Modeling and Model Checking Software Product Lines

Alexander Gruler, Martin Leucker, and Kathrin Scheidemann

Institut fur Informatik - Technische Universit Minchen - Germany

Abstract. Software product line engineering combines the individual develop-
ments of systems to the development of a family of systems consistingref co
mon and variable assets. In this paper we introduce the process aRje@s

as a product line extension of CCS and show how to model the overali/toeh

of an entire family within PL-CCS. PL-CCS models incorporate behaviana
ability and allow the derivation of individual systems in a systematic way dae to
semantics given in terms of multi-valued modal Kripke structures. Furibiee,

we introduce multi-valued modatcalculus as a property specification language
for system families specified in PL-CCS and show how model checkirtg tec
nigues operate on such structures. In our setting the result of mogekiol is

no longer a simplgesor noanswer but the set of systems of the product line that
do meet the specified properties.

1 Introduction

A software product linés a set of software intensive systems sharing a common, man-
aged set of features that satisfy the specific needs of aplartimarket segment or
mission and that are developed from a common set of coresq§3802]. Developing
a set of related systems as a product line, rather than eystgrs individually, enables
the systematic exploitation of synergy effects. Produw koncepts are, for example,
widely used in automotive production, in order to allow fodividuality and high cus-
tomizability of vehicles, while at the same time keepingdarction cost low.

Modern vehicles are controlled by large sets of configuraldetronic control units
(ECUs) which communicate via buses and gateways. In othetsythey are highly in-
dividual, distributed, embedded systems on wheels. Dueetptevalence of new tech-
nologies, the complexity of vehicle systems will increaseter. In order to be able to
guarantee high quality, security and safety requiremarftgiire, the application of for-
mal verification and analysis techniques get more and meenéial. However, in order
to be effectively applied in a product line context, formalaeling approaches as well
as the applied formal verification techniques, need to efiiity cope with variability.

Despite their importance for the development of softwaterigive systems, formal
modeling and especially verification techniques for pradines do not yet meet the
industrial needs.

Kishi et al. in [KNKO5] proposed to use traceability in a puatl model in order to
automatically compose subsystem models of a configuratiamder to model check
that configuration. With this approach it is possible to audite the composition of

* This author was partially funded by the German Federal Ministry of Bitutand Research
(BMBF) in the framework of project VEIA under grant 01ISF15A.

configurations, but it is still necessary to model check a ehéat each configuration
separately.

Modular verification approaches like the one introduced hKkishnamurthi and
Fisler [LKFO5] use compositional verification techniquesorder to infer properties
of an assembled system from the properties of its asse¢sfdoes of feature-oriented
modules contain constraints, similar to verification ctinds that other modules must
satisfy at composition time. In their approach, these dunth are automatically de-
rived during feature verification. Configurations are vedfindividually, but results for
partly integrated configurations and modules, which haxesdly been verified, can of
course be reused.

Larsen et al. defined a behavioral variability model for pretdine development
based on modal I/O automata [LNWOQ7], which are an extensidracfen’s and Thom-
sen’s Kripke modal transition systems [LT91]. Their aimas to verify product specific
functional properties for configurations, but rather tafyehe error free combinability
of interfaces. Error free composition is characterized H®y absence of deadlocks. It
is not required that all possible configurations give anreinee composition, but only
that there exist configurations that can avoid errors unditatde use.

Kripke modal transition systems are used in [FUBO7] to stilidynotion ofbehav-
ioral conformancen the setting of software product lines.

In our approach we model the functional behavior of an emticeluct family in
a single model which explicitly incorporates behavioratiahility. Compared to other
approaches which also contain the concept of variabiligrbitrary development assets
such as requirement specifications, design models or tedtmnfPBvdL05], we have
included the variability information into the behaviorabdel. In particular, the concept
of variability is also considered in the semantical modetdntrast to other techniques,
our model and the respective semantics allow the applicationodel checking tech-
nigues. By this, we can reduce typical questions from protine engineering to model
checking problems.

More specifically, this paper introduces PL-CCS as a vartdniilner's CCS
[Mil95] designed to model the interaction of software comeots used in software
product lines. While Milner's CCS is well-suited for desénifp the communication of
(closed) software systems, it lacks support for definingtaosystems. We extend
CCS by a variants operatay, which allows to model alternative behavior, i.e. alter-
native processes, with the meaning that only one of theraltime processes will be
existing in the final (running) system. The semantics of ard@S system is defined
in terms of dabeled transition system for product lin@RBL-LTS), which is essentially
a multi-modal Kripke structure extending Kripke modal s#ion systems [LT91]. Ab-
stracting from the specification concept on top (in our cagerneled CCS), a PL-LTS
assigns a semantics to the so far only vaguely defined notiaariability. Note that de
Nicola et. al. [VN98] and Majster-Cederbaum [MCO01] intreéas well arp-operator
which represents a form a variability. However, the appihdamot tailored to product
lines and does not study the question of verification.

The main benefit of the proposed modeling formalism is thataters for auto-
matic verification by model checking. We introduce the mudtiued moda}:-calculus
as combination of Kozen’s modalcalculus [Koz83] and multi-valued-calculus as

defined by Grumberg and Shoham [SGO05], yielding a propemgifipation language
suitable for specifying and checking properties of PL-C@&ypams. More specifically,
the result of model checking a property for a PL-CCS prograthésetof configura-

tions satisfying the property at hand and not only the ansiatbe property holds or
not.

2 Product-Line CCS

In this section we introduce PL-CCS as an extension of Minaocess algebra CCS
[Mil95]. PL-CCS is designed for modeling the behavior of amie product line in a
way especially suitable for automatic verification by moctetcking.

2.1 Product Lines

Before giving a formal approach to our notion of product éinket us consider an ex-
ample, and derive our formalism in an intuitive manner. Bgreve will also fix the
terminology we use in the rest of this paper, mostly follog@N02], where groduct
line is considered to be a set of systems sharing a common, masagefl features
that satisfy the specific needs of a particular market segmemission and that are
developed from a common set of core assets.

As usual, we consider individual systems (products) thabailt from subsystems
in a compositional manner. Following CCS, we model the biehaf a system as well
as its subsystems as processes. The parallel opdriatawn from CCS can be used to
express that the behavior of the compound system is definélgelyarallel execution
of its subsystems. For example, a ¢aconsists—amongst other things—of an engine
E, alocking systeni.S, and an infotainment systefy, which operate in parallel. This
is denoted as:

CEZE| LS| IS

In the product lines we consider, subsystems may be redlizatternativevariants
Entire subsystems may even be optional. For example, eshichy be equipped with
different locking systems, such as (i) a central lockingt&ysLS .c,..-o; CONtrolling
the locking of all doors, or alternatively (ii) a locking $m LS eyicss, Which allows
remote keyless entry via a key fob. Such variants can befgxkai PL-CCS using the
binary variants operator &. The usage of the variants operator can be understood as
offering a set of possible “choices” realizing a variantushthelocking systenean be
specified as follows:

LS d:Sf LScentral S LSkeyless

As not all vehicles in the specified product line may be egedpyith an infotainment
system, we enrich PL-CCS with aptional operator(_), allowing the infotainment
system to be declared aptional written as:

CZE| LS| (IS)

Both, the variants operator and the optional operator defieaiation point Given a
PL-CCS model for an entire product line, individual systeras be derived by making

decisions for all variation points. More precisely, chogsfor every variants operator
one variant and for every optional operator whether theooplisubsystem is present or
not, yields a specificonfiguration The configuration then defines uniquely aystem
also calledproduct that is derivable from the product line.

Note that CCS offers an operatar for expressingnon-deterministic choiceAl-
though our variants operatear is to some extent similar to the CGS there are several
important conceptual as well as formal differences betwssh. Thus, both operators
are essential for PL-CCS (see also Rules 12 and 13 in Sec8pn 2

2.2 PL-CCS - Syntax

In this section we introduce the syntax of PL-CCS prograntsckvallows us to define
design models for software product lines.

Let Id be a finite set oprocess identifierand X' by a finite set ofinput actions
Usually, P, Q, Py, ... range over process identifiers amag, ... range over input ac-
tions. As in CCS, letd = X U X' U {7} represent the set @ommunication actions
wherer ¢ X U X represents thsilent actionand, X = {a | a € X'} is the set obut-
put actions Usually, «, 3, ... range over communication actions. Biil, we denote
the atomiddle process.

The setP of all PL-CCS process expressiofts short processes) is generated by
the following grammar:

ex=Q|Nil|ae|letelede|e|ele[f]]e\L (1)

where@ € Id is a process identifiey € A is an action,. C A is a set of action
labels, andf : A — A is arenaming functioni. e. a function respectingi(a) = f(a)
andf(r) =r.

Thus, syntactically, PL-CCS extends CCS [Mil95] only by thieary variants op-
erator®. An optional-operatot_) can be added to PL-CCS as the syntactical abbrevi-
ation:

(P):=P® Nil

In Section 2.3, where PL-CCS semantics is discussed, we&élthat this abbreviation
meets our intuition, allowing us to confine in this technipedsentation of PL-CCS to
the variants operatap only.

A process definitioiis an equation of the forn?® < e, whereP € Id

is a process identifier anel € P is a PL-CCS process. We specify

the behavior of an entire product family byPi-CCS programA P, £ ¢,
PL-CCS programProg is a tuple(&, P1), where€ is a finite set of p, &',
process definitionand P, € Id is the distinguishednain process
identifierof Prog. Typically, we denote a PL-CCS program by listing

its equations, assuming that the left-hand side of the foigaton P, Zen
is the main process identifier. Thus, we usually write onky $let of

defining equations as shown aside.

Fig. 1. A program dependency graph

Well-formed PL-CCS programs. Our goal is to model software product lines which
require only ara priori finite number of decisions taken at variation points when deriv-
ing a specific system, which is the case for all product limdsvant in practice. So far,
however, as in CCS, PL-CCS allows the creation of new presdasg using the parallel
operatot| within recursive process definitions. In combination witlr @-operator this
may potentially result in an unbounded number of variatioim{s.

To avoid this, we consider only a (syntactically) restricseibset of all PL-CCS pro-
grams. The syntactical restriction is achieved by threelitimms:completenesginitely
configurable andfully expandedthat are used to derive the notionwéll-formedsys-
tems. For such well-formed PL-CCS programs we can defaoegositionakemantics
(see section 2.3) which is exactly what we require from a pcbtine approach. In the
remainder of the section we successively introduce theasyinal restriction.

Definition 1 (complete PL-CCS program).We call a PL-CCS program with the set
of process definition§ P, “ e1,..., Py « en} complete if all process identifiers;
on the left-hand sides of the defining equations are paindisénct and the defining
equations, . .., e, contain only process identifiers in the 4é%,, ..., P, }.

In the following, we consider only complete PL-CCS prograhsw, we turn to-
wards the definition of a dependency graph of a PL-CCS progwerith—similar to
a control flow graph for programming languages—reflects tipeddencies of process
definitions in a program.

For a PL-CCS process let pt(e) denote the parse tree efdefined in the usual
manner as a tree labeled with operator symbols or procestfides (in leafs). Given
a complete PL-CCS progran@“{Pl L. P E ent, Pl), we define itgprogram
dependency graplas the directed labeled graph given as follows: Its nodegdsm
those for left-hand sides of the equations, labdked . ., P, together with the nodes
of the parse trees for the right-hand sides of the equatitnsdges comprise the edges
of the parse trees plus edges connecting left-hand sideguatiensP; to the roots of
parse trees of the corresponding right-hand sidegdditionally, we add edges from
leafs of the parse trees label&dto the node for the left-hand side of equatiBn= e;.
As an example, consider the following PL-CCS program whasgiam dependency
graph is shown in Figure 1.

def def

P=(a.P)® Q] Q) Q = B1.Nil ® [35.Nil

We call a node labeled@ reachablefrom a node labeled if there exists a path
from P to Q in its program dependency graph.

Intuitively, a program dependency graph reflects the degrarids between the pro-
cess identifiers of a PL-CCS program with respect to its dejieiquations. A cycle in
this graph that contains a node labeled by a parallel opensight represent a recur-
sive process definition “spawning” an arbitrary number gfies of its own. If in such
a context, the variants operater comes into play, an unbounded number of config-
uration selections would be possible. We therefore considthe following PL-CCS
programs which forbid such a situation and thus are confijeraithin finitely many
configuration selections.

Definition 2 (finitely configurable PL-CCS program). We call a complete PL-CCS
programfinitely configurableif its program dependency graph has no cycle containing
a node labeled withj from which a node labeled witly is reachable.

Consider Figure 1. While there is a cycle fratrback toP from which a®-operator
is reachable, the program is finitely configurable as thigecgoes not contain a node

def

labeled||. If insteadP = («.P) || (Q || @), the program would not be finitely con-
figurable, as the cycle fron® to P would contain the parallel operator, and, still the
@-operator of the second equation is reachable.

Note that the definition of finitely configurable does oharacterizethe programs
that are configurable within finitely many configuration séilens, but is just a suffi-
cient condition. However, as it is (already) undecidabletlibr a CCS program yields
a finite or infinite state system, it is easy to see that it is alsdecidable whether the
transition system defined by a PL-CCS program would make sely finitely many
configuration selections. In the following, we therefor@sider only on finitely con-
figurable PL-CCS programs.

There is a further restriction we want to make. Consider Weihdependent systems
P andR:

PEQQ Vs, REQ®Q:2] Q1 Q2
QEQoQ:

When considering the left systefmione might understand its meaning as followsH)
consists of two “instances” of the same variati@nHence, one selects once between
@1 and@)- and follows this choice for any occurrence@in P. However, if we would
specify P by expanding the definition @ in the definition ofP, we would get a system
like R, which represents another intention: (ii) Ry we now have two (independent)
variation points, which— though offering the same varia@tsand Q2— might be
configured differently from each other.

So far, the structural semantics rules, as we introduce the®action 2.3, are only
compositionafor meaning (ii). Therefore—for the scope of this paper ansitaplify
the technical treatment—we only consider systems kkaevhere every variants oper-
ator can be configured independently from the configuratfastieer variation points.
Note, that it is easy to extend our formalism to actually cejith both meanings, by
introducing a second alternative operator with a suitablaantics for the case d?.
However, as this would make the current presentation matenteal, we refrain from
giving this extension in this paper.

In order to allow only systems as in (ii), we consider ofuily expandedPL-CCS
programs:

Definition 3 (fully expanded PL-CCS program).We call a complete and finitely con-

figurable PL-CCS prograrnfully expanded if its program dependency graph satisfies
the following: Removing all edges that are part of strongbnieected components

(vielding a possibly not connected graph), there is at most path from every node

to any® node.

Note, that a finitely configurable PL-CCS program which isfatlyy expanded can
be transformed into an equivalent fully expanded versidhe Definitions 1 to 3 allow
us to characterize the setwell-formedPL-CCS programs, which will be the basis for
the rest of this paper.

Definition 4 (well-formed PL-CCS program). A PL-CCS program isvell-formed if
it is complete, finitely configurable, and fully expanded.

The rational for the syntactical restrictions leading tdibiéon 4 is that in a well-
formed PL-CCS program we can easily label each variantsatqrawith a unique nat-
ural number by parsing over the PL-CCS program and attachifrgsh number to
every occurrence of a variants operator. This allows us¢cipely define the concept
of a variation point: We call a uniquely labeled variants raper with number € N,
denoted by®;, avariation point

In practical applications, not all combinatorially podsibonfigurations are mean-
ingful or allowed for various non-functional reasons. Frample, recall the example
from Section 2.1: An OEM might always provide the more adeahkeyless locking
system whenever a premium infotainment system is selettads, whenever the (op-
tional) infotainment system is chosen, we have to seleckéytess variant as well.
Such non-functional dependencies between different stdasys are usually captured
in a feature model. In their mathematical essence, featodeta define a restricted set
of configurations. The framework described in this papesd include such a depen-
dency model and has to be extended to cope with such restigictHowever, to keep
the presentation simple, we defer the formal treatment cifi $eature dependencies to
our future work.

2.3 Semantics of a PL-CCS Program

In the following, we define the semantics of a PL-CCS progristore precisely, we
introduce three different semantics, tfiat semanticsthe unfolded semanticsand
the configured-transitions semanticand show how they are related. Basically, the
first two semantics are only introduced to motivate and fiystie final semantics, the
configured-transitions semantics, which will be an appegpbasis for model checking
described in Section 3.

1 This sentence is not to be understood in a mathematical sense, as nuisefioa non-fully
expanded programs has and will be provided, which does not allowfteedsquivalence
precisely.

Flat Semantics The flat semanticgeflects the intuitive understanding of a PL-CCS
program: Every PL-CCS program can be understood as the sdit(pfain) CCS pro-
grams that can be derived by a total configuration of the PIS@gram. More pre-
cisely, given a well-formed PL-CCS program, we choose fergvariants operator ei-
ther the process term on its left- or right-hand side and xenadl the unselected terms
together with the respective symbols from the PL-CCS program. For every such con-
figuration, this procedure results in a plain CCS progranicwban be understood in
the usual way, e.g. with the semantics described by Milnelg0].

Technically, given a well-formed PL-CCS prografog with n € N variants op-
erators, we label every variants operatouniquely with a number if1,...,n}. The
individual configuration selection made for tié @-operator is stored in th&" entry
0, of the configuration vectop € {R, L, ?}": The entryR represents the selection of
the right processl. represents the selection of the left process, argpresents the sit-
uation that none of the two alternatives has been selectfd. 8e call a configuration
vectorf € {R, L, ?}" fully configuredif Vi e {1,...,n}:6; # 7.

Given a well-formed PL-CCS prograirog with n variants operators and a fully
configured configuration vectére {R, L, 7}™ we define a function

config: P x{R,L,7}" - R

whereR is the set of CCS programs. The functiamfig reducesProg to a CCS pro-
gramV, whereV is constructed by removing all terms frog which are not selected
according td.

This allows us to define the flat semantics of a PL-CCS progfam as

[Progl piar = {[VIces | 30 : (config(Prog,0) = V)})

where [V] .4 denotes the conventional CCS semantics of the CCS progfaas
defined, e.g., in [Mil80] by means of SOS rules. Due to spanédtions, we omit to
present the original CCS-SOS rules but refer to the PL-COS-8ules given in Figure
2, which are of the same form as the original ones but addiliprarry a configuration
vector.

Note that feature constraints can be incorporated in thedtagntics by considering
only appropriate configuratiorfsin Equation 2.

Unfolded Semantics Recall that in the flat semantics, a PL-CCS program givegeise
asetof transition systems, one for each fully configured configion. In the unfolded
semantics, the meaning of a PL-CCS program is defineddiggielabeled transition
system modeling the behavior of an entire product familyparticular, by combining
the behavior of all derivable systems witlonelabeled transition system, it provides
the basis for reducing effort in model checking, by considecommonalities between
systems. Before defining the unfolded semantics we int@dLguitable transition sys-
tem:

A product-line transition systerfPL-LTS) with n variants operators is a tuple
(S, A, A, o), whereS is a (countably, possibly infinite) set of statekis a set of com-
munication actions, and is a finite set of transition relations of the forf->C Sx S,
wherea € A, v € {R, L,?}", ando € S is the start state.

a, v ,
M ,cEp (constant definition) 3)
C,v—— P v

, for arbitraryv € {R, L, 7}" (prefiz) (4)

o, v

a.Pv —— P,v

o, V
Pv == P v

— (non-deterministic choice (1)) (5)
P+Q,v— Pv
@, v ’
Qr—Qv (non-deterministic choice (2)) ©)
P+Quv % QL
a, v /
Py PLy (parallel composition (1)) @

(PlQ),v == (P || Q),v

Qrv==-Q,v

a (parallel composition (2)) (8)
PRy —(PQ)v
Py P Ll Qv QLY (parallel composition (3)) 9)
PQ)v—F|Q)v
P ’”f = VP i (re-labeling) (10)
Plfl,v —— P'[fl,v
Py PLv ,a,a¢ L (restriction) (11)

(P\L),v 2% (P'\L),v

Fig. 2. SOS rules for unfolded semantics, exceptebperator

Thus, in a PL-LTS a transition from one state to another iglkd by an action
« and an additional (partial) configuration vectarHowever, a transitios — s’

represents the set of all transitions—— s’ with » more general than':

Given two vectors/, v/ € {R, L, ?}", we callv more generathanv’, denoted by
vV, if Vie{l,...,n}: ((ri="7) V (1, =v})). We say that characterizeshe
set of configuration vectors/’ | v C v'}.

Let us now elaborate on thenfolded semanticef PL-CCS programs. Similar as
for CCS, we define the labeled transition relation by mearshdthed SOS rules. The
states of the transition system are pairs of PL-CCS procgeessions paired with a
vector characterizing the configurations under which tt@gesvas reached. In order to
keep track of the choices for the variants operators thenai@OS rules are enriched
with a vectorv characterizing the configuration vectors for every tramsit

Except for the variants operatay, the (original) CCS rules do not influence the
construction of the vectors attached to the transitionsaaedherefore only adjusted in
order to be capable of dealing with vectors. The respedctisrare given in Figure 2.

For example, rules (3) and (4) express that the executiom @fcion—specified
either directly by action-prefixing as in (4) or indirectly b constant definition as in

a, (LL)
—_—

a.P1,(LL) Py, (LL)

a, (LL)
_—

a.Py &1 b.Ps, <7L> P, <LL>

a, (LL) Py (LL)

(a.Py @1 b.P2) @2 c.Ps, (?77)

(b) deduction

(a) PL-LTS

Fig. 3. PL-LTS for § & (a.Py @1 b.P2) ®s c.Ps and the deduction of transitiof =",

rule (3)—can be performed without affecting the current gpnfationy, i.e. any state
«. P, v affords a transition labeled with the actiarin every possible configuratian

Essential for the unfolded semantics is the treatment ofvélne@nts operator:
Recall that it is a binary operator which allows to model @sgébn between two alter-
native processes where only one will be existing in the figatesn. Though looking
similar to the ordinary CCS--operator (which in a way also models a choice between
alternatives), it has to be treated different, for two reasd-irst, when a selection has
been made, the same selection has to be taken when recurewisiting the same»-
operator. Second, the choice has to be “made visibly” inrdugsition relation, to allow
further reasoning on each configuration by model checking.

These two issues are captured by the following two SOS rolethé®-operator:

@, v i/L
P, V|4/L—‘4P,v I/‘i/L . . .
’ , Vi # R (configuration selection (1)) (12)

a, u’|i
P®; Qv —L5 P, Vi
’ V/|i/R
Qg —— Qv : . :
| /R 7 | /R , Vi =L (configuration selection (2)) (13)
o, V'R

P®; Qv — @, V/|Z‘/R

Here, V\i/m represents the updated vectowhere the entry at th&" position is
replaced by the value € {R, L}. All other entries keep their values, i.eV j #
it (v];,); = v;. Recall that; yields thei®® element of the vector. Further note
that the respective conditions of the alternative rulesgmethe user from selecting a
different alternative when re-entering the selection sleai due to a recursive process
presentin CCS.

We define theunfolded semantice®f a PL-CCS programProg, denoted by
[Prog] ;r, as the PL-LTS obtained by applying the SOS rules to the meiogss
identifier.

As an example, Figure 3(a) shows the PL-LTS when applyingcthdiguration
selectionrules to the PL-CCS program starting with the main procesisitlen 5 <

10

def

(A¥c@aeba @) am (AZaaeba L)

a,(L)
c, (7
—{A Ey c.(a.A®1b.A), <?>>L’<A =a.A ®16.4, <?>>
b.(R)

(A% c(aAdib.A), @D\C'W (AZaA®ib.4 (R))

Fig. 4. PL-LTS for the PL-CCS termi = ¢.(a.A & b.A)

(a.Py @1 b.Py) @y c.P3. Since the presence efPs in the final configuration only
requires to select the right variant at the variation peaigtthe corresponding transition
to statePs, (?R) only fixes the second entry of the configuration vector to tlee/R
while leaving any choice for the first entry (?). In contrastitat, the selection of either
P, or P, requires to take two configuration decisions, reflected leyviictors(LL)
and(RL) in the respective stated’,, (LL) and P2, (RL). A corresponding deduction
(applying twice Rule 12) for the selection of the varidhtis given in Figure 3(b). Note
that the derivation shows that the semantics can requisraesonfiguration selections
for deriving a single transition.

Figure 4 shows an example for the configuration selecti@srdr recursive process
definitions. More specifically, the PL-LTS for the PL-CCSgram A = ¢.(a.A®b.A)
is shown. The state labels correspond to the process teathErgvith the configuration
under which they were reached. If the semantics would onpedd on the current
state’s CCS-term (and not additionally on the configuratielected so far), the states
at the left and the right column could not be told apart, sthegorocess term is the same
for all three states in one column. But since the unfoldedsseits keeps track of which
configuration was chosen so far, identical PL-CCS termslyl#ferent states in the PL-
LTS under different configurations. More precisely, thisam&that in the state labeled

with 4 £ a.A @, b.A, (L) the semantics does not allow to have an outgoing transition

labeled Withﬂn since the dual configuratiofL) has already been selected.

While the unfolded semantics is easily understood and dakeethrepresent the
behavior of a PL-CCS program within a single transition sgstthe previous example
leads one to suspect that the unfolded semantics yieldsoimpact transition systems.
In the next section, we introduce a configured-transiti@mantics, which is based on
the unfolded semantics yet yields smaller transition syste

Let us elaborate on the correctness of the unfolded sersanticsense made precise
below. Therefore, recall that two transition systems ateddisimilar, denoted by,
when, starting at the initial states, every transition of sgstem can be simulated by
one of the other system and vice versa (see [Mil95] for a peedefinition). From a

11

b,(R)
/ ?
def G <> def
4’(A=c.(a.A®1b.A))—{ A=a.AD b.A)
~ =
a(L)
Fig. 5. Configured-transitions semantics far™ c.(a.A@b.A)

PL-LTS, we obtain for a given configuration vectbra labeled transition system by

projecting to those states and transitions whose vecd®more general, i.e. whereC

0, and discarding all other transitions. For a PL-CCS prognatin unfolded semantics

[Prog] ;5. let the transition system obtained in this way be denotetl b Prog]).
The following theorem states that (modulo bisimulatior® $ystems given in terms

of the flat semantics and the unfolded semantics coincide.

Theorem 1 (Correctness of unfolded semantics)Given a PL-CCS progranProg
and a configuration vectdt,

[config(Prog,0)]ccs = Ho([Prog] yr)

Due to space limitations we omit the proof here and refer texdanded version of the
paper [GLS08].

Configured-transitions Semantics In the following, we give a further semantics for
a PL-CCS program which yields a smaller transition systed ahthe same time,
caters for model checking the entire product line as desdrib the next section. The
idea is to identify states that have the same PL-CCS proeassiaut only differ in the
corresponding configuration vector.

Let =%C P x P be defined by
P ZX P’ iff there exists// with P,/ =% P/ v

wherea € Aandv, € {L,R,?}" and% is the relation defined in the previous
section.

We define theConfigured-transitions semanticd§ a PL-CCS progranProg, de-
noted by[Prog] ., as the PL-LTS consisting of states reachable from the nrairess
identifier wrt. == and corresponding transition relations.

Figure 5 shows the transition system for the progr&r# c.(a.A & b.A). A com-
parison with Figure 4 showing the unfolded semantics fostmae program shows that
the configured-transitions semantics yields indeed smia#lasition systems.

For any PL-CCS prograrfirog, every path irf Prog] ,, corresponds to one execu-
tion of one product of the family. This does no longer holdtfoe paths of Prog] -
For example, the pattuch in the system shown in Figure 5 does not exist in any of the
transition systems dfA = c.(a.A @ b.A)] ;- However, the interesting property of the
configured-transitions semantics is that for every conéigon vector, the projection
of ITy([Prog] o), similarly defined as fof Prog] ,, yields the same transition system
(modulo isomorphism) as the one obtained when projedting wrt. § and taking the
CCS semantics:

12

Theorem 2 (Correctness of configured-transitions semant#). Given a PL-CCS
program Prog and a configuration vectat,

[config(Prog, 0)]ccs= Ho([Prog] or)

A corresponding proof can be found in [GLS08].

3 Model Checking Product Lines

In this section, we introduceraulti-valued modal versioaf the u-calculus suitable for

specifying properties of individual configurations of a BIGS program. Furthermore,
we sketch a game-based and therefore on-the-fly model etgeagproach for PL-CCS
programs with respect t@-calculus specifications.

We have chosen to develop our verification approach for fpations in theu-
calculus as it subsumes lineartime temporal logic as wetbasputation-tree logic as
first shown in [EL86,Wol] and nicely summarized in [Dam94hérefore we can use
our approach also in combination with these logics, and itiqudar have support for
the language SALT [BLS06] used with our industrial partners

Multi-valued modaly-calculus combines Kozen’s modatcalculus [Koz83] and
multi-valued p-calculus as defined by Grumberg and Shoham [SGO05] in a way sui
able for specifying and checking properties of PL-CCS paiotg. More specifically,
we extend the work of [SGO05], which only supports unlabeliedndnd and box opera-
tors, by providing also action-labeled versions of theserators, which is essential to
formulate properties of PL-CCS prografis.

A latticeis a partially ordered s€iC, C) where for each, y € L, there exists (i) a
uniguegreatest lower boungglb), which is called theneetof 2 andy, and is denoted
by x My, and (ii) a uniqudeast upper boundlub), which is called thgoin of = andy,
and is denoted by LI y. The definitions of glb and lub extend to finite sets of eleraent
A C L as expected, which are then denoted byt and| | A, respectively. A lattice
is calledfinite iff £ is finite. Every finite lattice has a least element, caltedtom
denoted byl , and a greatest element, calteg, denoted byT . A lattice isdistributive
iff tM(yUz)=(zNy)U(zMNz),and, duallyx U (yMz)=(zUy)N(zUz).Ina
DeMorganlattice, every element has a uniquelual element-z, such that-—x = =
andx C y implies—z C y. A complete distributive lattice is calleBooleaniff the
zU-z=TandzM-x = L.

While the developments to come do not require to have a Bodétace, we will
apply them only to the Boolean lattices given by the poweo$gtossible configura-
tions. In other words, given a set of possible configuratidnshe lattice considered is
(2N, C) where meet, join, and dual of elements, are given by intésgainion, and
complement of sets, respectively.

2 Thus, strictly speaking, we define a multi-valued and multi-modal versidheq:-calculus.
However, we stick to a shorter name for simplicity.

13

Multi-valued modalu-calculus Let P be a set opropositional constantsand.A be a
set ofaction namesA multi-valued modal Kripke structufMMKS) is a tuple7 =
(S, {Ra(.,.) | @ € A}, L) whereS is a set of states, arll,(.,.) : S xS — L
for eacha € A is a valuation function for each pair of states and actiore A.
Furthermore[: S — L7 is a function yielding for every state a function frddnto £,
yielding a value for each state and proposition. For PL-C&fiams, the idea is that
R«(s,s’) denotes the set of configurations in which there igvg@ransition from state
sto s'. It is a simple matter to translate (on-the-fly) the traositsystem obtained via
the configured-transitions semantics into a MMKS.

A Kripke structure in the usual sense can be regarded as a MM#&Sralues over
the two element lattice consisting of a bottamand a topT element, ordered in the
expected manner. Valué then means that the property holds in the considered state
while 1. means that it does not hold. Similart®,(s,s’) = T reads as there is a
corresponding transition whileR (s, s') = L means there is na-transition.

Let V be a set of propositional variables. Formulae of thalti-valued modaj-
calculusin positive normal formare given by

g u=true| false | q | ~q[Z oV lone|{a)e]|lae|pZe|vZe

whereg € P, a € A, andZ € V. Let mv-£, denote the set oflosedformulae
generated by the above grammar, where the fixpoint quastjiiend » are variable
binders. We will also write for eitherp or v. Furthermore we assume that formulae
are well-named, i.e. no variable is bound more than onceyrf@mula. Thus, every
variableZ identifiesa unique subformul@ (Z) = nZ.4 of ¢, where the sefub(y) of
subformulaef ¢ is defined in the usual way.

The semantics of av-£, formula is an element af *—the functions frons to L,
yielding for the formula at hand and a given state shéisfaction valueln our setting,
this is the set of configurations for which the formula hold¢he given state.

Then thesemantics[[ga]]z of a mv-£, formula ¢ with respect to a MMKS
T =(S,{Ru(.,.) | @ € A}, L) and arenvironmenp : V — L5, which explains the
meaning of free variables ip, is an element of ¢ and is defined as shown in Figure 6.
We assumé to be fixed and do not mention it explicitly anymore. WifZ — f]
we denote the environment that mapso f and agrees witlp on all other arguments.
Later, when only closed formulae are considered, we wilb @sop the environment
from the semantic brackets.

The semantics is defined in a standard manner. The only opedgserving a dis-
cussion are the andJ-operators. Intuitively{«) is classically supposed to hold in
states that have an-successor satisfying. In a multi-valued version, we first consider
the value ofa-transitions and reduce it (meet it) with the valueyoin the successor
state. As there might be differenttransitions to different successor states, we take the
best value. For PL-CCS programs, this meets exactly ouitimnu A configuration in
states satisfies a formulda)¢ if it has ana-successor satisfying. Dually, [o]y is

3 So far, for PL-CCS programs, we do not need support for piitipoal constants. As adding

propositions only intricates the developments to come slightly, we show the geareral
account in the following.

14

_ [V o], = [¢l, U v,
i oA, = [l N [01,
% TR ()], = As. [H{Ra(s,) N[l ()}
e e [lole], i= As.[H-Ra(s,5) U T, ()
% [z, :H{m@np[w }
[[VZ~‘P]],7 =U{fIfE [[‘P]]p[z._»f]}

Fig. 6. Semantics ofnv-£,, formulae

classically supposed to hold in states for whichcabuccessors satisfy. In a multi-
valued version, we first consider the valuenefransitions and increase it (join it) with
the value ofp in the successor state. As there might be several differentccessor
states, we take the worst value. Again, this meets our iatufor PL-CCS programs:
A configuration in state satisfies a formulén]¢ if all a-successors satisfy.

The functionals\f.[¢] (.. : : £S5 — L£5 are monotone wrt_ for any Z, ¢ and
S. According to [Tar55], Ieast and greatest fixpoints of tHesetionals exist.

Approximantof muv- -£, formulae are defined in the usual way;fif(Z) = uZ.p
thenZ® := Xs. L, ZoF! .= ﬂgo]]p[ZHZa] for any ordinale and any environment, and

Z* = [lacx Z* for a limit ordinal . Dually, if fp(Z) = vZ.p thenZ® := \s.T,
zotl =],z 24 andzZ* :=|],_, 2

Theorem 3 (Computation of Fixpoints, [Tar55]). For all MMKS 7 with state setS
there is ano € Ord s.t. for alls € S we have: iffnZ.¢] ,(s) = z thenZ%(s) = =.

The following theorem states that the multi-valued modeiaetics of theu-calcu-
lus is indeed suitable for checking the different configioret of a PL-CCS program.

Theorem 4 (Correctness of Model Checking)For all PL-CCS programsProg =
(€, P1), every configuration vectar, and formulagp € mv-£ ,, we have

[config(Prog,v)]ccs = ¢ iff v € ([Prog] o = ©)(P1)

The proof follows by structural induction on the formula.

While Theorem 3 also implies a way for computing the satigbactalue of an
mv-£,,-formula and a given MMKS, this naive fixpoint computationyipically expen-
sive. Game-based approaches originating from the work B$98] and [Sti95] allow
model checking in a so-calleoh-the-flyor local fashion. In context of multi-valued
p-calculus, the game-based setting becomes technically meolved, as described in
detail in [SGO05]. Nevertheless, the essence of the gamedbagoroach of computing
a satisfaction value based on the so-catfache graphis similar. For the multi-valued
modaly-calculus, a slight adaption of the approach taken in [SG@&3fis game-based
approach for the full multi-valued modatcalculus.

Due to space limitations, we skip details of the game-basedeinchecking ap-
proach for the multi-valued modalcalculus.

15

4 Specification and Verification of a Sample Product-Line

Let us now demonstrate our approach on a simplified versian éfdustrial case study
we have been working on. We consider a product line whose gumafiions realize
different versions of a windscreen wiper system.

Specification At first, we specify the family of systems, using the formalisitroduced
in Section 2. The windscreen wiper systems that we specifyunfamily WipFam
are each built of two subcomponents: a rain senSetsor, and a windscreen wiper,
Wiper. Both subcomponents can be realized by two variants, a mghadow one,
respectively:

WipFam = Sensor || Wiper (E1)
Sensor = SensL @1 SensH (E2)
Wiper < WipL &o WipH (E3)

The low variantSens L of the sensor is specified as follows:

SensL = non.SensL + ltl. Raining + hvy.Raining + noRain.Sens L (E4)
Raining = non.SensL + ltl. Raining + hvy.Raining + rain. Raining (E5)

The low variantSens L only detects two different environmental conditions—dry
and raining—even though the environment can stimulate theosewith three differ-
ent conditions:hvy for heavy rain,l¢l for little rain andnon for no rain. However,
this sensor cannot differ between heavy and little rain,foethis sensorhvy andltl
have the same effect, as the sensor reaches a prBa@sgg and provides an action
rain, indicating solely the fact that it is raining (without pieely characterizing the
intensity). As long as no rain has been detected, the sensadps the actiomoRain,
respectively.

The high version of the sensor can distinguish betweenrdiftedegrees of rain
intensity, i. e.Sens H additionally differentiates heavy rain from little rains IPL-CCS
specification is given in the following:

SensH < non.SensH + ltl. Medium + hvy.Heavy + noRain.Sens H (E6)
Medium = non.SensH + ltl. Medium + hvy.Heavy + rain. Medium (E7)
Heavy £ non.SensH + Itl. Medium + hvy.Heavy + hvyRain. Heavy (E8)

In this product line, the sensors can be arbitrarily comtinéth two variants of
windscreen wipersWip L and Wip H. In particular, for this example we have no addi-
tional non-functional dependencies between the possdriants which would restrict
the set of combinatorially possible configurations.

The low versionWip L offers two operation modes: (i) a manual mode with perpet-
ual wiper arm movement (actigrerm Wip), which has to be activated explicitly by the

16

driver, (ii) and a semi-automatic interval mode in whichwiper arm moves at a lower
frequency triggered by the rain sensor (via the action).
WipL = off. Wip L + manualOn.Permanent + intvOn.Interval (E9)
Interval < noRain.Interval + intvOff. WipL + intvOn.Interval ~ (E10)
+ rain. Wiping + hvyRain. Wiping
Wiping = slowWip.Interval + intvOn.Interval (E11)
Permanent < perm Wip. Permanent + off . Wip L + intvOn.Interval (E12)
The high variantWip H can operate at two speeds: slow (actignw Wip) and fast

(action: fast Wip). Here, the wiper arm movement is fully controlled by thenrsénsor
and adjusts its frequency automatically to the currentirgensity.

WipH & off .WipH + intvOn.Autolntv (E13)

AutoIntv = noRain. AutoIntv + intvOn. AutoIntv + rain.Slow (E14)
+ intvOff . WipH + hvyRain.Fast

Slow = slowWip. AutoIntv + intvOn. AutoIntv (E15)

Fast £ fastWip. AutoIntv + intvOn. AutoIntv (E16)

The PL-CCS program specifying the entire product lifép Fam is given by the
equations E1-E16. The whole progrd#fip Fam is well-formed, which allows a unique
numbering of all (two) variation points as shown by Equadi&2 and E3.

Verification From our example system family/ip Fam, we can derive four different
individual systems, as we can combine the subsystem vamabitrarily. Having spec-
ified the family in PL-CCS, we can now apply the model checldpgroach described
in Section 3, in order to verify functional properties foméigurations in the system
family.

Thinking of a relevant property, for instance, one couldsildy be interested in
verifying for a windscreen wiping system whether or not aselriis always able to
switch to automatic windscreen wiping mode. (Property imfaized in Equation 14).
Another property could demand the windscreen wiper to wgse, fonce it is raining
heavily (Property 2, formalized in Equation 15).

pX. ()X V (intvOn)true (14)
VY .[JY A (= (intvOff) true V [hvy]{fast Wip) true) (15)

In our example, Property 1 holds for the set of all possiblefigoirations(Z, L),
(R, Ly, (L, R) ,and(R, R), which can be denoted by the single vectar?). However,
Property 2 is only satisfied in the configuration, in which tiigh variants of both
subsystems are used, i. e. the result of applying the prdpuoseel checking algorithm
is the set containing the single configuration vect®r R). Intuitively, it is easy to see
why: As the low version of the windscreen wiper does not pite\a fast wiping mode,
it never provides the output actigiastWip. In consequence, the wind screen wiper
can never wipe fast if the low version is used. However, e¥ehd high version of

17

the windscreen wiper is used, but combined with the low wersif the rain sensor,
the property is still not satisfied. The sensor is not ablertvide the output action
hvyRain, which would trigger the wiper to wipe fast. Using our protllice specific
model checking approach, we are able to identify the cordiipms which do and do
not satisfy a verified property—and which we so far motivataty dlustratively—in
an automatic way.

5 Conclusion

In this paper, we propose a process algebra approach toaseffwoduct lines that al-
lows automatic analysis and verification by means of modetkimg. We introduced
PL-CCS as a variant of Milner’s CCS designed to model thealMeehavior of similar

software systems developed as a software product lineeitgstics can conveniently
be defined in terms of multi-valued modal Kripke structuéstthermore, we intro-

duced multi-valued modal-calculus as a property specification language for systems

formulated in PL-CCS. Model checking then allows to veriither an entire software
product line, or, to point out which variants of the produceldo not meet given cor-
rectness properties. We are currently working on algelpeoperties of PL-CCS, on
the integration of a dependency model for modeling featorestraints, as well as on
an implementation of the proposed model checking approach.
Acknowledgement:We thank Mila Mejster-Cederbaum for valuable comments on
an earlier draft of this paper.

References

[BLS06] Andreas Bauer, Martin Leucker, and Jonathan Streit. SA&ffdetured assertion
language for temporal logic. IRroceedings of the 8th International Conference on
Formal Engineering Methodsolume 4260 ofLecture Notes in Computer Science
September 2006.

[CNO2] Paul Clements and Linda Northrofoftware Product Lines. Practices and Patterns.
Addison Wesley, 2002.

[Dam94] Mads Dam. CTL* and ECTL* as fragments of the modatalculus. Theoretical
Computer Science26(1):77-96, April 1994.

[EJS93] "E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistlai. m@del-checking
for fragments of mu-calculus. In C. Courcoubetis, edifngc. 5th International
Computer-Aided Verification Conferena®lume 697 ofLecture Notes in Computer
Sciencepages 385-396. Springer, 1993.

[EL86] E. A. Emerson and C. L. Lei. Efficient model checking in fraents of the propo-
sitional u-calculus. InSymposium on Logic in Computer Science (LICS,'8épes
267-278, Washington, D.C., USA, June 1986. IEEE Computer Sderesss.

[FUBQ7] Dario Fischbein, Sebatian Uchitel, and Victor Braberman. Anftation for be-
havioural conformance in software product line architecturefrtrceedings of the
2nd Workshop on the Role of Software Architecture for Testing and Ana2@€§is.

[GLS08] Alexander Gruler, Martin Leucker, and Kathrin Scheidemavadelling and Model
Checking Software Product Lines. Technical Report TUM-108G&;HRische Uni-
versitét Miinchen, February 2008.

18

[KNKOS]

[Koz83]
[LKFO5]

[LNWO7]

[LT91]
[MCO1]
[Mil80]

[Mil95]

Tomoji Kishi, Natsuko Noda, and Takuya Katayama. Desigrifisation for prod-
uct line development. In J. Henk Obbink and Klaus Pohl, editetts International
Conference on Software Product Lineslume 3714 ofecture Notes in Computer
Sciencepages 150-161. Springer, September 2005.

Dexter Kozen. Results on the propositional mu-calculttseoretical Computer Sci-
ence 27:333-354, December 1983.

Harry C. Li, Shriram Krishnamurthi, and Kathi Fisler. Modularification of open
features using three-valued model checkiAgtomated Software Engineeriri2005.
Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowdkiodal I/O automata
for interface and product line theories. In Rocco De Nicola, editéth European
Symposium on Programmingolume 4421 ofLecture Notes in Computer Science
pages 64-79. Springer, April 2007.

Kim Guldstrand Larsen and Bent Thomsen. Partial specificatiord compositional
verification. Theor. Comput. Sgi88(1):15-32, 1991.

Mila E. Majster-Cederbaum. Underspecification for a simplegss algebra of re-
cursive processed.heor. Comput. S¢i266(1-2):935-950, 2001.

Robin Milner. A Calculus for Communicating Processa®lume 92 ofLNCS
Springer, 1980.

Robin Milner. Communication and concurrencyPrentice Hall International (UK)
Ltd., Hertfordshire, UK, 1995.

[PBvdLO5] Klaus Pohl, @nter Bickle, and Frank van der LindeBoftware Product Line Engi-

[SGO5]

[Sti95]

[Tar55]

[VNOS8]

[Wol]

neering: Foundations, Principles and Technigqu&pringer, Berlin Heidelberg New
York, 2005.

Sharon Shoham and Orna Grumberg. Multi-valued modekaigegames. In Doron
Peled and Yih-Kuen Tsay, editoi@d International Symposium on Automated Tech-
nology for Verification and Analysisolume 3707 ot.ecture Notes in Computer Sci-
ence pages 354—-369. Springer, October 2005.

Colin Stirling. Local model checking games. In Insup Lee andttS&. Smolka,
editors,6th International Conference on Concurrency Theeniume 962 ol ecture
Notes in Computer Scienggages 1-11. Springer, August 1995.

Alfred Tarski. A lattice-theoretical fixpoint theorem and its apgdilen. Pacific
J.Math, 5:285-309, 1955.

Simone Veglioni and Rocco De Nicola. Possible worlds for psscalgebras. In
Davide Sangiorgi and Robert de Simone, edit@th, International Conference on
Concurrency Theorywolume 1466 of ecture Notes in Computer Scienppages 179—
193. Springer, September 1998.

Pierre Wolper. A translation from full branching time temporal logicaowe letter
propositional dynamic logic with looping. unpublished manuscript.

19

