a much higher versatility in cus-
tomizing and extending the Smyle process, allows the easy
integration of other tools in the global process, and reduces
the programming effort in creating and then maintaining
and evolving applications like Smyle.

The service core of the FMICS-jETI platform is the
jABC/jETI framework, that we describe next.

3 jABC/jETI

The jABC framework [17, 46] is an environment for
model-driven service orchestration based on lightweight
process coordination. With its predecessors, it has been
used over the past 12 years for business process and service
logic modelling in several application domains, including
telecommunications, bioinformatics, supply chain manage-
ment, e-commerce, collaborative decision support systems,
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as well as for software and system development. In this
paper, we restrict us to the jABC facilities relevant to (re-
)designing the Smyle/LearnLib tool in terms of a complex
service orchestration: a learning approach for synthesiz-
ing design models from example scenarios that are given
as message sequence charts.

In jABC, orchestration and choreography of services
happen on the basis of the processes they realize in the
respective application domain. These processes embody
the business logics, and are expressed themselves as (ex-
ecutable) process models. These jABC process models
are called Service Logic Graphs (SLGs). Services are de-
scribed by their (possibly hierarchical) SLG together with
the atomic services they use. These basic service types are
called SIBs (Service Independent building blocks).

Semantically, jABC models are control flow graphs, in-
ternally interpreted as Kripke Transition Systems [32], ex-
tended with fork/join parallelism. This provides a kernel for
a sound semantical basis for formalisms like BPNM, BPEL,
UML activity diagrams, and dataflow graphs, and consti-
tutes alingua francaadequate for the analysis and verifica-
tion of properties, e.g. by model checking [32].

A SIB represents an atomic functionality provided as
basic service. Within jABC, domain-specific SIB palettes
are shareable among projects, and organized in a project-
specific structure and with project-specific terminology.
This is a simple way for adopting or adapting to different
ontologies within the same application domain. Domain-
specific SIB palettes are complemented by a library of SIBs
that offer basic functionality (e.g. SIBs for I/O or memory
handling), control structures (as used here) or handling of
data structures like matrices (e.g. in our previous bioinfor-
matics applications [26] ).

A service orchestration is modelled in the jABC graph-
ically, it is executable by interpretation via the Tracer plu-
gin or it can be compiled to some target language via the
GeneSys plugin. Once compiled, the orchestration lives
independently of the jABC and can be imported in other
frameworks.

SIBs can be local or remote. The jETI framework (Java
Electronic Tool Integration) [20, 41, 2] enhances the jABC
to support seamless integration of remote services such as
SOAP based web services [21] and CORBA [34] applica-
tions. An essential capability of the jETI framework is its
ability to generate basic service types, i.e. SIBs, from ser-
vice interface descriptions provided in

• WSDL (Web Services Description Language), in case
of SOAP based web services, and

• IDL (Interface Definition Language), in case of
CORBA applications

• plain XML, in case of services exported on the basis
of legacy systems.

The latter is the case for example for other FMICS-jETI
services, like the jETI Version of our GEAR model checker
and of jMosel [43], and of Alpha-spin [47]. So called REST
services (for REpresentational State Transfer services) can
be treated in this way too.

3.1 Choreography

jABC originated in the context of the verification of dis-
tributed systems [32], therefore SLGs are inherently ade-
quate as choreography models. The SIBs can physically
run in a distributed architecture. They communicate di-
rectly or with a shared space (called the context). The SLGs
are fully hierarchical: SIBs can themselves be implemented
via SLGs. The macro mechanism described in [39] allows
defining what communication actions of an SLG are visi-
ble to the environment (for choreography). Orchestration is
as far as the jABC is concerned just a degenerate, because
localized, case of choreography.

Most applications of the jABC/jETI, like those concern-
ing the LearnLib and those in bioinformatics, inherently re-
quire the coordination of several participating partners,of-
ten including humans, to collectively accomplish a goal. In
this sense, SLGs like Smyle’s define choreographies.

3.2 jETI Architecture Overview

jETI’s tool integration philosophy is service-based: it re-
places the usual requirement of ”physical” tool integration
by very simple registration and publishing. This allows the
provisioning of tool functionalities in a matter of minutes:
fast enough to be fully demonstrated during our presenta-
tion. Moreover, whenever the portion of a tool’s API which
is relevant for a new version of a functionality remains un-
changed, version updating is fully automatic.

This registration / publishing approach is implemented
via the following three components.

1. a Tool Configurator , where tool providers register
their tool functionalities just by filling out a simple
template form, or by publishing the WSDL of a preex-
isting web service or the IDL of a CORBA application,

2. the jETI Component Server, which (a) automati-
cally generates the SIBs, which are Java classes, from
these specifications and (b) organizes all the registered
tool functionalities, including the corresponding ver-
sion control. In the future it will also include user au-
thentication, authorisation, and accounting.

3. the jETI client , which loads the SIBs from the jETI
Component Server and provides them as services, to-
gether with the jABC service development environ-
ment for orchestrating the tool functionalities.
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4. aTool Executor, which is able to steer the execution
of the specified tools at the tool providers’ site.

We explained previously how to integrate external tools
by means of the XML Tool description [28], which was
also applied to REST-style external services, like those of-
fered by statistical analysis packages based on the R tool, as
shown in [18].

We currently deal with Web services equipped with a
WSDL description both in the scope of the Semantic Web
Service Challenge [48], as shown in [30, 19], and for appli-
cations in the bioinformatics domain, as for example in [27].

In this paper we concentrate only on the new extension
to CORBA applications.

4 jETI-enabling CORBA Applications

The integration of CORBA applications inside the jETI
client requires only a valid IDL file. IDL files contain inter-
face descriptions that specify the set of possible operations
a client may request through that interface. Seen from the
jETI point of view, the IDL file provides a syntactic de-
scription of how to access the service and of its set of oper-
ations. An example of an interface description is depicted
in Fig. 2, which describes the LearnLib service that initial-
izes Angluin’s algorithmL

∗. The init operation accepts the
size of the input alphabet (sigmaSize) and initializes its in-
ternal data structures. After execution, it returns a set of
membership queries via the output parameterqueries. If
the initialization fails due to lack of memory the exception
OutOfMemoryis raised.

module learnlib {
interface DFAObservationTable {
void init(

in unsigned long sigmaSize,
out DFAQueryTree queries

) raises (OutOfMemory) ;

/* some more methods */
};

};

Figure 2. A CORBA Interface Definition

CORBA operations are similar to methods in object ori-
ented programming languages: they may have input and
output parameters, a return value, and they can throw ex-
ceptions to signal error conditions. jETI’s SIB generator
extracts the information about the interfaces and operations
and creates the SIBs accordingly. Since a SIB represents an
atomic functionality, it generates one SIB for each opera-
tion.

Parameters and the return value are handled as hierarchi-
cal SIB parameters: they enable the user to freely define

where to store input and output values for the CORBA ser-
vice, using the preexisting graphical user interface of the
jABC. The user view of the generated SIB is shown in
Fig. 3, as provided by the jABC SIB inspector.

As for method calls, the invocation of CORBA opera-
tions requires an object that deals with the state of the ser-
vice. Therefore the SIB has as additional parameter the ref-
erence to this object (theservant).

Figure 3. User view of the generated SIB: its
jABC SIB inspector

CORBA exceptions are mapped to SIB branches, which
steer the control flow in the jABC. In the example, the
default branch indicates normal execution of the service,
theOutOfMemory branch corresponds to the exception de-
fined in the interface, anderror is the generic branch used
in the jABC as default to cover all other failures, such as
network communication problems.

Our current implementation of the CORBA-to-jETI ser-
vice importer uses the IDL-to-Java compileridlj of the Java
Software Development Kit to generate a Java client library,
then analyzes that library and extracts the relevant informa-
tion to generate the SIBs. This way the approach can eas-
ily be adapted to other remote invocation protocols, such as
RMI and SOAP.

5 The LearnLib

LearnLib is a library of tools for automata learning. It
is implemented in C++, maintained under Linux and So-
laris, and it currently consists of 150 classes and almost
50.000 lines of code. Originally, LearnLib has been de-
signed to systematically build finite state machine models of
real world systems. In the meantime, it also became a plat-
form for experimenting with different learning algorithms
and to statistically analyze their characteristics in terms of
learning effort, run time and memory consumption.
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Figure 4. LearnLib basic services: jABC’s
overview in the SIB Taxonomy

Machine learning deals in general with the problem of
how to automatically generate system descriptions. The
field of automata learning, also called regular extrapolation
[14] or regular inference [11], is of particular interest for
soft- and hardware engineering [10], [31], [44], [35], [9].
Recent attention has been devoted to these techniques in the
context of assume-guarantee [8] and of interface refinement
for compositional verification [13].

We have used automata learning techniques in a number
of contexts, e.g. to automatically construct models of Web
applications as demonstrated in [36] and to enhance incom-

plete specifications of biological systems [24].
Automata learning tries to construct a deterministic finite

automaton that matches the behavior of a given target au-
tomaton on the basis of observations of the target automaton
and perhaps some further information on its internal struc-
ture [14, 37, 42]. Here we only say that our realization is
based on Angluin’s learning algorithmL∗ from [1].

L
∗, also referred to as anactive learning algorithm,

learns deterministic finite automata byactivelyposingmem-
bershipqueries andequivalencequeries to the target au-
tomaton in order to extract behavioral information, and by
refining successively an own hypothesis automaton based
on the answers. A membership querytestswhether a string
(a potential run) is contained in the target automaton’s lan-
guage (its set of runs), and an equivalence query compares
the hypothesis automaton with the target automaton for lan-
guage equivalence, in order to determine whether the learn-
ing procedure was (already) successfully completed. In this
case the experimentation can stop.

The LearnLib provides various means to carry out and
optimize this learning.

6 The LearnLib in jABC/jETI

Fig. 4 shows the SIB palette of the LearnLib in the jABC:
this is the catalogue of the services provided by the Learn-
Lib to any jABC/jETI user as SIBs. They are taxonomi-
cally classified according to criteria that ease the intuitive
retrieval to users not familiar with the LearnLib facilities.

The LearnLib Service Catalogue. The LearnLib has

• a pre-configuration mode(PC-Mode), which allows
the user to pre-configure an optimized learning setting
for both DFA and Mealy models, and

• a learning process modelling mode(LPM-Mode),
which enables the user to control the entire learning
process, the context-specific choice of optimizations,
strategies of search, as well as the setting of interac-
tion points for a truly interactive learning process.

Since these two modes are mutually exclusive, the top
level classification distinguishes between thePC-Mode and
theLPM-Mode services.

In the LPM mode, the LearnLib provides three subli-
braries of services:

• The automata learninglibrary (calledAngluin) con-
tains the basic learning algorithms for both DFA and
Mealy models. Here we find for example the LearnLib
SIBs initAngluin andGetConjecture that are used in
the Smyle application.
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• thefilter library provides several strategies (cache, pre-
fix, symmetry, independence) to reduce the number of
queries [29], and

• the approximative equivalence querieslibrary (called
Conformance) is based on the generation of confor-
mance test suites for the conjectures of the learning
algorithms according to different methods.

Additionally, a service librarySUT concerns SIBs pro-
viding the functionalities needed to access and manage a
generic System Under Test.

The Smyle Application. As shown in Fig. 5, the jETI
enabled Smyle application is built in the LPM-Mode, as
a SLG that uses the LearnLib services, own services, and
jABC/jETI basic services.

Here, SLGs are are used to model the entire learning
process, which comprises the modelling of conditional or
interactive behaviour. The nodes represent arbitrary state-
ments, in particular including any atomic functionalitiesof
the LearnLib, and the edges the control flow of the service
logic, i.e. in which sequence and under which condition
they are executed. Before we discuss this SLG in detail, we
summarize the purpose of Smyle.

7 Smyle

Smyle (Synthesizing Models by Learning from
Examples) [4], is a tool for synthesizing design models by
learning from example scenarios that are given as message
sequence charts. It addresses the requirement elicitation
phase within the typical software engineering development
cycle. Popular requirement engineering methods, such as
the Inquiry Cycle and CREWS [33], exploit use cases and
scenarios to specify the system’s requirements. Sequence
diagrams are also at the heart of the UML. Other formal
methods-based approaches like R2D2C use traces (in this
case CSP traces) to formulate scenarios [15]. A scenario
is a partial fragment of the system’s behavior, describing
the system components, their message exchange and
concurrency. Their intuitive yet formal nature has resulted
in a broad acceptance. Scenarios can be either positive or
negative, indicating a possible desired or unwanted system
behavior, respectively. Different scenarios together form a
more complete description of the system behavior.

The subsequent design phase in software engineering is
a major challenge as it is concerned with a paradigm shift
between therequirementspecification—a partial, overlap-
ping and possibly inconsistent description of the system’s
behavior—and a conformingdesign model, a complete be-
havioral description of the system (at a high level of abstrac-
tion). During the synthesis of such design models, usually

automata-based models that focus on intra-agent communi-
cation, conflicting requirements will be detected and need
to be resolved. Typical resulting changes to requirements
specifications include adding or deleting scenarios, and fix-
ing errors that are found by a thorough analysis (e.g., model
checking) of the design model. Obtaining a complete and
consistent set of requirements together with a related design
model is thus a highly iterative process.

In previous work, we have shown how to enhance re-
quirement elicitation and requirement completion in the
R2D2C approach with the learning technology imple-
mented in the LearnLib. [24, 25].

Here, we show how Smyle uses the LearnLib within
theSmyle modelling approach(SMA, for short), to address
the gap between scenario-based requirement specifications
and design models by exploiting learning algorithms for the
synthesis of design models from scenario-based specifica-
tions. Since message-passing automata (MPA, for short) [6]
are a commonly used model to realize the behavior as de-
scribed by scenarios, Smyle adopts MPA as design model.

The technical heart ofSMA(see [4]) is a procedure that
interactively infers an MPA from a given set of positive
and negative scenarios of the system’s behavior provided
as message sequence charts (MSCs). This is achieved by
generalizing Angluin’s learning algorithm for determinis-
tic finite-state automata (DFA) towards specific classes of
bounded MPA, i.e., MPA that can be used to realize MSCs
with channels of finite capacity.

SMAsupports theincremental generationof design mod-
els. Learning of initial sets of scenarios is feasible. On addi-
tion or deletion of scenarios, MPAs are adapted accordingly
in an automated manner. Thus, synthesis phases and anal-
ysis phases, supported by simulation or analysis tools such
asMSCan[5], complement each other in a natural fashion.
Furthermore, on establishing the inconsistency of a set of
scenarios,diagnostic feedbackin the form of a counterex-
ample can guide the engineer to evolve his requirements.

7.1 Smyle and the LearnLib

Currently, Smyle, which can be freely downloaded at
http://smyle.in.tum.de , is is written in Java and
makes use of theLearnLib library via its CORBA inter-
face. Thus, the LearnLib is basically used like a standard
library in this case providing learning functionality. The
main difference is that the learning functionality is not in-
tegrated intoSmyleat compile time but at run time. While
this requires to have an Internet connection to the Learn-
Lib’s location, this design choice has several advantages:
Smyleimmediately profits from ongoing improvements or
bug fixes of the learning library – completely transparent to
the user ofSmyle. Furthermore, learning large systems typ-
ically asks for machines with sizable memory. A remotely
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Figure 5. Learning Process Modeling Mode: Design of Smyle as jABC Choreography

running LearnLib shifts this issue to the location that usu-
ally supports it and can deal with this issue better than the
typical user ofSmyleon its local machine.

7.2 Smyle as a jABC Choreography

The SMA approach can be elegantly and intuitively ex-
plained along its LPMM model in the jABC. As shown
in Fig. 5, Smyle’s SLG coordinates (1) a user, who exe-
cutes theSmyle user interaction SIBs, (2) Smyle pro-
cesses, (3) LearnLib services, and (4) generic control ac-

tivities provided by the jABC, like loop controls and store
activities. In detail, once connected to the LearnLib (SIB
ConnectLearnLib,

• the user is initially asked to specify the learning setup
(ChooseLearningSetup) and the LearnLib is started
(InitAngluin).

• After having selected a language type (existen-
tially/universally) and a channel boundB, the user pro-
vides a set of MSCs. These MSC specifications must
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Figure 6. Smylescreenshot

then be classified aspositive(i.e., MSCs contained in
the language to learn) andnegative(i.e., MSCs not
contained in the language to learn). This happens via
user interaction with Smyle (User: classify initial ex-
amples andStoreExamples).

• After submitting these examples, all linearizations (see
Fig. 6 (1)) are checked for consistency with respect
to the properties of the learning setup. Violating lin-
earizations are stored as negative examples.

• Now the learning algorithm starts. TheLearnercon-
tinuously communicates with theAssistantin order to
gain answers to membership queries. This halts as
soon as a query cannot be answered by theAssistant.

• In this case, theAssistantforwards the inquiry to the
user, displaying the MSC in question on the screen.
The user must classify the message sequence chart as
positive or negative (cf. Fig. 6 (1)).

• TheAssistantchecks the classification for validity wrt.
the learning setup. Depending on the outcome of this
check, the linearizations of the current MSC are as-
signed to the positive or negative set of future queries.

Moreover, the user’s answer is passed to theLearner
which then continues his question-and-answer game
with theAssistant.

• If the LearnLib proposes a possible automaton, the
Assistantchecks whether the learned model is consis-
tent with all queries that have been categorized but not
yet been asked. If it encounters a counter-example,
it presents it to the learning algorithm which, in turn,
continues the learning procedure until the next possi-
ble solution is found.

• In case there is no further evidence for contradicting
samples, a new frame appears (cf. Fig. 6 (2,3 )).
Among others, it visualizes the currently learned au-
tomaton (2,4 ) as well as a panel for displaying MSCs
(3) of runs of the system described by the automaton.
The user is then asked if it agrees with the solution and
may either stop or introduce a new counter-example
proceeding with the learning procedure.

8 Conclusions

We have shown how to extend the FMICS-jETI platform
for the integration ofheterogeneous and legacy tools and
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technologies. With automatic integration of CORBA ap-
plications from their IDL interface descriptions, we cap-
ture a significant segment of legacy network-based appli-
cations. We have used this integration technology to pro-
vide the LearnLib, a model extrapolation technique that
uses testing to explore black box systems, as a service cat-
alogue to the FMICS-jETI users. We have shown how
Smile, which builds on LearnLib functionality, could be re-
designed as a jABC service choreography that coordinates
own and LearnLib services, thus illustrating how preexist-
ing third party applications built on top of the LearnLib can
be refactored in a service-oriented fashion.

From the point of view of the Verified Software Initia-
tive, the Corba integration allowed us to extend the cover-
age of the FMICS-jETI platform to capture not only model
checking-based analyses, but also requirement elicitation,
model synthesis, testing, and automata learning.

Acknowledgements:We thank Benedikt Bollig, Joost-
Pieter Katoen, and Carten Kern for many useful comments
on Smyle [4].
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