
Model Checking Probabilistic Distributed

Systems

Benedikt Bollig1 and Martin Leucker2?

1 Lehrstuhl für Informatik II, RWTH Aachen, Germany
bollig@informatik.rwth-aachen.de

2 IT department, Uppsala University, Sweden
Martin.Leucker@it.uu.se

Abstract. Protocols for distributed systems make often use of random
transitions to achieve a common goal. A popular example are randomized
leader election protocols. We introduce probabilistic product automata
(PPA) as a natural model for this kind of systems. To reason about
these systems, we propose to use a product version of linear temporal
logic (LTL⊗). The main result of the paper is a model-checking procedure
for PPA and LTL⊗. With its help, it is possible to check qualitative
properties of distributed systems automatically.

1 Introduction

Randomization techniques have been employed to solve numerous problems of
computing both sequentially and in parallel. Examples of probabilistic algo-
rithms that are asymptotically better than their deterministic counterparts in
solving various fundamental problems abound. It has also been shown that they
allow solutions of problems which cannot be solved deterministically [LR81].
They have the advantages of simplicity and better performance both in theory
and often in practice. Prominent examples for distributed randomized algorithms
are randomized leader election protocols [BGJ99]. An overview of the domain of
randomized algorithms is given in [PRRR01].

As for any kind of hardware or software system, it is important to develop
formal methods and tools for verifying their correctness, thus also for probabilis-
tic programs. Model checking, introduced independently in [CES83] and [QS82],
turned out to be one fruitful approach to automatically verify systems (see
[CW96] for an overview of model checking in practice). In the model-checking
approach, usually a finite system M, often an abstraction of a real system, and
a property, usually expressed as a temporal-logic formula ϕ or as an automa-
ton describing the computations that adhere to the property, are given. The
model-checking procedure decides whether the set or tree formed of all compu-
tations of M satisfies ϕ, or, in other words, whether the given system satisfies
the required property. Temporal logics used for expressing requirements are usu-
ally linear temporal logics (LTL) (as initially proposed by Pnueli in [Pnu77]) or
branching-time logics like computation-tree logics CTL and CTL∗.

? This author is supported by the European Research Training Network “Games”.

In the probabilistic setting, one is no longer interested in all but only al-
most all computations. Thus, (sets or paths of trees of) computations with zero
probability are ignored when deciding whether a given property is satisfied.

Temporal logics for probabilistic programs were initially studied in [LS82]
and [HS84]. [Var85] introduced the notion of Concurrent Probabilistic Programs
(CPPs) and provided a procedure for checking their LTL properties.

In this paper, we introduce Probabilistic Product Automata (PPA) as a model
for distributed probabilistic systems. Roughly, a PPA is a parallel product of
CPPs. They are enriched, however, with actions to synchronize the concurrent
execution. In the non-randomized setting, product automata have proven to be
a reasonable model for distributed systems. To support their analysis, a product
version of linear temporal logic (LTL⊗) has been defined. It allows the definition
of properties for each process, i.e., each single automaton or CPP of the overall
system. The properties for each process are then combined by means of Boolean
connectives to a single formula. Model-checking procedures for LTL⊗ and prod-
uct automata have been studied in [Thi95]. We show in this paper, how LTL⊗

properties of PPA can be checked automatically.

Our method follows the automata-theoretic approach: Given a PPA A, we
can construct a single concurrent probabilistic program M with the same prob-
abilistic behavior. For a property ϕ expressed as an LTL⊗ formula, we consider
its negation ¬ϕ and construct a (non-randomized) product automaton A¬ϕ that
captures the behavior violating ϕ. This automaton is transformed into a deter-
ministic Streett automaton B¬ϕ. The common behavior of M and B¬ϕ represents
the behavior of the underlying system that does not satisfy our property. If the
behavior is empty in a probabistic sense, ϕ is satisfied by A.

We define a kind of intersection of M and B¬ϕ and provide simple graph
algorithms that answer the question whether M and B¬ϕ have a common be-
havior, in the probabilistic sense mentioned above. Our procedure is quadratic
in the size of M (which grows exponentially with the number of parallel CPPs)
and double exponential in size of ϕ.

Often, distributed systems are modelled as a single nondeterministic one.
While our model-checking procedure makes use of this idea, our approach start-
ing with a distributed system has several advantages. Firstly, it is more direct
to model a distributed protocol as a PPA rather than as a single system. Sec-
ondly, it is more direct to formulate properties of the distributed system on a
“per process basis” as done in LTL⊗ rather than for a system capturing the
interleaved behavior. Thirdly, performance benefits can be expected in practice,
since our procedure works on-the-fly : The main question to answer is whether
the intersection of M and B¬ϕ has empty behavior. If a single behavior is found,
the model checking procedure can stop and provide this counter example. Since
the combined system can be checked in a top-down manner, often only a part
of this system has to be constructed. This implies that only a part of M and a
part of B¬ϕ has to be constructed. Since M and B¬ϕ are (double) exponentially
larger than the underlying structures A and ϕ, this has a considerable effect in
practice.

2

This paper is organized as follows. In the next section, we introduce the nec-
essary concepts and notation of words, graphs, and automata. Section 3 presents
our model for distributed probabilistic systems, probabilistic product automata.
LTL⊗ is defined in Section 4. The main contribution of the paper, the model
checking algorithm for PPA and LTL⊗ is explained in Section 5. We sum up our
approach and mention directions for future work in the last section.

2 Preliminaries

Given an alphabet Σ, Σ∗ denotes the set of finite and Σω the set of infinite
words over Σ, respectively. Furthermore, let Σ∞ = Σ∗∪Σω be the set of words.
For a word σ = a1a2 . . . ∈ Σω and a natural i ≥ 1, let σi denote aiai+1 . . .,
the ith suffix of σ, and let σ(i) denote ai, the ith letter of σ. Furthermore, take
inf (σ) as the infinity set of σ, i.e., the set of letters that occur infinitely often in
σ. For a word σ = a1 . . . an ∈ Σ∗ and a natural i ∈ {1, . . . , n+1}, we accordingly
define σi to be the word σ′ with a1 . . . ai−1σ

′ = σ (thus, σn+1 is the empty word
ε) and, if i ≤ n, σ(i) to be ai.

Given a word σ and an alphabet Σ, let σ � Σ denote the word we get by
erasing from σ the letters that are not contained in Σ.

Given a (directed) graph G with nodes V and edges E, we call a node v ∈ V

(a set D ⊆ V of nodes) reachable from v′ ∈ V if there is a path from v′ to v

(to a node contained in D). A strongly connected component (SCC) of G is a
maximal set D of nodes such that every two nodes contained in D are reachable
from each other. A SCC is called bottom if there is no edge leading out of it. We
define G to be strongly connected if V forms a SCC. Furthermore, G is called
nontrivial if it contains at least one edge. A set D ⊆ V is said to be nontrivial if
G[D], the subgraph of G induced by D, is nontrivial. The size of G, denoted by
|G|, is defined to be |V | + |E|.

Let Σ be an alphabet. An extended Streett automaton over Σ is a tuple
A = (S, S0, δ, F,G) where S is its nonempty finite set of states, S0 ⊆ S is the set
of initial states, δ : S×Σ → 2S is its transition function, F ⊆ S is its set of final
states, and G is a subset of (2S)2. A run of A on a word σ = a1a2 . . . ∈ Σω (on a
word σ = a1 . . . an ∈ Σ∗) is a sequence of states ρ = s0s1s2 . . . ∈ Sω (a sequence
of states ρ = s0s1 . . . sn ∈ S∗) such that s0 ∈ S0 and, for each natural i (for each
i ∈ {0, 1, . . . , |ρ| − 1}), si+1 ∈ δ(si, ai+1). We call ρ accepting if either σ is finite
and s|σ| ∈ F or σ is infinite and, for all pairs (U, V) ∈ G, inf (ρ) ∩U 6= ∅ implies
inf (ρ)∩V 6= ∅. The language of A, denoted by L(A), is the set {σ ∈ Σ∞ | there
is an accepting run of A on σ}. A is called deterministic if both |S0| = 1 and
|δ(s, a)| = 1 for all s ∈ S, a ∈ Σ. Furthermore, the size |A| of A is defined to
be the size of its (transition) graph. An extended Büchi automaton over Σ is
just an extended Streett automaton, but it employs an acceptance component
F ⊆ S instead of G. A run over an infinite word is henceforth accepting if it
visits at least one state from F infinitely often.

Given an extended Büchi automaton A over an alphabet Σ, there is a deter-
ministic extended Streett automaton B overΣ such that L(B) = L(A) [GTW02].

3

3 Probabilistic Product Automata

Before we present our model for distributed concurrent probabilistic programs,
we define the notion of its building blocks, the concurrent probabilistic programs.
Let us describe the systems we want to study intuitively first. Figure 1 shows
two concurrent probabilistic programs. The system starts in a nondeterministic
state, shown as a circle, and selects nondeterministically a randomizing state,
represented as a box. The transitions are labelled by actions which will later
be used to synchronize the parallel execution of several concurrent probabilistic
programs. In a randomizing state, the system chooses a nondeterministic suc-
cessor state according to the probabilities of the outgoing arcs. Let us be more
precise:

Definition 1 (Concurrent Probabilistic Program). A concurrent proba-
bilistic program (CPP) over an alphabet Σ is a tuple M = (Q,N,R,∆, P,Qin)
where

– N and R are disjoint nonempty finite sets of nondeterministic and random-
izing states, respectively, and Q = N ∪ R is the set of states,

– ∆ ⊆ N ×Σ ×R is the set of transitions,
– P : R ×N → [0, 1] is the transition probability distribution1 such that, for

each q ∈ R,
∑

q′∈N P (q, q′) = 1, and

– Qin ⊆ Q is the set of initial states.

A nondeterministic state q ∈ N is called enabled in M, if has outgoing
transitions, i.e. if there is a q′ ∈ R and an a ∈ Σ such that (q, a, q′) ∈ ∆. The
set of enabled states of M is denoted by N en

M .

Sequences of transitions of a CPP involve actions as well as random choices.
To be able to handle both kinds of transitions in the same manner, we use
the symbol p to denote a random move and set Σp := Σ ∪· {p}. To study the
probabilistic behavior of a CPP, we consider its possible random executions,
when fixing the nondeterministic choices by means of a scheduler. Given a partial
execution of the system, i.e., a sequence of states and actions (including p),
ending in an enabled nondeterministic state, a scheduler tells us which action
and successor state to choose: A scheduler of a CPP M = (Q,N,R,∆, P,Qin)
over Σ is a mapping u : (QΣp)

∗Nen

M → Σ × R such that, for each x ∈ (QΣp)
∗

and q ∈ Nen

M , u(xq) = (a, q′) implies (q, a, q′) ∈ ∆.

For the rest of the paper, we fix a natural K ≥ 1, the set Proc = {1, . . . ,K}
of processes, and a distributed alphabet Σ̃ = (Σ1, . . . , ΣK), a tuple of (not neces-
sarily disjoint) alphabets Σi. We use

⋃
i Σi as a shorthand for

⋃
i∈ProcΣi. For

a ∈
⋃

i Σi, let loc(a) := {i ∈ Proc | a ∈ Σi} be the set of processes that the
action a participates in.

We are now ready to define our model for distributed concurrent probabilistic
programs:

1 We usually write P (q, q′) instead of P ((q, q′)).

4

Definition 2 (Probabilistic Product Automaton). A probabilistic product
automaton (PPA) over Σ̃ is a structure A = ((Ai)i∈Proc, S

in) such that

– for each i ∈ Proc, Ai is a CPP (Qi, Ni, Ri, ∆i, Pi) (without set of initial
states) over Σi and

– Sin ⊆
∏

i∈Proc
Qi is the set of global initial states.

The two CPPs shown in Figure 1 form together a PPA over ({a, b}, {b, c})
when setting the initial state of the system to (p0, q0). Note that the probability
distributions Pi are reflected by transition arcs in case of nonzero transition
probabilities, respectively.

p0

p1

p2

a 0.8

0.2 b

q0

q1

q2

c 0.7

0.3 b

A1: A2:

Fig. 1. A probabilistic product automaton

A PPA A = ((Ai)i∈Proc , S
in), Ai = (Qi, Ni, Ri, ∆i, Pi), determines the CPP

MA = (QA, NA, RA, ∆A, PA, Q
in

A) over
⋃

iΣi where

– QA =
∏

i∈Proc
Qi

(in the following, for q = (q1, . . . , qK) ∈ QA and i ∈ Proc, let q[i] denote qi)
– NA =

∏
i∈Proc

Ni,
– RA = QA \NA,
– (q, a, q′) ∈ ∆A if

• (q[i], a, q′[i]) ∈ ∆i for all i ∈ loc(a) and
• q[i] = q′[i] for all i 6∈ loc(a),

– Qin

A = Sin , and

– P (q, q′) =

∏
i∈Proc, q[i]∈Ri

Pi(q[i], q
′[i]) if, for each i ∈ Proc,

q[i] ∈ Ni implies q[i] = q′[i]

0 otherwise

It is easy to verify that MA is indeed a CPP.
The PPA from Figure 1 induces the CPP given by Figure 2.
Let us now recall the probabilistic setting needed to reason about probabilis-

tic programs.
A nonempty set of possible outcomes of an experiment of chance is called

sample space. Let Ω be a sample space. A set B ⊆ 2Ω is called Borel field over Ω

5

p2, q2p2, q1 p1, q2

p2, q0 p1, q1 p0, q2

p1, q0 p0, q1p0, q0

a

0.8

c

0.7

0.2 0.3
0.56

0.14 0.24

0.06 bc 0.7

0.3

a0.8

0.2

Fig. 2. The CPP generated by a PPA

if it contains Ω, Ω \E for each E ∈ B, and the union of any countable sequence
of sets from B. A Borel field B is generated by an at most countable set E ,
denoted by B = 〈E〉, if B is the closure of E ’s elements under complement and
countable union.

A probability space is a triple PS = (Ω,B, µ) where Ω is a sample space, B

is a Borel field over Ω, and µ is a mapping B → [0, 1] such that µ(Ω) = 1 and
µ(

⋃∞
i=1Ei) =

∑∞
i=1 µ(Ei) for any sequence E1, E2, . . . of pairwise disjoint sets

from B. We call µ a probability measure. An event E ∈ B is said to occur almost
surely if µ(E) = 1.

A scheduler u of a CPP M = (Q,N,R,∆, P,Qin) over an alphabet Σ induces
a probability space PSM,u = (ΩM,u,BM,u, µM,u) as follows:

– the sample space consists all infinite and maximal finite sequences of states
and actions (including p) that respect the transition relation and can be
stepwise taken with non-zero probability. Furthermore, the nondetermin-
istic transitions must follow the scheduler. We only consider a finite se-
quence when it ends in a state with no outgoing transitions: Let ΩM,u =
{q1a1q2a2 . . . ∈ (QΣp)

ω | q1 ∈ Qin and, for all i ≥ 1, (qi ∈ R and qi+1 ∈ N

and ai = p and P (qi, qi+1) > 0) or (qi ∈ Nen

M and ai ∈ Σ and u(q1a1 . . . qi) =
(ai, qi+1))} ∪ {q1a1 . . . qn−1an−1qn ∈ (QΣp)

∗(N \ Nen

M) | q1 ∈ Qin and, for
all i ∈ {1, . . . , n− 1}, (qi ∈ R and qi+1 ∈ N and ai = p and P (qi, qi+1) > 0)
or (qi ∈ Nen

M and u(q1a1 . . . qi) = (ai, qi+1))} be the set of trajectories of M
wrt. u,

– BM,u = 〈{CM,u(x) | x ∈ (QΣp)
∗N}〉 where CM,u(x) = {x′ ∈ ΩM,u | x is a

prefix of x′} is the basic cylinder set of x wrt. M and u, and

– µM,u is uniquely given by µM,u(ΩM,u) = 1 and, for n ≥ 1,

µM,u(CM,u(q1a1 . . . qn−1an−1qn)) = P ′(q1, q2) · . . . · P
′(qn−1, qn)

6

where

P ′(qi, qi+1) =

{
P (qi, qi+1) if qi ∈ R

1 if qi ∈ N

4 Product LTL

In this section, we recall the definition of a product version of linear temporal
logic, denoted by LTL⊗, as defined in [MD97]. It is based on Pnueli’s LTL. How-
ever, since we deal with action-based systems, we provide an action-based version
of the logic as well. Furthermore, we extend the definition in a straightforward
manner to deal with finite and infinite sequences.

Let Σ be an alphabet. The set LTL(Σ) of Linear Temporal Logic (LTL)
formulas over Σ is given by the following grammar:

ϕ ::= tt | ¬ϕ | ϕ1 ∨ ϕ2 | 〈a〉ϕ (a ∈ Σ) | ϕUψ

An LTL(Σ) formula is inductively interpreted over σ ∈ Σ∞ as follows:

– σ |=Σ tt
– σ |=Σ ¬ϕ if σ 6|=Σ ϕ
– σ |=Σ ϕ ∨ ψ if σ |=Σ ϕ or σ |=Σ ψ
– σ |=Σ 〈a〉ϕ if σ 6= ε, σ(1) = a, and σ2 |=Σ ϕ
– σ |=Σ ϕUψ if there is an i ≥ 0 such that σi |=Σ ψ and, for each j ∈

{1, . . . , i− 1}, σj |=Σ ϕ

The language of a formula ϕ ∈ LTL(Σ), denoted by L(ϕ), is defined to be
the set {σ ∈ Σ∞ | σ |=Σ ϕ}. Note that one can construct an extended Büchi
automaton over Σ such that L(B) = L(ϕ) [VW86].

Product LTL formulas are Boolean combinations of LTL formulas, each for-
mulated for a single process. More specifically, the set LTL⊗(Σ̃) of Product
Linear Temporal Logic (LTL⊗) formulas over Σ̃ is given as:

ϕ ::= [ψi]i (ψi ∈ LTL(Σi)) | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2

An LTL⊗(Σ̃) formula is inductively interpreted over σ ∈ (
⋃

i Σi)
∞ as follows:

– σ |=⊗ [ψi]i if σ �Σi |=Σi
ψi

– σ |=⊗ ϕ ∨ ψ if σ |=⊗ ϕ or σ |=⊗ ψ
– σ |=⊗ ϕ ∧ ψ if σ |=⊗ ϕ and σ |=⊗ ψ

Thus, given a system, we restrict the run to the actions “interesting” for the
process i and take the usual semantics of the LTL formula.

Note that we did not introduce negation on the outer LTL⊗ level since it can
be “pushed inwards” to each single LTL(Σi) formula.

One might be tempted to understand an LTL⊗ formula as an LTL formula
over the alphabet Σ =

⋃
i Σi (abstracting away []i). But it is easy to see that

this yields a different semantics.
The language of a formula ϕ ∈ LTL⊗(Σ̃), denoted by L(ϕ), is defined to be

the set {σ ∈ (
⋃

iΣi)
∞ | σ |=⊗ ϕ}. According to the LTL case, we can construct

a PPA A over Σ̃ such that L(A) = L(ϕ) and, from A, build an extended Büchi
automaton B over

⋃
i Σi with L(B) = L(A) = L(ϕ) [MD97].

7

5 Probabilistic Model Checking

In this section, we clarify the notion when a PPA satisfies an LTL⊗ formula
in a probabilistic sense. Furthermore, we provide an algorithm answering this
question.

5.1 Satisfaction

For checking whether a PPA satisfies a formula, we first define the set of se-
quences following a given scheduler and satisfying a given formula or being ac-
cepted by an automaton (let Σ be an alphabet):

1. For a CPP M over Σ, a scheduler u of M, and a formula ϕ ∈ LTL(Σ), let
LM,u(ϕ) := {x ∈ ΩM,u | x�Σ |=Σ ϕ}.

2. For a PPA A over Σ̃, a scheduler u of MA, and a formula ϕ ∈ LTL⊗(Σ̃), let
LA,u(ϕ) := {x ∈ ΩMA,u | x�(

⋃
iΣi) |=⊗ ϕ}.

3. For a CPP M over Σ, a scheduler u of M, and an extended Streett (Büchi)
automaton B over Σ, let LM,u(B) := {x ∈ ΩM,u | x�Σ ∈ L(B)}.

We can show, using a simple induction, that these sets are measurable:

Proposition 1. Let Σ be an alphabet.

1. Given a CPP M over Σ and a formula ϕ ∈ LTL(Σ), we have LM,u(ϕ) ∈
BM,u for each scheduler u of M.

2. Given a PPA A over Σ̃ and a formula ϕ ∈ LTL⊗(Σ̃), it holds LA,u(ϕ) ∈
BMA,u for each scheduler u of MA.

3. Given a CPP M over Σ and an extended Streett (Büchi) automaton B over
Σ, we have LM,u(B) ∈ BM,u for each scheduler u of M.

We can now define the satisfaction relation for CPPs and LTL, PPA and
LTL⊗, as well as CPPs and Streett automata.

Definition 3. Let Σ be an alphabet.

1. A CPP M over Σ is said to satisfy a formula ϕ ∈ LTL(Σ) if, for all sched-
ulers u of M, µM,u(LM,u(ϕ)) = 1.

2. A PPA A over Σ̃ is said to satisfy a formula ϕ ∈ LTL⊗(Σ̃) if, for all
schedulers u of MA, µMA,u(LA,u(ϕ)) = 1.

3. Given a CPP M over Σ and an extended Streett (Büchi) automaton B over
Σ, M is said to satisfy B if, for all schedulers u of M, µM,u(LM,u(B)) = 1.

For example, the formula [♦〈a〉〈b〉tt]1 ∧ [♦〈c〉〈b〉tt]2 ∈ LTL⊗(({a, b}, {b, c}))
is satisfied by the PPA from Figure 1.

A logic that specifies properties of a product system should not differentiate
between different linearizations of its parallel execution, a well-known require-
ment in the domain of Mazurkiewicz traces [Leu02]. Let us check that this is the
case for our notion of satisfaction of PPA and LTL⊗.

8

For two words σ, σ′ ∈ (
⋃

iΣi)
∗, we say that they are equivalent (with respect

to Σ̃) and write σ ∼ σ′ if σ �Σi = σ′ �Σi for all i ∈ Proc. In other words, two
words are equivalent if they only differ in the ordering of independent actions.
We say that two actions are independent if they are not member of a single Σi

for one i ∈ Proc .
As already a simple product automaton, a PPA is robust with respect to

the order in which independent actions are executed. To illustrate this, let us
consider the PPA from Figure 1. Both components can independently execute
the independent actions a and c whereupon a random move follows, respectively.
Such independence is reflected in the global system (cf. Figure 2): Starting from
the initial state (p0, q0), constituting ac as the order in which a and c are executed
spans the same probability space wrt. all the possible nondeterministic successor
states (p0, q0), (p0, q2), (p2, q0), and (p2, q2) as constituting ca.

5.2 The Algorithm

Model checking PPA against LTL⊗ formulas is the problem whether a given
LTL⊗ formula is satisfied by a given PPA. As we will show in this subsection,
we can reduce this problem to the question whether the language defined by a
scheduler for a Streett automaton has positive measure with respect to a given
CPP. Therefore, we study this problem first:

Let Σ be an alphabet, M = (Q,N,R,∆, P,Qin) be a CPP over Σ, and B =
(S, S0, δ, F,G) be an extended Streett automaton over Σ. The product of M and
B, the CPP MM,B = (QM,B, NM,B, RM,B, ∆M,B, PM,B, Q

in

M,B, FM,B,GM,B)
(with acceptance condition) over Σ, is given as follows:

– QM,B = Q× S

– NM,B = N × S

– RM,B = R× S

– ((q, s), a, (q′, s′)) ∈ ∆M,B if (q, a, q′) ∈ ∆ and s′ ∈ δ(s, a)

– PM,B((q, s), (q′, s′)) =

{
P (q, q′) if s = s′

0 if s 6= s′

– Qin

M,B = Qin × S0

– FM,B = (N \Nen

M) × F

– GM,B = {((Q× U), (Q× V)) | (U, V) ∈ G}

We want to mark some SCCs of MM,B to be good in some sense and call a
set D of its states accepting if, for all pairs (U, V) ∈ GM,B, (q, s) ∈ D with s ∈ U

implies (q′, s′) ∈ D for some q′ and s′ ∈ V . Otherwise, D is called rejecting. We
say that a state (r, f) of a rejecting set D is rejecting if there is a pair (U, V) ∈ G
such that f ∈ U and D contains no state (q, s) with s ∈ V .

Theorem 1. For a CPP M = (Q,N,R,∆, P,Qin) over an alphabet Σ and a
deterministic extended Streett automaton B = (S, {s0}, δ, F,G) over Σ, there is
a scheduler u of M with µM,u(LM,u(B)) > 0 iff

9

– there is a path in (the graph of) MM,B from an initial state to a final state
from FM,B or

– there is a set D of states of MM,B satisfying the following:
(1) MM,B[D] is nontrivial and strongly connected,
(2) D is accepting and reachable from a state of Qin × {s0}, and
(3) for all transitions ((q, s), (q′, s′)) ∈ ∆M,B with (q, s) ∈ D and (q′, s′) 6∈

D, (q, s) is nondeterministic, i.e., it holds (q, s) ∈ NM,B (or, equiva-
lently, q ∈ N).

Proof. (⇐) Suppose there is a path β ∈ (QM,B)∗ through MM,B from an ini-
tial state to a state (q, s) of FM,B. It is easy to see that then a corresponding
scheduler (simply following the path) forces MM,B to visit (q, s) with nonzero
probability. Otherwise, fix a path β ∈ (QM,B)∗ through MM,B from an initial
state to a state of D. Let β′ be the projection of β onto the first component.
The scheduler u of M′ satisfying µM,u(LM,u(B)) > 0 follows β′ taking MM,B

from the initial state to D and, henceforth, forces the trajectory both to stay
within D and to almost surely visit each state of D infinitely often. This can be
accomplished by, for a given nondeterministic state (q, s), alternately choosing

the transitions (q, s)
a
→ (q′, s′) of MM,B with (q′, s′) ∈ D (recall that the his-

tory of a trajectory is at the scheduler’s disposal.) Clearly, µM,u(CM,u(β′)) is
nonzero. Given CM,u(β′), the conditional probability that M, wrt. u, follows a
trajectory that visits each state of D infinitely often is one. As such a trajectory
is contained in LM,u(B), we conclude µM,u(LM,u(B)) > 0.

(⇒) Note that a trajectory x of M wrt. u unambiguously defines a path
x̃ through MM,B starting from an initial state. This is due to the fact that
B is deterministic. Let D contain the subsets D of states of MM,B such that
MM,B[D] is strongly connected. Furthermore, for D ∈ D, let E(D) := {x ∈
ΩM,u | inf (x̃) = D}. Now suppose that µM,u(LM,u(B)) > 0 for a scheduler u of
M. If u leads MM,B from an initial state into a final state from FM,B, we are
done. Otherwise, as

LM,u(B) =
⋃

D∈D is accepting

E(D),

we can find an accepting set D ∈ D that satisfies µM,u(E(D)) > 0. (Otherwise,
the probability of the countable union LM,u(B) of events would be zero.) As D is
the infinity set of at least one infinite path through MM,B starting from an initial
state, it forms a nontrivial (strongly connected) subgraph of MM,B, satisfying

condition (1). Now suppose there is a transition (q, s)
p
→ (q′, s′) of MM,B with

(q, s) ∈ D, (q′, s′) 6∈ D, and q ∈ R. As, for every trajectory x ∈ E(D), x̃ visits
(q, s) infinitely often (and each time the probability to exit D is nonzero), it
will almost surely leave D infinitely often so that we have µM,u(E(D)) = 0
contradicting our assumption. It follows that D also satisfies condition (3) from
Proposition 1, which concludes our proof. �

Note that, in the above proof, we explicitly make use of the fact that a
trajectory of M determines exactly one corresponding run of MM,B starting
from an initial state (recall that B is deterministic).

10

Given a PPA A over Σ̃ and a formula ϕ ∈ LTL⊗(Σ̃).
Goal: Decide whether, for all schedulers u of MA, it holds
µMA,u(LA,u(ϕ)) = 1.
Solution:

1. From A, we construct the CPP MA, and from ϕ, we construct
the deterministic extended Streett automaton B¬ϕ with
L(B¬ϕ) = L(¬ϕ).

2. Compute (the graph of) MMA,B¬ϕ , remove those states that are
not reachable from an initial state of MMA,B¬ϕ , and let G denote
the resulting graph.

3. Repeat
(a) Determine the sets AC of nontrivial and accepting and RC of

nontrivial and rejecting SCCs of G, respectively.
(b) For each C ∈ RC, remove the transitions going out from

rejecting states.
(c) For each C ∈ AC, do the following:

i. Find the set H of states (q, s) ∈ C with randomizing q

from where there is a transition leaving C.
ii. If H is the empty set, then return “No”. Otherwise,

remove the states of H and corresponding transitions
from G.

until AC ∪ RC = ∅.
4. Test whether a scheduler can force MMA,B¬ϕ from an initial

state into a final state with probability greater than 0, i.e.,
whether there is a path from an initial state of MMA,B¬ϕ to a
state in FMA,B¬ϕ . If this is the case, return “No”. Otherwise,
return “Yes”.

Table 1. Model checking LTL⊗ specifications of PPA

Based on Theorem 1, we now provide an algorithm that solves the model-
checking problem for PPA, i.e., it decides for a given PPA A over Σ̃ and a formula
ϕ ∈ LTL⊗(Σ̃) whether, for all schedulers u of MA, µMA,u(LA,u(ϕ)) = 1 (namely
iff there is no scheduler u of MA such that µMA,u(LA,u(¬ϕ)) > 0). The algorithm
is shown in Table 1. In the first step, the given PPA is transformed into a CPP.
The given formula is negated and translated into a product automaton accepting
the models of the formula. This step is described in [MD97] and is omitted
here. It is straightforward to translate a product automaton into an extended
Büchi automaton, which again can be translated into a deterministic extended
Streett automaton [GTW02]. In the second step, we combine the obtained CPP
and Streett automaton into a single system. The characterization provided in
Theorem 1 is used in items 3 and 4 to answer the model checking question.
Obviously, the algorithm terminates. Furthermore, it returns the answer “No”
iff there is a scheduler u of MA such that µMA,u(LMA,u(B¬ϕ)) > 0.

11

To simplify our presentation, we described the algorithm in a stepwise man-
ner. It is clear that steps 1 and 2 can be done on demand by steps 3 and 4. Thus,
we can get an on-the-fly procedure.

Furthermore, the algorithm can easily be adapted to answer the model-
checking problem for LTL or Büchi-automata specifications. Only step 1 has
to be adjusted to produce a Streett automaton for a given LTL or Büchi au-
tomaton.

Let us discuss the complexity of our algorithm. Starting from a Büchi au-
tomaton B with n states, construct an equivalent deterministic extended Streett
automaton B′ with 2O(n log n) states and O(n) pairs in the acceptance compo-
nent. Say our CPP M has m states. The number of states of MM,B′ is not
greater than m · 2O(n log n). Thus, steps (a), (b), and (c) are repeated at most
m · 2O(n log n)-times, respectively. Determining the SCCs of G can be done in
time linear in the size of MM,B′ . Overall, the algorithm (modified for CPPs and
Büchi automata) runs in time O(m3 · 2O(n log n)), i.e., it is quadratic in |M| and
exponential in |B|.

Proposition 2. Given a CPP M and a Büchi automaton B, it can be decided
in time O(|M|2 · 2O(|B|)) whether µM,u(LM,u(B)) > 0 for some scheduler u of
M.

Translating an LTL⊗ formula into a product automaton is of exponential
complexity with respect to the length of the formula. The product automaton
gives rise to a Büchi automaton of same order.2 Thus, translating an LTL⊗

formula into a deterministic extended Streett automaton is of double exponential
complexity. Together with Proposition 2, we get

Theorem 2. Given a PPA A and an LTL⊗ formula ϕ, checking whether A
satisfies ϕ can be done in time polynomial in the size of A and double exponential
in the size of ϕ.

6 Conclusion and Future Work

In this paper, we presented probabilistic product automata (PPA) as a model
for distributed probabilistic programs. It is based on the well-known model of
product automata, but extended by random transitions. Thus, a probabilistic
product automaton is a product of probabilistic systems that run in parallel and
synchronize by common actions. Every probabilistic system is able to do labelled
nondeterministic and as well as randomized transitions.

For the product version of linear temporal logic LTL⊗, originally defined for
product automata, we extended the notion of satisfaction to the probabilistic
setting. Intuitively, we say that a PPA satisfies an LTL⊗ formula, if for every

2 Note that a Büchi automaton corresponding to a product automaton grows expo-
nentially in the number of components. Fixing the number of components, however,
it grows polynomially with respect to the size of the components.

12

scheduler (that fixes the nondeterministic choices of the system) almost all runs
satisfy the given formula.

The main contribution of the paper is a procedure that automatically answers
the question whether a given PPA satisfies a given LTL⊗ formula. This problem
is also known as the model-checking problem.

Our procedure is automata-based and can be implemented on-the-fly, which
often provides good run-time behavior in practice, despite high worst-case com-
plexity.

Additionally, we get a procedure for checking automata specifications and
LTL specifications of PPA.

It would be interesting to extend our work to the setting of fair executions
of the product system and, more specifically, while we check satisfaction for all
schedulers, to see whether the restriction to fair schedulers gives different results.

Furthermore, it would be interesting to see whether techniques as used in
[CY95] can improve our procedure to get single exponential complexity with
respect to the length of the formula.

References

[BGJ99] J. Beauquier, M. Gradinariu, and C. Johnen. Randomized self-stabilizing
and space optimal leader election under arbitrary scheduler on rings. Tech-
nical Report 99-1225, Université Paris Sud, 1999.

[CES83] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite state concurrent systems using temporal logic specifications: A practi-
cal approach. In Conference Record of the Tenth Annual ACM Symposium
on Principles of Programming Languages, pages 117–126, Austin, Texas,
January 24–26, 1983. ACM SIGACT-SIGPLAN.

[CW96] Edmund M. Clarke and Jeanette M. Wing. Formal methods: State of the art
and future directions. ACM Computing Surveys, 28(4):626–643, December
1996.

[CY95] Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilis-
tic verification. Journal of the ACM, 42(4):857–907, July 1995.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata,
Logics and Infinite Games, volume 2500 of Lecture Notes in Computer Sci-
ence. Springer, 2002.

[HS84] S. Hart and M. Sharir. Probabilistic temporal logics for finite and bounded
models. In ACM Symposium on Theory of Computing (STOC ’84), pages
1–13, Baltimore, USA, April 1984. ACM Press.

[Leu02] Martin Leucker. Logics for Mazurkiewicz traces. PhD thesis, Lehrstuhl für
Informatik II, RWTH Aachen, 2002.

[LR81] D. Lehman and M. O. Rabin. On the advantage of free choice: A fully
symmetric and fully distributed solution to the dining philosophers prob-
lem. In Proceedings of 10th ACM Symposium of Principles of Programming
Languages, pages 133–138, Williamsburg, 1981.

[LS82] Daniel Lehmann and Saharon Shelah. Reasoning with time and chance.
Information and Control, 53(3):165–198, June 1982.

13

[MD97] P. Madhusudan and Deepak D’Souza. On-the-fly verification of Product-
LTL. In Proocedings of the National Seminar on Theoretical Computer Sci-
ence, Madras, June 1997.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th
IEEE Symposium on the Foundations of Computer Science (FOCS-77),
pages 46–57, Providence, Rhode Island, October 31–November 2 1977. IEEE
Computer Society Press.

[PRRR01] P. Pardalos, S. Rajasekaran, J. Reif, and J. Rolim, editors. Handbook
on Randomized Computing. Kluwer Academic Publishers, Dordrecht, The
Netherlands, June 2001.

[QS82] J.P. Queille and J. Sifakis. Specification and verification of concurrent sys-
tems in CESAR. In Proceedings of the Fifth International Symposium in
Programming, volume 137 of Lecture Notes in Computer Science, pages 337–
351, New York, 1982. Springer.

[Thi95] P. S. Thiagarajan. PTL over product state spaces. Technical Report TCS-
95-4, School of Mathematics, SPIC Science Foundation, 1995.

[Var85] Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-
state programs. In 26th Annual Symposium on Foundations of Computer
Science, pages 327–338, Portland, Oregon, 21–23 October 1985. IEEE.

[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach to auto-
matic program verification. In Symposium on Logic in Computer Science
(LICS’86), pages 332–345, Washington, D.C., USA, June 1986. IEEE Com-
puter Society Press.

14

