
Under consideration for publication in Formal Aspects of Computing

Network Invariants for Real-Time

Systems
Olga Grinchteina,1 and Martin Leuckerb,2

aDepartment of Computer Systems, Uppsala University, Sweden

olgag@it.uu.se
bInstitut für Informatik, TU München, Germany

leucker@in.tum.de

Abstract. We extend the approach of model checking parameterized networks of processes by means of
network invariants to the setting of real-time systems. We introduce timed transition structures (which
are similar in spirit to timed automata) and define a notion of abstraction that is safe with respect to
linear temporal properties. We strengthen the notion of abstraction to allow a finite system, then called
network invariant, to be an abstraction of networks of real-time systems. In general the problem of checking
abstraction of real-time systems is undecidable. Hence, we provide sufficient criteria, which can be checked
automatically, to conclude that one system is an abstraction of a concrete one. Our method is based on timed
superposition and discretization of timed systems. We exemplify our approach by proving mutual exclusion
of a simple protocol inspired by Fischer’s protocol, using Weizmann’s model checker TLV.

Keywords: network invariants, real-time systems, parameterized systems

1. Introduction

Model checking [CGP99] is a method for verifying concurrent systems: computations of a high-level descrip-
tion of a system are compared to those formulated by a logical requirement specification to establish that
they are compatible. In, linear temporal logic (LTL), which was proposed for specification purposes by Pnueli
[Pnu77], one defines when a single computation meets the specification. A system is then said to satisfy a
specification, if every computation satisfies the specification.

Checking linear temporal logic (LTL) specifications of finite-state systems is well understood [LP85,
VW86, Var96]. Faced with concurrent systems consisting of an arbitrary number of processes working in
parallel, however, model checking is more challenging, since we have to deal with unboundedly many states.
A fruitful approach for checking these parameterized systems, as they are often called, is by use of abstraction
and network invariants.

1 Part of this work was done during the author’s stay at Weizmann Institute.
2 This work was supported by the European Research Training Network “Games”.
Correspondence and offprint requests to: Olga Grinchtein and Martin Leucker

2 Olga Grinchtein and Martin Leucker

The idea of abstraction is to check a smaller, finite-state system instead of the original one. If the smaller
system has more computations—including those of the original one–every linear temporal logic property
it satisfies, also holds for the original system [Gru05]. For branching-time logics, similar ideas work if we
restrict the logic to a universal fragment [CGL92]. Abstractions of original systems may either be found
manually or using ideas of abstract interpretation. In the first case, one has to prove that the abstract
system indeed comprises all computations of the original one. Basic principles underlying the construction
of abstract models are understood from e.g., [CC77, CGL92, DGG94].

Verification by means of network invariants was introduced in [WL89] and turned into a working method
in [KM95]. In a nutshell, the idea can be sketched as follows. Suppose we have a finite-state process Φ, e.g.,
repeatedly requesting and releasing some resource. We want to reason about a setting in which an arbitrary
number of instances of Φ work in parallel. In other words, we study the system Φ1 ‖ · · · ‖ Φn, where the
number n of instances of Φ is not known in advance. While for every n, we deal with a finite-state system,
it is clearly not possible to check the system iteratively for all n.

Using the idea of abstraction, it suffices to find a finite-state system ΦA that satisfies our requirement
specification and that abstracts Φ1 ‖ · · · ‖ Φn for arbitrary n. Similar to induction over natural numbers,
the latter is implied—with some further constraints—if ΦA is an invariant, i.e., ΦA is an abstraction of Φ
as well as of ΦA ‖ ΦA. The first item shows that Φ ‖ · · · ‖ Φ can be abstracted by ΦA ‖ · · · ‖ ΦA, which can
further be abstracted by ΦA, using the second requirement.

In this way, checking a parameterized system is reduced to finding a possible network invariant that
satisfies the requirement imposed on the parameterized system and proving that it is indeed a network
invariant. Finding a possible invariant is usually carried out manually, and checking whether it satisfies
the requirement specification can be done automatically using model checking. Proving that a system is a
network invariant can be reduced to checking abstraction, which can be done automatically for finite-state
systems. This approach is elaborated for checking linear-time specifications of fair discrete systems in [KP00]
where also advices for finding invariants are given.

Traditional techniques for model checking do not admit explicit modeling of time, and are thus unsuitable
for analysis of real-time systems. Alur and Dill introduced timed automata to model behavior of real-time
systems. Furthermore, model-checking techniques were developed [AD90, AD94]. See [Alu99] for an overview.

In this paper we study the problem of reasoning about parameterized timed systems. It is a full version
of [GL04], in which, to the best of our knowledge, the first approach for studying network invariants in the
sense of [WL89] for networks of timed systems was carried out. We follow the outline and work flow given in
[KP00], in which parallel systems of fair discrete systems were examined, but enrich the underlying systems
with clocks to model timed behavior. We extend the notion of abstraction and network invariant to the
timed setting. A main contribution of the paper is a procedure for checking whether a given timed transition
structure is an abstraction of another one.

We introduce timed transition structures which are similar to timed automata. The main differences are
that we distinguish private and global variables and that communication is by shared variables instead of
message passing. Thus, our communication model is closer to Java-like concurrent programming languages.
We say that ΦA is an abstraction of Φ if ΦA comprises at least the computations of Φ. The idea is used,
e.g. in [AL91]. We show that our notion of abstraction is safe with respect to linear temporal logic, i.e.,
linear-time properties of an abstract system also hold for a concrete one. Provided further environmental
behavior is taken into account, we show that checking whether a system is a network invariant can be reduced
checking whether ΦA is an abstraction of Φ and ΦA ‖ ΦA. Note that although clocks can be understood
as real valued variables, they are different from ordinary data variables since time progresses for all clocks
synchronously: if time δ passes for clock x, then it also passes for clock y. Treating clocks just as real valued
variables would disregard this “hidden” correlation of clocks and lead to wrong conclusions. This implicit
dependency of clocks is one of the obstacles to overcome when extending the approach of network invariants
to the setting of real-time systems.

We provide sufficient criteria, which can be checked automatically, to conclude that a system is an
abstraction of a concrete one. Our method is based on superposition [Jon94] but extended to the timed setting.
The superposition of Φ and ΦA is a structure similar to a timed transition structure, whose computations
can be projected to computations of Φ and ΦA, where as best as possible, ΦA tries to follow the moves of
Φ. We show that if the superposition satisfies certain LTL properties, ΦA is indeed an abstraction of Φ.

To check whether a superposition satisfies LTL properties, we use the notion of discretization of timed
transition structures, developed by [GPV94] and [ABK+97], which have an infinite state space, to obtain
finite-state systems, maintaining satisfaction of LTL properties. This allows us to use standard verification

Network Invariants for Real-Time Systems 3

tools, like TLV [PS96]. Note that the method of discretization used is just one of many that turned out
to be useful in our practical examples. See [OW03, Gri02] for further results on discretization as well as
further references. Our approach is exemplified by proving mutual exclusion of a simple protocol inspired
by Fischer’s protocol [SBM92], using Weizmann’s model checker TLV [PS96]. We restrict ourselves to finite
domains of data variables. Using predicate abstraction (see [GS97], [KP00]), it should be possible to extend
our results to systems with variables ranging over infinite domains.

Systems similar to our timed transition structures have been studied in [LS00]. The approach is based
on automatic abstraction, but is limited to checking safety properties of timed systems with integer time
domain. A different approach for studying parameterized systems is presented in [AJ99] and [AJ02]. It is
based on finite symbolic representation of infinite sets of states and computing pre-images and convergence.
It was shown that reachability for such systems is decidable if each process has a single clock. Our method
is also applicable for verifying liveness properties of systems with an arbitrary number of clocks.

Since we develop our theory in the setting of LTL, our notion of abstraction is based on set inclusion of
computations. When considering branching-time logics, simulation becomes natural for defining abstraction.
This approach was studied for timed systems [TAKB96] and it was shown that simulation is decidable. The
question of network invariants, however, was not addressed. Note that simulation is a stronger relation than
language inclusion, i.e., it might be easier to find a network invariant when abstraction is based on language
inclusion rather than on simulation.

In the next section we define timed transition structures. Section 3 recalls the syntax and semantics of
LTL (in the timed setting). In Section 4 we develop the verification scheme using network invariants, we
define discretization of timed transition systems and prove that our discretization is correct with respect to
LTL properties. We illustrate our approach in Section 5. We conclude the paper by summing-up our results.

2. Timed Transition Structures

A time domain I is a totally ordered monoid with a least element equal to the neutral element. Usually, we
consider I = R+, the set of nonnegative reals (including 0), and I = N, the set of natural numbers (including
0).

A clock, denoted by x, x1, . . . , is a variable which is interpreted over a time domain. Given a finite
set of clocks C = {x1, . . . , xn}, a clock valuation is a function v : C → I that assigns to every clock
x ∈ C a time. The set of clock valuations is, as usual, denoted by IC . If I = R+, we denote by ⌊v(x)⌋
(respectively frac(v(x))) the integer (fractional) part of x with respect to a given clock valuation v. Thus,
v(x) = ⌊v(x)⌋+ frac(v(x)). For a clock valuation v and a time t ∈ I, let v+ t denote the clock valuation that
is obtained from v after an elapse of time t, that is, the clock valuation that satisfies (v+ t)(x) = v(x)+ t for
all clocks x ∈ C. For a clock valuation v and some clocks reset ⊆ C, let v↓reset denote the valuation in which
exactly clocks in reset have been reset to 0, that is, (v↓reset)(x) = 0 for x ∈ reset and (v↓reset)(x) = v(x)
for x /∈ reset holds.

If C is a set of clocks, the set XC of clock constraints is the set of Boolean combinations of atomic
formulas of the form x ∼ c, where ∼∈ {<,≤, >,≥} and c ∈ N. In other words, in clock constraints, clocks
are compared strictly or non-strictly to integer constants.

Before defining the model of timed transition structures formally, let us describe the rational of the
model briefly. Our goal is to verify systems running several copies of the same process Φ in parallel. A timed
transition structure should thus be defined to capture such a process Φ as well as its interaction within the
parallel product. As usual, we take Φ to have variables and a state of Φ is an assignment of its variables, i.e.,
a valuation. To keep things simple, we only consider variables ranging over a finite domain and clocks. Thus,
Φ’s state space is infinite only because of clock variables. A transition of Φ is given, as usual, as a predicate
relating current and future assignments of variables. However, clocks can only be reset to 0. Furthermore, a
transition can be guarded by a clock constraint. In simple words, Φ is a kind of finite-state system, except
that its transitions are dependent on the elapse of time. To ensure progress of the system, we also define
a progress condition, which identifies for every state a clock constraint that limits the time spend in this
particular state.

As mentioned before, a process Φ is running parallel with other processes, often termed Φ’s environment.
To foster communication, some of Φ’s variables are designed for (shared variable) communication. Therefore,
we distinguish the following kinds of variables:

4 Olga Grinchtein and Martin Leucker

d=0
s=0

d=0
s=1

d=1
s=1

[x ≤ 2]
[x≥1]
s:=1 d := 1

Fig. 1. Example

• observable or global variables, which may be used by processes running in parallel to depend their behavior
on

• owned variables, which can only be modified by the process itself but not by any other process

• shared variables, which are variables that are not owned by any process, but are observable to all processes,
and can thus be modified by any process

• local variables which are variables that are owned by some process and not observable by other processes.

We have now all the ingredients together to define our model of processes precisely.

Definition 2.1. A tuple Φ = (D,C,W,O,Θ, λ,Π) is a timed transition structure (TTS) where

• D = {d1, . . . , dr} is a finite set of discrete variables ranging over finite domains. Let D be the set of (data)
valuations where a (data) valuation maps the variables in D to their domain.

• C = {x1, . . . , xn} is a finite set of clocks, each ranging over R+. Clocks cannot be data variables.

• Additional to the clocks in C, a TTS has a master clock, denoted by now , which is not modified by any
transition. We denote by C̄ the union of C with now .

• We call V = D ⊎ C̄ the set of system variables3 and S = D × RC̄
+ the set of states of Φ. Thus, a state is

of the form (κ, v) where κ is a valuation and v is a clock valuation, which assigns to every clock in C̄ a
time. We denote s(d) and s(c) the value of variable d and value of clock c in state s.

• W ⊆ V is a finite set of owned variables, which cannot be modified by the environment.

• O ⊆ V is a finite set of variables that the environment can observe. We require V = W ∪O. Furthermore,
we require now to be observable and owned, i.e., now ∈ O and now ∈W .

• Θ is the initial condition, which is a set of assertions (quantifier-free first-order formula) over states
characterizing the initial states. It is required that at initial states all clocks are equal to 0.

• λ ⊆ D ×D ×XC × 2C is the transition table. An entry (κ, κ′, g, reset) ∈ λ should be read as: move from
state with valuation κ to a state with valuation κ′ if the guard g is satisfied, and reset the clocks listed
in reset .

• Π =
∧

κ∈D ϕκ → pκ is the time-progress condition, where ϕκ is an assertion, which holds at the state
with valuation κ and pκ ∈ XC for κ ∈ D.

We call variables in O also global variables, the ones in O −W shared, and the elements of W − O local
variables. Global, shared, and local clock and data variables are defined in the expected manner. Note that
we require V = W ∪ O, implying that every non-owned variable is observable, because we do not want to
deal with variables that are not owned by some process yet not visible to others. Furthermore, note that
now is required to be observable, which is crucial for our further developments.

Example 2.2. A simple example of a TTS is shown in Figure 1. We have (data) variables d and s. Variable
d indicates that a resource is busy and might also be changed by other processes running in parallel while
s just identifies whether the system is in the initial phase or has started. We set d as observable while s is
assumed to be local. We have a single clock x. From the initial state where s and d equal 0, the system can
proceed to the next state, if at least one time unit has elapsed. Sometimes, we add a label like s := 1 to an
edge to stress that exactly the variable s has changed when taking this transition. In the second state, the
system can remain until time reaches 2, or, it moves to the third state where the value of d is flipped.

Let us fix a TTS Φ = (D,C,W,O,Θ, λ,Π) (with |C̄| = n) for the rest of this section. For a TTS, we

distinguish two types of transitions,
λ

−→RT and
tick
−→RT , both subsets of S×S. We write s = (κ, v)

λ
−→RTs

′ =

3 X ⊎ Y denotes the disjoint union of X and Y .

Network Invariants for Real-Time Systems 5

(κ′, v′) iff there exists (κ, κ′, g, reset) ∈ λ such that v |= g, v′ |= Π, and v′ = v ↓ reset . In other words,
we move from s to s′ if the time progress condition of κ′ and the transition’s guard is satisfied and reset
the clocks listed in reset . In this case, we speak of a λ-transition and call s′ a λ-successor of s. We write

s = (κ, v)
tick
−→RTs

′ = (κ′, v′) iff the transition is caused by some time delay δ, that is, if κ′ = κ and there is
a δ > 0, such that v′ = v + δ and ∀0 ≤ t ≤ δ : v + t |= Π. In this case, we speak of a tick-transition and
call s′ a tick-successor of s. Thus, a timed transition structure Φ induces an infinite-state transition system,

denoted by [Φ]RT = (S,−→RT) with states S and transition relation −→RT =
λ

−→RT ∪
tick
−→RT .

A run of Φ is a finite or infinite sequence of states π = s0s1 . . . such that s0 � Θ (initiality) and for
each j ≥ 0 sj−→RTsj+1 (consecution). If furthermore the value of now grows beyond any bound (time
divergence), we call π a computation of Φ. Formally, in every computation we require that for every c ∈ R+

there is a j ∈ N such that sj(now) > c.
When comparing computations of two timed transition structures, we are usually only interested in

observable variables. For state s = (κ, v), let s|O denote the pair of mappings (κ|O, v|O), where κ|O and
v|O denote the restrictions of κ and respectively v to domain O, as usual. Now, let ocomp(Φ) = {π|O |
π is a computation of Φ} be the set of observable computations of Φ, where for a computation π = s0s1 . . .
we denote by π|O the sequence s0|Os1|O . . .

If a TTS is running in parallel with an environment (for example other instances of the same process),
the environment might change shared data variables or reset shared clocks. We therefore study also the
computations of a TTS when put into an arbitrary environment, i.e., an environment that arbitrarily changes
variables that are not owned: Let λenv = {(κ, κ′, true, reset) | κ(d) = κ′(d) for all d ∈ W and reset ∩W = ∅}
denote possible changes due to a fully nondeterministic environment respecting owned variables. We write

s = (κ, v)
λenv−→RTs

′ = (κ′, v′) iff there exists (κ, κ′, true, reset) ∈ λenv with v′ = v↓reset . In this case, we
speak of an env -transition and call s′ an env -successor of s. Note that sometimes, s′ can be considered an
env -successor as well as a λ-successor.

For our further development, it turns out to be useful to remember for a state of a run, whether it is
reached by either a λ-transition, env -transition, or a tick -transition. We call such an annotated run modular.
More precisely, a modular run of Φ is a finite or infinite sequence π = (s0, λ)(s1,m1) . . . of states and markers
in {λ, env , tick} such that s0 � Θ (initiality) and for each j ≥ 0

• sj
λ

−→RTsj+1 and mj+1 = λ, denoting that we have a λ-transition,

• sj
λenv−→RTsj+1 and mj+1 = env and not sj

λ
−→RTsj+1, meaning that we have an env -transition but no

λ-transition,

• or sj
tick
−→RTsj+1 and mj+1 = tick .

Note that we arbitrarily added λ as a marker in the initial state and that we give preference to λ-transitions,
whenever a transition can be explained by both a λ–transition as well as an env -transition. We call π a
modular computation, if furthermore time diverges.

We denote by mocomp(Φ) = {π|O | π is a modular computation of Φ} the set of modular computations
restricted to observable variables. That is, for a modular computation π = (s0,m0)(s1,m1) . . . , we denote
by π|O the sequence (s0|O,m0)(s1|O,m1) . . .

Let us now elaborate on the parallel composition of two timed transition structures. Let us first discuss
when two TTSs Φ1 and Φ2 can be put in parallel: Clearly, clock variables of one system must not be data
variables of the other system and vice versa. Furthermore, if one process claims to own a variable, the
other one cannot do the same. Furthermore, a local variable of one process must have different name than
an obversable variable of the other system to make sure that local variables do not become observable in
the parallel system. Observable variables, on the other hand, may be present in both systems, facilitating
communication. However, if one process owns an observable variable, we not only require that it is an at most
observable and non-owned variable of the other process, but that the other process actually does not modify
the this variable to respect that it is owned by some other process. Note that, something like a semaphor would
typically by modelled as share variable that no process owns but that both process can modify to use it. Let
us make our intuition precise: Let Φ1 = (D1, C1,W1, O1,Θ1, λ1,Π1) and Φ2 = (D2, C2,W2, O2,Θ2, λ2,Π2)
be two TTSs. We say that Φ1 and Φ2 are composable if

• D1 ∩ C2 = D2 ∩ C1 = ∅, (“data is data and clocks are clocks”)

• W1 ∩W2 = ∅, (“there are not two owners”)

6 Olga Grinchtein and Martin Leucker

• (V1 \ O1) ∩ O2 = ∅ and (V2 \ O2) ∩ O1 = ∅, where V1 = O1 ∪W1 and V2 = O2 ∪W2, (“local remains
local”) and

• for i ∈ {1, 2}, for every d ∈ Wi ∩ Oi and (κ, κ′, g, reset) ∈ λ3−i we have κ(d) = κ′(d), and for every
c ∈Wi ∩Oi and (κ, κ′, g, reset) ∈ λ3−i, c 6∈ reset (“respect ownership”).

The parallel composition of Φ1 and Φ2, denoted by Φ1 ‖ Φ2, is defined if Φ1 and Φ2 are composable and is
the TTS Φ = (D,C,W,O,Θ, λ,Π), whereD = D1∪D2, C = C1∪C2,W = W1∪W2,O = O1∪O2 Π = Π1∧Π2,
and Θ = Θ1 ∧Θ2. Thus, the variables are joined in the expected manner. As the initial conditions of Φ1 and
Φ2 are predicates ranging over variables of respectively D1 and D2, we can simply take the conjunction to
obtain initial states that are initial states of both Φ1 and Φ2 when projecting to the respective variables. A
similar observation holds for the progress condition. The transition table λ is defined following the idea of
asynchronous execution, which is that the combined system can make a transition if one of its components
can make a transition. Let λ ⊆ D ×D × XC × 2C be defined by (κ, κ′, g, reset) ∈ λ iff there is an i ∈ {1, 2}
and (κi, κ

′
i, gi, reset i) ∈ λi with κ|Di

= κi, κ
′|Di

= κ′i, κ|D\Di
= κ′|D\Di

, gi = g, and reset i = reset . In
other words, every entry (κi, κ

′
i, gi, reset i) ∈ λi gives rise to an entry in λ by extending the domain of κi and

κ′i to D, yet requiring that values of variables not present in Di are maintained. Note, while variables not
present in Di must not be changed, not all variables of the other process D3−i are maintained as Φ1 and Φ2

typically have joined observable variables. Actually, communication by shared variables means exactly that
one process changes (some) variables of the other. Note that the parallel composition is commutative, i.e.,
Φ1 ‖ Φ2 = Φ2 ‖ Φ1.

To simplify our presentation, we silently assume in the following that whenever we build the parallel
composition of two TTSs, they are composable. This implies that sometimes local variables have to be
renamed before a parallel composition is possible.

3. Linear Temporal Logic

As a requirement specification language we use a version of linear temporal logic (LTL) [Pnu77], which offers
boolean and temporal connectives over atomic propositions.

Here, atomic propositions, denoted by p, . . . , consists of propositions stating properties of observable data
and time variables, where the latter are restricted to clock constraints, and the Boolean operators ¬ and ∨.
Such an atomic proposition is also called a state formula and the set of state formulas is denoted by AP .

A temporal formula is constructed out of state formulas to which we apply the Boolean operators and
the temporal operator U (until). As opposed to general LTL, we do not consider a next -state operator,
since the notion of next state is not clear in the setting of (dense) timed systems: Clearly, there is a next
state when looking at a single computation. However, when time passes by δ = t1 + t2, this can be a single
timed transition of amount δ or two timed transitions, of taking time t1, the other taking time t2. We don’t
formulas allow to distinguish these two computations. Thus, we use a so-called stutter-invariant fragment of
LTL.

To sum up, the set of LTL formulae considered here is inductively defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ (p ∈ AP)

A model for a temporal formula ϕ is an infinite sequence of states π = s0s1 . . . , where each state s
provides an interpretation for the variables in ϕ.

Given a model π = s0s1 . . . , we present an inductive definition for the notion of a temporal formula ϕ
holding at a position j ≥ 0 in π, denoted by (π, j) |= ϕ:

• (π, j) |= p⇔ sj |= p,

• (π, j) |= ¬ϕ⇔ (π, j) 6|= ϕ,

• (π, j) |= ϕ ∨ ψ ⇔ (π, j) |= ϕ or (π, j) |= ψ,

• (π, j) |= ϕUψ ⇔ ∃k ≥ j with (π, k) |= ψ and for every i such that j ≤ i < k, (π, i) |= ϕ.

As usual, additional temporal operators can be defined, such as ♦ϕ = true Uϕ and �ϕ = ¬♦¬ϕ, meaning
that ϕ eventually and, respectively, ϕ globally holds.

If (π, 0) |= ϕ, we say that π satisfies ϕ and write π |= ϕ.
Given a TTS Φ and a temporal formula ϕ, we say that ϕ is Φ-valid, denoted by Φ |= ϕ, if ϕ holds on all

models that are computations of Φ.

Network Invariants for Real-Time Systems 7

d = 0 d = 1

d := 1

d := 0

Fig. 2. Example

4. Verification by Network Invariants

In this section, we define the concept of network invariants for parameterized systems built-up from timed
transition structures. We first work out requirements a TTS should satisfy to serve as a network invariant.
Then, we reduce the problem of checking these requirements to model checking certain formulas of the
superposition of two timed transition structures. For the latter, we show how to construct discretized systems
that can be checked using a standard LTL model checker.

4.1. Network Invariants and Continuous Time

Let us elaborate on a notion of abstraction for TTSs suitable for the developments to come. Let us fix two
TTSs Φ = (D,C,W,O,Θ, λ,Π) and ΦA = (DA, CA,WA, OA,ΘA, λA,ΠA) for the remainder of this section.
We say that Φ and ΦA are comparable, if O = O′, O∩W = O′ ∩W ′. That is, they have the same observable
variables and have the same set of owned observable variables.

To simplify our presentation, let us assume that Φ and ΦA are comparable for the remainder of this
section. We start by defining the notion of abstraction for timed transition structures.

Definition 4.1. We say that ΦA is an abstraction of Φ, denoted by Φ ⊑RT ΦA, iff ocomp(Φ) ⊆ ocomp(ΦA)
and call Φ the concrete system and ΦA the abstract system.

Thus, ΦA is an abstraction of Φ, if for every computation of the concrete system projected to observable
variables, there is a computation of the abstract system with the same projection. It is easy to see that the
abstraction relation is transitive.

Example 4.2. The TTS shown in Figure 2 is an abstraction of the one defined in Example 2.2. We recall
that d was the only observable variable in the previous example and that the only observable computation
is (d = 0)(d = 0)(d = 1)(d = 0)(d = 1) . . . This is obviously contained in the observable computation of the
TTS shown in Figure 2.

As ΦA has more computations than Φ, it is clear that the abstraction relation is safe in the following
sense:

Proposition 4.3. Let ϕ be an LTL formula. If ΦA |= ϕ and Φ ⊑RT ΦA then Φ |= ϕ.

Note that the other direction is not true in general, i.e., if ΦA does not satisfy a property ϕ, Φ still might
do so.

The basic idea of network invariants is to find an abstraction ΦA that has more computations than an
arbitrary number of copies of Φ running in parallel. Given a candidate ΦA, this can be proven to hold if ΦA

has more computations than Φ and ΦA ‖ ΦA, also when both are running in parallel to an arbitrary TTS.
This is captured by the following theorem:

Theorem 4.4. If Φ and ΦA satisfy

(I1) Φ ⊑RT ΦA,

(I2) for all TTSs Ψ we have Φ ‖ Ψ ⊑RT ΦA ‖ Ψ,

(I3) ΦA ‖ ΦA ⊑RT ΦA, and

(I4) for all TTSs Ψ we have (ΦA ‖ ΦA) ‖ Ψ ⊑RT ΦA ‖ Ψ,

then Φ ‖ · · · ‖ Φ ⊑RT ΦA.

8 Olga Grinchtein and Martin Leucker

Proof. Φ ‖ · · · ‖ Φ can be abstracted by ΦA ‖ Φ ‖ · · · ‖ Φ due to (I2). Because of commutativity this is equal
to Φ ‖ ΦA ‖ Φ ‖ · · · ‖ Φ. This can, again because of (I2), be abstracted by ΦA ‖ ΦA ‖ Φ ‖ · · · ‖ Φ. Iterating
this argument and using transitivity of the abstraction relation, we get that Φ ‖ · · · ‖ Φ ⊑RT ΦA ‖ · · · ‖ ΦA.
Note that we silently assumed to have more than one copy of Φ. For a single copy (I1) gives the same
argument. Using (I3) and (I4), it can be easily seen that ΦA ‖ · · · ‖ ΦA ⊑RT ΦA. Altogether, this means
Φ ‖ · · · ‖ Φ ⊑RT ΦA.

Note that the previous theorem can be simplified in the following way: Take Ψ to be the “empty” process
that has not observable variables and does not offer any transition. Then, ocomp(Φ ‖ Ψ) = ocomp(Φ) and
ocomp(ΦA ‖ Ψ) = ocomp(ΦA). Thus (I2) implies (I1) and (I4) implies (I3).

Theorem 4.4 suggests the following strategy to verify properties of a network: Find an abstraction ΦA,
check whether it satisfies the properties in question and prove (I1)–(I4). However, (I2) and (I4) are not
constructive in the sense that it requires to check for all TTSs Ψ. Therefore, we are after a stronger abstraction
relation making the approach effective. The idea is to consider not only computations based on λ- and tick -
transitions but also those with additional env -transitions catering for the behavior induced by processes
running in parallel. Recall that mocomp(Φ) denotes the set of Φ’s modular computations.

Definition 4.5. We say that ΦA is a modular abstraction of Φ, denoted by Φ ⊑M ΦA, iff mocomp(Φ) ⊆
mocomp(ΦA).

Modular abstraction is what we are looking for:

Theorem 4.6. If Φ ⊑M ΦA then for all TTSs Ψ we have

Φ ‖ Ψ ⊑RT ΦA ‖ Ψ

Proof. The idea of the proof is as follows: Given a computation of Φ ‖ Ψ for an arbitrary system Ψ, we can
construct a modular computation by marking transitions of Ψ as environmental moves. Modular abstraction
states that there is one modular computation of ΦA that agrees on observable variables. A careful study now
shows that with transitions of Ψ this sequence can be concretized to a computation of ΦA ‖ Ψ. Let us be
more precise:

Consider a computation π = s0s1 . . . of Φ ‖ Ψ with si = (κi, vi). We have to show that there is a
computation πA of ΦA ‖ Ψ that agrees with π on the observable variables of Φ and Ψ. To do so, we set
πe = (s0, λ)(s1,m1) . . . where mi = λ, mi = env , or mi = tick depending on whether si−1−→RTsi is a
λΦ-, a λΨ-, or a tick -transition. Since Φ ⊑M ΦA, there is a computation πe

A = (se
0A, λ)(s

e
1A,m1) . . . of ΦA

that agrees with πe on observable variables. We now show that πe
A can be extended to a computation πA of

ΦA ‖ Ψ with the required features. Let πA = s0As1A . . . with siA = (κiA, viA) such that κiA|ΦA
= κe

iA|ΦA
,

κiA|Ψ = κi|Ψ, and, viA|ΦA
= ve

iA|ΦA
, viA|Ψ = vi|Ψ. Thus, the values of variables of ΦA are taken from πe

A

and the ones of Ψ are taken from π. By construction it is clear that the sequences π and πA restricted to
observable variables agree. It remains to show that πA is indeed a computation of ΦA ‖ Ψ. It is evident
that s0A is an initial state. For a siA to s(i+1)A we distinguish three cases according to the transition se

iA to
se
(i+1)A:

• Suppose it is a tick -transition that increments all clocks by δ ≥ 0. Thus, this incrementation is not
restricted by ΦA. Due to observability of now , all systems Φ, ΦA, and Ψ take indeed the same delay δ.
Hence, it is neither restricted by Ψ. Therefore, it is a tick -transition of ΦA ‖ Ψ.

• For a λΦA
-transition, nothing needs to be shown.

• For a λΨ-transition, we note that ΦA agrees on observable variables with Φ. Thus, we have a λΨ-transition
in ΦA ‖ Ψ iff we have one in Φ ‖ Ψ. Since we have the latter, the former holds.

Thus, πA is a computation of ΦA ‖ Ψ that agrees on all observable variables with Φ ‖ Ψ.

Although the previous theorem seems straightforward, it only holds because we required clock now to be
observable:

Example 4.7. Consider the TTSs Φ, ΦA, and Ψ shown in Figure 3 without the implicit observable clock
now . Both systems start initially in the state identified by d = 0 and can loop in this state. Both systems
also have a state given by d = 1, to which both systems can be put by a process running in parallel that sets
d to 1. And both systems have a local (non-observable) clock x.

In all modular computations of Φ and ΦA restricted to observable variables we observe that 0 is assigned

Network Invariants for Real-Time Systems 9

d = 0 d = 1

d := 0

[x > 1]
d := 0

(a) Φ

d = 0 d = 1

d := 0

[x = 1]
d := 0

(b) ΦA

d = 0 d = 1

[x > 1]
d := 1

(c) Ψ

Fig. 3. Ψ distinguishes Φ and ΦA

to d by taking the loop in the initial state or by taking the transition from d = 1 to d = 0. We would conclude
that Φ ⊑M ΦA.

However, ΦA can make the latter move only when clock x = 1. Ψ is now designed to make use of that:
One computation of Φ ‖ Ψ is d = 1; d = 0, by first making sure that x > 1 and taking the transition in Ψ
and then one in Φ. This is, however, not possible in ΦA ‖ Ψ as x > 1 conflicts with x = 1. Requiring now
to be observable reveals that Φ 6⊑M ΦA: if now is observable, the computations of Φ and ΦA contain the
information when transitions are taken, which shows that the transitions of Φ and ΦA from d = 1 to d = 0
cannot be taken at the same time.

Using Theorem 4.6, we can now formulate our main theorem for timed network invariants:

Theorem 4.8. If Φ and ΦA satisfy

(NI1) Φ ⊑M ΦA,

(NI2) ΦA ‖ ΦA ⊑M ΦA, and

then Φ ‖ · · · ‖ Φ ⊑RT ΦA.

Proof. By Theorem 4.6, condition (NI1) implies conditions (I1) and (I2) and condition (NI2) implies condi-
tions (I3) and (I4) of Theorem 4.4, so that the results follows by Theorem 4.4.

4.2. Superposition

How to show that Φ ⊑M ΦA? Using results from timed automata [AD94], it is easy to see that this question
is undecidable, unlike in the case for untimed systems. We therefore concentrate on sufficient conditions.
We use the idea of superposition [Jon94], but elaborate this idea now in the timed setting, followed by
discretization of time.

The superposition of two TTSs Φ and ΦA is a TTS assuring that ΦA tries best in simulating Φ. Intuitively,
the states of the superposition of Φ and ΦA are formed using the common and local variables of Φ and ΦA.
A transition is possible whenever, restricting to the variables of Φ, the transition can be taken according to
Φ’s transition table. If, restricting to the variables of ΦA, the transition can also be taken according to ΦA’s
transition table, both system will take the step. If, on the other hand, ΦA cannot follow, we have encountered
a mismatch and the system moves to a kind of sink state. As we have to check for a modular abstraction,
the combined system has to cater for environmental steps as well. Moreover, to make the approach more
flexible, we allow extra determinization conditions to be provided by the user. To signalize a mismatch,
we add a Boolean data variable mis , which is true iff it was not possible for ΦA to follow Φ or the user’s
determinization condition is too limiting. Thus, sink states are the ones in which mis = true. Let us be
precise:

Definition 4.9. For two comparable timed transition structures Φ = (D,C,W,O,Θ, λ,Π) and ΦA =
(DA, CA,WA, OA,ΘA, λA,ΠA) we define their superposition sp(Φ,ΦA,Θd, λd) to be the timed transition
structure ΦS = (DS , CS ,WS , OS ,ΘS , λS ,ΠS) where

• DS = D ∪DA ⊎ {mis}, CS = C ∪ CA,

• WS = W ∪WA ∪ {mis}, OS = O ∪ {mis} = OA ∪ {mis},

• ΘS = (Θ ∧ ΘA ∧ Θd ∧ (mis = false)) ∨ (Θ ∧ (¬ΘA ∨ ¬Θd) ∧ (mis = true)), ΠS = Π ∨ ΠA,

• Θd is an assertion over DS , such that Θ → Θd|D,

• λd ⊆ DS ×DS ×XCS
× 2CS , such that (κ, κ′, g, reset) ∈ λ implies that there is (κ̂, κ̂′, ĝ, r̂eset) ∈ λd with

κ̂|D = κ, κ̂′|D = κ′, g → ĝ, and r̂eset |D = reset ,

10 Olga Grinchtein and Martin Leucker

• λS = λ̂S ∩ λd where λ̂S ⊆ DS ×DS ×XCS
× 2CS with (κ, κ′, g, reset) ∈ λ̂S if one of the following holds:

1. if κ(mis) = false no mismatch has occurred yet. We distinguish:

(a) if there is a g′ such that (κ|D, κ
′|D, g

′, reset |C) ∈ λ, let gΦ be the disjunction of all such g′. Let gΦA

be the disjunction of all g′ such that (κ|DA
, κ′|DA

, g′, reset |CA
) ∈ λA, where the empty disjunction

is false. Then we require g = gΦ∧gΦA
and κ′(mis) = false , stating that both guards of the systems

are satisfied and no mismatch is found, or, g = gΦ ∧ ¬gΦA
and κ′(mis) = true describing the case

that Φ could move but not ΦA, so that a mismatch is found

(b) or, taking an environmental transition, we require g = true, κ(d) = κ′(d) if d ∈WS , reset∩WS = ∅,
and κ′(mis) = false

2. if κ(mis) = true then we require g = true, κ = κ′, and reset = ∅.

Let us explain the previous definition in detail: The superposition unites the variables of both structures
but adds the aforementioned fresh variable mis . To avoid changing of mis by an environmental step (which
are incorporated in the definition of λS), we require mis to be an owned variable. Somewhat arbitrarily, we
have chosen mis to be observable. The progress conditions are combined in a disjunctive manner catering
for tick -transitions that are possible by one of the systems. The initial condition of ΦS combines the initial
conditions of both systems in a conjunctive way. Initially, mis is set to false (no mismatch has been observed),
unless there is an initial state witnessed by θ for which no corresponding one is possible by θA or θd, in which
case a mismatch of the initial states is signalized by mis . Using θd, one can (manually) restrict the initial
states of θA to be considered. Similarly, λd is used to focus on certain transitions of ΦA and consequently
must not restrict λ-transitions. Therefore, λd must contain entries that basically coincide with entries of λ

when projected on Φ’s variables. Then λd is intersected with λ̂S , which is defined to describe the simultaneous
transitions of Φ and ΦA: If no mismatch has occurred yet (item 1), we distinguish a λ-transition (item 1(a))
and an environmental step (item 1(b)). The latter can be taken unconstrained (g = true) but has to maintain
owned variables and keeps mis = false . In item 1(a), we check whether ΦA can follow Φ’s λ-transitions: Given
two states of the combined system, we consider the restriction to Φ’s variables. Furthermore, we collect in
gΦ and gΦA

the guards for which a transition could be taken according to λ and, respectively, λA. If both
guards can be satisfied, both systems can do the considered step and there is no mismatch. Otherwise, we
have a step that is possible according to λ but not to λA (gΦ is satisfied but gΦA

is not). Thus, we have
encountered a mismatch, which we record by setting mis = true. Once a mismatch is observed, we stay in
this state (item 2).

If it is not possible to reach a state in which a mismatch encounters, and, if the progress condition is
respected, we have a modular abstraction:

Theorem 4.10. Let Φ and ΦA be two comparable timed transition structures. Let λd and Θd be user-defined
determinization conditions. If ΦS = sp(Φ′,ΦA,Θd, λd) satisfies

ΦS |= �((¬Π ∨ ΠA) ∧mis = false) (1)

then Φ ⊑M ΦA.

Proof. Assume equation (1) holds. We have to show that for every modular computation of Φ there is
a modular computation of ΦA that agrees on observable variables. We show instead a stronger property:

Whenever a transition is possible in Φ then also in ΦA. This is shown as follows: Let s
λ

−→RTs
′ be a transition

of Φ. We show that there is a transition sS
λ

−→RTs
′
S of ΦS and that this can be projected to a transition of

ΦA. Note that observable variables of Φ and ΦA are identical in ΦS and thus have the same value.
If the transition from s to s′ is a λΦ-transition, there is a corresponding entry in the transition table of

Φ. When consulting Definition 4.9, we see that there is at least one entry in λS that projected to Φ coincides
with the data valuations of s and s′. Furthermore, since equation (1) holds, we can assume that this entry
is according to item (1). That means, restricted to ΦA, there is an entry in λΦA

for a suitable guard g′.
However, since the guard g (of the λS-entry, using the notation of Definition 4.9) implies g′, ΦA can make a
corresponding move.

For an environmental transition, the statement is obvious.
For a tick -transition, we mention that the implication of the progress condition is checked in equation (1).
It remains to check that both Φ and ΦA have an initial state: The definition of ΘS says that either both

Network Invariants for Real-Time Systems 11

Φ and ΦA are fulfilled or not. In the latter case, mis = true, a contradiction to (1). Note that Θ implies Θd,
so that Θd does not restrict Θ.

It now remains to check ΦS |= �((¬Π ∨ ΠA) ∧ mis = false). To be able to use a standard LTL model
checker, we employ discretizations of TTSs.

4.3. Discretization of Timed Transition Structures

In this subsection we associate to a timed transition structure a finite state transition system satisfying the
same LTL properties. This allows us to use LTL model checkers for finite-state machines for analyzing timed
transition structures. We use the discretization given in [GPV94] and [ABK+97], though our presentation is
adapted to TTSs.

First, let us prepare the definition of Alur’s region equivalence [Alu99]. Let K denote the greatest constant
appearing in guards and invariant conditions of the timed transition structure and let n = |C| be the number
of clocks. Given a valuation v : C → I, let ≺v: C ×C be defined only for clocks x, y ∈ C with v(x) ≤ K and
v(y) ≤ K by x ≺ y iff frac(v(x)) < frac(v(y)). In other words, we order the clocks with value not exceeding
K according to their fractional values. Note that ≺ is a partial order as even two clocks with value less than
or equal to K but having the same fractional value are unordered. We define the rank of x ∈ C with respect
to v by rankv(x) = |{y | y ≺ x}| as the number of clocks with a smaller fractional part. Clearly, the rank of
each clock with respect to any valuation is in {0, . . . , n − 1}. Note that the rank is only defined for clocks
with value not exceeding K.

Now, the region equivalence can be defined as follows: Given two valuations v, v′, we let v ≃ v′ iff for all
x, y ∈ C,

• v(x) > K iff v′(x) > K,

• if v(x) ≤ K, then ⌊(v(x))⌋ = ⌊v′(x)⌋ and frac(v(x)) = 0 iff frac(v′(x)) = 0, and,

• rankv = rankv′

Thus, two valuations are considered equivalent with respect to ≃, if, for each clock, either both valuations
assign a value greater than K, or, they agree on the integer value and either both fractional parts are 0 or
both are greater than 0. Furthermore, ordering the clocks according to their rank yields the same order
meaning that the rank functions for v and v′ are the same.

The equivalence class of a valuation v with respect to ≃ is called a region equivalence class and is denoted
by [v].

We are now after a simple finite data structure for storing equivalence classes of valuations. Let us first
consider the order of fractional values of clocks. They can be stored in an array of slots containing clocks
(see Figure 4(a)). As fractional value 0 is of special interest (see definition of region equivalence), the first
slot contains all clocks x with frac(v(x)) = 0. The remaining slots are filled according to the order of the
fractional values. In other words, the clocks (with value not exceeding K) are distributed according to their
rank: If there there is a clock with fractional value 0, then the slot number of a clock is exactly its rank, and,
otherwise, it is its rank plus 1 (to leave the first slot empty).

While following this scheme, in general n+ 1 slots would suffice, we take 2n slots as it turned out to be
easier to implement in the model checker TLV. We distinguish even and odd slots and follow the convention
that whenever one of the fractional values is 0, we only use even slots, while we use odd slots if all fractional
values are greater than 0, and draw the array in a two dimensional fashion (Figure 4(b)). Now, we can define
the slot function slotv : C → {0, . . . , 2n− 1} for clocks not exceeding K by slotv(x) = 2rankv(x), if there is
a y ∈ C with v(y) ≤ K and frac(v(y)) = 0, and slotv(x) = 2rankv(x) + 1, otherwise.

Let us call a collection of 2n slots a block. It is now obvious that all region equivalence classes can be
represented using K blocks plus one slot for clocks with value K and one for clocks with value greater than
K. Figure 4(c) shows the setup for K = 2 and n = 3. Clock x is stored in slot labelled > K whenever the
value of x exceeds K, it is placed in slot labelled K, if v(x) = K. Otherwise, x is stored in block ⌊v(x)⌋ in
slot slotv(x). Note that two valuations are region equivalent iff their representation is the same.

Using the picture of slots, it is now straightforward to define a discretized semantics of a timed transition
structure. For j ∈ {0, . . . 2n−1} we say that clock x occupies slot j if slotv(x) = j and say that x occupies and
even (odd) slot iff j is 0 or even (odd, respectively). Let ∆ = 1

2n
be the discretization step. The discretized

time domain I∆ is defined as I∆ = {s∆ | s ∈ N, 0 ≤ s ≤ 2nK + 1} (see Figure 4(c)). Then, every slot j can

12 Olga Grinchtein and Martin Leucker

x1

x2
x3 x4 x5

0 < < < < 1

(a) slots

x1

x2
x3

. . .
x5

0

even

1

odd

2n− 1
(b) 2n slots

x1

0

x2 x3

1 K

> K
(c) time domain

Fig. 4. Slots and discrete time domain

be understood to represent fractional value j∆. In other words, using the picture of slots, we understand that
instead of considering the continuum of real values, only a finite number of fractional values are of interest
when considering a timed system with respect to region equivalence.

The discretized transition system of Φ is denoted by [Φ]DT and is the finite state transition system

(SDT ,ΘDT ,−→DT) where the set of states is SDT = D×IC̄
∆ , the initial state condition ΘDT agrees with Θ,

and −→DT , the transition relation, is defined as −→DT =
λ

−→DT ∪
tick
−→DT . The latter relations are defined

as

• s = (κ, v)
tick
−→DT s

′ = (κ, v′) iff s
tick
−→RT (κ, v + ∆) and v′ = v+̇∆. Here, v+̇∆ is the mapping that assigns

to clock x the value v(x)+̇∆, where t+̇t′ = min{t+ t′,K + ∆}.

• s = (κ, v)
λ

−→DT s
′ = (κ′, v′) iff (κ, v)

λ
−→RT (κ′, v′′) and,

– if there are clocks x with v′′(x) = 0 and y occupying an odd slot then even and odd slots are used
and we adjust the fractional part to use only even slots: Let j ∈ {0, . . . , 2n− 1} be the smallest odd
slot which is not occupied by any clock. For v′′(x) < K, we set v′(x) = v′′(x) + ∆ if x occupies a slot
in {1, . . . , j − 1}, v′(x) = v′′(x) − ∆ if the occupied slot of x is greater than j. If x occupies slot 0 or
v′′(x) ≥ K, we let v′(x) = v′′(x).

– else only even slots and slot 0 are used or all slots are odd, and we let v′ = v′′.

Thus, instead of considering arbitrary delays δ, only discrete steps of size ∆ are considered in timed transi-
tions. Note that by checking whether delay ∆ is possible with respect to the real-time semantics, we take care
of progress conditions. Furthermore, the modified sum operator guarantees that only K+∆ occurs as largest
value. If within a λ-transition a clock has been reseted (v′′(x) = 0) yet odd slots have been used, we adjust
the fractional values to use only even slots. It is clear that these adjustments maintain region equivalence.
Moreover, it can easily be seen that by a sequence of tick -transitions indeed all region equivalent states are
considered, due to the adjustment step.

A run of [Φ]DT is any infinite path of it starting in an initial state. A computation of [Φ]DT is a run in
which infinitely many tick -transitions are taken.

Let us check that Φ and [Φ]DT can be identified with respect to computations. Let (κ, v) ≡ (κ′, v′) iff
κ = κ′ and v ≃ v′. For a computation π : s0s1 . . . of Φ, let π̄ be the sequence π̄ : s̄0s̄1 . . . which is a
subsequence of π in which subsequent states of π are compressed to a single state when they are equivalent
with respect to ≡. That is, π̄ : si0si1 . . . and satisfies 0 = i0 < i1 < . . . , for k, k′ ∈ {ij, . . . , ij+1 − 1} we
have sk ≡ sk′ , sij

6≡ sij+1 , and for all j, s̄j ≡ sij
. We call two computations π, π′ of Φ stuttering-equivalent,

denoted by π ≡ π′, iff for π̄1 = s̄0s̄1 . . . and π̄2 = s̄′0s̄
′
1 . . . and all i ≥ 0 we have s̄i ≡ s̄′i. Note that π̄ is

stuttering equivalent to π and that π̄ can be considered as a minimal element of all sequences stuttering
equivalent to π. The notion of stutter equivalence carries over to computations of discretized timed transition
systems in the expected manner. We now easily see ([GPV94], [ABK+97]):

Lemma 4.11. [Φ]DT preserves qualitative behavior of Φ, that is, for each computation π1 of Φ, there exists
a computation π2 of [Φ]DT such that π̄1 ≡ π̄2, and vice versa.

Given a TTS Φ and a temporal formula ϕ, we say that ϕ is [Φ]DT -valid, denoted by [Φ]DT |= ϕ, if ϕ
holds on all models that are computations of [Φ]DT .

Network Invariants for Real-Time Systems 13

Given a system N = Ψ ‖ Φ ‖ · · · ‖ Φ and requirement specification ϕ. Goal: Show N
satisfies ϕ. Solution:

1. define possible network invariant ΦA

(note: ΦA must be comparable with Φ)

2. define determinization conditions Θ1
d

and λd
1

(often no restriction is required)

3. construct SP1 as discretization of sp(Φ, ΦA, Θ1
d
, λd

1)

4. Model check [SP1]DT |= �((¬Π ∨ ΠA) ∧ mis = false)
(then Φ ⊑M ΦA)

5. define determinization conditions Θ2
d

and λd
2

(often no restriction is required)

6. construct SP2 as discretization of sp(ΦA ‖ ΦA,ΦA, Θ2
d
, λd

2)

7. Model check [SP2]DT |= �((¬Π ∨ ΠA) ∧ mis = false)
(then ΦA ‖ ΦA ⊑M ΦA, and, with (4), ΦA is a network invariant)

8. Model check [Ψ ‖ ΦA]DT |= ϕ (shows Ψ ‖ ΦA |= ϕ)

Table 1. Verifying a network of processes

It is obvious that stutter equivalent computations satisfy the same LTL formulas.4 Thus, together with
Lemma 4.11, this implies:

Theorem 4.12. For every TTS Φ and LTL formula ϕ we have

Φ |= ϕ iff [Φ]DT |= ϕ

Note that there are different versions for discretizing a timed-transition structure. We found this one,
however, easy to realize in verification tools like TLV. Given a timed transition structure, one can define
tick -transitions consisting of adding time with possible adjustment in a straightforward manner. A detailed
comparison of several discretization approaches can be found in [Gri02].

To cope with our notion of computation, which requires tick -transitions to be taken infinitely often, we
added a binary data variable dt to the underlying system, which is flipped whenever a tick -transition is
taken. Adding as fairness-constraint that infinitely often dt must be 0 as well as 1, the notion of a fair run
coincides with our notion of computation.

4.4. The Final Approach

We sum-up our approach in Table 1. Steps 1, 2, and 5 have to be carried out manually, while the remaining
items can be done automatically.

5. Example

We construct a network invariant for a simple protocol in the spirit of Fischer’s protocol [SBM92] but
modified to show certain particularities in finding invariants. Fischer’s protocol is used to guarantee mutual
exclusion in a concurrent system consisting of an arbitrary number of processes by using clocks and a shared
variable.

Our protocol consists of an arbitrary number of instances of the process shown in Figure 5. Placeholders
α and β are two arbitrary integer values satisfying α ≤ β. Processes Φ1 and Φ2 can be distinguished from
Φ := Φ3 and we study the network N = Φ1 ‖ Φ2 ‖ Φ ‖ · · · ‖ Φ. Each process i has a local clock xi

and an owned variable loci ∈ {1, . . . , 7} indicating the current control location. Location loci = 5 is the
initial location. The processes communicate via a shared variable d. Control locations 1–4 are patterned
after Fischer’s protocol, while locations 5–7 are added to show that it is sometimes necessary to add further
clocks when looking for an abstraction, as we will point out below.

When a process is in location 1, it may proceed to location 2 when d equals 0, indicating that no process

4 Recall that LTL is defined here without a next-state operator.

14 Olga Grinchtein and Martin Leucker

5
d=0

6
d=4

1
d=0

2
d=0

2
0<d<4

2
d=4

4
d=ī

3
d=ī

5
d=4

7
d=4

5
0<d<4

3
d=j

1
d=j

xi ≤ α xi ≤ α xi ≤ α

[xi > β]

xi := 0

xi := 0

xi := 0

[xi > β]

[xi ≤ β]

0 ≤ j ≤ 3, j 6= ī, ī := i for i ∈ {1, 2}, ī := 3 for i ≥ 3

Fig. 5. An adaption of Fischer’s protocol

requested to enter the critical section. If so, it resets its clock xi. It may remain in location 2 at most α
time units. The process can proceed to location 3 by setting d to ī, which is i for processes 1 and 2, and 3
for the other processes, hereby requesting the critical section. In the original protocol, i would be assigned
to d. However, we have to make this modification to get equal processes Φ3,Φ4, . . . The process can stay
in location 3 waiting to reach time bound β, unless a different process sets d = i, hereby requesting the
critical section for itself. If a different process has requested the critical section, the current process can only
proceed to location 1. If no other process requests the critical section and the given time bound β exceeds,
the process can enter the critical section (location 4).

Locations 5, 6, and 7 are added to show an example of the hidden dependencies between clocks. Location
7 is only reachable if another process in parallel sets d = 4 (and moves from location 5 to 6), enabling
the guard of the current process to move from location 5 to location 7). However, since clocks increment
simultaneously, this cannot happen, as we will prove.

We would like to show that neither process Φ1 nor Φ2 can reach location 7 and that both of them are
never together in location 4, a standard mutual-exclusion property. It can be formalized by

ψ = �(loc1 ≤ 6 ∧ ¬(loc1 = 4 ∧ loc2 = 4))

Our goal is to construct a network invariant ΦA satisfying Φ ‖ · · · ‖ Φ ⊑M ΦA and Φ1 ‖ Φ2 ‖ ΦA � ψ.
Let us elaborate on ΦA. We first try to avoid using a dedicated owned location variable and, as it will

turn out, we can do so. As ΦA should be an abstraction of Φ, it needs to have the observable variable d and
should allow the alteration of d from 2 to 3 and from 3 to 0.

Assume that ΦA does not constrain the time when switching d from 2 to 3 is performed, let us say by
some clock xA. Then a possible run of Φ1 ‖ Φ2 ‖ ΦA is

(d = 0 , loc1 = 5 , loc2 = 5 , x1 = 0 , x2 = 0 , xA = 0) (initial state)
→ (d = 0 , loc1 = 1 , loc2 = 5 , x1 = 0 , x2 = 0 , xA = 0) (Φ1 moves to location 1)
→ (d = 0 , loc1 = 1 , loc2 = 1 , x1 = 0 , x2 = 0 , xA = 0) (Φ2 moves to location 1)
→ (d = 0 , loc1 = 1 , loc2 = 2 , x1 = 0 , x2 = 0 , xA = 0) (Φ2 moves to location 1)
→ (d = 2 , loc1 = 1 , loc2 = 3 , x1 = 0 , x2 = 0 , xA = 0) (Φ2 requests critical section)
→∗ (d = 2 , loc1 = 1 , loc2 = 3 , x1 > β , x2 > β , xA > β) (time passes)
→ (d = 2 , loc1 = 1 , loc2 = 4 , x1 > β , x2 > β , xA > β) (Φ2 enters critical section) (∗)
→ (d = 3 , loc1 = 1 , loc2 = 4 , x1 > β , x2 > β , xA > β) (ΦA sets d to 3 requesting Φ’s

critical section)
(∗∗)

→ (d = 0 , loc1 = 1 , loc2 = 4 , x1 > β , x2 > β , xA > β) (ΦA resets d to 0)
→ (d = 0 , loc1 = 2 , loc2 = 4 , x1 = 0 , x2 > β , xA > β) (Φ1 goes for critical section)
→ (d = 1 , loc1 = 3 , loc2 = 4 , x1 = 0 , x2 > β , xA > β)
→∗ (d = 1 , loc1 = 3 , loc2 = 4 , x1 > β , x2 > β , xA > β)
→ (d = 1 , loc1 = 4 , loc2 = 4 , x1 > β , x2 > β , xA > β) (Φ1 enters critical section)

Then ψ does not hold, since both Φ1 and Φ2 are in the critical section. To avoid this computation, we have
to use xA for constraining the change of d from 2 to 3 or from 3 to 0 (lines (∗) and (∗∗)). If we require that
ΦA sets d from 3 to 0 only if xA ≤ β, then Φ 6⊑M ΦA: Observe that Φ can proceed from location 3 to location
1 via location 4, setting d from 3 to 0, when clock x > β. As time for clocks x and xA passes simultaneously,

Network Invariants for Real-Time Systems 15

0 3

1, 2 4

xA := 0

d := 3

[xA > β]
d := 4

d := 0

[xA > β]
d := 4

[xA > β]
d := 4

[xA ≤ β]
d := 3

(a) abstraction

0 3

1, 2 4

xA := 0

d := 3

[yA > β]
d := 4

d := 0

[yA > β]
d := 4

[yA > β]
d := 4

[xA ≤ β]
d := 3

(b) network invariant

Fig. 6. (Possible) network invariants

xA ≤ β is too strong. Thus, the only choice that remains is to require that ΦA sets d from 2 to 3 only if
xA ≤ β. Then it should be possible for ΦA to reset xA if d = 0 as otherwise Φ 6⊑M ΦA, for a similar reason.

The discussion above and further arguments along the same line lead to a natural possible network
invariant, denoted by ΦA , shown in Figure 6(a). Its state space consists of all possible values of d and the
transitions set d according to the destination state. Since ΦA should abstract Φ, states d = 1 and d = 2
(which are shown as a single state to simplify the presentation) are only reachable by environmental moves.
We add to ΦA a clock xA to follow the timing constraints imposed by Φ when moving to states d = 3 or
d = 4.

We can check automatically that Φ ⊑M ΦA. However, if we try to show that ΦA ‖ ΦA ⊑M ΦA we obtain
a counterexample: Consider the modular computation of ΦA[1] ‖ ΦA[2] given by5

(d = 0, xA[1] = 0, xA[2] = 0)
→∗ (d = 0, xA[1] > β, xA[2] > β)
→ (d = 0, xA[1] = 0, xA[2] > β)
→ (d = 2, xA[1] = 0, xA[2] > β)
→ (d = 3, xA[1] = 0, xA[2] > β) (∗)
→ (d = 4, xA[1] = 0, xA[2] > β) (∗∗)

The interesting thing to observe in this computation is that transition from (∗) to (∗∗) can be taken as there
is one xA with value greater than β. Let us now consider ΦA[3]. There is a run s0 . . . si . . . of ΦA[3] such that
si(d) = 2 and si+1(d) = 3, however requesting xA ≤ β. Then it is not possible to take a transition from si+1

to si+2 such that si+2(d) = 4, which is however possible in the computation shown above. Therefore ΦA is
not a network invariant.

We obtain a network invariant ΦA by, for example, adding a clock yA to ΦA which is never reset and
modified by ΦA such that transitions which set d = 4 depend only on the new clock. This invariant is
shown in Figure 6(b). We can check successfully that Φ ⊑M ΦA and ΦA ‖ ΦA ⊑M ΦA, using the approach
developed in the previous section.

We have examined this example using the model checker TLV. We have proven that ΦA is indeed a
network invariant using the superposition approach outlined in the previous section, however using further
determinization conditions.

6. Conclusion

In this paper, we presented a method for checking linear-time temporal logic properties of networks of timed
systems. Our approach is based on network invariants, which have previously only been studied for untimed

5 We use the postscript [i] to distinguish local variables of instances of Φ.

16 Olga Grinchtein and Martin Leucker

systems [WL89, KM95]. We have extended Pnueli’s transition structures [KP00] by real-valued clocks and
then developed a corresponding framework of network invariants for these timed systems. The main technical
insight is the use of a reference clock now to relate concrete and abstract computations of timed transition
structures. Furthermore, we use the idea of superposition, now formulated in the timed setting, to check
whether some abstract system is more general than some concrete one. Finally, we employ discretization
of the superposition to allow the use of standard LTL model checkers for checking whether a network of
processes can be abstracted by a single timed system.

As the example shows, finding abstractions is a tedious job. Thus, it would be interesting to find network
invariants automatically, if they exist. While this has been studied in the untimed setting [LHR97, GLP06],
corresponding developments in the timed setting are left as future work.

Acknowledgement

We thank Bengt Jonsson, Yonit Kesten, Amir Pnueli, and Elad Shahar for inspiring us to study this problem,
for fruitful discussions, and for hints on using TLV.

References

[ABK+97] E. Asarin, M. Bozga, A. Kerbrat, O. Maler, M. Pnueli, and A. Rasse. Data structures for the verification of timed
automata. In O. Maler, editor, Hybrid and Real-Time Systems, volume 1201 of Lecture Notes in Computer Science,
pages 346–360, Grenoble, France, 1997. Springer-Verlag.

[AD90] R. Alur and D. Dill. Automata for modeling real-time systems. In Automata, languages and programming, pages
322–335. Springer, 1990.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–235, 1994.
[AJ99] P. A. Abdulla and B. Jonsson. On the existence of network invariants for verifying parameterized systems. In

Correct system design-recent insights and advances, pages 180–197. Springer, 1999.
[AJ02] Parosh Aziz Abdulla and Bengt Jonsson. Model checking of systems with many identical timed processes. Theo-

retical Computer Science, 290(1):241–264, October 2002.
[AL91] M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical Computer Science, 82(2):253–284,

May 1991.
[Alu99] R. Alur. Timed automata. In Proc. 11th International Computer Aided Verification Conference, volume 1633 of

Lecture Notes in Computer Science, pages 8–22. Springer-Verlag, 1999.
[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified model for static analysis of programs by construction

or approximation of fixpoints. In Proc. 4th ACM Symp. on Principles of Programming Languages, pages 238–252,
1977.

[CGL92] E. Clarke, O. Grumberg, and D. Long. Model Checking and Abstraction. In Proceedings of the 19th Annual ACM
Symposium on Principles of Programming Languages, pages 342–354, New York, January 1992. ACM.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT Press, Cambridge, Mas-
sachusetts, 1999.

[DGG94] D. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of reactive systems: Abstractions preserving
∀CTL∗, ∃CTL∗ and CTL∗. In Proc. IFIP working conference on Programming Concepts, Methods and Calculi
(PROCOMET’94), pages 573–592, 1994.

[GL04] Olga Grinchtein and Martin Leucker. Network invariants for real-time systems. In 5th International Workshop
on Verification of Infinite-State Systems, volume 98 of Electronic Notes in Theoretical Computer Science, pages
57–74. Elsevier Science Publishers, 2004.

[GLP06] Olga Grinchtein, Martin Leucker, and Nir Piterman. Inferring network invariants automatically. In Proceedings
of the 3rd International Joint Conference on Automated Reasoning (IJCAR’06), volume 4130 of Lecture Notes in
Artificial Itelligence, September 2006.

[GPV94] A. Gollu, A. Puri, and P. Varaiya. Discretization of timed automata. In Proceedings of the 33rd IEEE conferene
on decision and control, pages 957–958, 1994.

[Gri02] Olga Grinchtein. Dense-time analysis with fractional adjustment steps. Master’s thesis, The Weizmann Institue of
Science, Rehovot 76100, Israel, July 2002.

[Gru05] Orna Grumberg. Abstraction and refinement in model checking. In Frank S. de Boer, Marcello M. Bonsangue,
Susanne Graf, and Willem P. de Roever, editors, FMCO, volume 4111 of Lecture Notes in Computer Science, pages
219–242. Springer, 2005.

[GS97] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Proc. 9th Int. Conf. on Computer Aided
Verification, volume 1254, pages 72–83, Haifa, Israel, 1997. Springer-Verlag.

[Jon94] B. Jonsson. Compositional specification and verification of distributed systems. ACM Transactions on Program-
ming Languages and Systems, 16(2):259–303, 1994.

[KM95] R. P. Kurshan and K. L. McMillan. A structural induction theorem for processes. Information and Computation,
117(1):1–11, 15 February 1995.

Network Invariants for Real-Time Systems 17

[KP00] Y. Kesten and A. Pnueli. Control and data abstraction: The cornerstones of practical formal verification. Software
Tools for Technology Transfer, 2(4):328–342, 2000.

[LHR97] D. Lesens, N. Halbwachs, and P. Raymond. Automatic verification of parameterized linear networks of processes.
In Proc. 24th ACM Symp. on Principles of Programming Languages, 1997.

[LP85] Orna Lichtenstein and Amir Pnueli. Checking that finite state concurrent programs satisfy their linear specification.
In Proceedings of the Twelfth Annual ACM Symposium on Principles of Programming Languages, pages 97–107,
New York, January 1985. ACM.

[LS00] David Lesens and Hassen Säıdi. Abstraction of parameterized networks. In Faron Moller, editor, Infinity’97, Second
International Workshop on Verification of Infinite State System, volume 9 of Electronic Notes in Theoretical
Computer Science. Elsevier Science Publishers, 2000.

[OW03] Joël Ouaknine and James Worrell. Revisiting digitization, robustness, and decidability for timed automata. In
Proceedings of the 18th Annual IEEE Symposium on Logic in Computer Science (LICS’03). IEEE Computer
Society, 2003.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE Symposium on the Foundations
of Computer Science (FOCS-77), pages 46–57, Providence, Rhode Island, October 31–November 2 1977. IEEE
Computer Society Press.

[PS96] A. Pnueli and E. Shahar. A platform combining deductive with algorithmic verification. In Rajeev Alur and Thomas
A. Henzinger, editors, Proceedings of the Eighth International Conference on Computer Aided Verification CAV,
volume 1102 of Lecture Notes in Computer Science, pages 184–195, New Brunswick, NJ, USA, July/August 1996.
Springer Verlag.

[SBM92] F. B. Schneider, B. Bloom, and K. Marzullo. Putting time into proof outlines. In de Bakker, Huizing, de Roever,
and Rozenberg, editors, Real-Time: Theory in Practice, volume 600 of Lecture Notes in Computer Science, pages
618–639, 1992.

[TAKB96] Serdar Taşıran, Rajeev Alur, Robert P. Kurshan, and Robert K. Brayton. Verifying abstractions of timed sys-
tems. In Ugo Montanari and Vladimiro Sassone, editors, CONCUR ’96: Concurrency Theory, 7th International
Conference, volume 1119 of Lecture Notes in Computer Science, pages 546–562, Pisa, Italy, 26–29 August 1996.
Springer-Verlag.

[Var96] Moshe Y. Vardi. An Automata-Theoretic Approach to Linear Temporal Logic, volume 1043 of Lecture Notes in
Computer Science, pages 238–266. Springer, New York, NY, USA, 1996.

[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In Symposium
on Logic in Computer Science (LICS’86), pages 332–345, Washington, D.C., USA, June 1986. IEEE Computer
Society Press.

[WL89] P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with network invariants. In Proceedings
of the International Workshop on Automatic Verification Methods for Finite State Systems, volume 407 of Lecture
Notes in Computer Science, pages 68–80, Grenoble, France, 1989. Springer-Verlag.

