
T U M
I N S T I T U T F Ü R I N F O R M A T I K

The good, the bad, and the ugly—
but how ugly is ugly?

Andreas Bauer, Martin Leucker, Christian Schallhart

ABCDEFGHIJKLMNO
TUM-I0803

Februar 08

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-02-I0803-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c©2008

Druck: Institut f ür Informatik der
Technischen Universit ät M ünchen

The good, the bad, and the ugly,

but how ugly is ugly?

Andreas Bauer1, Martin Leucker2, and Christian Schallhart2

1 National ICT Australia (NICTA)
2 Institut für Informatik, Technische Universität München

Abstract. When monitoring a system wrt. a property defined in a temporal
logic such as LTL, a major concern is to settle with an adequate interpretation
of observable system events; that is, models of temporal logic formulae are usu-
ally infinite words of events, whereas at runtime only finite but incrementally
expanding prefixes are available.
In this work, we review LTL-derived logics for finite traces from a runtime-
verification perspective. In doing so, we establish four maxims to be satisfied
by any LTL-derived logic aimed at runtime-verification. As no preexisting logic
readily satisfies all of them, we introduce a new four-valued logic RV-LTL in ac-
cordance to these maxims. The semantics of RV-LTL indicates whether a finite
word describes a system behaviour which either (1) satisfies the monitored prop-
erty, (2) violates the property, (3) will presumably violate the property, or (4) will
presumably conform to the property in the future, once the system has stabilised.
Notably, (1) and (2) correspond to the classical semantics of LTL, whereas (3)
and (4) are chosen whenever an observed system behaviour has not yet lead to a
violation or acceptance of the monitored property.
Moreover, we present a monitor construction for RV-LTL properties in terms of
Moore machines signalising the semantics of the so far obtained execution trace
wrt. the monitored property.

1 Introduction

Runtime verification of a given correctness property ϕ formulated in linear temporal
logic LTL [Pnu77] requires at its core the evaluation of the semantics of ϕ wrt. to a
finite observed system behaviour. But the evaluation of LTL properties on finite traces
proved to be an obstacle, as LTL is usually evaluated over infinite traces and since the
standard semantics of LTL on finite traces [Kam68] is unsatisfactory for the purpose at
hand.

While the syntax and semantics of LTL on infinite traces is well accepted in the
literature, there is no consensus on defining LTL over finite traces. Besides the definition
in [Kam68], a number of two-valued semantics for LTL on finite traces have been pro-
posed [GH01a,HR01b,HR02,HR01a,SB05,dR05], see Eisner et al. for a comprehensive
survey on this topic [EFH+03]. Alternatively, it has been proposed to restrict the syntax
of LTL for runtime verification, such that formulae which may contain certain future
obligations cannot be specified at all [GH01b].

In monitoring a property, there arise at least three different situations: In the first
case, the property is satisfied after a finite number of steps, independently of the future
continuation; second, the property is shown to evaluate to false for every possible contin-
uation, and third, the finite, already observed prefix still allows different continuations
leading to either satisfaction or falsification. A prefix leading to the first (second) case
is called a good (bad) prefix [KV01]. Thus, every two-valued logic must evaluate to true
or false prematurely since it cannot reflect the third and inconclusive case properly.

1

To overcome these obstacles, we propose in [ABLS05,BLS06] the three-valued logic
LTL3 over finite traces. There, a property evaluates to true (false), wrt. a finite word,
whenever the observed word is a good (bad) prefix. In all other cases, the word is
evaluated to an inconclusive verdict.

This scheme matches well with the notion of safety (e. g., Gp—always p) and co-safety
(e. g., Fp—finally p) properties, since these are either finitely refutable or satisfiable.
The union of safety and co-safety properties forms a strict subset of the monitorable
properties, as defined and shown in [BLS07]: A property is monitorable for some prefix,
as long as there is some continuation leading to a good or bad prefix, i.e., as long as it
is possible to arrive at a definite true or false verdict.

However, there remain many properties which are non-monitorable: Consider for
example the request/acknowledge property G(r → Fa) which states that every request
is finally acknowledged. No finite word is a good or bad prefix for G(r → Fa) and
therefore, this property is always evaluated to an inconclusive verdict. But since such
properties arise often in practise, such a solution is quite ugly—raising the question of
whether it is possible to refine the inconclusive verdict into a more telling verdict.

In this work, we examine how to determine a more detailed evaluation of such an
inconclusive verdict. To this end, we recall in Section 3 three preexisting logics which are
based upon LTL and which feature a semantics on finite words, namely FLTL [MP95],
LTL∓ [EFH+03], as well as LTL3 [BLS06]. Since we are comparing these logics, we
present them in a unified syntactical framework, outlined together with standard LTL
in Section 2.

Next we discuss in Section 4 the usefulness of these logics for the purpose of runtime
verification in terms of four maxims. The first two of these maxims, i.e., existential
next and complementation by negation, ensure an intuitive semantics of the logic at
hand by reestablishing standard LTL rules. The other two maxims, i.e., impartiality and
anticipation, guarantee that the semantics is neither premature nor overcautious in its
evaluations.

Since none of the preexisting logics satisfies all of the four maxims, we introduce in
Section 5 a four-valued semantics for LTL which refines the inconclusive verdict into a
presumably true and presumably false truth value. We call the resulting logic Runtime
Verification Linear Temporal Logic (RV-LTL). We show that RV-LTL’s semantics indeed
adheres to our four maxims and that it matches our intuition for request/response prop-
erties. RV-LTL seems to correspond to the semantics realised by the Temporal Rover
[Dru00] and has, to the best of our knowledge, not been formally captured elsewhere.

Finally, we define in Section 6 a translation to generate a monitor procedure in terms
of a Moore machine of minimal size for each given property ϕ. Such a monitor implements
the RV-LTL semantics and computes a new verdict with each upcoming state on the
incrementally expanding system trace.

2 Preliminaries

2.1 Truth domains

We consider in this paper the traditional two-valued semantics with truth values true,
denoted with ⊤, and false, denoted with ⊥, next to truth values that give more informa-
tion to which degree a formula is considered satisfied or not. Since truth values should be
comparable and combinable in terms of Boolean operations expressed by the connectives
of the underlying logic, we interpret these truth values as elements of some lattice.

A lattice is a partially ordered set (L,⊑) where for each x, y ∈ L, there exists (i) a
unique greatest lower bound (glb), which is called the meet of x and y, and is denoted

2

with x ⊓ y, and (ii) a unique least upper bound (lub), which is called the join of x
and y, and is denoted with x ⊔ y. A lattice is called finite iff L is finite. Every finite
lattice has a well-defined unique least element, called bottom, denoted with ⊥, and
analogously a greatest element, called top, denoted with ⊤. A lattice is distributive, iff
x⊓ (y ⊔ z) = (x⊓ y)⊔ (x⊓ z), and, dually, x⊔ (y ⊓ z) = (x⊔ y)⊓ (x⊔ z). In a de Morgan
lattice, every element x has a unique dual element x, such that x = x and x ⊑ y implies
y ⊑ x. A distributive lattice is called Boolean iff x ⊔ x = ⊤ and x ⊓ x = ⊥. As the
common denominator of the semantics for the subsequently defined logics is a finite de
Morgan lattice, we take this to our understanding of a truth domain:

Definition 1 (Truth domain). We call L a truth domain, if it is a finite de Morgan
lattice.

The two valued truth domain B2 = {⊥,⊤} is a Boolean lattice with ⊥ ⊑ ⊤ and ⊓
and ⊔ defined in the expected manner.

2.2 LTL on infinite traces

As a starting point for all subsequently defined logics, we first recall linear temporal logic
(LTL) interpreted over infinite traces, as introduced by Pnueli [Pnu77] in the setting of
specification and verification.

In case of LTL over infinite traces, one is used to have a syntax ranging over a small
set of temporal and Boolean operators and to add additional operators by means of
abbreviations. For example, the conjunction is often expressed indirectly using negation
and disjunction—at least in the two valued truth domain. However, as several of the
equivalences known from LTL over infinite traces do not hold in all the logics over finite
traces considered in the paper, we start with a comprehensive—and with respect to
standard LTL—redundant set of Boolean and temporal operators. We only deviate from
this approach for finally (F) and globally (G) operators, as well as for implication (→).

For the remainder of this paper, let AP be a finite and non-empty set of atomic
propositions and Σ = 2AP a finite alphabet . We write ai for any single element of Σ, i.e.,
ai is a possibly empty subset of propositions taken from AP.

Finite traces (which we call interchangeably words) overΣ are elements ofΣ∗, usually
denoted with u, u′, u1, u2, . . . The empty trace is denoted with ǫ. Infinite traces are
elements of Σω, usually denoted with w,w′, w1, w2, . . . For some infinite trace w =
a0a1 . . . , we denote with wi the suffix aiai+1 . . . In case of a finite trace u = a0a1 . . . an−1,
ui denotes the suffix aiai+1 . . . an−1 for 0 ≤ i < n and the empty string ǫ for n ≤ i.

The set of LTL formulae is defined using true, the atomic propositions p ∈ AP,
disjunction, next X , and until U , as positive operators, together with negation ¬. For
comparison with logics over finite traces, we moreover add dual operators, namely false,
¬p, weak next X̄ , and release R, respectively:

Definition 2 (Syntax of LTL formulae). Let p be an atomic proposition from a
finite set of atomic propositions AP. The set of LTL formulae, denoted with LTL, is
inductively defined by the following grammar:

ϕ ::= true | p | ϕ ∨ ϕ | ϕ U ϕ | Xϕ
ϕ ::= false | ¬p | ϕ ∧ ϕ | ϕ R ϕ | X̄ϕ
ϕ ::= ¬ϕ

Moreover, we define by means of abbreviation the finally F and globally G operators as

Fϕ := true U ϕ and Gϕ := ¬F¬ϕ

3

Boolean constants

[w |= true]ω = ⊤
[w |= false]ω = ⊥

Boolean combinations

[w |= ¬ϕ]ω = [w |= ϕ]ω
[w |= ϕ ∨ ψ]ω = [w |= ϕ]ω ⊔ [w |= ψ]ω
[w |= ϕ ∧ ψ]ω = [w |= ϕ]ω ⊓ [w |= ψ]ω

atomic propositions

[w |= p]ω =

(

⊤ if p ∈ a0

⊥ if p /∈ a0

[w |= ¬p]ω =

(

⊤ if p /∈ a0

⊥ if p ∈ a0

(weak) next

[w |= Xϕ]ω = [w1 |= ϕ]ω
[w |= X̄ϕ]ω = [w1 |= ϕ]ω

until/release

[w |= ϕ U ψ]ω =

8

>

<

>

:

⊤ there is a k ≥ 0 : [wk |= ψ]ω = ⊤ and

for all l with 0 ≤ l < k : [wl |= ϕ] = ⊤

⊥ else

[w |= ϕ R ψ]ω =

8

>

>

>

<

>

>

>

:

⊤ for all k ≥ 0 : [wk |= ψ]ω = ⊤ or

there is a k ≥ 0 : [wk |= ϕ]ω = ⊤ and

for all l with 0 ≤ l ≤ k : [wl |= ψ] = ⊤

⊥ else

Fig. 1. Semantics of LTL formulae over an infinite traces w = a0a1 . . . ∈ Σω

as well as implication ϕ→ ψ as a shorthand for ¬ϕ ∨ ψ.
LTL formulae over infinite traces are interpreted as usual over the two valued truth

domain B2.

Definition 3 (Semantics of LTL). The semantics of LTL formulae over infinite
traces w = a0a1 . . . ∈ Σω is given by the function [|=]ω : Σω × LTL → B2, which
is defined inductively as shown in in Figure 1.

Inspecting the semantics, we observe that there is no difference of X and X̄ in
LTL over infinite traces. However, X̄ acts differently when finite words are considered.
Moreover, the semantics for a negated atomic proposition ¬p is actually given twice:
once explicitly and once inductively via negation. Fortunately, both definitions coincide,
ensuring that the semantics of LTL is well-defined.

We call w ∈ Σω a model of ϕ iff [w |= ϕ] = ⊤. For every LTL formula ϕ, its set
of models, denoted with L(ϕ), is a regular set of infinite traces which is accepted by a
corresponding Büchi automaton [VW86,Var96].

In the next section, we introduce several versions of linear temporal logics for finite
traces and compare these logics by means of certain properties, such as the induced
equivalences on formulae. To this end, we consider linear temporal logics L with a syntax
as in Definition 2, together with a semantic function [|=]

L
: Σω/∗ × LTL → BL that

yields an element of the truth domain BL, given an infinite or finite trace and an LTL
formula. Then, for two formulae ϕ, ψ ∈ LTL, we say that ϕ is equivalent to ψ, denoted

4

Tertium-non-datur laws

ϕ ∨ ¬ϕ ≡ true
ϕ ∧ ¬ϕ ≡ false

distributive laws

ϕ ∨ (ψ ∧ η) ≡ (ϕ ∨ ψ) ∧ (ϕ ∨ η)
ϕ ∧ (ψ ∨ η) ≡ (ϕ ∧ ψ) ∨ (ϕ ∧ η)

de Morgan laws

¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ
¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ

¬¬ϕ ≡ ϕ

de Morgan-X law

¬Xϕ ≡ω X̄¬ϕ

de Morgan-U/R laws

¬(ϕ U ψ) ≡ ¬ϕ R ¬ψ
¬(ϕ R ψ) ≡ ¬ϕ U ¬ψ

unwinding laws

ϕ U ψ ≡ ψ ∨ (ϕ ∧ X (ϕ U ψ))
ϕ R ψ ≡ ψ ∧ (ϕ ∨ X̄ (ϕ R ψ))

Fig. 2. Fundamental Equivalence Laws

with ϕ ≡L ψ, iff for all w ∈ Σω/∗, we have

[w |= ϕ]
L

= [w |= ψ]
L

In particular, for LTL, we denote this equivalence by ≡ω. We say that logic L satisfies
the Boolean laws if for all traces w and all formulae ϕ

[w |= ϕ ∨ ¬ϕ]
L

= ⊤ and [w |= ϕ ∧ ¬ϕ]
L

= ⊥

Remark 1. LTL satisfies the Boolean laws.

We say that the logic L satisfies a certain equivalence law, if its equivalences given in Fig-
ure 2 hold. We denote the equivalence laws shown there as the fundamental equivalence
laws.

Remark 2. LTL satisfies the fundamental equivalences laws (shown in Figure 2).

While all logics studied in the next sections satisfy these equivalences, LTL is also sat-
isfying the following variants of the de Morgan-X and respectively unwinding laws:

¬Xϕ ≡ω X¬ϕ
ϕ R ψ ≡ω ψ ∧ (ϕ ∨ X (ϕ R ψ))

Moreover, LTL satisfies

true ≡ω Xtrue

These three equivalences do not hold in each of the logics discussed subsequently—
resulting in a partly counterintuitive behaviour of the corresponding logic. To compare
equivalences in different logics, we introduce the LTL compliance which states that every
equivalence of LTL must hold in the respective logic as well:

Definition 4 (LTL compliance). We call a linear temporal logic L LTL compliant
iff ϕ ≡ω ψ implies ϕ ≡L ψ.

5

For its importance in various applications, we introduce the negation normal form
which requires negations only to occur directly in front of atomic propositions.

Definition 5 (Negation Normal Form). A formula is said to be in negation normal
form, if ¬ only occurs directly in front of atomic propositions, i.e., if the formula is
obtained using only the first two rules of Definition 2.

Whenever the de Morgan, de Morgan-X, and de Morgan-U/R laws hold, a formula can
be translated into negation normal form, and therefore, LTL has a negation normal form:

Remark 3. Every LTL formula can be transformed into an equivalent formula in negation
normal form.

3 LTL on Finite Traces—Existing Concepts

Let us now turn our attention to linear temporal logics over finite traces. We start
by recalling a finite version of LTL on finite traces as described by Manna and Pnueli
[MP95], here called. We then present Eisner’s et al.’s weak and strong versions of LTL on
finite traces, denoted with LTL− and LTL+ respectively, before examining LTL3 [BLS06].
All variants, as we show, provide complementary properties for runtime verification but
neither of them satisfies all our maxims put forward in Section 4.

3.1 FLTL

When interpreting LTL formulae over finite traces, the question arises, how to under-
stand Xϕ when a word consists of a single letter, since then, no next position exists
on which one is supposed to consider ϕ. The classical way to deal with this situation,
as apparent for example in Kamp’s work [Kam68] is to understand X as a strong next
operator, which is false if no further position exists. Manna and Pnueli suggest in [MP95]
to enrich the standard framework by adding a dual operator, the weak next X̄ , which
allows to smoothly translate formulae into negation normal form. In other words, the
strong X operator is used to express with Xϕ that a next state must exist and that this
next state has to satisfy property ϕ. In contrast, the weak X̄ operator in X̄ϕ says that
if there is a next state, then this next state has to satisfy the property ϕ. We call the
resulting logic FLTL defined over the set of LTL formulae (Definition 2) FLTL.

The semantics function [u |= ϕ]F of FLTL is constructed like the one for standard
LTL but with two modifications: If a strong next-state operator in some subformula
Xϕ is referring to a state beyond the known finite prefix u, then this subformula Xϕ
is evaluated to ⊥, regardless of ϕ. Likewise, a subformula X̄ϕ, based on the weak next-
state operator, always evaluates to ⊤ if it refers to a state beyond u. This approach
is extended to the definition of the until and release operators. For example, to satisfy
ϕUψ with a finite word u, there must exist a position satisfying ψ within u. This concept
is explicated in the following definition:

Definition 6 (Semantics of FLTL [MP95]). Let u = a0 . . . an−1 ∈ Σ∗ denote a finite
trace of length n, with u 6= ǫ. The truth value of an FLTL formula ϕ wrt. u, denoted with
[u |= ϕ]F , is an element of B2 and is inductively defined as follows: Boolean constants,
Boolean combinations, and atomic propositions are defined as for LTL (see Figure 1,
taking u instead of w). Until/release and (weak) next are defined as shown in Figure 3.

Let us first record that the semantics of FLTL is not given for the empty word. As
we will see in the discussion of LTL∓, coming up with a semantics wrt. the empty word

6

(weak) next

[u |= Xϕ]F =

(

[u1 |= ϕ]F if u1 6= ǫ

⊥ otherwise

[u |= X̄ϕ]F =

(

[u1 |= ϕ]F if u1 6= ǫ

⊤ otherwise

until/release

[u |= ϕ U ψ]F =

8

>

<

>

:

⊤ there is a k ∈ {0, . . . n− 1} : [uk |= ψ]F = ⊤ and

for all l with 0 ≤ l < k : [ul |= ϕ] = ⊤

⊥ else

[u |= ϕ R ψ]F =

8

>

>

>

<

>

>

>

:

⊤ for all k ∈ {0, . . . n− 1} : [uk |= ψ]F = ⊤ or

there is a ∈ {0, . . . n− 1} : [uk |= ϕ]F = ⊤ and

for all l with 0 ≤ l ≤ k : [ul |= ψ] = ⊤

⊥ else

Fig. 3. Semantics of FLTL formulae over a trace u = a0 . . . an−1 ∈ Σ∗

leads to certain particularities that are hence avoided in FLTL. Since Xtrue ≡ω true,
yet the semantics of FLTL implies that a single letter does satisfy true but does not
satisfy Xtrue, we also find that FLTL is not LTL compliant.

Remark 4. The semantics of FLTL formulae is not defined for the empty word.

Remark 5. FLTL is not LTL compliant.

It is easy to see that FLTL adheres to the Boolean laws and satisfies all fundamental
equivalence laws: For example, [u |= ϕ ∨ ¬ϕ]F = [u |= ϕ]F ⊔ [u |= ϕ]F = ⊤. Likewise
[u |= ¬Xϕ]F = [u |= X̄¬ϕ]F follows from LTL whenever |u| > 1 and from inspecting the
semantics in Figure 3 when |u| = 1.

Remark 6. FLTL satisfies the Boolean laws.

Remark 7. FLTL satisfies all fundamental equivalences laws (see Figure 2).

In contrast to LTL, FLTL does not satisfy the following variants of the de Morgan-X
and respectively unwinding laws, due to the different meaning of X and X̄ used in FLTL:

¬Xϕ 6≡F X¬ϕ
ϕ R ψ 6≡F ψ ∧ (ϕ ∨X (ϕ R ψ))

But since de Morgan laws are satisfied by FLTL, a negation normal form still exists for
all properties.

Remark 8. Every FLTL formula can be transformed into an equivalent formula in nega-
tion normal form.

7

3.2 LTL+ and LTL−—Eisner et al.

In [EFH+03], Eisner et al. propose two entwined versions of LTL on finite traces, reflect-
ing a weak and a strong view. We call the resulting logics LTL− and LTL+, respectively.
If we speak of both logics at the same time, we also write LTL∓.

Recall that FLTL is not defined for the empty trace. Provided that the semantics
for formulae wrt. the empty word is well-defined, one no longer needs to consider the
semantics of next and until operators differently than in LTL, as done in FLTL: Having
a semantics for the empty word, the evaluation of Xϕ for a word of length 1 can use
the semantic value of ϕ wrt. the empty word. Likewise, for ϕ U ψ and a word u, one
no longer has to require that i < |u| when considering whether ui satisfies ψ—in case
i ≥ |u|, one considers ψ wrt. the empty word.

LTL∓ provides a semantics for the empty word, by actually taking two approaches:
In the weak view (LTL−), every formula is satisfied by the empty word. Dually, in the
strong view (LTL+), the empty word does not satisfy any formula. This approach leads
to certain particularities: For example, in the weak view, the empty word satisfies false,
while in the strong view, it does not satisfy true. Moreover, the strong and weak view
have be entwined to establish a sound meaning in the context of negation: [ǫ |= ¬ϕ]+
should be ⊥ (taking the strong view) while at the same time [ǫ |= ϕ]+ = ⊥ should hold,
implying that ⊥ = ⊤. LTL∓ overcomes this difficulty, by toggling between the weak and
strong view whenever negation occurs, i.e., [u |= ¬ϕ]+ = [u |= ϕ]− = ⊤ (also for u = ǫ).

Let us now introduce LTL∓ formally. As syntax, we consider again formulae of LTL.
Though [EFH+03] does not provide true and false and no dual operators, these can be
added with the appropriate semantics easily.

Definition 7 (Semantics of LTL∓ [EFH+03]). Let u = a0 . . . an−1 ∈ Σ∗ denote a
finite trace of length n. The truth value of an LTL∓ formula ϕ wrt. u, denoted with
[u |= ϕ]∓, is an element of B2 and is inductively defined as follows: Boolean constants,
Boolean combinations, and atomic propositions are defined as shown in Figure 4, while
the semantics for the remaining formulae is as in LTL (see Figure 1, taking u instead
of w).

To compare LTL∓ with FLTL, and later with LTL3, we check which of the discussed
properties are satisfied by LTL3 as well:

Remark 9. The semantics of LTL∓ formulae is defined for the empty trace.

We can easily check that LTL∓ indeed matches our intuition:

[u |= ϕ]− = ⊤, if u = ǫ
[u |= ϕ]+ = ⊥, if u = ǫ

We write ϕ ≡∓ ψ to denote that ϕ is both weak as well as strong equivalent to ψ,
i.e., that ϕ ≡+ ψ and ϕ ≡− ψ hold. In the weak view, false holds for the empty trace,
and, in the strong view, true does not hold for the empty trace. Interestingly, however,
we have

ϕ ∨ ¬ϕ ≡∓ true
ϕ ∧ ¬ϕ ≡∓ false

In consequence, for ϕ being p, we see that the Boolean laws are not satisfied by LTL∓,
as the semantics of true is not ⊤ for the empty word:

Remark 10. LTL∓ does not satisfy the Boolean laws.

Moreover, this implies that true is not equivalent in general to Xtrue: While a single
letter does satisfy true in the strong view, it does not satisfy Xtrue. This implies:

8

Boolean constants

[u |= true]− = ⊤

[u |= false]− =

(

⊤ if u = ǫ

⊥ else

[u |= true]+ =

(

⊤ if u 6= ǫ

⊥ else

[u |= false]+ = ⊥

Boolean combinations

[u |= ¬ϕ]− = [u |= ϕ]+
[u |= ¬ϕ]+ = [u |= ϕ]−
[u |= ϕ ∨ ψ]∓ = [u |= ϕ]∓ ⊔ [u |= ψ]∓
[u |= ϕ ∧ ψ]∓ = [u |= ϕ]∓ ⊓ [u |= ψ]∓

atomic propositions

[u |= p]− =

(

⊤ if u = ǫ or p ∈ a0

⊥ else

[u |= ¬p]− =

(

⊤ if u = ǫ or p /∈ a0

⊥ else

[u |= p]+ =

(

⊤ if u 6= ǫ and p ∈ a0

⊥ else

[u |= ¬p]+ =

(

⊤ if u 6= ǫ and p /∈ a0

⊥ else

Fig. 4. Semantics of LTL∓ formulae over a trace u = a0 . . . an−1 ∈ Σ∗

Remark 11. LTL∓ is not LTL compliant.

It is easy to see that LTL∓ satisfies all fundamental equivalence laws:

Remark 12. LTL∓ satisfies all fundamental equivalences laws (see Figure 2).

As de Morgan laws are satisfied by LTL∓, the existence of the negation normal form
follows:

Remark 13. Every LTL∓ formula can be transformed into an equivalent formula in nega-
tion normal form.

3.3 LTL3

In[ABLS05,BLS06], we proposed LTL3 as an LTL logic with a semantics for finite traces,
which follows the idea that a finite trace is a prefix of a so-far unknown infinite trace.
More specifically, LTL3 uses the standard syntax of LTL as defined in Definition (2) but
employs a semantics function [u |= ϕ]3 which evaluates each formula ϕ and each finite
trace u of length n to one of the truth values in B3 = {⊤,⊥, ?}. B3 = {⊤,⊥, ?} is defined
as a de Morgan lattice with ⊥ ⊏ ? ⊏ ⊤, and with ⊥ and ⊤ being complementary to
each other while ? being complementary to itself.

The idea of the semantics for LTL3 is as follows: If every infinite trace with prefix u
evaluates to the same truth value ⊤ or ⊥, then [u |= ϕ]3 also evaluates to this truth value.
Otherwise [u |= ϕ]3 evaluates to ?, i. e., we have [u |= ϕ]3 =? if different continuations of
u yield different truth values. This leads to the following definition:

Definition 8 (Semantics of LTL3). Let u = a0 . . . an−1 ∈ Σ∗ denote a finite trace
of length n. The truth value of a LTL3 formula ϕ wrt. u, denoted with [u |= ϕ]3, is an

9

element of B3 and defined as follows:

[u |= ϕ]3 =

⊤ if ∀w ∈ Σω : [uw |= ϕ]ω = ⊤

⊥ if ∀w ∈ Σω : [uw |= ϕ]ω = ⊥

? otherwise.

As opposed to the logics introduced so far, LTL3’s semantics is not defined in an
inductive manner, i. e. the semantics of a formula is not given by the meaning of its
subformulae—for good reasons: Consider a proposition p with respect to the empty
word ǫ. In LTL3, we have [ǫ |= p]3 =? = [ǫ |= ¬p]3. The join of these values is thus ?.
But in contrast, [ǫ |= p ∨ ¬p]3 = ⊤ holds, since p ∨ ¬p is a tautology3. In other words,
we have:

Remark 14. The semantics of LTL3 cannot be defined inductively on the structure of
the formula.

Let us first recall that LTL3 is a also defined for the empty word:

Remark 15. The semantics of LTL3 formulae is defined for the empty word.

As LTL3’s semantics is derived from LTL’s semantics, we get that it is LTL compliant,
as opposed to FLTL and LTL∓.

Remark 16. LTL3 is LTL compliant.

As moreover true is mapped to ⊤, we get

Remark 17. LTL3 satisfies the Boolean laws.

Finally, LTL3 satisfies all fundamental equivalence laws and henceforth, a negation nor-
mal form exists for all properties.

Remark 18. LTL3 satisfies all fundamental equivalence laws (see Figure 2).

Remark 19. Every LTL3 formula can be transformed into an equivalent formula in nega-
tion normal form.

4 Maxims for runtime verification

Since our original motivation is to validate common LTL-specified properties by means
of runtime verification, we want to compare the applicability of logics in this context. To
do so, we need to determine a frame of reference for those logics to be considered. Hence,
we assume that each logic in concern is able to express syntactically all LTL-properties,
and moreover, we assume that the semantics evaluation function [u |= ϕ] of the logic in
concern maps each finite and non-empty word u = a0a1 . . . an−1 ∈ Σ∗ together with a
formula ϕ to a value from a truth domain (Definition 1), such that the following rules
hold for each non-empty finite word u 4

[u |= true] = ⊤
[u |= p] = ⊤ ⇐⇒ p ∈ a0

[u |= ϕ1 ∨ ϕ2] = [u |= ϕ1] ⊔ [u |= ϕ2]
[u |= Xϕ] = ⊤ ⇐= |u| > 1 and [u1 |= ϕ] = ⊤
[u |= ϕ U ψ] = [u |= ψ] ⊔ ([u |= ϕ] ⊓ [u |= X U ψ])

3 Note, we call a formula ϕ a tautology, if [w |= ϕ] = ⊤ for every w.
4 The restriction to non-empty finite words is necessary since the semantics of FLTL is not

defined on empty words and because [ǫ |= true]
+
6= ⊤ in LTL+.

10

This minimal set of requirements on [u |= ϕ] is established as the set of rules com-
monly shared by the logics discussed in the previous section, i.e., FLTL [MP95],
LTL∓ [EFH+03], as well as LTL3 [BLS06]. The above rules deviate from standard LTL
in the following two respects:

(a) If |u| > 1 and [u1 |= ϕ] = ⊤ holds, then we require [u |= Xϕ] = ⊤ to hold—however,
in contrast to LTL, we do not require the converse.

(b) Negation is not guaranteed to yield a complementary truth value, i.e., we do not
require [u |= ϕ] = [u |= ¬ϕ].

Starting from these core rules, we introduce four maxims which we consider essential
for each semantics definition for LTL on finite traces aimed at runtime verification. The
first two of them, Maxims (1) and (2), mimic and reintroduce the LTL evaluation rules
which we dropped in (a) and (b)—as far as possible since we consider a semantics for
LTL (on finite traces) without these rules counterintuitive:

(1) Existential next requires the inclusion of a strong next operator, and
(2) Complementation by negation requires that a negated formula evaluates to the com-

plemented and different truth value.

Since it is impossible to turn condition in (a) into an “if and only if”, we formulate
Maxim (1) to require the next operator to behave as in LTL in as many cases as possible:
Since we consider finite traces, we have to handle the semantics of X when it refers
to a state beyond the currently available finite trace. To reconstitute (b), Maxim (2)
reintroduces and generalises the corresponding rule of the standard semantics on infinite
traces to multi-valued Boolean domains by applying the complement operator of the
underlying Boolean domain.

The remaining two Maxims (3) and (4) relate the semantics on finite traces with the
standard LTL semantics by considering all possible continuations of the evaluated finite
traces:

(3) Impartiality requires that a finite trace is not evaluated to ⊤ (⊥) if there still exists
an infinite continuation leading to another verdict, and

(4) Anticipation requires that once every infinite continuation of a finite trace leads to
the same verdict, then the finite trace evaluates to this very same verdict.

By means of these four maxims, we evaluate the logics discussed in the preceding
sections, i.e., FLTL [MP95] the logics LTL∓ [EFH+03], and LTL3 [BLS06]. As all these
logics fail to satisfy all four maxims simultaneously, we introduce in Section 5 a four-
valued logic resolving the requirements imposed by the four maxims.

4.1 Approximating LTL-Semantics

We start with the first two maxims which reestablish the semantics of the next-state
operator and the meaning of negation. Afterwards, we discuss the combination of these
two maxims, since their combination raises some further issues.

Existential Next. As discussed in [MP95], the difficulty for an LTL semantics on
finite traces lies in the next-state operator X . Given a string u = a0 consisting of a
single symbol, the question is which semantics to choose for Xϕ as the formula refers to
an unavailable state:

[u |= Xϕ] =? for |u| = 1 (1)

11

We follow the approach of [MP95] in understanding the next-state operator as an op-
erator firstly assuring that there exists a next state which secondly satisfies ϕ. We only
allow one exception to this rule: If ϕ is a tautology, then [u |= Xϕ] is also allowed to
evaluate to ⊤. Without this exception, any logic satisfying our demands, would have
to satisfy [u |= X true] 6= ⊤ for every word u consisting of a single symbol, which we
consider counter intuitive in the setting of runtime verification. This consideration leads
to the first of our four maxims:

Maxim 1 (Existential Next) A logic adheres to the existential next maxim, if for
every property ϕ and every finite word u ∈ Σ∗ with [u |= Xϕ] = ⊤, one of the following
two conditions holds: Either ϕ is an LTL-tautology or there exists a next state, i.e.,
|u| > 1, such that this next state satisfies ϕ, i.e., we require

[u |= Xϕ] = ⊤ =⇒ |u| > 1 and [u1 |= ϕ] = ⊤ or
|u| = 1 and ∀w ∈ Σω[w |= ϕ]ω = ⊤

Now, considering FLTL, we find that its semantics [u |= Xϕ]F is even more restric-
tive: [u |= Xϕ]F = ⊤ implies that a next state u1 exists and this next state u1 satisfies
ϕ, i.e.,

[u |= Xϕ]F = ⊤ =⇒ |u| > 1 and [u1 |= ϕ]F = ⊤

holds. Next, the strong view of [EFH+03] defines a strong next operator—in precisely
the same way as FLTL. On the other hand, in the weak variant LTL− of [EFH+03], the
next operator behaves dually, i.e., [u |= Xϕ]− = ⊤ iff either u = ǫ or [u1 |= ϕ]− = ⊤,
i.e.,

[u |= Xϕ]− = ⊤ =⇒ |u| = 0 or [u1 |= ϕ]− = ⊤

Hence, LTL+ does satisfy Maxim (1) but LTL− does not satisfy Maxim (1). Finally, the
semantics of LTL3 is matching Maxim (1) since whenever a formula Xϕ evaluates to ⊤
in LTL3, it must evaluate to ⊤ in LTL for every possible infinite continuation. Thus, we
have [u |= Xϕ]3 = ⊤ iff for all w ∈ Σ∞ [uw |= Xϕ]ω = ⊤, which is equivalent to, for all
w ∈ Σ∞ [u1w |= Xϕ]ω = ⊤. If |u| = 1, this means that all traces satisfy ϕ, while for
|u| > 1, we get [u |= Xϕ]3 = [u1 |= ϕ]3. Thus,

[u |= Xϕ] = ⊤ =⇒ |u| > 1 and [u1 |= ϕ] = ⊤ or
|u| = 1 and ∀w ∈ Σω[w |= ϕ]ω = ⊤

Complementation by Negation. Our second maxim states that a negated formula
indeed yields the complemented truth value of the original formula which must differ
from the original one. The requirement that the complemented truth value is different
from the original one ensures that the logic does not blur the semantical evaluation into
a single and non-discriminative truth value.

Maxim 2 (Complementation by Negation) A logic adheres to the complementa-
tion by negation maxim, if a property ϕ and its complement ¬ϕ yield complementary
and different truth values for all finite words u ∈ Σ∗, i.e., for each property ϕ and each
finite word u,

[u |= ϕ] = [u |= ¬ϕ] and [u |= ϕ] 6= [u |= ¬ϕ]

must hold.

Recalling the logics from Section 3, we find that FLTL adheres in its definition to
the requirements of Maxim (2), since we have

[u |= ¬ϕ]F = [u |= ϕ]F

12

and since FLTL is defined over a two-valued truth domain where complementary values
always differ. In case of LTL+, Maxim (2) does not hold, as can be seen in the following
example with |u| = 1,

[u |= ¬X p]+ = [u |= X p]− = ⊤ = ⊥ = [u |= X p]+

which holds dually for LTL−, as well. LTL3 is also not satisfying Maxim (2) since it
collapses the truth values for the unforeseen future into its inconclusive truth value. It
holds that

[u |= ϕ]
3

= ? = [u |= ¬ϕ]
3

for all ϕ and u with [u |= ϕ]
3

=?

since whenever [u |= ϕ]
3

=? holds, there must exist two infinite continuations w 6= w′ ∈
Σω such that [uw |= ϕ]ω = ⊤ and [uw′ |= ϕ]ω = ⊥ hold, leading to [uw |= ¬ϕ]ω = ⊥
and [uw′ |= ϕ]ω = ⊤ such that [u |= ¬ϕ]

3
=? holds as well.

But still, for [u |= ϕ] = ⊤ with all infinite continuations w ∈ Σω yielding [uw |= ϕ]ω =
⊤, we find [uw |= ¬ϕ]ω = ⊥ and hence [u |= ¬ϕ] = ⊥, such that we have

[u |= ϕ]3 = [u |= ¬ϕ]3 (2)

Combining Maxims (1) and (2). Remember that we introduced Maxims (1) and (2)
in order to reestablish the original LTL semantics on infinite words as much as possible.
To enable an engineer to deal with LTL-specified properties intuitively, some well-known
and important equivalences should hold in logics aimed at runtime verification, too.
Not surprisingly, the combination of Maxim (1), demanding an existential next, and
Maxim (2), requiring negation to correspond to complementation, leads to difficulties in

¬Xϕ 6≡ X¬ϕ

To see this, assume that ϕ is a formula which is neither unsatisfiable nor a tautology
with respect to LTL. Then by Maxim (1), we have [u |= Xϕ] 6= ⊤ for every |u| = 1 and
hence by Maxim (2) [u |= ¬Xϕ] 6= ⊥ must hold. At the same time, Maxim (1) requires
[u |= X¬ϕ] 6= ⊤ and hence we are left with the following options:

(a) To use a two-valued semantics and accept ¬Xϕ 6≡ X¬ϕ to hold, breaking with the
intuitive understanding of LTL-properties.

(b) To stick to the equivalence ¬Xϕ ≡ X¬ϕ, but to use a multi-valued semantics with
[u |= ¬Xϕ] = [u |= X¬ϕ] 6∈ {⊤,⊥} (for |u| = 1).

(c) To distinguish between a strong (denoted with X) and a weak version (denoted with
X̄) of the next-state operator with

[u |= X̄ϕ] = ⊤ ⇐⇒ |u| = 1 or [u1 |= ϕ] = ⊤

and leading to
¬Xϕ ≡ X̄¬ϕ

We call the strong next-state operator X also existential next-state operator, as it
requires a next-state to exist, and the weak next-state operator X̄ universal next-state
operator. The introduction of a strong and a weak version of the next-state operator
additionally allows to cope with the intuitive meaning of LTL’s finally and globally
operators:

Intuitively, the finally operator F is of existential nature [HR02], as some property
should eventually be shown, while the globally operator G is of universal character as

13

something should hold in every position of a word. Accordingly, Fϕ should evaluate to
false if ϕ does not hold in the current state and nothing is known about the future, while
Gϕ should become true, if ϕ holds in the current state and nothing is known about the
successor states.

Note that in LTL, we have Fϕ ≡ ϕ∨XFϕ as well as Gϕ ≡ ϕ∧XGϕ. Consequently,
XFϕ should be false, if no subsequent state exists, while XGϕ should be true in the
same situation. This contradiction can be resolved with the addition of the universal
next-state operator X̄ . Following option (c), we can rewrite the above LTL equivalences
as Fϕ ≡ ϕ ∨XFϕ and as Gϕ ≡ ϕ ∧ X̄Gϕ.

4.2 Dealing with the Future

The so far developed view is meaningful in a setting which is only concerned with
completed or terminated paths. In runtime verification, however, we are given a finite
prefix of a continuously expanding trace. Therefore, it is clear that there will be a next
state—this continuation is just not known yet. To reflect this situation, we postulate
two further maxims for logics suitable for runtime verification.

Impartiality. The first maxim says that the semantics never evaluates to true or false
prematurely. In the impartiality maxim, we require a semantics never evaluates a prop-
erty ϕ and a finite word u ∈ Σ∗ to ⊤ (⊥), as long as there exists a continuation w ∈ Σω

such that [uw |= ϕ]ω 6= ⊤ ([uw |= ϕ]ω 6= ⊥) holds.

Maxim 3 (Impartiality) A logic adheres the impartiality maxim, if for each property
ϕ and each finite word u ∈ Σ∗,

[u |= ϕ] = ⊤ =⇒ ∀w ∈ Σω [uw |= ϕ]ω = ⊤
[u |= ϕ] = ⊥ =⇒ ∀w ∈ Σω [uw |= ϕ]ω = ⊥

is satisfied.

Note that no two-valued logic can possibly satisfy Maxim (3) since each such logic
must evaluate every property ϕ with uncertain outcome to either ⊤ or ⊥. For example,
in every logic satisfying Maxim (3) we must have [u |= X p] /∈ {⊤,⊥} for |u| = 1.

Turning again to the logics from Section 3, we find that FLTL and LTL∓ are all
two-valued logics, and henceforth, they do not satisfy Maxim (3). The definition of the
semantics of LTL3 on the other hand directly matches the requirements of Maxim (3),
as it has been defined with this maxim in mind.

Anticipation. When considering Xtrue on a string u = a0 of length 1, there is no rea-
son to evaluate Xtrue to any truth value other than ⊤ since every possible continuation
will satisfy Xtrue. We therefore postulate that the semantics should be as anticipatory
as possible. We say that a logic satisfies the anticipation maxim, if its semantics al-
ways evaluates a property ϕ and a finite word u ∈ Σ∗ to ⊤ (⊥), once there exists no
continuation w ∈ Σω such that [uw |= ϕ]ω 6= ⊤ ([uw |= ϕ]ω 6= ⊥) holds.

Maxim 4 (Anticipation) A logic adheres the anticipation maxim, if for each property
ϕ and each finite word u ∈ Σ∗, the following holds:

[u |= ϕ] = ⊤ ⇐= ∀w ∈ Σω [uw |= ϕ]ω = ⊤
[u |= ϕ] = ⊥ ⇐= ∀w ∈ Σω [uw |= ϕ]ω = ⊥

14

Maxim (4) is not satisfied by FLTL, since [u |= Xtrue]F = ⊥ holds for |u| = 1.
Similarly LTL∓ does not satisfy Maxim (4), as demonstrated by the two dual examples
[u |= Xtrue]+ = ⊥ and [u |= X false]− = ⊤, again for |u| = 1. Finally, since Maxim (4)
(as well as Maxim (3)) was instrumental in the definition of LTL3, its semantics directly
reflects and hence satisfies Maxim (4).

5 RV-LTL

In the previous section, we established four maxims to be satisfied by an LTL-derived
logic which is aimed at runtime verification applications. Moreover, we analysed the
logics introduced in Section 3 in terms of these maxims and found that none of these
logics adheres to all four maxims.

To overcome this situation, we develop in this section a new logic, called Runtime
Verification-LTL (RV-LTL). As in case of all other logics discussed in this paper, we
use the set of LTL formulae (Definition 2) to define the syntax of RV-LTL. Since all
logics in this paper are formulated atop this very same set of formulae, it is possible to
combine the semantical concepts of these logics as well. Observing that LTL3 satisfies
Maxims (1), (3), and (4), whereas FLTL satisfies Maxim (2), we design the semantics of
RV-LTL as a combination of the semantics of LTL3 and FLTL.

LTL3 matches Maxim (1) since it only evaluates a formula and a finite prefix to ⊤ if
this formula will be satisfied by any possible continuation of the prefix, and that LTL3

satisfies Maxim (3) and (4) by construction—since LTL3 has been defined with these
two maxims in mind.

On the other hand, LTL3 does not satisfy Maxim (2), since it blurs every uncertain
situation into a single inconclusive verdict: A finite word u ∈ Σ∗ and a formula ϕ
is evaluated to [u |= ϕ]

3
=? whenever [uw |= ϕ]ω 6= [uw′ |= ϕ]ω holds for two infinite

continuations w 6= w′ ∈ Σω. Since this case is arising frequently in practically important
properties, the choice made in the definition of LTL3 is unsatisfactory. Consider for
example the standard request/acknowledge property

ϕ ≡ G(r → Fa)

which states that all requests must be acknowledged eventually: For every finite prefix
u, we have that [urω |= ϕ]ω = ⊥ and [uaω |= ϕ]ω = ⊤ where rω and aω are infinite
continuations repeating r and a ad infinitum. Therefore [u |= ϕ]

3
= [u |= ¬ϕ]

3
=? holds

for all finite words u.
Looking for a more expressive and discriminative semantics, we followed the intuition

that for the property ϕ ≡ G(r → Fa), we would like to have a semantics such that

– a finite string ending in a (i.e., all requests have been acknowledged) yields a truth
value which indicates that ϕ is probably satisfied, whereas

– a finite string ending in r (i.e., there is a request not acknowledged yet) should
evaluate to a truth value which expresses that ϕ is likely to remain unsatisfied.

The reason for these choices are as follows: Given a finite string ending in a, all past
requests have been served and therefore it remains to check that all future occurrences
will be served as well. Since no request is pending and the universal globally operator
is dominating, we would expect the trace to be interpreted as a “presumably true” one.
In case of a string ending in r, we know that there must exist a future occurrence of
a in order to satisfy ϕ. Since we have a request pending and the existential eventually
operator is dominating, we would expect the trace to be interpreted as a “presumably
false” one.

15

This intuition is readily expressed by the semantics of FLTL which is based upon a
strong and a weak next operator. As will be discussed subsequently in this section, the
existential nature of the strong next operator X translates into an existential semantics
for the eventually operator F while the universal character of the weak next operator X̄
leads to a universal semantics for the globally operator G.

The problem with FLTL is that it does not distinguish between prefixes which lead
to presumably true or false continuations and prefixes which lead to certainly true of
false continuations, i.e., FLTL does not satisfy Maxim (3) and (4). Henceforth, we define
RV-LTL as a logic which combines the semantics of LTL3 and FLTL.

5.1 Semantics of RV-LTL

To express the truth values true, false, presumably true, and presumably false, we use a
four valued semantics for RV-LTL with B4 = {⊥,⊥p,⊤p,⊤} as the set of truth values.
⊓ and ⊔ are then defined as expected. To obtain a de Morgan lattice and thus a truth
domain, ⊥ and ⊤ are defined to be complementary to each other as well as ⊥p and ⊤p,
where complementation is denoted with .̄ Note that B4 is not a Boolean lattice, as, for
example, ⊥p ⊔⊥p = ⊥p ⊔ ⊤p 6= ⊤. However, the distributive laws hold:

x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z)

x ⊔ (y ⊓ z) = (x ⊔ y) ⊓ (x ⊔ z)

According to the above discussion, we take the truth value of LTL3, whenever it is
conclusive, i.e., whenever it is either ⊤ or ⊥. If LTL3 provides an inconclusive verdict
(?) only, we resort to FLTL to settle a more discriminative choice. In this case, if FLTL
leads to a ⊤ (⊥) verdict, RV-LTL evaluates to ⊤p (⊥p).

Note that, since the semantics of FLTL is undefined on the empty word (see Re-
mark 4), the semantics of RV-LTL remains undefined on the empty word as well (except
for properties which are LTL-equivalent to either true or false).

Definition 9 (Semantics of RV-LTL). Let u = a0 . . . an−1 ∈ Σ∗ denote a finite and
non-empty trace of length n = |u|. The truth value of an RV-LTL formula ϕ wrt. u,
denoted with [u |= ϕ]RV , is an element of B4 and is defined as follows:

[u |= ϕ]RV =

⊤ if [u |= ϕ]
3

= ⊤

⊥ if [u |= ϕ]
3

= ⊥

⊤p if [u |= ϕ]3 =? and [u |= ϕ]F = ⊤

⊥p if [u |= ϕ]
3

=? and [u |= ϕ]F = ⊥

The semantics of RV-LTL as given in Definition 9 directly provides an efficient way to
construct a monitor procedure for RV-LTL: By running a monitor for LTL3 and one for
FLTL simultaneously and by combining their respective results following Definition 9,
we obtain a monitor procedure for RV-LTL. We exploit this fact in the Section 6, where
we discuss the monitor construction for RV-LTL in detail.

Before discussing the viability of Definition 9, let us remark explicitly that RV-LTL’s
semantics is a refinement of LTL3’s semantics. Consequently, the semantics of LTL3 is
expressible by mapping a ⊤p/⊥p value to ?:

Remark 20. Let u ∈ Σ∗ be a finite and non-empty trace and let ϕ be an LTL3 formula.
Then the following holds

[u |= ϕ]3 =

⊤ if [u |= ϕ]RV = ⊤

⊥ if [u |= ϕ]RV = ⊥

? if [u |= ϕ]RV ∈ {⊤p,⊥p}

16

Let us now consider the properties of RV-LTL in the same manner as done for the
other temporal logics. First, since the semantics of FLTL is undefined on the empty
word, the semantics of RV-LTL is undefined on the empty word as well:

Remark 21. The semantics of RV-LTL formulae is undefined for the empty word.

Next, note that it is impossible is to define the semantics of RV-LTL inductively, since
this is already impossible for LTL3 (see Remark 14):

Remark 22. The semantics of RV-LTL cannot be defined inductively on the structure
of the formula.

Likewise, we get from LTL3 that RV-LTL satisfies the Boolean laws.

Remark 23. RV-LTL satisfies the Boolean laws.

Combining the results from LTL3 and FLTL, we get

Remark 24. RV-LTL satisfies all fundamental equivalences laws (see Figure 2). Thus,
every RV-LTL formula can be transformed into an equivalent formula in negation normal
form.

Using that ¬Xϕ 6≡F X¬ϕ in FLTL, we learn that RV-LTL, as opposed to LTL3, is
not LTL compliant.

Remark 25. RV-LTL is not LTL compliant.

5.2 RV-LTL acts on our Maxims

RV-LTL’s semantics satisfies all four maxims: RV-LTL adheres Maxims (1), (3), and (4)
since LTL3 does so: In case of Maxim (1), we need to consider the case [u |= Xϕ]RV = ⊤,
which can only happen if [u |= ϕ]

3
= ⊤ which implies in turn that every continuation

w ∈ Σω leads to a positive verdict, i.e., [uw |= ϕ]ω = ⊤—matching the requirements of
Maxim (1).

To see that Maxims (3) and (4) are satisfied by RV-LTL, observe that

[u |= ϕ]RV ∈ {⊤,⊥} iff [u |= ϕ]RV = [u |= ϕ]
3

iff [u |= ϕ]
3
∈ {⊤,⊥}

In case of Maxim (3), we can ignore all cases with [u |= ϕ]RV 6= {⊤,⊥}, such that
the semantics of RV-LTL and LTL3 coincides in all remaining cases—and since LTL3

satisfies Maxim (3), RV-LTL does as well. Finally, in case of Maxim (4), we can ignore
all cases with [u |= ϕ]

3
/∈ {⊤,⊥}, and again, in this case the semantics of RV-LTL and

LTL3 coincides—and hence RV-LTL adheres to Maxim (4) since LTL3 does so.

It remains to show that RV-LTL satisfies Maxim (2). First note that complementary
truth values in B4 are always different, i.e., t 6= t for all t ∈ B4. Thus, we only need to
prove that [u |= ϕ]RV = [u |= ¬ϕ]RV holds for all finite words u and all properties ϕ.
Assume that [u |= ϕ]RV = ⊤ holds. Then we have [u |= ϕ]

3
= ⊤ and therefore by Equa-

tion (2) [u |= ¬ϕ]3 = ⊥ and hence by Definition 9 [u |= ¬ϕ]RV = ⊥. Dually, we find that
[u |= ϕ]RV = ⊥ implies that [u |= ¬ϕ]RV = ⊤. Now assume that [u |= ϕ]RV ∈ {⊤p,⊥p}
holds. In this case we have [u |= ϕ]

3
=? and therefore by Equation (2) [u |= ¬ϕ]

3
=? as

well. But then the RV-LTL semantics of u with respect to both, ϕ and ¬ϕ are determined
by the FLTL semantics, i.e., [u |= ϕ]RV = [u |= ϕ]F = [u |= ¬ϕ]F = [u |= ¬ϕ]RV .

17

5.3 RV-LTL and Request/Acknowledge Properties

Let us reconsider the motivating example for RV-LTL:

G(r → Fa)

Recall that the finally operator F and globally operator G are defined as abbreviations
Fϕ := true U ϕ and Gϕ := ¬F¬ϕ. Using the equivalences from Figure 2 we get that

Fϕ ≡RV true U ϕ (definition)
≡RV ϕ ∨ (true ∧X (true U ϕ)) (unwinding)
≡RV ϕ ∨ XFϕ (tertium-non-datur)

and
Gϕ ≡RV ¬F¬ϕ (definition)

≡RV ¬(true U ¬ϕ) (definition)
≡RV ¬(¬ϕ ∨ (true ∧ X (true U ¬ϕ)) (unwinding)
≡RV ¬¬ϕ ∧ ¬(true ∧ X (true U ¬ϕ)) (de Morgan)
≡RV ϕ ∧ ¬(X (true U ¬ϕ)) (de Morgan)
≡RV ϕ ∧ X̄¬(true U ¬ϕ)) (de Morgan-X)
≡RV ϕ ∧ X̄Gϕ (definition)

Thus, we obtain the two equivalences Fϕ ≡RV ϕ ∨ XFϕ and Gϕ ≡RV ϕ ∧ X̄Gϕ.
Fϕ ≡RV ϕ ∨ XFϕ reflects that ϕ must be satisfied in the future: If ϕ is not satisfied
immediately, then there must be a satisfying future state. If no such future state exists,
the formula evaluates to ⊥p—unless the formula evaluates to one of {⊤,⊥}, in which case
the future is not important. Similarly, Gϕ ≡ ϕ∧ X̄ Gϕ shows that ϕ must be satisfied in
the current state and in all observable future states. If we do not know the future, the
formula evaluates to ⊤p—again, unless the formula evaluates to one of {⊤,⊥}, in which
case the future is not important.

Now, the request/acknowledge property is evaluated as follows:

G(r → Fa) ≡RV (r → Fa) ∧ X̄ (G(r → Fa))
≡RV (¬r ∨ a ∨ XFa) ∧ X̄ (G(r → Fa))

This formula evaluates to ⊥p under RV-LTL if the trace contains an r but ends before
a occurs and evaluates to ⊤p in all other cases. Thus, its semantics is exactly demanded
in the beginning of this section.

6 Monitors for RV-LTL

A monitor is a procedure that consumes the input letter by letter and outputs the
semantics of the word read so far with respect to the formula the monitor was built for.

In our setting, we use a Moore machine, also called finite-state machine (FSM),
which is a finite state automaton enriched with output. Formally, an FSM is a tuple
A = (Σ,Q,Q0, δ,∆, λ), where

– Σ is a finite alphabet ,
– Q is a finite non-empty set of states ,
– q0 ∈ Q is the initial state,
– δ : Q×Σ → Q is the transition function,
– ∆ is the output alphabet , and
– λ : Q→ ∆ is the output function.

18

The output of a Moore machine, defined by the function λ, is thus determined by
the current state q ∈ Q alone, rather than by input symbols.

We extend the transition function δ : Q×Σ → Q, as usual, to δ′ : Q×Σ∗ → Q with
δ′(q, ǫ) = q where q ∈ Q and δ′(q, ua) = δ(δ′(q, u), a). To simplify notation, we use δ for
both δ and δ′. Similarly, we extend the output function λ : Q→ ∆ to λ′ : Q×Σ∗ → ∆
with λ′(q, u) = λ(δ(q, u)), for q ∈ Q and u ∈ Σ∗. Thus, function λ′ yields for a given
word u the output in the state reached by u rather than the sequence of outputs. To
simplify notation, we use λ for both λ and λ′. We also say that A computes the function
λ : Σ∗ → ∆.

Following the characterisation of RV-LTL in terms of LTL3 and FLTL developed
in the previous section, we base the monitor construction for RV-LTL on the monitor
constructions for these two incorporated logics.

Monitors for LTL3. In [BLS06], we presented a monitor construction for a given formula
ϕ to obtain an FSM Aϕ

3 which computes [u |= ϕ]
3

for an incrementally expanded u.

Theorem 1 ([BLS06]). Let ϕ be an LTL formula. Then there is an effective procedure
constructing an FSM Aϕ

3 = (Σ,Q, q0, δ,B3, λ) such that for all u ∈ Σ∗ the following
holds:

λ(δ(q0, u)) = [u |= ϕ]3

Moreover, the size of Aϕ
3 is at most double exponential in the size of ϕ.

Monitors for FLTL. Following [MP95] and given a formula ϕ, it is straightforward
to come up with a non-deterministic automaton which accepts precisely the words u
with [u |= ϕ]F = ⊤. Such an automaton can be made deterministic with the power-set
method [Hop71]. Finally, the deterministic automaton yields an FSM by outputting ⊤ in
each accepting state and ⊥ in all remaining states. Since FLTL is only defined for non-
empty words (see Remark 4), we have to handle the empty word as special case—and
hence we arrive at the following theorem:

Theorem 2 ([MP95]). Let ϕ be an LTL formula. Then there is an effective procedure
constructing an FSM Aϕ

F = (Σ,Q, q0, δ,B, λ) such that for all u ∈ Σ∗, the following
holds:

λ(δ(q0, u)) =

{

[u |= ϕ]F for u 6= ǫ
⊤ for u = ǫ

Moreover, the size of Aϕ
F is at most double exponential in the size of ϕ.

Monitors for RV-LTL. We are now ready to define the monitor Aϕ
RV computing the

RV-LTL semantics by incorporating the respective monitor procedures Aϕ
3 and Aϕ

F for
LTL3 and FLTL.

Definition 10 (Monitor Aϕ
RV for an RV-LTL-formula ϕ). Let ϕ be an LTL for-

mula with Aϕ
3 = (Σ,Q, q0, δ,B3, λ) as the corresponding LTL3 monitor (as stated in

Theorem 1) and Aϕ
F = (Σ,Q′, q′0, δ

′,B, λ′) as the corresponding FLTL monitor (as stated
in Theorem 2).

Then we define the monitor Aϕ
RV as the FSM (Σ, Q̄, q̄0, δ̄,B4, λ̄), where

– Q̄ = Q×Q′,
– q̄0 = (q0, q

′
0),

– δ̄((q, q′), a) = (δ(q, a), δ′(q′, a)), and

19

– λ̄ : Q̄→ B4 is defined by

λ̄((q, q′)) =

⊤ if λ(q) = ⊤
⊥ if λ(q) = ⊥
⊤p if λ(q) =? and λ′(q′) = ⊤
⊥p if λ(q) =? and λ′(q′) = ⊥

Thus, we simultaneously compute the LTL3 and the FLTL semantics by taking the
Cartesian product of their respective monitors. The evaluation computed by the new
combined monitor forwards ⊤ and ⊥ from the LTL3 monitor but replaces every incon-
clusive verdict (?) of the LTL3 monitor by either presumably true (⊤p) or presumably
false (⊥p). It chooses ⊤p if the FLTL monitor outputs ⊤ as its verdicts and ⊥p otherwise.

Since the FLTL must handle the empty word as special case, the resulting RV-LTL
monitor treats the empty word ǫ as special case as well: If the monitored property ϕ is
an LTL-tautology, then we have [ǫ |= ϕ]3 = ⊤. In this case the truth value of the LTL3

monitor is forwarded without modification, and λ̄(δ̄(q̄0, ǫ)) = ⊤ holds. Likewise, we have
λ̄(δ̄(q̄0, ǫ)) = ⊥ whenever [ǫ |= ϕ]

3
= ⊥. On the other hand, if [ǫ |= ϕ]

3
=? holds, then

the verdict of the FLTL monitor is used, i.e., a ⊤ verdict of the FLTL monitor results in
λ̄(δ̄(q̄0, ǫ)) = ⊤p and analogously, ⊥ results in ⊤p. In summary, we obtain the following
theorem:

Theorem 3 (Correctness of Aϕ
RV). Let ϕ be an LTL formula and let Aϕ

RV =
(Σ, Q̄, q̄0, δ̄,B4, λ̄) be the monitor according to Definition 10. Then for all u ∈ Σ∗, the
following holds:

λ̄(δ̄(q̄0, u)) =

[u |= ϕ]RV for u 6= ǫ
⊤p for u = ǫ and ϕ 6≡ω true, false
⊤ for u = ǫ and ϕ ≡ω true
⊥ for u = ǫ and ϕ ≡ω false

Moreover, the size of Aϕ
RV is at most double exponential in the size of ϕ.

The size of the final FSM is in O(22
n

) but can be minimised with standard algorithms
for FSMs [Hop71] to derive an optimal deterministic monitor with a minimal number of

states. In the worst case, however, a lower bound of O(22
Ω(n)

) applies to the number of
states, as follows from [KV01]. Thus, better complexity results in other approaches, like
the one in [HR02], are due to one of the following reasons:

– First, one can use a fragment of LTL which is strictly less expressive than full LTL,
i.e., one gives up the possibility to specify certain properties and thereby rules out
some complicated cases exercising the worst case complexity. Note that our construc-
tion yields an optimal monitor regardless whatever fragment of LTL is considered.

– Second, it is possible to use a variant of LTL which is still capable to express all
LTL-expressible properties but which requires strictly longer formulae for some of
these properties.

– Third, one could abandon a single monolithic and deterministic automaton as mon-
itor procedure, and use instead an alternative concept such as synchronising au-
tomata, hereby trading the size of an automaton with an increased computational
overhead at runtime [RB06].

7 Conclusion

In this paper we study several variants of linear temporal logics in the context of runtime
verification. In runtime verification, we are faced with an incrementally expanding prefix

20

LTL FLTL LTL∓ LTL3 RV-LTL

Domain Σ∞ u 6= ∅, u ∈ Σ∗(4) Σ∗(9) Σ∗(15) u 6= ∅, u ∈ Σ∗(21)

Exitential Next
(Maxim 1)

yes yes (+)/no (-) yes yes

Complementation by
Negation (Maxim 2)

yes no no yes

Impartiality
(Maxim 3)

no no yes yes

Anticipation
(Maxim 4)

no no yes yes

Boolean laws yes (1) yes (6) no (10) yes (17) yes (23)

Equivalences (Fig. 2) yes (2) yes (7) yes (12) yes (18) yes (24)

LTL compliant no (5) no (11) yes (16) no (25)

Negation normalform yes (3) yes (8) yes (13) yes (19) yes (24)

Inductive definition yes yes yes no (14) no (22)

Fig. 5. Main properties of the logics studied in this paper. The numbers in brackets refer to
the remark stating the result.

of an unknown infinite trace representing an execution of the underlying system, for
which we have to decide whether a property expressed in a linear temporal logic holds.
Thus, when considering logics for runtime verification, we look for linear temporal logics
interpreted over finite traces, with a semantics reflecting that of LTL over infinite traces
in a suitable manner.

To this end, we have recalled three existing linear temporal logics interpreted over
finite traces, namely, FLTL [MP95], LTL∓ [EFH+03], and LTL3 [BLS06] and elaborated
on their properties, for example, which equivalences of formulae hold in the respective
logic and how they compare to those in LTL. Moreover, we established four maxims that
we consider essential for a logic aimed for runtime verification:

(1) Existential next requires the inclusion of a strong next operator.
(2) Complementation by negation requires that a negated formula evaluates to the com-

plemented and different truth value.
(3) Impartiality requires that a finite trace is not evaluated to ⊤ (⊥) if there still exists

an infinite continuation leading to another verdict.
(4) Anticipation requires that once every infinite continuation of a finite trace leads to

the same verdict, then the finite trace evaluates to this very same verdict.

We analysed FLTL, LTL∓, and LTL3 with respect to these maxims and learnt that none
of them satisfies all four of them.

This lead us to the introduction of RV-LTL, whose semantics combines ideas present
in LTL3 as well as FLTL. The semantics of RV-LTL indicates whether a finite word
describes a system behaviour which either (1) satisfies the monitored property, (2) vi-
olates the property, (3) will presumably violate the property, or (4) will presumably
conform to the property in the future, once the system has stabilised. Using these truth
values, we resolved the ugly situation of facing an invariably inconclusive verdict in ver-
ifying a system at runtime: As long as the final verdict depends on future events, an
RV-LTL-based monitor displays a presumably true valuation—if no unanswered request
is pending—and presumably false otherwise.

We analysed some basic properties of RV-LTL and especially verified that RV-LTL
acts on our four maxims. To turn RV-LTL in a practically applicable device for runtime
verification, we developed a monitor generation procedure that relies on corresponding

21

monitor constructions for FLTL and LTL3. A summarising comparison of the logics
studied in this paper is shown in Figure 5.

References

[ABLS05] Oliver Arafat, Andreas Bauer, Martin Leucker, and Christian Schallhart. Run-
time verification revisited. Technical Report TUM-I0518, Technische Universität
München, 2005.

[BLS06] Andreas Bauer, Martin Leucker, and Christian Schallhart. Monitoring of real-time
properties. In FSTTCS, volume 4337 of LNCS, December 2006.

[BLS07] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime Verification for
LTL and TLTL. Transactions on Software Engineering (TSE), 2007. submitted,
preliminary version available as Tech. Rep. TUM-I0724.

[dR05] Marcelo d’Amorim and Grigore Rosu. Efficient monitoring of omega-languages. In
Kousha Etessami and Sriram K. Rajamani, editors, CAV, volume 3576 of LNCS,
pages 364–378, 2005.

[Dru00] Doron Drusinsky. The temporal rover and the ATG rover. In Klaus Havelund, John
Penix, and Willem Visser, editors, SPIN, volume 1885 of LNCS, pages 323–330, 2000.

[EFH+03] Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac, and
David Van Campenhout. Reasoning with temporal logic on truncated paths. In
CAV, volume 2725 of LNCS, pages 27–39, 2003.

[GH01a] Dimitra Giannakopoulou and Klaus Havelund. Automata-based verification of tem-
poral properties on running programs. In ASE, pages 412–416. IEEE Computer
Society, 2001.

[GH01b] Dimitra Giannakopoulou and Klaus Havelund. Runtime analysis of linear temporal
logic specifications. Technical Report 01.21, RIACS/USRA, 2001.

[Hop71] J.E. Hopcroft. An n log n algorithm for minimizing states in a finite automaton.
Theory of Machines and Computation, pages 189–196, 1971.

[HR01a] Klaus Havelund and Grigore Rosu. Monitoring Java Programs with Java PathEx-
plorer. ENTCS, 55(2), 2001.

[HR01b] Klaus Havelund and Grigore Rosu. Monitoring programs using rewriting. In ASE,
page 135. IEEE Computer Society, 2001.

[HR02] Klaus Havelund and Grigore Rosu. Synthesizing Monitors for Safety Properties. In
TACAS, volume 2280 of LNCS, pages 342–356, 2002.

[Kam68] H. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University
of California, Los Angeles, 1968.

[KV01] Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties. Form.
Methods Syst. Des., 19(3):291–314, 2001.

[MP95] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer, New York, 1995.

[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE Computer
Society Press, October 31–November 2 1977.

[RB06] Grigore Rosu and Saddek Bensalem. Allen linear (interval) temporal logic - transla-
tion to LTL and monitor synthesis. In CAV, volume 4144 of LNCS, pages 263–277,
2006.

[SB05] Volker Stolz and Eric Bodden. Temporal Assertions using AspectJ. In RV, volume
144/4 of ENTCS, 2005.

[Var96] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic, 1996.
[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program

verification. In LICS, pages 332–345, 1986.

22

