
Modeling and Model Checking Software Product Lines

Alexander Gruler⋆, Martin Leucker, and Kathrin Scheidemann

Institut für Informatik · Technische Universität München · Germany

Abstract. Software product line engineering combines the individual develop-
ments of systems to the development of a family of systems consisting of com-
mon and variable assets. In this paper we introduce the process algebraPL-CCS
as a product line extension of CCS and show how to model the overall behavior
of an entire family within PL-CCS. PL-CCS models incorporate behavioralvari-
ability and allow the derivation of individual systems in a systematic way due toa
semantics given in terms of multi-valued modal Kripke structures. Furthermore,
we introduce multi-valued modalµ-calculus as a property specification language
for system families specified in PL-CCS and show how model checking tech-
niques operate on such structures. In our setting the result of model checking is
no longer a simpleyesor noanswer but the set of systems of the product line that
do meet the specified properties.

1 Introduction

A software product lineis a set of software intensive systems sharing a common, man-
aged set of features that satisfy the specific needs of a particular market segment or
mission and that are developed from a common set of core assets [CN02]. Developing
a set of related systems as a product line, rather than every system individually, enables
the systematic exploitation of synergy effects. Product line concepts are, for example,
widely used in automotive production, in order to allow for individuality and high cus-
tomizability of vehicles, while at the same time keeping production cost low.

Modern vehicles are controlled by large sets of configurableelectronic control units
(ECUs) which communicate via buses and gateways. In other words, they are highly in-
dividual, distributed, embedded systems on wheels. Due to the prevalence of new tech-
nologies, the complexity of vehicle systems will increase further. In order to be able to
guarantee high quality, security and safety requirements in future, the application of for-
mal verification and analysis techniques get more and more essential. However, in order
to be effectively applied in a product line context, formal modeling approaches as well
as the applied formal verification techniques, need to efficiently cope with variability.

Despite their importance for the development of software intensive systems, formal
modeling and especially verification techniques for product lines do not yet meet the
industrial needs.

Kishi et al. in [KNK05] proposed to use traceability in a product model in order to
automatically compose subsystem models of a configuration in order to model check
that configuration. With this approach it is possible to automate the composition of

⋆ This author was partially funded by the German Federal Ministry of Education and Research
(BMBF) in the framework of project VEIA under grant 01ISF15A.

1

configurations, but it is still necessary to model check a model for each configuration
separately.

Modular verification approaches like the one introduced by Li, Krishnamurthi and
Fisler [LKF05] use compositional verification techniques in order to infer properties
of an assembled system from the properties of its assets. Interfaces of feature-oriented
modules contain constraints, similar to verification conditions that other modules must
satisfy at composition time. In their approach, these conditions are automatically de-
rived during feature verification. Configurations are verified individually, but results for
partly integrated configurations and modules, which have already been verified, can of
course be reused.

Larsen et al. defined a behavioral variability model for product line development
based on modal I/O automata [LNW07], which are an extension ofLarsen’s and Thom-
sen’s Kripke modal transition systems [LT91]. Their aim is not to verify product specific
functional properties for configurations, but rather to verify the error free combinability
of interfaces. Error free composition is characterized by the absence of deadlocks. It
is not required that all possible configurations give an error free composition, but only
that there exist configurations that can avoid errors under suitable use.

Kripke modal transition systems are used in [FUB07] to studythe notion ofbehav-
ioral conformancein the setting of software product lines.

In our approach we model the functional behavior of an entireproduct family in
a single model which explicitly incorporates behavioral variability. Compared to other
approaches which also contain the concept of variability inarbitrary development assets
such as requirement specifications, design models or test models [PBvdL05], we have
included the variability information into the behavioral model. In particular, the concept
of variability is also considered in the semantical model. In contrast to other techniques,
our model and the respective semantics allow the application of model checking tech-
niques. By this, we can reduce typical questions from product-line engineering to model
checking problems.

More specifically, this paper introduces PL-CCS as a variantof Milner’s CCS
[Mil95] designed to model the interaction of software components used in software
product lines. While Milner’s CCS is well-suited for describing the communication of
(closed) software systems, it lacks support for defining a set of systems. We extend
CCS by a variants operator⊕, which allows to model alternative behavior, i.e. alter-
native processes, with the meaning that only one of the alternative processes will be
existing in the final (running) system. The semantics of an PL-CCS system is defined
in terms of alabeled transition system for product lines(PL-LTS), which is essentially
a multi-modal Kripke structure extending Kripke modal transition systems [LT91]. Ab-
stracting from the specification concept on top (in our case extended CCS), a PL-LTS
assigns a semantics to the so far only vaguely defined notion of variability. Note that de
Nicola et. al. [VN98] and Majster-Cederbaum [MC01] introduce as well an⊕-operator
which represents a form a variability. However, the approach is not tailored to product
lines and does not study the question of verification.

The main benefit of the proposed modeling formalism is that itcaters for auto-
matic verification by model checking. We introduce the multi-valued modalµ-calculus
as combination of Kozen’s modalµ-calculus [Koz83] and multi-valuedµ-calculus as

2

defined by Grumberg and Shoham [SG05], yielding a property specification language
suitable for specifying and checking properties of PL-CCS programs. More specifically,
the result of model checking a property for a PL-CCS program is thesetof configura-
tions satisfying the property at hand and not only the answerif the property holds or
not.

2 Product-Line CCS

In this section we introduce PL-CCS as an extension of Milner’s process algebra CCS
[Mil95]. PL-CCS is designed for modeling the behavior of an entire product line in a
way especially suitable for automatic verification by modelchecking.

2.1 Product Lines

Before giving a formal approach to our notion of product lines, let us consider an ex-
ample, and derive our formalism in an intuitive manner. Hereby, we will also fix the
terminology we use in the rest of this paper, mostly following [CN02], where aproduct
line is considered to be a set of systems sharing a common, managedset of features
that satisfy the specific needs of a particular market segment or mission and that are
developed from a common set of core assets.

As usual, we consider individual systems (products) that are built from subsystems
in a compositional manner. Following CCS, we model the behavior of a system as well
as its subsystems as processes. The parallel operator‖ known from CCS can be used to
express that the behavior of the compound system is defined bythe parallel execution
of its subsystems. For example, a carC consists—amongst other things—of an engine
E, a locking systemLS , and an infotainment systemIS , which operate in parallel. This
is denoted as:

C
def
= E ‖ LS ‖ IS

In the product lines we consider, subsystems may be realizedby alternativevariants.
Entire subsystems may even be optional. For example, vehicles may be equipped with
different locking systems, such as (i) a central locking system LS central controlling
the locking of all doors, or alternatively (ii) a locking systemLSkeyless, which allows
remote keyless entry via a key fob. Such variants can be specified in PL-CCS using the
binary variants operator ⊕. The usage of the variants operator can be understood as
offering a set of possible “choices” realizing a variant. Thus, thelocking systemcan be
specified as follows:

LS
def
= LS central ⊕ LSkeyless

As not all vehicles in the specified product line may be equipped with an infotainment
system, we enrich PL-CCS with anoptional operator〈 〉, allowing the infotainment
system to be declared asoptional, written as:

C
def
= E ‖ LS ‖ 〈IS 〉

Both, the variants operator and the optional operator definea variation point. Given a
PL-CCS model for an entire product line, individual systemscan be derived by making

3

decisions for all variation points. More precisely, choosing for every variants operator
one variant and for every optional operator whether the optional subsystem is present or
not, yields a specificconfiguration. The configuration then defines uniquely onesystem,
also calledproduct, that is derivable from the product line.

Note that CCS offers an operator+ for expressingnon-deterministic choice. Al-
though our variants operator⊕ is to some extent similar to the CCS+, there are several
important conceptual as well as formal differences betweenboth. Thus, both operators
are essential for PL-CCS (see also Rules 12 and 13 in Section 2.3).

2.2 PL-CCS – Syntax

In this section we introduce the syntax of PL-CCS programs, which allows us to define
design models for software product lines.

Let Id be a finite set ofprocess identifiersandΣ by a finite set ofinput actions.
Usually,P,Q, P1, . . . range over process identifiers anda, b, . . . range over input ac-
tions. As in CCS, letA = Σ ∪ Σ̄ ∪ {τ} represent the set ofcommunication actions,
whereτ 6∈ Σ ∪ Σ̄ represents thesilent action, and,Σ̄ = {ā | a ∈ Σ} is the set ofout-
put actions. Usually,α, β, . . . range over communication actions. ByNil , we denote
the atomicidle process.

The setP of all PL-CCS process expressions(or short processes) is generated by
the following grammar:

e ::= Q | Nil | α.e | e+ e | e⊕ e | e ‖ e | e[f] | e\L (1)

whereQ ∈ Id is a process identifier,α ∈ A is an action,L ⊆ A is a set of action
labels, andf : A 7→ A is a renaming function, i. e. a function respectingf(ā) = f(a)
andf(τ) = τ .

Thus, syntactically, PL-CCS extends CCS [Mil95] only by thebinaryvariants op-
erator⊕. An optional-operator〈 〉 can be added to PL-CCS as the syntactical abbrevi-
ation:

〈P 〉 := P ⊕ Nil

In Section 2.3, where PL-CCS semantics is discussed, we willsee that this abbreviation
meets our intuition, allowing us to confine in this technicalpresentation of PL-CCS to
the variants operator⊕ only.

A process definitionis an equation of the formP
def
= e, whereP ∈ Id

is a process identifier ande ∈ P is a PL-CCS process. We specify
the behavior of an entire product family by aPL-CCS program: A
PL-CCS programProg is a tuple(E , P1), whereE is a finite set of
process definitionsandP1 ∈ Id is the distinguishedmain process
identifierof Prog . Typically, we denote a PL-CCS program by listing
its equations, assuming that the left-hand side of the first equation
is the main process identifier. Thus, we usually write only the set of
defining equations as shown aside.

P1
def
= e1

P2
def
= e2
...

Pn
def
= en

4

P ⊕

• ‖

P α Q Q

Q ⊕

• •

β1 Nil β2 Nil

Fig. 1.A program dependency graph

Well-formed PL-CCS programs. Our goal is to model software product lines which
require only ana priori finite number of decisions taken at variation points when deriv-
ing a specific system, which is the case for all product lines relevant in practice. So far,
however, as in CCS, PL-CCS allows the creation of new processes by using the parallel
operator‖ within recursive process definitions. In combination with our⊕-operator this
may potentially result in an unbounded number of variation points.

To avoid this, we consider only a (syntactically) restricted subset of all PL-CCS pro-
grams. The syntactical restriction is achieved by three conditions:completeness, finitely
configurable, andfully expanded, that are used to derive the notion ofwell-formedsys-
tems. For such well-formed PL-CCS programs we can define acompositionalsemantics
(see section 2.3) which is exactly what we require from a product line approach. In the
remainder of the section we successively introduce the syntactical restriction.

Definition 1 (complete PL-CCS program).We call a PL-CCS program with the set
of process definitions{P1

def
= e1, . . . , Pn

def
= en} complete, if all process identifiersPi

on the left-hand sides of the defining equations are pairwisedistinct and the defining
equationse1, . . . , en contain only process identifiers in the set{P1, . . . , Pn}.

In the following, we consider only complete PL-CCS programs. Now, we turn to-
wards the definition of a dependency graph of a PL-CCS program, which—similar to
a control flow graph for programming languages—reflects the dependencies of process
definitions in a program.

For a PL-CCS processe, let pt(e) denote the parse tree ofe defined in the usual
manner as a tree labeled with operator symbols or process identifiers (in leafs). Given
a complete PL-CCS program

(

{P1
def
= e1, . . . , Pn

def
= en}, P1

)

, we define itsprogram
dependency graphas the directed labeled graph given as follows: Its nodes comprise
those for left-hand sides of the equations, labeledP1, . . . , Pn, together with the nodes
of the parse trees for the right-hand sides of the equations.Its edges comprise the edges
of the parse trees plus edges connecting left-hand sides of equationsPi to the roots of
parse trees of the corresponding right-hand sidesei. Additionally, we add edges from
leafs of the parse trees labeledPi to the node for the left-hand side of equationPi = ei.
As an example, consider the following PL-CCS program whose program dependency
graph is shown in Figure 1.

P
def
= (α.P) ⊕ (Q ‖ Q) Q

def
= β1.Nil ⊕ β2.Nil

We call a node labeledQ reachablefrom a node labeledP if there exists a path
from P toQ in its program dependency graph.

5

Intuitively, a program dependency graph reflects the dependencies between the pro-
cess identifiers of a PL-CCS program with respect to its defining equations. A cycle in
this graph that contains a node labeled by a parallel operator might represent a recur-
sive process definition “spawning” an arbitrary number of copies of its own. If in such
a context, the variants operator⊕ comes into play, an unbounded number of config-
uration selections would be possible. We therefore consider in the following PL-CCS
programs which forbid such a situation and thus are configurable within finitely many
configuration selections.

Definition 2 (finitely configurable PL-CCS program). We call a complete PL-CCS
programfinitely configurable, if its program dependency graph has no cycle containing
a node labeled with‖ from which a node labeled with⊕ is reachable.

Consider Figure 1. While there is a cycle fromP back toP from which a⊕-operator
is reachable, the program is finitely configurable as this cycle does not contain a node
labeled‖. If insteadP

def
= (α.P) ‖ (Q ‖ Q), the program would not be finitely con-

figurable, as the cycle fromP to P would contain the parallel operator, and, still the
⊕-operator of the second equation is reachable.

Note that the definition of finitely configurable does notcharacterizethe programs
that are configurable within finitely many configuration selections, but is just a suffi-
cient condition. However, as it is (already) undecidable whether a CCS program yields
a finite or infinite state system, it is easy to see that it is also undecidable whether the
transition system defined by a PL-CCS program would make use of only finitely many
configuration selections. In the following, we therefore consider only on finitely con-
figurable PL-CCS programs.
There is a further restriction we want to make. Consider the two independent systems
P andR:

P
def
= Q ‖ Q

Q
def
= Q1 ⊕Q2

vs. R
def
= Q1 ⊕Q2 ‖ Q1 ⊕Q2

When considering the left systemP one might understand its meaning as follows: (i)P

consists of two “instances” of the same variationQ. Hence, one selects once between
Q1 andQ2 and follows this choice for any occurrence ofQ in P . However, if we would
specifyP by expanding the definition ofQ in the definition ofP , we would get a system
like R, which represents another intention: (ii) InR, we now have two (independent)
variation points, which— though offering the same variantsQ1 andQ2— might be
configured differently from each other.

So far, the structural semantics rules, as we introduce themin Section 2.3, are only
compositionalfor meaning (ii). Therefore—for the scope of this paper and tosimplify
the technical treatment—we only consider systems likeR, where every variants oper-
ator can be configured independently from the configuration of other variation points.
Note, that it is easy to extend our formalism to actually copewith both meanings, by
introducing a second alternative operator with a suitable semantics for the case ofP .
However, as this would make the current presentation more technical, we refrain from
giving this extension in this paper.

In order to allow only systems as in (ii), we consider onlyfully expandedPL-CCS
programs:

6

Definition 3 (fully expanded PL-CCS program).We call a complete and finitely con-
figurable PL-CCS programfully expanded, if its program dependency graph satisfies
the following: Removing all edges that are part of strongly connected components
(yielding a possibly not connected graph), there is at most one path from every node
to any⊕ node.

Note, that a finitely configurable PL-CCS program which is notfully expanded can
be transformed into an equivalent fully expanded version.1 The Definitions 1 to 3 allow
us to characterize the set ofwell-formedPL-CCS programs, which will be the basis for
the rest of this paper.

Definition 4 (well-formed PL-CCS program). A PL-CCS program iswell-formed, if
it is complete, finitely configurable, and fully expanded.

The rational for the syntactical restrictions leading to Definition 4 is that in a well-
formed PL-CCS program we can easily label each variants operator with a unique nat-
ural number by parsing over the PL-CCS program and attachinga fresh number to
every occurrence of a variants operator. This allows us to precisely define the concept
of a variation point: We call a uniquely labeled variants operator with numberi ∈ N,
denoted by⊕i, avariation point.

In practical applications, not all combinatorially possible configurations are mean-
ingful or allowed for various non-functional reasons. For example, recall the example
from Section 2.1: An OEM might always provide the more advanced keyless locking
system whenever a premium infotainment system is selected.Thus, whenever the (op-
tional) infotainment system is chosen, we have to select thekeyless variant as well.
Such non-functional dependencies between different subsystems are usually captured
in a feature model. In their mathematical essence, feature models define a restricted set
of configurations. The framework described in this paper does not include such a depen-
dency model and has to be extended to cope with such restrictions. However, to keep
the presentation simple, we defer the formal treatment of such feature dependencies to
our future work.

2.3 Semantics of a PL-CCS Program

In the following, we define the semantics of a PL-CCS program.More precisely, we
introduce three different semantics, theflat semantics,the unfolded semantics,and
the configured-transitions semantics,and show how they are related. Basically, the
first two semantics are only introduced to motivate and justify the final semantics, the
configured-transitions semantics, which will be an appropriate basis for model checking
described in Section 3.

1 This sentence is not to be understood in a mathematical sense, as no semantics for non-fully
expanded programs has and will be provided, which does not allow to define equivalence
precisely.

7

Flat Semantics The flat semanticsreflects the intuitive understanding of a PL-CCS
program: Every PL-CCS program can be understood as the set ofall (plain) CCS pro-
grams that can be derived by a total configuration of the PL-CCS program. More pre-
cisely, given a well-formed PL-CCS program, we choose for every variants operator ei-
ther the process term on its left- or right-hand side and remove all the unselected terms
together with the respective⊕ symbols from the PL-CCS program. For every such con-
figuration, this procedure results in a plain CCS program, which can be understood in
the usual way, e.g. with the semantics described by Milner [Mil80].

Technically, given a well-formed PL-CCS programProg with n ∈ N variants op-
erators, we label every variants operator⊕ uniquely with a number in{1, . . . , n}. The
individual configuration selection made for theith ⊕-operator is stored in theith entry
θi of theconfiguration vectorθ ∈ {R,L, ?}n: The entryR represents the selection of
the right process,L represents the selection of the left process, and? represents the sit-
uation that none of the two alternatives has been selected sofar. We call a configuration
vectorθ ∈ {R,L, ?}n fully configuredif ∀i ∈ {1, . . . , n} : θi 6= ?.

Given a well-formed PL-CCS programProg with n variants operators and a fully
configured configuration vectorθ ∈ {R,L, ?}n we define a function

config : P × {R,L, ?}n → R

whereR is the set of CCS programs. The functionconfig reducesProg to a CCS pro-
gramV , whereV is constructed by removing all terms inProg which are not selected
according toθ.

This allows us to define the flat semantics of a PL-CCS programProg as

[[Prog]]
Flat

=
{

[[V]]CCS | ∃θ : (config(Prog , θ) = V)} (2)

where [[V]]
CCS

denotes the conventional CCS semantics of the CCS programV as
defined, e.g., in [Mil80] by means of SOS rules. Due to space limitations, we omit to
present the original CCS-SOS rules but refer to the PL-CCS-SOS-rules given in Figure
2, which are of the same form as the original ones but additionally carry a configuration
vector.

Note that feature constraints can be incorporated in the flatsemantics by considering
only appropriate configurationsθ in Equation 2.

Unfolded SemanticsRecall that in the flat semantics, a PL-CCS program gives riseto
a setof transition systems, one for each fully configured configuration. In the unfolded
semantics, the meaning of a PL-CCS program is defined by asinglelabeled transition
system modeling the behavior of an entire product family. Inparticular, by combining
the behavior of all derivable systems withinone labeled transition system, it provides
the basis for reducing effort in model checking, by considering commonalities between
systems. Before defining the unfolded semantics we introduce a suitable transition sys-
tem:

A product-line transition system(PL-LTS) with n variants operators is a tuple
(S,A,∆, σ), whereS is a (countably, possibly infinite) set of states,A is a set of com-
munication actions, and∆ is a finite set of transition relations of the form

α, ν
−−→⊆ S×S,

whereα ∈ A, ν ∈ {R,L, ?}n, andσ ∈ S is the start state.

8

P, ν
α, ν
−−→ P ′, ν

C, ν
α, ν
−−→ P ′, ν

, C
def
= P (constant definition) (3)

α.P, ν
α, ν
−−→ P, ν

, for arbitraryν ∈ {R,L, ?}n (prefix) (4)

P, ν
α, ν
−−→ P ′, ν

P +Q, ν
α, ν
−−→ P ′, ν

(non-deterministic choice (1)) (5)

Q, ν
α, ν
−−→ Q′, ν

P +Q, ν
α, ν
−−→ Q′, ν

(non-deterministic choice (2)) (6)

P, ν
α, ν
−−→ P ′, ν

(P ‖ Q), ν
α, ν
−−→ (P ′ ‖ Q), ν

(parallel composition (1)) (7)

Q, ν
α, ν
−−→ Q′, ν

(P ‖ Q), ν
α, ν
−−→ (P ‖ Q′), ν

(parallel composition (2)) (8)

P, ν
α, ν
−−→ P ′, ν Q, ν

ᾱ, ν
−−→ Q′, ν

(P ‖ Q), ν
τ, ν
−−→ (P ′ ‖ Q′), ν

(parallel composition (3)) (9)

P, ν
α, ν
−−→ P ′, ν

P [f], ν
f(α), ν
−−−−→ P ′[f], ν

(re-labeling) (10)

P, ν
α, ν
−−→ P ′, ν

(P \ L), ν
α, ν
−−→ (P ′ \ L), ν

, α, ᾱ /∈ L (restriction) (11)

Fig. 2. SOS rules for unfolded semantics, except of⊕-operator

Thus, in a PL-LTS a transition from one state to another is labeled by an action
α and an additional (partial) configuration vectorν. However, a transitions

α, ν
−−→ s′

represents the set of all transitionss
α, ν′

−−−→ s′ with ν more general thanν′:

Given two vectorsν, ν′ ∈ {R,L, ?}n, we callν more generalthanν′, denoted by
ν ⊑ ν′, if ∀i ∈ {1, . . . , n} :

(

(νi = ?) ∨ (νi = ν′i)
)

. We say thatν characterizesthe
set of configuration vectors{ν′ | ν ⊑ ν′}.

Let us now elaborate on theunfolded semanticsof PL-CCS programs. Similar as
for CCS, we define the labeled transition relation by means ofenriched SOS rules. The
states of the transition system are pairs of PL-CCS process expressions paired with a
vector characterizing the configurations under which this state was reached. In order to
keep track of the choices for the variants operators the original SOS rules are enriched
with a vectorν characterizing the configuration vectors for every transition.

Except for the variants operator⊕, the (original) CCS rules do not influence the
construction of the vectors attached to the transitions andare therefore only adjusted in
order to be capable of dealing with vectors. The respective rules are given in Figure 2.

For example, rules (3) and (4) express that the execution of an action—specified
either directly by action-prefixing as in (4) or indirectly by a constant definition as in

9

S, 〈??〉 P3, 〈?R〉 ...

P2, 〈RL〉 ...

P1, 〈LL〉 ...

c, 〈?R〉

b, 〈RL〉a,〈LL〉

(a) PL-LTS

a.P1, 〈LL〉
a, 〈LL〉
−−−−−→ P1, 〈LL〉

a.P1 ⊕1 b.P2, 〈?L〉
a, 〈LL〉
−−−−−→ P1, 〈LL〉

(a.P1 ⊕1 b.P2) ⊕2 c.P3, 〈??〉
a, 〈LL〉
−−−−−→ P1, 〈LL〉

(b) deduction

Fig. 3.PL-LTS forS
def
= (a.P1 ⊕1 b.P2) ⊕2 c.P3 and the deduction of transition

a,〈LL〉
−−−−→.

rule (3)—can be performed without affecting the current configurationν, i.e. any state
α.P, ν affords a transition labeled with the actionα in every possible configurationν.

Essential for the unfolded semantics is the treatment of thevariants operator⊕:
Recall that it is a binary operator which allows to model a selection between two alter-
native processes where only one will be existing in the final system. Though looking
similar to the ordinary CCS+-operator (which in a way also models a choice between
alternatives), it has to be treated different, for two reasons: First, when a selection has
been made, the same selection has to be taken when recursively revisiting the same⊕-
operator. Second, the choice has to be “made visibly” in the transition relation, to allow
further reasoning on each configuration by model checking.

These two issues are captured by the following two SOS rules for the⊕-operator:

P, ν|i/L

α, ν′|
i/L

−−−−−−→ P ′, ν′|i/L

P ⊕i Q, ν
α, ν′|i/L
−−−−−−→ P ′, ν′|i/L

, νi 6= R (configuration selection (1)) (12)

Q, ν|i/R

α, ν′|
i/R

−−−−−−→ Q′, ν′|i/R

P ⊕i Q, ν
α, ν′|i/R
−−−−−−→ Q′, ν′|i/R

, νi 6= L (configuration selection (2)) (13)

Here, ν|i/x represents the updated vectorν where the entry at theith position is
replaced by the valuex ∈ {R,L}. All other entries keep their values, i.e.∀ j 6=
i : (ν|i/x)j = νj . Recall thatνi yields theith element of the vectorν. Further note
that the respective conditions of the alternative rules prevent the user from selecting a
different alternative when re-entering the selection decision due to a recursive process
present in CCS.

We define theunfolded semanticsof a PL-CCS programProg , denoted by
[[Prog]]

UF
, as the PL-LTS obtained by applying the SOS rules to the main process

identifier.
As an example, Figure 3(a) shows the PL-LTS when applying theconfiguration

selectionrules to the PL-CCS program starting with the main process definition S
def
=

10

A
def
= c.(a.A⊕1 b.A), 〈?〉 A

def
= a.A⊕1 b.A, 〈?〉

A
def
= c.(a.A⊕1 b.A), 〈L〉

A
def
= c.(a.A⊕1 b.A), 〈R〉

A
def
= a.A⊕1 b.A, 〈L〉

A
def
= a.A⊕1 b.A, 〈R〉

c, 〈?〉

a,〈L〉

c,〈L〉

a,〈L〉

b,〈R〉

c,〈R〉

a,〈R〉

Fig. 4. PL-LTS for the PL-CCS termA
def
= c.(a.A⊕ b.A)

(a.P1 ⊕1 b.P2) ⊕2 c.P3. Since the presence ofc.P3 in the final configuration only
requires to select the right variant at the variation point⊕2, the corresponding transition
to stateP3, 〈?R〉 only fixes the second entry of the configuration vector to the valueR
while leaving any choice for the first entry (?). In contrast to that, the selection of either
P1 or P2 requires to take two configuration decisions, reflected by the vectors〈LL〉
and〈RL〉 in the respective statesP1, 〈LL〉 andP2, 〈RL〉. A corresponding deduction
(applying twice Rule 12) for the selection of the variantP1 is given in Figure 3(b). Note
that the derivation shows that the semantics can require several configuration selections
for deriving a single transition.

Figure 4 shows an example for the configuration selection rules for recursive process
definitions. More specifically, the PL-LTS for the PL-CCS programA

def
= c.(a.A⊕ b.A)

is shown. The state labels correspond to the process term together with the configuration
under which they were reached. If the semantics would only depend on the current
state’s CCS-term (and not additionally on the configurationselected so far), the states
at the left and the right column could not be told apart, sincethe process term is the same
for all three states in one column. But since the unfolded semantics keeps track of which
configuration was chosen so far, identical PL-CCS terms yield different states in the PL-
LTS under different configurations. More precisely, this means that in the state labeled
with A

def
= a.A⊕1 b.A, 〈L〉 the semantics does not allow to have an outgoing transition

labeled with
b,〈R〉
−−−→, since the dual configuration〈L〉 has already been selected.

While the unfolded semantics is easily understood and does indeed represent the
behavior of a PL-CCS program within a single transition system, the previous example
leads one to suspect that the unfolded semantics yields non-compact transition systems.
In the next section, we introduce a configured-transitions semantics, which is based on
the unfolded semantics yet yields smaller transition systems.

Let us elaborate on the correctness of the unfolded semantics in a sense made precise
below. Therefore, recall that two transition systems are called bisimilar, denoted by≈,
when, starting at the initial states, every transition of one system can be simulated by
one of the other system and vice versa (see [Mil95] for a precise definition). From a

11

A
def
= c.(a.A⊕1 b.A) A

def
= a.A⊕1 b.A

c, 〈?〉

a,〈L〉

b,〈R〉

Fig. 5.Configured-transitions semantics forA
def
= c.(a.A⊕ b.A)

PL-LTS, we obtain for a given configuration vectorθ a labeled transition system by
projecting to those states and transitions whose vectorν is more general, i.e. whereν ⊑
θ, and discarding all other transitions. For a PL-CCS programwith unfolded semantics
[[Prog]]

UF
, let the transition system obtained in this way be denoted byΠθ([[Prog]]

UF
).

The following theorem states that (modulo bisimulation) the systems given in terms
of the flat semantics and the unfolded semantics coincide.

Theorem 1 (Correctness of unfolded semantics).Given a PL-CCS programProg

and a configuration vectorθ,

[[config(Prog , θ)]]CCS≈ Πθ([[Prog]]
UF

)

Due to space limitations we omit the proof here and refer to anextended version of the
paper [GLS08].

Configured-transitions Semantics In the following, we give a further semantics for
a PL-CCS program which yields a smaller transition system and, at the same time,
caters for model checking the entire product line as described in the next section. The
idea is to identify states that have the same PL-CCS process term but only differ in the
corresponding configuration vector.

Let
α,ν
=⇒⊆ P × P be defined by

P
α,ν
=⇒ P ′ iff there existsν′ with P, ν′

α, ν
−−→ P ′, ν

whereα ∈ A andν, ν′ ∈ {L,R, ?}n and
α, ν
−−→ is the relation defined in the previous

section.
We define theConfigured-transitions semanticsof a PL-CCS programProg , de-

noted by[[Prog]]
CT

, as the PL-LTS consisting of states reachable from the main process

identifier wrt.
α,ν
=⇒ and corresponding transition relations.

Figure 5 shows the transition system for the programA
def
= c.(a.A ⊕ b.A). A com-

parison with Figure 4 showing the unfolded semantics for thesame program shows that
the configured-transitions semantics yields indeed smaller transition systems.

For any PL-CCS programProg , every path in[[Prog]]
UF

corresponds to one execu-
tion of one product of the family. This does no longer hold forthe paths of[[Prog]]

CT
.

For example, the pathcacb in the system shown in Figure 5 does not exist in any of the
transition systems of[[A

def
= c.(a.A⊕ b.A)]]

Flat
. However, the interesting property of the

configured-transitions semantics is that for every configuration vectorθ, the projection
ofΠθ([[Prog]]

CT
), similarly defined as for[[Prog]]

UF
, yields the same transition system

(modulo isomorphism) as the one obtained when projectingProg wrt. θ and taking the
CCS semantics:

12

Theorem 2 (Correctness of configured-transitions semantics). Given a PL-CCS
programProg and a configuration vectorθ,

[[config(Prog , θ)]]CCS = Πθ([[Prog]]
CT

)

A corresponding proof can be found in [GLS08].

3 Model Checking Product Lines

In this section, we introduce amulti-valued modal versionof theµ-calculus suitable for
specifying properties of individual configurations of a PL-CCS program. Furthermore,
we sketch a game-based and therefore on-the-fly model checking approach for PL-CCS
programs with respect toµ-calculus specifications.

We have chosen to develop our verification approach for specifications in theµ-
calculus as it subsumes lineartime temporal logic as well ascomputation-tree logic as
first shown in [EL86,Wol] and nicely summarized in [Dam94]. Therefore we can use
our approach also in combination with these logics, and in particular have support for
the language SALT [BLS06] used with our industrial partners.

Multi-valued modalµ-calculus combines Kozen’s modalµ-calculus [Koz83] and
multi-valuedµ-calculus as defined by Grumberg and Shoham [SG05] in a way suit-
able for specifying and checking properties of PL-CCS programs. More specifically,
we extend the work of [SG05], which only supports unlabeled diamond and box opera-
tors, by providing also action-labeled versions of these operators, which is essential to
formulate properties of PL-CCS programs.2

A lattice is a partially ordered set(L,⊑) where for eachx, y ∈ L, there exists (i) a
uniquegreatest lower bound(glb), which is called themeetof x andy, and is denoted
by x ⊓ y, and (ii) a uniqueleast upper bound(lub), which is called thejoin of x andy,
and is denoted byx ⊔ y. The definitions of glb and lub extend to finite sets of elements
A ⊆ L as expected, which are then denoted by

⊔

A and
⊔

A, respectively. A lattice
is calledfinite iff L is finite. Every finite lattice has a least element, calledbottom,
denoted by⊥, and a greatest element, calledtop, denoted by⊤. A lattice isdistributive,
iff x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z), and, dually,x ⊔ (y ⊓ z) = (x ⊔ y) ⊓ (x ⊔ z). In a
DeMorganlattice, every elementx has a uniquedual element¬x, such that¬¬x = x

andx ⊑ y implies¬x ⊑ y. A complete distributive lattice is calledBooleaniff the
x ⊔ ¬x = ⊤ andx ⊓ ¬x = ⊥.

While the developments to come do not require to have a Booleanlattice, we will
apply them only to the Boolean lattices given by the powersetof possible configura-
tions. In other words, given a set of possible configurationsN , the lattice considered is
(2N ,⊆) where meet, join, and dual of elements, are given by intersection, union, and
complement of sets, respectively.

2 Thus, strictly speaking, we define a multi-valued and multi-modal version of the µ-calculus.
However, we stick to a shorter name for simplicity.

13

Multi-valued modalµ-calculus Let P be a set ofpropositional constants, andA be a
set ofaction names.3A multi-valued modal Kripke structure(MMKS) is a tupleT =
(S, {Rα(. , .) | α ∈ A}, L) whereS is a set of states, andRα(. , .) : S × S → L
for eachα ∈ A is a valuation function for each pair of states and actionα ∈ A.
Furthermore,L : S → LP is a function yielding for every state a function fromP toL,
yielding a value for each state and proposition. For PL-CCS programs, the idea is that
Rα(s, s′) denotes the set of configurations in which there is anα-transition from state
s to s′. It is a simple matter to translate (on-the-fly) the transition system obtained via
the configured-transitions semantics into a MMKS.

A Kripke structure in the usual sense can be regarded as a MMKSwith values over
the two element lattice consisting of a bottom⊥ and a top⊤ element, ordered in the
expected manner. Value⊤ then means that the property holds in the considered state
while ⊥ means that it does not hold. Similarly,Rα(s, s′) = ⊤ reads as there is a
correspondinga transition whileRα(s, s′) = ⊥ means there is noα-transition.

Let V be a set of propositional variables. Formulae of themulti-valued modalµ-
calculusin positive normal formare given by

ϕ ::= true | false | q | ¬q | Z | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈α〉ϕ | [α]ϕ | µZ.ϕ | νZ.ϕ

whereq ∈ P, α ∈ A, andZ ∈ V. Let mv -Lµ denote the set ofclosedformulae
generated by the above grammar, where the fixpoint quantifiers µ andν are variable
binders. We will also writeη for eitherµ or ν. Furthermore we assume that formulae
are well-named, i.e. no variable is bound more than once in any formula. Thus, every
variableZ identifiesa unique subformulafp(Z) = ηZ.ψ of ϕ, where the setSub(ϕ) of
subformulaeof ϕ is defined in the usual way.

The semantics of amv -Lµ formula is an element ofLS—the functions fromS toL,
yielding for the formula at hand and a given state thesatisfaction value. In our setting,
this is the set of configurations for which the formula holds in the given state.

Then the semantics[[ϕ]]
T
ρ of a mv -Lµ formula ϕ with respect to a MMKS

T = (S, {Rα(. , .) | α ∈ A}, L) and anenvironmentρ : V → LS , which explains the
meaning of free variables inϕ, is an element ofLS and is defined as shown in Figure 6.
We assumeT to be fixed and do not mention it explicitly anymore. Withρ[Z 7→ f]
we denote the environment that mapsZ to f and agrees withρ on all other arguments.
Later, when only closed formulae are considered, we will also drop the environment
from the semantic brackets.

The semantics is defined in a standard manner. The only operators deserving a dis-
cussion are the♦ and�-operators. Intuitively,〈α〉ϕ is classically supposed to hold in
states that have anα-successor satisfyingϕ. In a multi-valued version, we first consider
the value ofα-transitions and reduce it (meet it) with the value ofϕ in the successor
state. As there might be differentα-transitions to different successor states, we take the
best value. For PL-CCS programs, this meets exactly our intuition: A configuration in
states satisfies a formula〈α〉ϕ if it has anα-successor satisfyingϕ. Dually, [α]ϕ is

3 So far, for PL-CCS programs, we do not need support for propositional constants. As adding
propositions only intricates the developments to come slightly, we show the more general
account in the following.

14

[[true]]ρ := λs.⊤

[[false]]ρ := λs.⊥

[[q]]ρ := λs.L(s)(q)

[[¬q]]ρ := λs.L(s)(q)

[[Z]]ρ := ρ(Z)

[[ϕ ∨ ψ]]ρ := [[ϕ]]ρ ⊔ [[ψ]]ρ
[[ϕ ∧ ψ]]ρ := [[ϕ]]ρ ⊓ [[ψ]]ρ
[[〈α〉ϕ]]ρ := λs.

⊔

{Rα(s, s′) ⊓ [[ϕ]]ρ(s
′)}

[[[α]ϕ]]ρ := λs.

⊔

{¬Rα(s, s′) ⊔ [[ϕ]]ρ(s
′)}

[[µZ.ϕ]]ρ :=

⊔

{f | [[ϕ]]ρ[Z 7→f] ⊑ f}

[[νZ.ϕ]]ρ :=
⊔

{f | f ⊑ [[ϕ]]ρ[Z 7→f]}

Fig. 6.Semantics ofmv -Lµ formulae

classically supposed to hold in states for which allα-successors satisfyϕ. In a multi-
valued version, we first consider the value ofα-transitions and increase it (join it) with
the value ofϕ in the successor state. As there might be several differentα-successor
states, we take the worst value. Again, this meets our intuition for PL-CCS programs:
A configuration in states satisfies a formula[α]ϕ if all α-successors satisfyϕ.

The functionalsλf.[[ϕ]]ρ[Z 7→f] : LS → LS are monotone wrt.⊑ for anyZ,ϕ and
S. According to [Tar55], least and greatest fixpoints of thesefunctionals exist.

Approximantsof mv -Lµ formulae are defined in the usual way: iffp(Z) = µZ.ϕ

thenZ0 := λs.⊥, Zα+1 := [[ϕ]]ρ[Z 7→Zα] for any ordinalα and any environmentρ, and

Zλ :=

⊔α<λ Z
α for a limit ordinalλ. Dually, if fp(Z) = νZ.ϕ thenZ0 := λs.⊤,

Zα+1 := [[ϕ]]ρ[Z 7→Zα], andZλ :=
⊔

α<λ Zα.

Theorem 3 (Computation of Fixpoints, [Tar55]). For all MMKS T with state setS
there is anα ∈ Ord s.t. for alls ∈ S we have: if[[ηZ.ϕ]]ρ(s) = x thenZα(s) = x.

The following theorem states that the multi-valued modal semantics of theµ-calcu-
lus is indeed suitable for checking the different configurations of a PL-CCS program.

Theorem 4 (Correctness of Model Checking).For all PL-CCS programsProg =
(E , P1), every configuration vectorν, and formulaeϕ ∈ mv -Lµ, we have

[[config(Prog , ν)]]CCS |= ϕ iff ν ∈ ([[Prog]]
CT

|= ϕ)(P1)

The proof follows by structural induction on the formula.
While Theorem 3 also implies a way for computing the satisfaction value of an

mv -Lµ-formula and a given MMKS, this naive fixpoint computation istypically expen-
sive. Game-based approaches originating from the work by [EJS93] and [Sti95] allow
model checking in a so-calledon-the-flyor local fashion. In context of multi-valued
µ-calculus, the game-based setting becomes technically more involved, as described in
detail in [SG05]. Nevertheless, the essence of the game-based approach of computing
a satisfaction value based on the so-calledgame graphis similar. For the multi-valued
modalµ-calculus, a slight adaption of the approach taken in [SG05]yields game-based
approach for the full multi-valued modalµ-calculus.

Due to space limitations, we skip details of the game-based model checking ap-
proach for the multi-valued modalµ-calculus.

15

4 Specification and Verification of a Sample Product-Line

Let us now demonstrate our approach on a simplified version ofan industrial case study
we have been working on. We consider a product line whose configurations realize
different versions of a windscreen wiper system.

Specification At first, we specify the family of systems, using the formalism introduced
in Section 2. The windscreen wiper systems that we specify inour family WipFam

are each built of two subcomponents: a rain sensor,Sensor , and a windscreen wiper,
Wiper . Both subcomponents can be realized by two variants, a high and a low one,
respectively:

WipFam
def
= Sensor ‖ Wiper (E1)

Sensor
def
= SensL ⊕1 SensH (E2)

Wiper
def
= WipL ⊕2 WipH (E3)

The low variantSensL of the sensor is specified as follows:

SensL
def
= non.SensL + ltl .Raining + hvy .Raining + noRain.SensL (E4)

Raining
def
= non.SensL + ltl .Raining + hvy .Raining + rain.Raining (E5)

The low variantSensL only detects two different environmental conditions—dry
and raining—even though the environment can stimulate the sensor with three differ-
ent conditions:hvy for heavy rain,ltl for little rain andnon for no rain. However,
this sensor cannot differ between heavy and little rain, i. e. for this sensor,hvy andltl

have the same effect, as the sensor reaches a processRaining and provides an action
rain, indicating solely the fact that it is raining (without precisely characterizing the
intensity). As long as no rain has been detected, the sensor provides the actionnoRain,
respectively.

The high version of the sensor can distinguish between different degrees of rain
intensity, i. e.SensH additionally differentiates heavy rain from little rain. Its PL-CCS
specification is given in the following:

SensH
def
= non.SensH + ltl .Medium + hvy .Heavy + noRain.SensH (E6)

Medium
def
= non.SensH + ltl .Medium + hvy .Heavy + rain.Medium (E7)

Heavy
def
= non.SensH + ltl .Medium + hvy .Heavy + hvyRain.Heavy (E8)

In this product line, the sensors can be arbitrarily combined with two variants of
windscreen wipers,WipL andWipH . In particular, for this example we have no addi-
tional non-functional dependencies between the possible variants which would restrict
the set of combinatorially possible configurations.

The low versionWipL offers two operation modes: (i) a manual mode with perpet-
ual wiper arm movement (actionpermWip), which has to be activated explicitly by the

16

driver, (ii) and a semi-automatic interval mode in which thewiper arm moves at a lower
frequency triggered by the rain sensor (via the actionrain).

WipL
def
= off .WipL + manualOn.Permanent + intvOn.Interval (E9)

Interval
def
= noRain.Interval + intvOff .WipL + intvOn.Interval (E10)

+ rain.Wiping + hvyRain.Wiping

Wiping
def
= slowWip.Interval + intvOn.Interval (E11)

Permanent
def
= permWip.Permanent + off .WipL + intvOn.Interval (E12)

The high variantWipH can operate at two speeds: slow (action:slowWip) and fast
(action:fastWip). Here, the wiper arm movement is fully controlled by the rain sensor
and adjusts its frequency automatically to the current rainintensity.

WipH
def
= off .WipH + intvOn.AutoIntv (E13)

AutoIntv
def
= noRain.AutoIntv + intvOn.AutoIntv + rain.Slow (E14)

+ intvOff .WipH + hvyRain.Fast

Slow
def
= slowWip.AutoIntv + intvOn.AutoIntv (E15)

Fast
def
= fastWip.AutoIntv + intvOn.AutoIntv (E16)

The PL-CCS program specifying the entire product lineWipFam is given by the
equations E1–E16. The whole programWipFam is well-formed, which allows a unique
numbering of all (two) variation points as shown by Equations E2 and E3.

Verification From our example system familyWipFam, we can derive four different
individual systems, as we can combine the subsystem variants arbitrarily. Having spec-
ified the family in PL-CCS, we can now apply the model checkingapproach described
in Section 3, in order to verify functional properties for configurations in the system
family.

Thinking of a relevant property, for instance, one could possibly be interested in
verifying for a windscreen wiping system whether or not a driver is always able to
switch to automatic windscreen wiping mode. (Property 1, formalized in Equation 14).
Another property could demand the windscreen wiper to wipe fast, once it is raining
heavily (Property 2, formalized in Equation 15).

µX.〈.〉X ∨ 〈intvOn〉true (14)

νY.[.]Y ∧ (¬〈intvOff 〉true ∨ [hvy]〈fastWip〉true) (15)

In our example, Property 1 holds for the set of all possible configurations〈L,L〉,
〈R,L〉, 〈L,R〉 ,and〈R,R〉, which can be denoted by the single vector〈?, ?〉. However,
Property 2 is only satisfied in the configuration, in which thehigh variants of both
subsystems are used, i. e. the result of applying the proposed model checking algorithm
is the set containing the single configuration vector〈R,R〉. Intuitively, it is easy to see
why: As the low version of the windscreen wiper does not provide a fast wiping mode,
it never provides the output actionfastWip. In consequence, the wind screen wiper
can never wipe fast if the low version is used. However, even if the high version of

17

the windscreen wiper is used, but combined with the low version of the rain sensor,
the property is still not satisfied. The sensor is not able to provide the output action
hvyRain, which would trigger the wiper to wipe fast. Using our product line specific
model checking approach, we are able to identify the configurations which do and do
not satisfy a verified property—and which we so far motivated only illustratively—in
an automatic way.

5 Conclusion

In this paper, we propose a process algebra approach to software product lines that al-
lows automatic analysis and verification by means of model checking. We introduced
PL-CCS as a variant of Milner’s CCS designed to model the overall behavior of similar
software systems developed as a software product line. Its semantics can conveniently
be defined in terms of multi-valued modal Kripke structures.Furthermore, we intro-
duced multi-valued modalµ-calculus as a property specification language for systems
formulated in PL-CCS. Model checking then allows to verify either an entire software
product line, or, to point out which variants of the product line do not meet given cor-
rectness properties. We are currently working on algebraicproperties of PL-CCS, on
the integration of a dependency model for modeling feature constraints, as well as on
an implementation of the proposed model checking approach.

Acknowledgement:We thank Mila Mejster-Cederbaum for valuable comments on
an earlier draft of this paper.

References

[BLS06] Andreas Bauer, Martin Leucker, and Jonathan Streit. SALT—structured assertion
language for temporal logic. InProceedings of the 8th International Conference on
Formal Engineering Methods, volume 4260 ofLecture Notes in Computer Science,
September 2006.

[CN02] Paul Clements and Linda Northrop.Software Product Lines. Practices and Patterns.
Addison Wesley, 2002.

[Dam94] Mads Dam. CTL* and ECTL* as fragments of the modalµ-calculus. Theoretical
Computer Science, 126(1):77–96, April 1994.

[EJS93] ”E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla”. On model-checking
for fragments of mu-calculus. In C. Courcoubetis, editor,Proc. 5th International
Computer-Aided Verification Conference, volume 697 ofLecture Notes in Computer
Science, pages 385–396. Springer, 1993.

[EL86] E. A. Emerson and C. L. Lei. Efficient model checking in fragments of the propo-
sitionalµ-calculus. InSymposium on Logic in Computer Science (LICS ’86), pages
267–278, Washington, D.C., USA, June 1986. IEEE Computer SocietyPress.

[FUB07] Dario Fischbein, Sebatian Uchitel, and Victor Braberman. A foundation for be-
havioural conformance in software product line architectures. InProceedings of the
2nd Workshop on the Role of Software Architecture for Testing and Analysis, 2007.

[GLS08] Alexander Gruler, Martin Leucker, and Kathrin Scheidemann. Modelling and Model
Checking Software Product Lines. Technical Report TUM-I0806, Technische Uni-
versiẗat München, February 2008.

18

[KNK05] Tomoji Kishi, Natsuko Noda, and Takuya Katayama. Design verification for prod-
uct line development. In J. Henk Obbink and Klaus Pohl, editors,9th International
Conference on Software Product Lines, volume 3714 ofLecture Notes in Computer
Science, pages 150–161. Springer, September 2005.

[Koz83] Dexter Kozen. Results on the propositional mu-calculus.Theoretical Computer Sci-
ence, 27:333–354, December 1983.

[LKF05] Harry C. Li, Shriram Krishnamurthi, and Kathi Fisler. Modularverification of open
features using three-valued model checking.Automated Software Engineering, 2005.

[LNW07] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski.Modal I/O automata
for interface and product line theories. In Rocco De Nicola, editor,16th European
Symposium on Programming, volume 4421 ofLecture Notes in Computer Science,
pages 64–79. Springer, April 2007.

[LT91] Kim Guldstrand Larsen and Bent Thomsen. Partial specifications and compositional
verification.Theor. Comput. Sci., 88(1):15–32, 1991.

[MC01] Mila E. Majster-Cederbaum. Underspecification for a simple process algebra of re-
cursive processes.Theor. Comput. Sci., 266(1-2):935–950, 2001.

[Mil80] Robin Milner. A Calculus for Communicating Processes, volume 92 ofLNCS.
Springer, 1980.

[Mil95] Robin Milner. Communication and concurrency. Prentice Hall International (UK)
Ltd., Hertfordshire, UK, 1995.

[PBvdL05] Klaus Pohl, G̈unter B̈ockle, and Frank van der Linden.Software Product Line Engi-
neering: Foundations, Principles and Techniques. Springer, Berlin Heidelberg New
York, 2005.

[SG05] Sharon Shoham and Orna Grumberg. Multi-valued model checking games. In Doron
Peled and Yih-Kuen Tsay, editors,3rd International Symposium on Automated Tech-
nology for Verification and Analysis, volume 3707 ofLecture Notes in Computer Sci-
ence, pages 354–369. Springer, October 2005.

[Sti95] Colin Stirling. Local model checking games. In Insup Lee and Scott A. Smolka,
editors,6th International Conference on Concurrency Theory, volume 962 ofLecture
Notes in Computer Science, pages 1–11. Springer, August 1995.

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its application. Pacific
J.Math., 5:285–309, 1955.

[VN98] Simone Veglioni and Rocco De Nicola. Possible worlds for process algebras. In
Davide Sangiorgi and Robert de Simone, editors,9th International Conference on
Concurrency Theory, volume 1466 ofLecture Notes in Computer Science, pages 179–
193. Springer, September 1998.

[Wol] Pierre Wolper. A translation from full branching time temporal logic toone letter
propositional dynamic logic with looping. unpublished manuscript.

19

