
Abstraction for Stochastic Systems
by Erlang’s Method of Stages�

Joost-Pieter Katoen1, Daniel Klink1, Martin Leucker2, and Verena Wolf3

1 RWTH Aachen University
2 TU Munich

3 EPF Lausanne

Abstract. This paper proposes a novel abstraction technique based on Erlang’s
method of stages for continuous-time Markov chains (CTMCs). As abstract mod-
els Erlang-k interval processes are proposed where state residence times are gov-
erned by Poisson processes and transition probabilities are specified by intervals.
We provide a three-valued semantics of CSL (Continuous Stochastic Logic) for
Erlang-k interval processes, and show that both affirmative and negative verifica-
tion results are preserved by our abstraction. The feasibility of our technique is
demonstrated by a quantitative analysis of an enzyme-catalyzed substrate conver-
sion, a well-known case study from biochemistry.

1 Introduction

This paper is concerned with a novel abstraction technique for timed probabilistic sys-
tems, in particular continuous-time Markov chains, CTMCs for short. These models are
omnipresent in performance and dependability analysis, as well as in areas such as sys-
tems biology. In recent years, they have been the subject of study in concurrency theory
and model checking. CTMCs are a prominent operational model for stochastic process
algebras [13] and have a rich theory of behavioral (both linear-time and branching-time)
equivalences, see, e.g., [4,26]. Efficient numerical, as well as simulative verification al-
gorithms have been developed [1,3,27] and have become an integral part of dedicated
probabilistic model checkers such as PRISM and act as backend to widely accepted
performance analysis tools like GreatSPN and the PEPA Workbench.

Put in a nutshell, CTMCs are transition systems whose transitions are equipped with
discrete probabilities and state residence times are determined by negative exponen-
tial distributions. Like transition systems, they suffer from the state-space explosion
problem. To overcome this problem, several abstraction-based approaches have recently
been proposed. Symmetry reduction [20], bisimulation minimization [16], and advances
in quotienting algorithms for simulation pre-orders [28] show encouraging experimen-
tal results. Tailored abstraction techniques for regular infinite-state CTMCs have been
reported [22], as well as bounding techniques that approximate CTMCs by ones hav-
ing a special structure allowing closed-form solutions [21]. Predicate abstraction tech-
niques have been extended to (among others) CTMCs [14]. There is a wide range of
� The research has been partially funded by the DFG Research Training Group 1298 (AlgoSyn),

the Swiss National Science Foundation under grant 205321-111840 and the EU FP7 project
Quasimodo.

F. van Breugel and M. Chechik (Eds.): CONCUR 2008, LNCS 5201, pp. 279–294, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

280 J.-P. Katoen et al.

related work on abstraction of discrete-time probabilistic models such as MDPs, see
e.g., [9,8,19]. Due to the special treatment of state residence times, these techniques are
not readily applicable to the continuous-time setting.

This paper generalizes and improves upon our three-valued abstraction technique
for CTMCs [17]. We adopt a three-valued semantics, i.e., an interpretation in which a
logical formula evaluates to either true, false, or indefinite. In this setting, abstraction
preserves a simulation relation on CTMCs and is conservative for both positive and
negative verification results. If the verification of the abstract model yields an indefinite
answer, the validity in the concrete model is unknown. In order to avoid the grouping
of states with distinct residence time distributions, the CTMC is uniformized prior to
abstraction. This yields a weak bisimilar CTMC [4] in which all states have identical
residence time distributions. Transition probabilities of single transitions are abstracted
by intervals, yielding continuous-time variants of interval DTMCs [10,24].

This, however, may yield rather coarse abstractions (see below). This paper sug-
gests to overcome this inaccuracy. The crux of our approach is to collapse transition
sequences of a given fixed length k, say. Our technique in [17] is obtained if k=1. This
paper presents the theory of this abstraction technique, shows its correctness, and shows
its application by a quantitative analysis of an enzyme-catalyzed substrate conversion,

s2

s1s0

u

1 1

1
2

1
2

1

As Au

[34 , 1]
[0, 1

4] 1

Fig. 1.

a well-known case study from biochemistry [5].
Let us illustrate the main idea of the abstraction by means

of an example. Consider the CTMC shown on the right
(top). Intuitively, a CTMC can be considered as a transition
system whose transitions are labeled with transition prob-
abilities. Moreover, a CTMC comes with an exit rate iden-
tifying the residence times of the states (one, say), which
is exponentially distributed. The essence of CTMC model
checking is to compute the probability to reach a certain set
of goal states within a given deadline [3].

A rather common approach to abstraction is to partition the state space into classes,
e.g., let us group states s0, s1, and s2 into the abstract state As, and u into Au. The
probability to move from As to Au by a single transition is either 0, 1

2 , or 1, as the
respective (time-abstract) probability to move to u in one transition is 0, 1, and 1

2 . The
approach in [17] yields the interval [0, 1] for the transition from As to Au. This is not
very specific. A more narrow interval is obtained when considering two consecutive
transitions. Then, the probability from As to Au is 1 or 3

4 . Using intervals, this yields
the two-state abstract structure depicted above (bottom).

Put in a nutshell, the abstraction technique proposed in this paper is to generalize this
approach towards considering transition sequences of a given length k > 0, say. State
residence times are, however, then no longer exponentially distributed, but Erlang-k
distributed. Moreover, taking each time k steps at once complicates the exact calculation
of time-bounded reachability probabilities: Let us consider first the case that n is the
number of transitions taken in the concrete system to reach a certain goal state. Let �
and j be such that n = �·k+j and j ∈ {0, . . . , k−1}. Clearly, the number of transitions
in the abstract system corresponds exactly to a multiple of the number of transitions in
the concrete system, only if the remainder j equals 0. As this is generally not the case,

Abstraction for Stochastic Systems by Erlang’s Method of Stages 281

k

k

(a)

k

k

(b)

k

k

1

(c)

1

k

k

(d)

Fig. 2. Reaching goals in stages of length k

we restrict to computing lower and upper bounds for the probability of reaching a set
of goal states. Let us be more precise: Consider the tree of state sequences as shown
in Fig. 2(a). Let the black nodes denote the set of goal states. Taking the right branch,
5 transitions are needed to reach a goal state. For k = 3, this implies that 2 abstract
transitions lead to a goal state. However, as 2 · 3 = 6, computing with 2 transitions and
Erlang-3 distributed residence times will not give the exact probability for reaching a
goal state, but, as we show, a lower bound. Intuitively, the probability for reaching a goal
state in Fig. 2(b) is computed. For an upper bound, one might first consider all states
from the fourth state on in the right branch as goal states. This would give a rather coarse
upper bound. We follow instead the idea depicted in Fig. 2(c): We consider 2 transitions
for reaching the goal state, however, use the Erlang-3 distribution for assessing the first
transition, but use the Erlang-1 distribution for assessing the last transition of a sequence
of transitions. That is, we compute the reachability probability for the goal states as
depicted in Fig. 2(c). Technically, it is beneficial to understand the situation as depicted
in Fig. 2(d), i.e., to first consider one transition with Erlang-1 distribution and then to
consider a sequence of transitions which are Erlang-k distributed.

Outline of the paper. Section 2 gives some necessary background.We introduce Erlang-
k interval processes in Section 3 which serve as abstract model for CTMCs in Section 4.
In Section 5, we focus on reachability analysis of Erlang-k interval processes and utilize
it for model checking in Section 6. The feasibility of our approach is demonstrated in
Section 7 by a case study from biology and Section 8 concludes the paper. A full version
with detailed proofs can be found in [18].

2 Preliminaries

Let X be a finite set. For Y, Y ′ ⊆ X and function f : X × X → � let f(Y, Y ′) :=∑
y∈Y,y′∈Y ′ f(y, y′) (for singleton sets, brackets may be omitted). The function f(x, ·)

is given by x′ �→ f(x, x′) for all x ∈ X . Function f is a distribution on X iff f : X →
[0, 1] and f(X) :=

∑
x∈X f(x) = 1. The set of all distributions on X is denoted by

distr(X). Let AP be a fixed, finite set of atomic propositions and �2 := {⊥, �} the
two-valued truth domain.

282 J.-P. Katoen et al.

Continuous-time Markov chains. A (uniform) CTMC C is a tuple (S,P, λ, L, s0) with
a finite non-empty set of states S, a transition probability function P : S × S → [0, 1]
such that P(s, S) = 1 for all s ∈ S, an exit rate λ ∈ �>0, a labeling function L :
S × AP → �2, and an initial state s0 ∈ S. This definition deviates from the literature as
i) we assume a uniform exit rate and ii) we separate the discrete-time behavior specified
by P and the residence times determined by λ. Restriction i) is harmless, as every (non-
uniform) CTMC can be transformed into a weak bisimilar, uniform CTMC by adding
self-loops [25]. For ii), note that P(s, s′)(1−eλt) equals the probability to reach s′ from
s in one step and within time interval [0, t). Thus, the above formulation is equivalent
to the standard one. The expected state residence time is 1/λ. Let Pk(s, s′) denote the
time-abstract probability to enter state s′ after k steps while starting from s, which is
obtained by taking the kth-power of P (understood as a transition probability matrix).

We recall some standard definitions for Markov chains [11,23]. An infinite path σ is
a sequence s0 t0 s1 t1 . . . with si ∈ S, P(si, si+1) > 0 and ti ∈ �>0 for i ∈ �. The
time stamps ti denote the residence time in state si. Let σ@t denote the state of a path σ
occupied at time t, i.e. σ@t = si with i the smallest index such that t <

∑i
j=0 tj . The

set of all (infinite) paths in C is denoted by PathC . Let Pr be the probability measure on
sets of paths that results from the standard cylinder set construction.

Poisson processes. Let (Nt)t≥0 be a counting process and let the corresponding interar-
rival times be independent and identically exponentially distributed with parameter λ >
0. Then (Nt)t≥0 is a Poisson process and the number k of arrivals in time interval [0, t)
is Poisson distributed, i.e., P (Nt = k) = e−λt(λt)k/k!. The time until k arrivals have

occurred is Erlang-k distributed, i.e., Fλ,k(t) := P (Tk ≤ t) = 1 −
∑k−1

i=0 e−λt (λt)i

i!
where Tk is the time instant of the k-th arrival in (Nt)t≥0. Consequently, the probability
that (Nt)t≥0 is in the range {k, k + 1, . . . , k + � − 1}, � ≥ 1 is given by

ψλ,t(k, �) := P (Tk ≤ t < Tk+�) =
∑k+�−1

i=k e−λt (λt)i

i!
.

A CTMC C = (S,P, λ, L, s0) can be represented as a discrete-time Markov chain with
transition probabilities P where the times are implicitly driven by a Poisson process
with parameter λ, i.e., the probability to reach state s′ from s within [0, t) is:

∑∞
i=0 Pi(s, s′) · e−λt (λt)i

i! .

This relationship can be used for an efficient transient analysis of CTMCs and is known
as uniformization. A truncation point of the infinite sum can be calculated such that the
approximation error is less than an a priori defined error bound [25].

Continuous Stochastic Logic. CSL [1,3] extends PCTL [12] by equipping the until-
operator with a time bound. Its syntax is given by:

ϕ ::= true | a | ϕ ∧ ϕ | ¬ϕ | P �� p(ϕ UIϕ)

where I ∈ {[0, t), [0, t], [0, ∞) | t ∈ �>0}, �� ∈ {<, ≤, ≥, >}, p ∈ [0, 1] and a ∈ AP .
The formal semantics of CSL is given in Table 1. CSL model checking [3] is performed
inductively on the structure of ϕ like for CTL model checking. Checking time-bounded
until-formulas boils down to computing time-bounded reachability probabilities. These

Abstraction for Stochastic Systems by Erlang’s Method of Stages 283

Table 1. Semantics of CSL

�true�(s) = � �a�(s) = L(s, a)

�ϕ1 ∧ ϕ2�(s) = �ϕ1�(s) � �ϕ2�(s) �¬ϕ�(s) = (�ϕ�(s))c

�P �� p(ϕ1UIϕ2)�(s) = �, iff Pr({σ ∈ PathM
s | �ϕ1UIϕ2�(σ) = �}) �� p

�ϕ1UIϕ2�(σ) = �, iff ∃ t ∈ I : (�ϕ2�(σ@t) = � ∧ ∀ t′ ∈ [0, t) : �ϕ1�(σ@t′) = �)

probabilities can be obtained by a reduction to transient analysis yielding a time com-
plexity in O(|S|2λt) where t is the time bound.

Three-valued domain. Let �3 := {⊥, ? , �} be the complete lattice with ordering
⊥ < ? < �, meet (�) and join () as expected, and complementation ·c such that �
and ⊥ are complementary to each other and ? c = ? . When a formula evaluates to ⊥ or
�, the result is definitely true or false respectively, otherwise it is indefinite.

3 Erlang-k Interval Processes

Erlang-k interval processes are determined by two ingredients: a discrete probabilistic
process with intervals of transition probabilities (like in [10,24]) and a Poisson process.
The former process determines the probabilistic branching whereas residence times are
governed by the latter. More precisely, the state residence time is the time until j further
arrivals occur according to the Poisson process where j ∈ {1, . . . , k} is nondeterminis-
tically chosen. Thus, the residence times are Erlang-j distributed.

Definition 1 (Erlang-k interval process). An Erlang-k interval process is a tuple E =
(S,Pl,Pu, λ, k, L, s0), with S and s0 ∈ S as before, and Pl,Pu : S × S → [0, 1],
transition probability bounds such that for all s ∈ S: Pl(s, S) ≤ 1 ≤ Pu(s, S), λ ∈
�>0, a parameter of the associated Poisson process, k ∈ �

+, and L : S × AP → �3.

An Erlang-1 interval process is an abstract continuous-time Markov chain (ACTMC)
[17]. If additionally all intervals are singletons, the process is equivalent to a CTMC
with Pl = Pu = P. The set of transition probability functions for E is:

TE := {P : S × S → [0, 1] | ∀s ∈ S : P(s, S) = 1,

∀s, s′ ∈ S : Pl(s, s′) ≤ P(s, s′) ≤ Pu(s, s′)}

Let TE (s) := {P(s, ·) | P ∈ TE} be the set of distributions in s.

Paths in Erlang-k interval processes. A path σ in E is an infinite sequence s0t0s1t1 . . .
with si ∈ S, ti ∈ �>0 for which there exists P0,P1, . . . ∈ TE such that Pi(si, si+1) >
0 for all i ∈ �. A path fragment ξ is a prefix of a path that ends in a state denoted ξ↓.
The set of all path fragments ξ (untimed path fragments) in E is denoted by PathfE
(uPathfE , respectively) whereas the set of paths is denoted by PathE .

We depict Erlang-k interval processes by drawing the state-transition graph of the
discrete part, i.e., the associated interval DTMC with transitions labeled by [Pl(s, s′),

284 J.-P. Katoen et al.

Pu(s, s′)] (see, e.g., Fig. 3). The Poisson process that determines the residence times,
as well as the marking of the initial state are omitted.

Normalization. Erlang-k interval process E is called delimited, if every possible se-
lection of a transition probability in a state can be extended to a distribution [17],
i.e., if for any s, s′ ∈ S and p ∈ [Pl(s, s′),Pu(s, s′)], we have μ(s′) = p for some
μ ∈ TE (s). An Erlang-k interval process E can be normalized into a delimited one
norm(E) such that Tnorm(E) = TE . Formally, norm(E) = (S, P̃l, P̃u, λ, k, L, s0) with
for all s, s′ ∈ S:

P̃l(s, s′) = max{Pl(s, s′), 1 − Pu(s, S \ {s′})} and
P̃u(s, s′) = min{Pu(s, s′), 1 − Pl(s, S \ {s′})}.

Example 1. The Erlang-k interval process in Fig. 3, left, is delimited. Selecting 1
4 for

the transition from s to u2 yields a non-delimited process (Fig. 3, middle). Applying
normalization results in the Erlang-k interval process shown in Fig. 3, right.

s

u1

u2

u3

[13 , 1
2]

[14 , 1
3]

[14 , 1
3]

1

1

1

s

u1

u2

u3

[13 , 1
2]

1
4

[14 , 1
3]

1

1

1

s

u1

u2

u3

[5
12 , 1

2]

1
4

[14 , 1
3]

1

1

1

Fig. 3. Normalization

An Erlang-k interval process
contains two sources of non-
determinism: in each state, (i)
a distribution according to the
transition probability intervals,
and (ii) the number j ∈
{1, . . . , k} of arrivals in the
Poisson process may be cho-
sen. As usual, nondeterminism
is resolved by a scheduler:

Definition 2 (Scheduler). Let E be an Erlang-k interval process. A history-dependent
deterministic scheduler is a function D : uPathfE → distr(S) × {1, . . . , k} such that
D(ξ) ∈ TE(ξ ↓) × {1, . . . , k} for all ξ ∈ uPathfE . The set of all history-dependent
deterministic schedulers of E is denoted as HDE .

Note that a richer class of schedulers is obtained if the scheduler’s choice may also
depend on the residence times of the states visited so far. We show below that the class
of history-dependent deterministic schedulers suffices when Erlang-k interval processes
are used for abstracting CTMCs.

Probability measure. For Erlang-k interval process E , let Ω = PathE be the sample
space and B the Borel field generated by the basic cylinder sets C(s0 I0 . . . In−1 sn)
where si ∈ S, 0 ≤ i ≤ n and I� = [0, x�) ⊆ �≥0 is a non-empty interval for 0 ≤ � <
n. The set C(s0 I0 . . . In−1 sn) contains all paths of E with prefix ŝ0 t0 . . . tn−1 ŝn

such that si = ŝi and t� ∈ I�. A scheduler D ∈ HDE induces a probability space
(Ω, B, PrD) where PrD is uniquely given by PrD(C(s0)) := 1 and for n ≥ 0

PrD(C(s0 I0 . . . In sn+1)) := PrD(C(s0 I0 . . . In−1 sn)) · Fλ,jn(sup In) · μn(sn+1)
=

∏n
i=0 (Fλ,ji(sup Ii) · μi(si+1))

Abstraction for Stochastic Systems by Erlang’s Method of Stages 285

where (μi, ji) =: D(s0 s1 . . . si). Additionally, we define the time-abstract probability
measure induced by D as PrD

ta (C(s0)) := 1 and

PrD
ta (C(s0 I0 . . . In sn+1)) :=

∏n
i=0 μi(si+1).

We are interested in the supremum/infimum (ranging over all schedulers) of the prob-
ability of measurable sets of paths. Clearly, the choice of ji, the number of steps in
the associated Poisson process in state si, may influence such quantities. For instance,
on increasing ji, time-bounded reachability probabilities will decrease as the expected
state residence time (in si) becomes longer. We discuss the nondeterministic choice in
the Poisson process in subsequent sections, and now focus on the choice of distribution
μi according to the probability intervals.

Definition 3 (Extreme distributions). Let E be an Erlang-k interval process, s ∈ S
and S′ ⊆ S. We define extr(Pl,Pu, S′, s) ⊆ TE(s) such that μ ∈ extr(Pl,Pu, S′, s)
iff either S′ = ∅ and μ = Pl(s, ·) = Pu(s, ·) or one of the following conditions holds1:

– ∃s′ ∈ S′ : μ(s′) = Pl(s, s′) and μ ∈ extr(Pl,Pu[(s, s′) �→ μ(s′)], S′ \ {s′}, s)
– ∃s′ ∈ S′ : μ(s′) = Pu(s, s′) and μ ∈ extr(Pl[(s, s′) �→ μ(s′)],Pu, S′ \ {s′}, s)

We call μ ∈ TE(s) an extreme distribution if μ ∈ extr(Pl,Pu, S, s).

A scheduler D ∈ HDE is called extreme if all choices D(ξ) are extreme distributions.
For a subset D ⊆ HDE let Dextr ⊆ D denote the subset of all extreme schedulers in D.

Theorem 1 (Extrema). Let E be an Erlang-k interval process and D ⊆ HDE . For
every measurable set Q ∈ B of the induced probability space:

infD∈Dextr PrD(Q) = infD∈D PrD(Q), supD∈Dextr
PrD(Q) = supD∈D PrD(Q).

4 Abstraction

This section makes the abstraction by stages as motivated in the introduction precise.
We define an abstraction operator based on the idea of partitioning the concrete states to
form abstract states. This yields an Erlang-k interval process. Moreover, we introduce
a simulation relation relating one transition in the abstract system to a sequence of
k transitions in the concrete system. We show that the abstraction operator yields an
Erlang-k interval process simulating the original CTMC.

Definition 4 (Abstraction). Let abstr(C, A, k) := (A,Pl,Pu, λ, k, L′, A0) be the ab-
straction of CTMC C = (S,P, λ, L, s0) induced by partitioning A = {A0, . . . , An} of
S and k ∈ �

+ such that for all 1 ≤ i, j ≤ n:

– Pl(Ai, Aj) = mins∈Ai Pk(s, Aj), and Pu(Ai, Aj) = maxs∈Ai Pk(s, Aj)

– L′(A, a) =

⎧
⎪⎨

⎪⎩

� if for all s ∈ A : L(s, a) = �
⊥ if for all s ∈ A : L(s, a) = ⊥
? otherwise

– A0 ∈ A with s0 ∈ A0.

1 f [y �→ x] denotes the function that agrees everywhere with f except at y where it equals x.

286 J.-P. Katoen et al.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

t

P
ro

ba
bi

lit
y

As
s0
s1
s2

Fig. 4. Concrete vs. abstract behav-
ior over time

Lemma 1. For any CTMC C, any partitioning A of
S and k ∈ �

+, abstr(C, A, k) is an Erlang-k inter-
val process.

Example 2. Reconsider the CTMC C from Section 1
(Fig. 1), top, with exit rate λ = 1 and partition-
ing {As, Au} with As = {s0, s1, s2}, Au = {u}.
As remarked above, in the Erlang-1 interval process
abstr(C, {As, Au}, 1) (not shown) the probability in-
terval for a transition from As to Au is [0, 1]. How-
ever, choosing k = 2 yields smaller intervals. The
resulting Erlang-2 interval process is depicted in
Fig. 1, bottom. The plot in Fig. 4 shows the prob-
ability to reach Au = {u} within t time units if the Erlang-2 interval process starts
at time 0 in As and the CTMC in s0, s1 or s2, respectively. For the Erlang-2 interval
process, the infimum over all schedulers is taken and it is obviously smaller than all the
concrete probabilities in the CTMC (the supremum coincides with the probabilities for
s1). A detailed discussion on which schedulers yield the infimum or supremum is given
in the next section.

Definition 5 (k-step forward simulation). Let C = (SC ,P, λ, LC , sC) be a CTMC and
E = (SE ,Pl,Pu, λ, k, LE , sE) an Erlang-k interval process. Relation Rk ⊆ SC × SE
is a k-step forward simulation on C and E iff for all s ∈ SC , s′ ∈ SE , sRks′ implies:

1. Let μ := Pk(s, ·). Then there exists μ′ ∈ TE(s′) and Δ : SC × SE → [0, 1] s.t.

(a) Δ(u, v) > 0 ⇒ uRkv, (b) Δ(u, SE) = μ(u), (c) Δ(SC , v) = μ′(v).

2. For all a ∈ AP, LE(s′, a) �= ? implies that LE(s′, a) = LC(s, a).

We write s �k s′ if sRks′ for some k-step forward simulation Rk, and C �k E if
sCRksE . In the sequel, we often omit subscript k. The main difference with existing
simulation relations is that k steps in C are matched with a single step in E . For k=1,
our definition coincides with the standard notion of forward simulation on CTMCs [4].

Theorem 2 (Abstraction). Let C be a CTMC and let A be a partitioning on the state
space S. Then for all k ∈ �

+ we have C � abstr(C, A, k).

It is important to understand that the k-step forward simulation relates the transition
probabilities of one transition in the abstract system to k-transitions in the concrete sys-
tem. However, it does not say anything about the number j ∈ {1, . . . , k} of arrivals in
the Poisson process, which has to be chosen appropriately to guarantee that the proba-
bility for reaching certain states within a given time bound is related in the concrete and
the abstract system. This issue will be approached in the next section.

5 Reachability

We now show that the abstraction method proposed above can be used to efficiently de-
rive bounds for the probability to reach a set B⊆SC in a CTMC C =(SC ,P, λ, LC , sC).

Abstraction for Stochastic Systems by Erlang’s Method of Stages 287

For that we consider an Erlang-k interval process E with state space SE and C � E . For
B′ ⊆ SE , t ≥ 0 let Reach≤t(B′) := {σ ∈ PathE | ∃t′ ∈ [0, t] : σ@t′ ∈ B′}.

Since a CTMC is also an Erlang-k interval process, Reach≤t(B) ⊆ PathC is defined
in the same way. We assume that P(s, s) = 1 for all s ∈ B as the behavior of C after
visiting B can be ignored. We say that B and B′ are compatible iff s � s′ implies that
s ∈ B iff s′ ∈ B′, for all s ∈ SC , s′ ∈ SE . For example, in Fig. 4, B = {u} and
B′ = {Au}, as well as, B = {s0, s1, s2} and B′ = {As} are compatible.

The k-step forward simulation (cf. Def. 5) is useful for relating transition proba-
bilities in the concrete and the abstract system. However, to relate timed reachability
probabilities of concrete and abstract systems, we have to assess the time abstract tran-
sitions with the right number j of new arrivals in the Poisson process associated with
E . In other words, we have to check for which choice of the number of arrivals, we
obtain lower and upper bounds of the timed reachability probabilities. As motivated in
the introduction (Fig. 2) and stated in Theorem 3 (see below), a tight bound for

– the minimum probability is obtained when the scheduler chooses for number j
always k, and a tight bound for

– the maximum probability is obtained when the scheduler chooses once j = 1 and
for the remaining transitions j = k.

Consequently, we restrict our attention to the following scheduler classes:

HDE
l := {D ∈ HDE | ∀ξ∃μξ : D(ξ) = (μξ, k)}

HDE
u := {D ∈ HDE | ∀ξ∃μξ : D(ξ) = (μξ, 1) if ξ = sE , D(ξ) = (μξ, k) otherwise}

where sE is the initial state of the Erlang-k interval process E .

Theorem 3. Let C be a CTMC and E an Erlang-k interval process with C � E . For
t ∈ �≥0, compatible sets B and B′, there exist schedulers D ∈ HDE

l , D′ ∈ HDE
u with

PrD(Reach≤t(B′)) ≤ PrC(Reach≤t(B)) ≤ PrD′
(Reach≤t(B′)).

Let

PrEl (Reach≤t(B′)) := infD∈HDE
l

PrD(Reach≤t(B′))
PrEu(Reach≤t(B′)) := supD∈HDE

u
PrD(Reach≤t(B′)).

The following corollary is a direct result of the theorem above. It states that when com-
paring reachability probabilities of a CTMC with those of a simulating Erlang-k interval
process E , in the worst (best) case E will have a smaller (larger) time-bounded reacha-
bility probability, when restricting to the scheduler class HDE

l (HDE
u).

Corollary 1. Let C be a CTMC and E an Erlang-k interval process with C � E . Let
t ∈ �≥0 and B be compatible with B′. Then:

PrEl (Reach≤t(B′)) ≤ PrC(Reach≤t(B)) ≤ PrEu(Reach≤t(B′))

Similar to the uniformization method for CTMCs (see Section 2), we can efficiently
calculate time-bounded reachability probabilities in E , using time-abstract reachability
probabilities and the probability for the number of Poisson arrivals in a certain range.

288 J.-P. Katoen et al.

More specifically, after i transitions in E , the number of arrivals in the associated Poisson
process is among i ·k, i ·k+1, . . . , i ·k+(k−1), if D ∈ HDE

l , and (i−1) ·k+1, (i−1) ·
k+2, . . . , i·k, if D ∈ HDE

u. For B ⊆ SE , i ∈ � let Reach=i(B) := {σ ∈ PathE | σ[i] ∈
B}. Using ψλ,t for the respective Poisson probabilities, we thus obtain:

Lemma 2. Let E be an Erlang-k interval process, t ∈ �≥0 and B ⊆ SE . Then

PrD(Reach≤t(B)) =
∑∞

i=0

(
PrD

ta (Reach=i(B)) · ψλ,t(
∑i−1

h=0 jh, ji)
)

where ji = k for all i ∈ � if D ∈ HDE
l and j0 = 1, ji = k for i ∈ �

+ if D ∈ HDE
u.

Similar as in [2], we can approximate the supremum/infimum w.r.t. the scheduler classes
HDE

l and HDE
u by applying a greedy strategy for the optimal choices of distributions

P ∈ TE . A truncated, step-dependent scheduler is sufficient to achieve an accuracy of
1 − ε where the error bound ε > 0 is specified a priori. The decisions of this sched-
uler only depend on the number of transitions performed so far and its first N :=
N(ε) decisions can be represented by a sequence P1, . . . ,PN ∈ TE . As discussed in
Section 3, it suffices if the matrices are such that only extreme distributions are involved.
As the principle for the greedy algorithm is similar for suprema and infima, we focus
on the former. Let iB be the vector of size |SE | with iB(s) = 1 iff s ∈ B. Furthermore,
P0 := I and vi :=

∏i
m=0 Pm · iB . We choose matrices Pi, i ≥ 1 such that

|PrEu(Reach≤t(B)) −
∑N

i=0 vi(sE) · ψλ,t(
∑i−1

h=0 jh, ji)| < ε.

The algorithm is illustrated in Fig. 5 and has polynomial time complexity. Starting in
a backward manner, i.e., with PN , vector qu

i is maximized by successively assigning
as much proportion as possible to the transition leading to the successor s′ for which
qu
i+1(s

′) is maximal. For every choice of a value Pi(s, s′) the transition probability
intervals for the remaining choices are normalized (compare Example 1). Note that the
algorithm computes bounds which may be with an error bound ε below the actual value.
Thus, the computed lower bound may be lower than the actual lower bound. To assure
that the upper bound exceeds the actual upper bound, we add ε to qu

0 .
The following lemma is an adaptation of [2, Th. 5] and states that the results are

indeed ε-approximations of the supremum/infimum of the reachability probabilities.

Input: Erlang-k interval process E ,
time bound t, set of states B

Output: ε-approx. ql
0 of PrE

l (Reach≤t(B))

Input: Erlang-k interval process E ,
time bound t, set of states B

Output: ε-approx. qu
0 of PrE

u(Reach≤t(B))
Minimize ql

0 where for 1 ≤ i ≤ N Maximize qu
0 where for 1 ≤ i ≤ N

ql
0 = ψλ,t(0, k) iB + ql

1

ql
i = ψλ,t(ik, k)PiiB + Pi ql

i+1

ql
N+1 = 0

qu
0 = ψλ,t(0, 1) iB + qu

1 + ε
qu

i = ψλ,t(1 + (i−1)k, k)PiiB +Pi qu
i+1

qu
N+1 = 0

Fig. 5. Greedy algorithm for infimum (left) and supremum (right) of time-bounded reachability
probabilities

Abstraction for Stochastic Systems by Erlang’s Method of Stages 289

Table 2. Three-valued semantics of CSL

�true�(s) = � �a�(s) = L(s, a)
�ϕ1 ∧ ϕ2�(s) = �ϕ1�(s) � �ϕ2�(s) �¬ϕ�(s) = (�ϕ�(s))c

�ϕ1UIϕ2�(σ) =

��
�

� if ∃ t ∈ I : (�ϕ2�(σ@t) = � ∧ ∀ t′ ∈ [0, t) : �ϕ1�(σ@t′) = �)
⊥ if ∀ t ∈ I : (�ϕ2�(σ@t) = ⊥ ∨ ∃ t′ ∈ [0, t) : �ϕ1�(σ@t′) = ⊥)
? otherwise

�P�p(ϕ1 UIϕ2)�(s) =

��
�

� if Prl(s, ϕ1 UIϕ2) � p
⊥ if Pru(s,ϕ1 UIϕ2) � p
? otherwise

� ∈ {>, ≥}, � =
�

< if � = ≤
≤ if � = <

�P�p(ϕ1 UIϕ2)�(s) =

��
�

� if Pru(s,ϕ1 UIϕ2) � p
⊥ if Prl(s, ϕ1 UIϕ2) � p
? otherwise

� ∈ {<, ≤}, � =
�

> if � = ≥
≥ if � = >

Lemma 3. For an Erlang-k interval process E , B ⊆ SE , t ≥ 0, error margin ε > 0:

PrEl (Reach≤t(B)) ≥ ql
0(sE) ≥ PrEl (Reach≤t(B)) − ε

PrEu(Reach≤t(B)) ≤ qu
0 (sE) ≤ PrEu(Reach≤t(B)) + ε.

We conclude this section with a result that allows us to use the algorithm presented
above to check if a reachability probability is at least (at most) p in the abstract model
and, in case the result is positive, to deduce that the same holds in the concrete model.

Theorem 4. For a CTMC C, an Erlang-k interval process E with C � E , compatible
sets B ⊆ SC , B′ ⊆ SE , t ≥ 0, ε > 0, the algorithm in Fig. 5 computes ql

0 and qu
0 with:

PrC(Reach≤t(B)) ≥ PrEl (Reach≤t(B′)) ≥ ql
0(sE) ≥ PrEl (Reach≤t(B′)) − ε

PrC(Reach≤t(B)) ≤ PrEu(Reach≤t(B′)) ≤ qu
0 (sE) ≤ PrEu(Reach≤t(B′)) + ε.

6 Model Checking

The characterizations in Section 5 in terms of minimal and maximal time-bounded
reachability probabilities are now employed for model checking CSL on Erlang-k in-
terval processes. Therefore, we define a three-valued CSL semantics and show that ver-
ification results on Erlang-k interval processes carry over to their underlying CTMCs.

Three-valued semantics. For Erlang-k interval process E = (S,Pl,Pu, λ, k, L, s0),
we define the satisfaction function � · � : CSL → (S ∪ PathE → �3) as in Table 2,
where s ∈ S, Es is defined as E but with initial state s and

Prl(s, ϕ1 UIϕ2) = PrEs

l ({σ ∈ PathEs | �ϕ1 UIϕ2�(σ) = �}) (1)
Pru(s, ϕ1 UIϕ2) = PrEs

u ({σ ∈ PathEs | �ϕ1 UIϕ2�(σ) �= ⊥}) (2)

For the propositional fragment the semantics is clear. A path σ satisfies until formula
ϕ1 U [0,t]ϕ2 if ϕ1 definitely holds until ϕ2 definitely holds at the latest at time t. The
until-formula is violated, if either before ϕ2 holds, ϕ1 is violated, or if ϕ2 is definitely

290 J.-P. Katoen et al.

violated up to time t. Otherwise, the result is indefinite. To determine the semantics
of P≤p(ϕ1 U [0,t]ϕ2), we consider the probability of the paths for which ϕ1 U [0,t]ϕ2 is
definitely satisfied or perhaps satisfied, i.e., indefinite. If this probability is at most p
then P≤p(ϕ1 U [0,t]ϕ2) is definitely satisfied. Similarly, P≤p(ϕ1 U [0,t]ϕ2) is definitely
violated if this probability exceeds p for those paths on which ϕ1 U [0,t]ϕ2 evaluates
to �. The semantics of P�p(ϕ1 U [0,t]ϕ2) for � ∈ {<, >, ≥} follows by a similar
argumentation.

Theorem 5 (Preservation). For a CTMC C and an Erlang-k interval process E with
initial states sC and sE , if sC � sE then for all CSL formulas ϕ:

�ϕ�(sE) �= ? implies �ϕ�(sE) = �ϕ�(sC).

Model checking three-valued CSL is, as usual, done bottom-up the parse tree of the
formula. The main task is checking until-subformulas P≤p(a U [0,t]b), which can be
handled as follows: As in [7], the underlying transition system is transformed such that
there is one sink for all states satisfying b and another one for all states neither satisfying
a nor b. Thus, all paths reaching states satisfying b are along paths satisfying a, which
allows to compute the measure for reaching b states. However, before doing so, we
have to account for indefinite states (?): When computing lower bounds we consider
all states labeled by ? as ones labeled ⊥, while we consider them as labeled � when
computing upper bounds, following equations (1) and (2).

Example 3. Consider Ex. 2 where state u (and thus Au) are labeled goal, and CSL for-
mula ϕ = P≤0.9(true U≤1.2goal). Then �ϕ�(As) = � = �ϕ�(s0) (compare Fig. 4). If
s1 was labeled goal as well then L(As, goal) = ? . Checking ϕ for satisfaction requires
an optimistic relabeling, i.e. we set L(As, goal) = �. Obviously, then ϕ is not satisfied
for sure. Analyzing the pessimistic instance with L(As, goal) = ⊥ however yields that
ϕ is neither violated for sure (cf. Fig. 4). Therefore �ϕ�(As) = ? implying that either
the partitioning or the choice of k has to be revised in order to get conclusive results.

Theorem 6 (Complexity). Given an Erlang-k interval process E , a CSL formula ϕ,
and an error margin ε, we can approximate �ϕ� in time polynomial in the size of E
and linear in the size of ϕ, the exit rate λ and the highest time bound t occurring in ϕ
(dependency on ε is omitted as ε is linear in λt). In case the approximation yields � or
⊥, the result is correct.

7 Case Study: Enzymatic Reaction

Markovian models are well established for the analysis of biochemical reaction net-
works [5,15]. Typically, such networks are described by a set of reaction types and the
involved molecular species, e.g., the different types of molecules. The occurrence of a
reaction changes the species’ populations as molecules are produced and/or consumed.

Enzyme-catalyzed substrate conversion. We focus on an enzymatic reaction network
with four molecular species: enzyme (E), substrate (S), complex (C) and product (P)
molecules. The three reaction types R1, R2, R3 are given by the following rules:

R1 : E + S
c1−→ C, R2 : C

c2−→ E + S, R3 : C
c3−→ E + P

Abstraction for Stochastic Systems by Erlang’s Method of Stages 291

The species on the left hand of the arrow (also called reactants) describe how many
molecules of a certain type are consumed by the reaction and those on the right hand
describe how many are produced. For instance, one molecule of type E and S is con-
sumed by reaction R1 and one C molecule is produced. The constants c1, c2, c3 ∈ �>0
determine the probability of the reactions as explained below.

Concrete model. The temporal evolution of the system is represented by a CTMC as
follows (cf. [6]): A state corresponds to a population vector x = (xE , xS , xC , xP) ∈ �

4

and transitions are triggered by chemical reactions. The change of the current popula-
tion vector x caused by a reaction of type Rm, m ∈ {1, 2, 3} is expressed as a vector
vm where v1 := (−1, −1, 1, 0), v2 := (1, 1, −1, 0) and v3 := (1, 0, −1, 1). Obviously,
reaction Rm is only possible if vector x + vm contains no negative entries. Given an
initial state s := (sE , sS , 0, 0), it is easy to verify that the set of reachable states equals
S := {(xE , xS , xC , xP) | xE + xC = sE , xS + xC + xP = sS}.

The probability that a reaction of type Rm occurs within a certain time interval is
determined by the function αm : S → �≥0. The value αm(x) is proportional to the
number of distinct combinations of Rm’s reactants: α1(x) := c1xExS , α2(x) := c2xC

and α3(x) := c3xC . We define the transition matrix P of the CTMC by P(x, x +
vm) := αm(x)/λ with exit rate λ ≥ maxx∈S(α1(x) + α2(x) + α3(x)). Thus, state x

has outgoing transitions x
αm(x)/λ−−−−−−→ x+vm for all m with x+vm ≥ 0 and the self-loop

probability in x is P(x, x) := 1 −
(
α1(x) + α2(x) + α3(x)

)
/λ.

We are interested in the probability that within time t the number of type P molecules
reaches threshold n := sS , the maximum number of P molecules. We apply labels
AP := {0, 1, . . . , n} and for 0 ≤ a ≤ n let L(x, a) := � if x = (xE , xS , xC , xP) with
xP = a and L(x, a) := ⊥ otherwise. For the initial populations, we fix sE = 20 and
vary sS between 50 and 2000.

Stiffness. In many biological systems, components act on time scales that differ by
several orders of magnitude which leads to stiff models. Traditional numerical analysis
methods perform poorly in the presence of stiffness because a large number of very
small time steps has to be considered. For the enzymatic reaction, stiffness arises if
c2 � c3 and results in a high self-loop probability in most states because λ is large
compared to α1(x) + α2(x) + α3(x). Thus, even in case of a small number |S| of
reachable states, model checking properties like P≤0.9(true U [0,t]n) is extremely time
consuming. We show how our abstraction method can be used to efficiently verify prop-
erties of interest even for stiff parameter sets. We choose a realistic parameter set of
c1 = c2 = 1 and c3 = 0.001. Note that the order of magnitude of the expected time
until threshold n = sS = 300 is reached is 104 for these parameters.

Abstract model. For the CTMC C := (S,P, λ, L, s) described above, we choose par-
titioning A := {A0, . . . , An} with Aa :=

{
x ∈ S | L(x, a) = �

}
, that is, we group

all states in which the number of molecules of type P is the same. Some important
remarks are necessary at this point. Abstraction techniques rely on the construction of
small abstract models by disregarding details of the concrete model as the latter is too
large to be solved efficiently. In this example, we have the additional problem of stiff-
ness and the abstraction method proposed here can tackle this by choosing high values
for k. Then one step in the Erlang-k interval process happens after a large number of

292 J.-P. Katoen et al.

arrivals in the underlying Poisson process and the self-loop probability in the abstract
model is much smaller than in the concrete one. We chose k ∈ {210, 211, 212} for the
construction of the Erlang-k interval process abstr(C, A, k) and calculate the transition
probability intervals by taking the k-th matrix power of P. The choice for k is reason-
able, since for a given error bound ε = 10−10, sS = 300 and t = 10000, a transient
analysis of the concrete model via uniformization would require around 6 · 107 steps.
By contrast, our method considers k steps in the concrete model and around (6 · 107)/k
steps in the smaller abstract model. Thus, although the construction of the Erlang-k
interval process is expensive, the total time savings are enormous. We used the MAT-
LAB software for our prototypical implementation and the calculation of Pk could be
performed efficiently because P2j

can be computed using j matrix multiplications. As
for non-stiff models a smaller value is chosen for k, it is obvious that upper and lower
bounds for the k-step transition probabilities can be obtained in a local fashion, i.e. by
computing the k-th matrix power of submatrices of P. Therefore, we expect our method
to perform well even if |S| is large. However, for stiff and large concrete models more
sophisticated techniques for the construction of the abstract model must be applied that
exploit the fact that only upper and lower bounds are needed.

|A| |S| time
50 861 0m 5s
300 6111 37m 36s
500 10311 70m 39s
1000 20811 144m 49s
1500 31311 214m 2s
2000 41811 322m 50s

Fig. 6. Computation times

Experimental results. For sS = 200 we compared
the results of our abstraction method for the probabil-
ity to reach An within time bound t with results for
the concrete model that were obtained using PRISM.
While it took more than one day to generate the plot
for the concrete model in Fig. 7, right, our MATLAB
implementation took less than one hour for all three
pairs of upper and lower probability bounds and dif-
ferent values of t.2 Our method is accurate as the
obtained intervals are small, e.g., for sS = 200,
k = 212, t = 14000 the relative interval width is

150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

substrates

P
ro

ba
bi

lit
y

bo
un

ds

10.000 12.000 14.000 16.000 18.000 20.000

0,2

0,4

0,6

0,8

1

time bound

P
ro

ba
bi

lit
y

(b
ou

nd
s)

k=1024, min
k=1024, max
k=1024, diff
k=2048, min
k=2048, max
k=2048, diff
k=4096, min
k=4096, max
k=4096, diff
concrete model

Fig. 7. Time-bounded reachability

2 Both jobs were run on the same desktop computer (Athlon 64 X2 3800+, 2GB RAM).

Abstraction for Stochastic Systems by Erlang’s Method of Stages 293

10.7%. Fig. 7, left, shows the lower and upper probability bounds using k = 212,
t = 20000 and varying sS . For high values of sS , e.g., sS = 500 the construction
of the Erlang-k interval process took more than 99% of the total computation time
as the size of the transition matrix P is 104 × 104 and sparsity is lost during matrix
multiplication. We conclude this section with the additional experimental details on
computation times3, given in Fig. 6, using k = 212, t = 50000 (and sS = 200).

Note that for this case study exact abstraction techniques such as lumping do not
yield any state-space reduction.

8 Conclusion

We have presented an abstraction technique for model checking of CTMCs, presented
its theoretical underpinnings, as well as an the application of the abstraction technique
to a well-known case study from biochemistry. The main novel aspect of our approach is
that besides the abstraction of transition probabilities by intervals [10,17], sequences of
transitions may be collapsed yielding an approximation of the timing behavior. Abstract
Erlang k-interval processes are shown to provide under- and overapproximations of
time-bounded reachability probabilities. Our case study confirms that these bounds may
be rather accurate. Future work will focus on automatically finding suitable state-space
partitionings, and on guidelines for selecting k appropriately. As shown by our case
study, for stiff CTMCs, a high value of k is appropriate. This is, however, not the case
in general. We anticipate that graph analysis could be helpful to select a “good” value
for k. Moreover, we plan to investigate memory-efficient techniques for computing
k-step transition probabilities and counterexample-guided abstraction refinement.

References

1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous time Markov
chains. ACM TOCL 1, 162–170 (2000)

2. Baier, C., Hermanns, H., Katoen, J.P., Haverkort, B.R.: Efficient computation of time-
bounded reachability probabilities in uniform continuous-time Markov decision processes.
TCS 345, 2–26 (2005)

3. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for
continuous-time Markov chains. IEEE TSE 29, 524–541 (2003)

4. Baier, C., Katoen, J.-P., Hermanns, H., Wolf, V.: Comparative branching-time semantics for
Markov chains. Information and Computation 200, 149–214 (2005)

5. Bower, J.M., Bolouri, H.: Computational Modeling of Genetic and Biochemical Networks.
MIT Press, Cambridge (2001)

6. Busch, H., Sandmann, W., Wolf, V.: A numerical aggregation algorithm for the enzyme-
catalyzed substrate conversion. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210,
pp. 298–311. Springer, Heidelberg (2006)

7. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. Journal of
the ACM 42, 857–907 (1995)

3 Run on a workstation (Xeon 5140 – 2.33 GHz, 32GB RAM).

294 J.-P. Katoen et al.

8. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reachability analysis of probabilis-
tic systems by successive refinements. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001.
LNCS, vol. 2165, pp. 39–56. Springer, Heidelberg (2001)

9. de Alfaro, L., Pritam, R.: Magnifying-lens abstraction for Markov decision processes. In:
Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 325–338. Springer, Hei-
delberg (2007)

10. Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic systems. In: Valmari, A. (ed.)
SPIN 2006. LNCS, vol. 3925, pp. 71–88. Springer, Heidelberg (2006)

11. Feller, W.: An Introduction to Probability Theory and its Applications, vol. I. John Wiley &
Sons, Inc., Chichester (1968)

12. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects
of Computing 6, 512–535 (1994)

13. Hermanns, H., Herzog, U., Katoen, J.-P.: Process algebra for performance evaluation.
TCS 274, 43–87 (2002)

14. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123. Springer, Heidelberg (2008)

15. Kampen, N.G.v.: Stochastic Processes in Physics and Chemistry, 3rd edn. Elsevier, Amster-
dam (2007)

16. Katoen, J.-P., Kemna, T., Zapreev, I., Jansen, D.N.: Bisimulation minimisation mostly speeds
up probabilistic model checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS,
vol. 4424, pp. 87–102. Springer, Heidelberg (2007)

17. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for continuous-time
Markov chains. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 316–
329. Springer, Heidelberg (2007)

18. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Abstraction for stochastic systems by Erlang’s
method of stages. Technical Report AIB-2008-12, RWTH Aachen University (2008)

19. Kwiatkowska, M., Norman, G., Parker, D.: Game-based abstraction for Markov decision
processes. In: QEST, pp. 157–166. IEEE CS Press, Los Alamitos (2006)

20. Kwiatkowska, M., Norman, G., Parker, D.: Symmetry reduction for probabilistic model
checking. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 234–248. Springer,
Heidelberg (2006)

21. Mamoun, M.B., Pekergin, N., Younes, S.: Model checking of CTMCs by closed-form bound-
ing distributions. In: QEST, pp. 189–199. IEEE CS Press, Los Alamitos (2006)

22. Remke, A., Haverkort, B., Cloth, L.: CSL model checking algorithms for QBDs. TCS 382,
24–41 (2007)

23. Ross, S.: Stochastic Processes. John Wiley and Sons, Chichester (1996)
24. Sen, K., Viswanathan, M., Agha, G.: Model-checking Markov chains in the presence of un-

certainties. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 394–
410. Springer, Heidelberg (2006)

25. Stewart, W.: Introduction to the Numerical Solution of Markov Chains. Princeton University
Press, Princeton (1995)

26. Wolf, V., Baier, C., Majster-Cederbaum, M.: Trace machines for observing continuous-time
Markov chains. ENTCS 153, 259–277 (2004)

27. Younes, H., Simmons, R.: Statistical probabilistic model checking with a focus on time-
bounded properties. Inf. and Comp. 204, 1368–1409 (2007)

28. Zhang, L., Hermanns, H., Eisenbrand, F., Jansen, D.N.: Flow faster: efficient decision algo-
rithms for probabilistic simulations. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS,
vol. 4424, pp. 155–170. Springer, Heidelberg (2007)

	Abstraction for Stochastic Systems by Erlang’s Method of Stages
	Introduction
	Preliminaries
	Erlang-k Interval Processes
	Abstraction
	Reachability
	Model Checking
	Case Study: Enzymatic Reaction
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

