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Runtime Verification for LTL and TLTL
Andreas Bauer, Martin Leucker, Christian Schallhart

Abstract— This paper studies runtime verification of prop-
erties expressed either in lineartime temporal logic (LTL) or
timed lineartime temporal logic (TLTL). It classifies runti me
verification in identifying its distinguishing features to model
checking and testing, respectively. It introduces a three-valued
semantics (with truth values true, false, inconclusive) as an
adequate interpretation as to whether a partial observation of
a running system meets an LTL or TLTL property.

For LTL, a conceptually simple monitor generation procedure
is given, which is optimal in two respects: First, the size of
the generated deterministic monitor is minimal, and, second,
the monitor identifies a continuously monitored trace as either
satisfying or falsifying a property as early as possible. The
presented approach is furthermore related to the properties
monitorable in general and is compared to existing conceptsin
the literature. It is shown that the set of monitorable properties
does not only encompass thesafety and co-safety properties but
is strictly larger.

For TLTL, the same road map is followed by first defining
a three-valued semantics. The corresponding constructionof a
timed monitor is more involved, yet, as is shown, possible.

Index Terms— D.2.4.a - Assertion checkers· D.2.5.g - Monitors
· F.3.1.a - Assertions

I. I NTRODUCTION

Verification comprises all techniques suitable for showing
that a system satisfies its specification.Runtime verification
deals with those verification techniques that allow checking
whether an execution of a system under scrutiny satisfies
or violates a given correctness property. It aims to be a
lightweight verification technique complementing other ver-
ification techniques such asmodel checking[2] and testing
[3].

In runtime verification, a correctness propertyϕ is typically
automatically translated into amonitor. Such a monitor is then
used to check thecurrent execution of a system or a (finite
set of) recordedexecution(s) with respect to the propertyϕ.
In the former case, we speak ofonline monitoringwhile in
the latter case we speak ofoffline monitoring.

Formally, whenL(ϕ) denotes the set of valid executions
given by propertyϕ, runtime verification boils down to check-
ing whether the executionw is an element ofL(ϕ). Thus, in its
mathematical essence, runtime verification reduces to theword
problem, i. e., the problem whether a given word is included
in some language.

Correctness properties in runtime verification specify all
admissible individual executions of a system and are usually
formulated in some variant of linear temporal logic, such as
LTL [4], as seen for example in [5], [6], [7], [8], [9], [10]. But
also linearµ-calculus variants are used, for example in [11].

A preliminary version of this paper appeared at FSTTCS 2006 [1].
The authors are with the Technische Universität München,Germany.

Runtime verification deals (only) with thedetectionof vio-
lations (or satisfactions) of correctness properties—butit is not
concerned with any consequential measures and thus it does
not influence the program’s functional behaviour. However,
runtime verification is at the core of those approaches which
react on faults at runtime:Monitor-oriented programming
[12], for example, aims at a programming methodology that
allows for the execution of code whenever monitors observe
a violation of a given correctness property.Runtime reflection
[13], to name a further example, is an architecture pattern that
is applicable for systems in which monitors are enriched with
a diagnosis and reconfiguration layer.

A. Runtime Verification versus Model Checking

While runtime verification shares also many similarities
with model checking, there are important differences:

• In model checking,all executionsof a given system are
examined to answer whether these satisfy a given cor-
rectness propertyϕ—which corresponds to the language
inclusion problem. In contrast, runtime verification deals
with the word problem. For most logical frameworks,
the word problem is of far lower complexity than the
inclusion problem, e. g. in case of LTL see [14] and [15].

• While model checking, especially when considering LTL,
considersinfinite traces, runtime verification deals with
finite traces—as non-idealised executions are necessarily
finite.

• While in model checking a complete model is given
allowing to consider arbitrary positions of a trace, runtime
verification, especially when dealing with online moni-
toring, considers finite executions of increasing size. For
this, a monitor should be designed to consider executions
in an incremental fashion.

These differences make it necessary to adapt the concepts
developed in model checking to be applicable in runtime
verification. For example, the second item asks for coming up
with a semantics for LTL on finite traces that mimics LTL’s
semantics on infinite traces—which we do in the the first part
of the paper. Note that LTL is originally defined on finite
traces as well [16]. However, as we argue, this semantics is
not suitable for runtime verification.

From an application point of view, there are also important
differences between model checking and runtime verification:
Runtime verification deals only with observed executions.
Thus it is applicable toblack box systemsfor which no system
model is at hand. In model checking, however, a precise
description of the system to check is mandatory as, before
actually running the system, all possible executions must be
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checked.1

Furthermore, model checking suffers from the so-called
state explosion problem, which terms the fact that analysing
all executions of a system is typically been carried out by
generating the whole state space of the underlying system,
which becomes often infeasibly huge. Considering a single
run, on the other hand, does usually not yield any memory
problems, provided that when monitoring online only a finite
history of the current execution has to be stored.

In online monitoring, the complexity forgenerating the
monitor procedure is often negligible, as the monitor is typ-
ically only generated once. However, thecomplexity of the
monitor, i. e., its memory and computation time requirements
for checking an execution are of important interest, as the
monitor is part of the running system and should influence
the system as little as possible.

B. Runtime Verification versus Testing

As runtime verification does not consider each possible
execution of a system, but just a single or a finite subset,
it shares similarities withtesting: both are usually incomplete.

Typically, in testing one considers a finite set of finite input-
output sequences forming atest suite[19]. Test-case execution
is then checking whether the output of a system agrees with the
predicted one, when giving the input sequence to the system
under test.

A different form of testing, however, is closer to runtime
verification, namelyoracle-based testing[3]. Here, a test-suite
is only formed by input-sequences. To make sure that the
output of the system is as anticipated, a so-calledtest oracle
has to be designed and “attached” to the system under test.
This oracle then observes the system under test and checks a
number of properties, i. e. in terms of runtime verification the
oracle acts as a monitor. Thus, in essence, runtime verification
can be understood as this form of testing. There are, however,
differences in the foci of runtime verification and oracle-based
testing: In testing, an oracle is typically defined directly, rather
than generated from some high-level specification. On the
other hand, in the domain of runtime verification, we do not
consider the provision of a suitable set of input sequences to
“exhaustively” test a system.

C. Monitoring of Discrete-Time Properties

In this paper, we introduce LTL3 as a lineartime temporal
logic designed for runtime verification. As Pnueli’s LTL [4]
is a well-accepted lineartime temporal logic used for speci-
fying properties of infinite traces one usually wants to check
properties specified in LTL in runtime verification as well.
However, one has to interpret their semantics with respect
to finite prefixes as they arise in observing actual systems.
This approach to runtime verification is summarised in the
following rationale:

Pnueli’s LTL [4] is a well-accepted lineartime tem-
poral logic used for specifying properties of infinite

1Note, that it is possible to automaticallylearn [17] and verify a system
model, thereby applying model checking techniques to an a priori unknown
system [18].

traces. In runtime verification, our goal is to check
LTL properties givenfinite prefixes of infinite traces.

Therefore, LTL3’s syntax coincides with LTL, while its seman-
tics is given for finite traces. To implement the idea that, for
a given LTL3 formula, its meaning for a prefix of an infinite
trace should correspond to its meaning considered as an LTL
formula for the full infinite trace, we usethree truth values:
true, false, and inconclusive, denoted respectively by⊤, ⊥,
and ?. More precisely, given a finite wordu and an LTL3
formulaϕ, the semantics is defined as follows:

• if there is no continuation ofu satisfyingϕ (considered
as an LTL formula), the value ofϕ is false;

• if every continuation ofu satisfiesϕ (considered as an
LTL formula), it is true;

• otherwise, the value isinconclusivesince the observations
so far are inconclusive, and neithertrue or false can be
determined.

While there are actually semantics for LTL on finite traces
[20], [21], these use (only) two truth values. We strongly
believe that only two truth values lead to misleading results in
runtime verification: Consider the formula¬pU init (read:not
p until init) stating that nothing bad (p) should happen before
the init function is called. If within an executionp becomes
true beforeinit , the formula is violated and thusfalse (for
any continuation of the current execution). If, on the other
hand, the init function has been called and nop has been
observed before, the formula istrue, regardless of what will
happen in the future. Besides observing failures, for testing
and verification, it is equally important to know whether some
property is indeedtrue or whether the current observation is
just inconclusive and a violation of the property to check may
still occur.

Originally, we proposed this three-valued semantics and its
use for runtime verification in [1]. However, some essential
concepts were defined by Kupferman and Vardi: In [22] a
bad prefix(of a Büchi automaton) is defined as a finite prefix
which cannot be the prefix of any accepting trace. Dually, a
good prefixis a finite prefix such that any infinite continuation
of the trace will be accepted. It is exactly this classification
that forms the basis of our 3-valued semantics: “bad prefixes”
(of formulae) are mapped tofalse, “good prefixes” evaluate
to true, while the remaining prefixes yieldinconclusive.

For a given LTL3 formula, we describe how to construct a
(deterministic) finite state machine (FSM) with three output
symbols. This automaton reads finite traces and yields their
three-valued semantics. Thus, monitors for three-valued for-
mulae classify prefixes as one ofgood = ⊤, bad = ⊥, or ?
(neithergood nor bad ). Standard minimisation techniques for
FSMs can be applied to obtain a unique FSM that isoptimal
with respect to its number of states. In other words, any smaller
FSM must be non-deterministic or check a different property.
As an FSM can straightforwardly be deployed, we obtain a
practical framework for runtime verification.

The proposed semantics of LTL3 has a valuable implication
for a corresponding monitor. It requires the monitor to report
a violation of a given propertyas early as possible: Since
any continuation of a bad (good) prefix is bad (respectively
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good), there exists aminimal bad (good) prefix for every bad
(good) prefix. In runtime verification, we are interested in
getting feedback from the monitor as early as possible, i. e.,
for minimal prefixes, let them be either good or bad. Since
all bad prefixes for a formulaϕ yield false and good prefixes
yield true, also minimal ones do so. Thus, the correctness of
our monitor procedure ensures that already forminimal good
or bad prefixes eithertrue or false is obtained.

In [23], a Büchi automaton was modified to serve as a
monitor reportingfalse for minimal bad prefixes. However,
no precise semantics in terms of LTL of the resulting monitor
was given. As such, LTL3 can be understood as a logic which
complements the constructions carried out in [23] with a
formal framework. Nevertheless, we feel that our constructions
are more direct and therefore easier to understand.

In this paper, we further discuss, which LTL3 properties
are monitorable at all. We follow the definition given by
Pnueli and Zaks in [24] essentially stating that a property is
monitorable with respect to a trace whenever a corresponding
monitor might still report a violation (or satisfaction). We
point out the precise relation to Rosu’s notion ofnever
violate states[23] in monitors, which is similar yet not the
same. Moreover, we recall the notion of safety and co-safety
properties. We show that the popular belief that monitoringis
only suitable for safety properties is misleading: The class of
monitorable properties is richer than the union of safety and
co-safety properties. Finally, we discuss runtime verification
based on good/bad-prefixes compared to approaches based on
Kupferman’s and Vardi’s notion ofinformative prefixes, as for
example the approach shown in [25]. We argue that runtime
verification should be based on good/bad prefixes rather than
on informative prefixes, as it follows theas early as possible
maxim.

Note that multi-valued versions of LTL have been consid-
ered, for example in [26]. There, the semantics is defined for
infinite traces and the resulting logics and model checking
approaches are completely different from LTL3. Moreover,
these logics are helpful in model checking abstractions of
systems or of software product lines [27], and we do not see
any benefit of the developed ideas in the setting of runtime
verification.

D. Monitoring of Real-time Properties

In the second part of the paper, we address real-time sys-
tems. We base our ideas on thetimed lineartime temporal logic
(TLTL), a logic originally introduced by Raskin in [28]. TLTL,
as argued by D’Souza, can be considered a natural counterpart
of LTL in the timed setting: He showed in [29] that, over
timed traces, TLTL is equally expressive as first-order logic,
transferring Kamp’s famous result that, over words, LTL and
first-order logic coincide with respect to expressiveness [16]
to the world of real-time systems.

We define a three-valued version of TLTL for finitetimed
traces resulting in the logic TLTL3, following a similar
approach as for LTL. Moreover, for a TLTL3 formula we
describe how to construct a monitor yielding the semantics
for a finite timed trace, again, “as early as possible”.

While the general scheme developed for LTL3 proves to
be applicable in the real-time setting as well, the monitor
construction is technically much more involved. Automata for
TLTL employ so-calledevent recordingand event predicting
clocks. Since in runtime verification, the future of a trace is
not known, event predicting clocks are difficult to handle.
We introducesymbolic timed runsand show their benefit
for checking promises efficiently, avoiding a possible but
generally expensive translation of event-clock automata to
(predicting-free) timed automata [30].

So far, not many approaches for runtime verification of
real-time properties have been given. [31] studies monitor
generation based on LTL enriched with a freeze quantifier
for time. In [32] and [33],fault diagnosisfor timed systems
is examined, a problem that shares some similarities with
runtime verification yet is more complicated. However, in
these approaches, only timed automata or event-recording
automata are used and no prediction of events is supported.
TLTL is event-based, meaning that the system emits events
when the system’s state has changed. In [34] monitoring
of continuous signals is considered, which is intrinsically
different to observing discrete signals in a continuous time
domain.

E. Outline

In Section II, we develop our runtime verification approach
for the discrete-time setting. After recalling standard LTL syn-
tax and semantics, we introduce a three-valued semantics for
LTL formulae on finite words, yielding the three-valued logic
LTL3. Then we develop and discuss a monitor construction
technique to produce for an LTL-propertyϕ a deterministic
finite-state machineMϕ which evaluatesϕ on finite traces
according to LTL3. Finally, we demonstrate this approach with
an example from concurrent C++-development practice.

Section III analyses the structure of the developed monitors,
complements the notions of good and bad prefixes withugly
prefixes to characterise the instant when properties become
non-monitorable. Moreover, we discuss monitoring in the light
of safety and co-safety properties and compare our work with
ideas based oninformativeprefixes.

In Section IV, we expand our runtime verification approach
for the real-timesetting. After recalling standard TLTL syntax
and semantics, we introduce a three-valued semantics to eval-
uate standard TLTL formulae on finitetimed words, yielding
the three-valued logic TLTL3. Then we develop and discuss
a monitor construction technique to produce for an TLTL-
propertyϕ a deterministic monitorMϕ which evaluatesϕ on
finite timed traces according to TLTL3.

II. T HREE-VALUED LTL IN THE DISCRETE-TIME SETTING

In this section, we consider runtime verification for systems
whose behaviour is characterised by a sequence of states which
occur at discrete time steps. These states are then abstracted
with a set of atomic propertiesAP which evaluate to either true
or false in such a state. Thus, the behaviour of the system under
scrutiny is described by an (in)finite word over the alphabet
2AP. Linear temporal logic (LTL) is a well-accepted logic to
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specify properties of infinite words [4], and, consequently, our
developments in this section are for LTL specifications.

After recalling standard LTL syntax and semantics, we
introduce in this section a three-valued semantics to evaluate
standard LTL formulae on finite words yielding to the logic
LTL3 . Thereby, LTL3 distinguishes three cases:

• Either the observed finite wordu is sufficient to prove
that the monitored propertyϕ holds independently of the
yet unknown futurebehaviour, or

• the observed finite wordu already indicates thatϕ cannot
be satisfied in any possible future continuation, or finally,

• neither of both casesoccurred so far.

Having the semantics of LTL3 at hand, we develop and
discuss a monitor construction technique to produce for
an LTL-propertyϕ a deterministic finite-state machineMϕ

which evaluatesϕ on finite traces according to LTL3—thus
enabling a most predictive evaluation ofϕ: Once it can be
decided thatϕ will remain either satisfied or unsatisfied, the
monitor will provide this information immediately. Finally, we
demonstrate this approach with an example from concurrent
C++-development practice.

A. Preliminaries

For the remainder of this section, letAP be a finite set
of atomic propositions andΣ = 2AP a finite alphabet. We
write ai for any single element ofΣ, i.e., ai is a possi-
bly empty set of propositions taken fromAP. Finite traces
over Σ are elements ofΣ∗, and are usually denoted with
u, v, u′, v′, u1, v1, u2, . . . , whereas infinite traces are elements
of Σω, usually denoted withw,w′, w1, w2, . . . We also write
e.g. {p, q} {p} . . . for a finite or infinite worda0a1 . . . with
a0 = {p, q} anda1 = {p}. If clear from the context, we also
drop the brackets around singletons, i.e., we write{p, q} p . . .
for the same worda0a1 . . . Finally, we call the concatenation
uv of two finite wordsu and v finite continuationof u with
v. Similarly, the concatenationuw of u with an infinite word
w is calledinfinite continuationof u with w.

Then the syntax and semantics of LTL on infinite traces is
defined as follows.

Definition 1 (LTL formulae) The set of LTL formulae is
inductively defined by the grammar

ϕ ::= true | p | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ | Xϕ

with p ∈ AP .

In addition, we use three abbreviations, namelyϕ ∧ ψ for
¬(¬ϕ ∨ ¬ψ), ϕ→ ψ for ¬ϕ ∨ψ, Fϕ for true U ϕ, andGϕ
for ¬(true U ¬ϕ).

Definition 2 (LTL semantics) Let w = a0a1 . . . ∈ Σω be a
infinite word withi ∈ N being a position. Then we define the
semantics of LTL3 formulae inductively as follows

w, i |= true

w, i |= ¬ϕ iff w, i 6|= ϕ
w, i |= p iff p ∈ ai

w, i |= ϕ1 ∨ ϕ2 iff w, i |= ϕ1 or w, i |= ϕ2

w, i |= ϕ1Uϕ2 iff ∃k ≥ i with w, k |= ϕ2

and ∀i ≤ l < k with w, l |= ϕ1

w, i |= Xϕ iff w, i+ 1 |= ϕ

Further,w |= ϕ holds iffw, 0 |= ϕ holds.

We denote withL(ϕ) = {w ∈ Σω | w |= ϕ} the set of
models of an LTL-formulaϕ. Two LTL-formulaeϕ and ψ
are calledequivalent, written asϕ ≡ ψ, iff L(ϕ) = L(ψ)
holds. The languageL(ϕ), generated by an LTL-formulaϕ,
is a regular set of infinite traces and can be described by a
corresponding Büchi automaton defined next.

Definition 3 ((Nondeterministic) Büchi automaton (NBA))
A (nondeterministic) Büchi automaton (NBA)is a tuple
A = (Σ, Q,Q0, δ, F ), where

• Σ is a finite alphabet,
• Q is a finite non-empty set of states,
• Q0 ⊆ Q is a set of initial states,
• δ : Q× Σ → 2Q is a transition function, and
• F ⊆ Q is a set of accepting states.

We extend the transition functionδ : Q×Σ → 2Q, as usual,
to δ′ : 2Q × Σ∗ → 2Q by δ′(Q′, ǫ) = Q′ and δ′(Q′, ua) =
⋃

q′∈δ′(Q′,u) δ(q
′, a) for Q′ ⊆ Q, u ∈ Σ∗, and a ∈ Σ. To

simplify notation, we useδ for both δ andδ′.
A run of an automatonA on a wordw = a0a1 . . . ∈ Σω is

a sequence of states and actionsρ = q0a0q1a1q2 . . . , where
q0 is an initial state ofA and where we haveqi+1 ∈ δ(qi, ai)
for all i ∈ N. For a runρ, let Inf(ρ) denote the states visited
infinitely often. A runρ of an NBA A is calledacceptingiff
Inf(ρ) ∩ F 6= ∅.

A nondeterministic finite automaton (NFA) A =
(Σ, Q,Q0, δ, F ) is an automaton whereΣ, Q, Q0, δ, andF
are defined as for a Büchi automaton, but which operates on
finite words. A run of A on a wordw = a0 . . . an ∈ Σ∗

is a sequence of states and actionsρ = q0a0q1a1 . . . anqn+1,
whereq0 is an initial state ofA and for all i ∈ N we have
qi+1 ∈ δ(qi, ai). The run is called accepting ifqn+1 ∈ F .
An NFA is called deterministic iff for all q ∈ Q, a ∈ Σ,
|δ(q, a)| = 1, and |Q0| = 1. We use DFA to denote a
deterministic finite automaton.

In case of Büchi automata, we did not introduce their
deterministic variant since not every NBA can be converted
into an equivalent deterministic one. Furthermore, our monitor
construction allows to apply determinisation once we have
converted all NBAs into NFAs—thereby yielding a determin-
istic finite-state machine. The resulting FSM can be minimised
to obtain an FSM with a provable minimal number of states.2

Finally, let us recall the notion of afinite-state machine
(FSM), which is a finite state automaton enriched with output,

2Note that in many practical cases, the monitor will be based directly on
the underlying nondeterministic automata and will be determinised on-the-fly
using the power-set construction (cf. the discussion at theend of Section II-C.)
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formally denoted with a tuple(Σ, Q,Q0, δ,∆, λ), whereΣ,Q,
Q0, and δ are defined as before and where∆ is the output
alphabet used in the output functionλ : Q → ∆. The output
of an FSM, defined by the functionλ, is thus determined by
the current stateq ∈ Q alone, rather than by input symbols.
As before,δ extends to the domain of words as expected. For
a deterministic FSM, we denote withλ also the function that
yields for a given wordu the output in the state reached byu
rather than the sequence of outputs.

B. Syntax and Semantics of LTL3

To overcome difficulties in defining an adequate Boolean
semantics for LTL on finite traces, we propose a three-valued
semantics. The intuition is as follows: in theory, we observe
an infinite sequencew of some system. For a given formula
ϕ, thus eitherw |= ϕ or not. In practice, however, we can
only observe a finite prefixu of w. Consequently, we let the
semantics ofϕ with respect tou be true, ifuw′ |= ϕ for every
possible continuationw′. On the other hand, ifuw′ is not a
model ofϕ for all possible infinite continuationsw′ of u, we
define the semantics ofϕ with respect tou as false. In the
remaining case, the truth value ofuw′ andϕ depends onw′.
Thus, we define the semantics ofu with respect toϕ to be
inconclusive, denoted with ?, to signal that the so far observed
prefix u itself is insufficient to determine howϕ evaluates in
any possible future continuation ofu.

We define our three-valued semantics LTL3 to interpret
common LTL formulae, as defined in Definition 1 on finite
prefixes to obtain a truth value from the setB3 = {⊥, ?,⊤}
as follows:

Definition 4 (Three-valued semantics of LTL) Let u ∈ Σ∗

denote a finite word. Thetruth valueof a LTL3 formula ϕ
with respect tou, denoted with[u |= ϕ], is an element ofB3

defined as follows:

[u |= ϕ] =











⊤ if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? otherwise

Note that in the above definition, we use the semantic function
[u |= ϕ] as well as the standard notationuσ |= ϕ: Since we
introduce a three-valued semantics on finite words, we have to
use a semantic function[u |= ϕ] to denote the truth value of
ϕ with respect to a finite wordu. On the other hand, for the
standard two-valued semantics of LTL, we only writeuσ |= ϕ
to assert thatuσ satisfiesϕ.

Note that already in [16], a coherent semantics for both, LTL
on finite and infinite words is given. However, in runtime ver-
ification, we aim at checking LTL properties of infinite traces
by considering their finite prefixes. This renders the standard
two-valued LTL semantics on finite traces as inappropriate in
our case.

C. Monitor Construction for LTL3

Now we develop an automata-based monitor procedure for
LTL3. More specifically, for a given formulaϕ ∈ LTL3, we

construct an FSMMϕ that reads finite wordsu ∈ Σ∗ and
outputs[u |= ϕ] which is a value inB3.

For an NBAA, we denote byA(q) the NBA that coincides
with A except for the set of initial statesQ0, which is
redefined inA(q) as Q0 = {q}. Let us fix ϕ ∈ LTL for
the rest of this section, and letAϕ = (Σ, Qϕ, Qϕ

0 , δ
ϕ, Fϕ)

denote the NBA, which accepts all models ofϕ, and let
A¬ϕ = (Σ, Q¬ϕ, Q¬ϕ

0 , δ¬ϕ, F¬ϕ) denote the NBA, which
accepts all words falsifyingϕ. The corresponding construction
is standard [35] and explained, for example in [36]. Note that
in order to obtain the complement of an NBA, we merely
need to complement the formula, rather than the original Büchi
automaton itself.

For the automatonAϕ, we define a functionFϕ : Qϕ → B

(with B = {⊤,⊥}) where we setFϕ(q) = ⊤ iff L(Aϕ(q)) 6=
∅, i.e., we evaluate a stateq to ⊤ iff the language of the
automaton starting in stateq is not empty. To determineFϕ(q),
we identify in linear time the strongly connected components
in Aϕ, which can be done using Tarjan’s algorithm [37]
or nested depth-first algorithms as examined in [38]. Using
Fϕ, we define the NFAÂϕ = (Σ, Qϕ, Qϕ

0 , δ
ϕ, F̂ϕ) with

F̂ϕ = {q ∈ Qϕ | Fϕ(q) = ⊤}. Analogously, we set
Â¬ϕ = (Σ, Q¬ϕ, Q¬ϕ

0 , δ¬ϕ, F̂¬ϕ) with F̂¬ϕ = {q ∈ Q¬ϕ |
F¬ϕ(q) = ⊤}.

Having Âϕ andÂ¬ϕ at hand, we evaluate[u |= ϕ] accord-
ing to the following Lemma:

Lemma 5 (LTL 3 evaluation) With the notation as before, we
have

[u |= ϕ] =











⊤ if u 6∈ L(Â¬ϕ)

⊥ if u 6∈ L(Âϕ)

? if u ∈ L(Âϕ) ∩ L(Â¬ϕ)

Proof: Let A¬ϕ = (Σ, Q¬ϕ, Q¬ϕ
0 , δ¬ϕ, F¬ϕ) denote the

NBA such thatL(A¬ϕ) = L(¬ϕ). Feeding a finite word
u ∈ Σ∗ to A¬ϕ, we reach the setδ¬ϕ(Q¬ϕ

0 , u) ⊆ Q¬ϕ of
states. Thus, if there exists a stateq ∈ δ¬ϕ(Q¬ϕ

0 , u) such
that L(A¬ϕ(q)) 6= ∅, then we can choose an infinite word
σ ∈ L(A¬ϕ(q)) in order to expandu into uσ ∈ L(A¬ϕ).
By definition of the NFAÂ¬ϕ, such a stateq ∈ δ¬ϕ(Q¬ϕ

0 , u)
exists, iff u ∈ L(Â¬ϕ) holds.

Therefore, if u /∈ L(Â¬ϕ) holds, then every possible
continuationuσ of u will be rejected byA¬ϕ, i.e., every
possible continuationuσ will violate ¬ϕ and satisfyϕ and
hence we haveuσ |= ϕ for all σ ∈ Σω. If this is the case, by
Definition 4, [u |= ϕ] = ⊤.

By substitutingϕ for ¬ϕ, we obtain[u |= ϕ] = ⊥ if u 6∈
L(Âϕ). Finally, if u ∈ L(Âϕ)∩L(Â¬ϕ), then there exist two
continuationsσ 6= σ′ ∈ Σω such thatuσ |= ϕ anduσ′ 6|= ϕ
and therefore[u |= ϕ] =?.

The lemma yields the following procedure to evaluate the
semantics ofϕ for a given finite traceu: we evaluate both
u ∈ L(Â¬ϕ) andu ∈ L(Âϕ) and use Lemma 5 to determine
[u |= ϕ]. As a final step, we now define a (deterministic)
FSM Mϕ that outputs for each finite wordu its associated
three-valued semantical evaluation with respect to some LTL-
formulaϕ.
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ϕ

ϕ

¬ϕ

Aϕ

A¬ϕ

Fϕ

F¬ϕ

Âϕ

Â¬ϕ

Ãϕ

Ã¬ϕ

Mϕ

Input (1) Formula (2) NBA (3)
Emptiness
per state (4) NFA (5) DFA (6) FSM

Fig. 1. The procedure for getting[u |= ϕ] for a givenϕ

Let Ãϕ and Ã¬ϕ be the deterministic versions of̂Aϕ and
Â¬ϕ, which can be computed in a standard manner using the
power-set construction. Then, we define the FSM in question
as a product ofÃϕ andÃ¬ϕ.

Definition 6 (Monitor Mϕ for an LTL 3 formula ϕ)
Let Ãϕ = (Σ, Qϕ, {qϕ

0 }, δϕ, F̃ϕ) and Ã¬ϕ =
(Σ, Q¬ϕ, {q¬ϕ

0 }, δ¬ϕ, F̃¬ϕ) be the DFAs withL(Ãϕ) =
L(Âϕ) and L(Ã¬ϕ) = L(Â¬ϕ), where NFAs Âϕ

and Â¬ϕ are as defined above. Then we define the
product automatonĀϕ = Ãϕ × Ã¬ϕ as the FSM
(Σ, Q̄, q̄0, δ̄, λ̄), where Q̄ = Qϕ × Q¬ϕ, q̄0 = (qϕ

0 , q
¬ϕ
0 ),

δ̄((q, q′), a) = (δϕ(q, a), δ¬ϕ(q′, a)), and λ̄ : Q̄ → B3 is
defined by

λ̄((q, q′)) =







⊤ if q′ 6∈ F̃¬ϕ

⊥ if q 6∈ F̃ϕ

? if q ∈ F̃ϕ and q′ ∈ F̃¬ϕ.

ThemonitorMϕ of ϕ is obtained by minimising the product
automatonĀϕ .

We sum up our entire construction in Figure 1 and conclude
by formulating the correctness theorem.

Theorem 7 (LTL monitor correctness) Let ϕ ∈ LTL3 and
let Mϕ = (Σ, Q, q0, δ, λ) be the corresponding monitor. Then,
for all u ∈ Σ∗ the following holds:

[u |= ϕ] = λ(δ(q0, u))

Proof: The theorem follows directly from the monitor
construction given in Definition 6 and Lemma 5 on the
evaluation of LTL3.

Complexity: Consider Figure 1: Givenϕ, step 1 requires
replication and negation ofϕ, i.e., it is linear in the original
size. Step 2, the construction of the NBAs, causes an expo-
nential “blow-up” in the worst-case. Steps 3 and 4, leading to
Âϕ andÂ¬ϕ, do not change the size of the original automata.
Then, computing the deterministic automata in step 5, causes
in general an exponential “blow-up” in size, for a second time.
In total the FSM of step 6 will have double exponential size
with respect to|ϕ|.

The size of the final FSM is inO(22n

) but can be minimised
with standard algorithms for FSMs [39] to derive anoptimal
deterministic monitor with a minimal number of states. In the
worst case, however, a lower bound ofO(22Ω(n)

) applies to
the number of states, as proved in [40].

Thus, better complexity results in other approaches, like the
one in [8], are due to one of the following reasons:

• First, one can use a fragment of LTL which isstrictly less
expressivethan full LTL, i.e., one gives up the possibility

to specify certain properties and thereby rules out some
complicated cases exercising the worst case complexity.
Note that our construction yields an optimal monitor
regardless whatever fragment of LTL is considered.

• Second, it is possible to use a variant of LTL which is
still capable to express all LTL-expressible properties but
which requiresstrictly longer formulaefor some of these
properties.

• Third, one could abandon a single monolithic and deter-
ministic automaton as monitor procedure, and use instead
an alternative concept such as synchronising automata,
hereby trading the size of automaton with an increased
computational overhead at runtime [41].

Moreover, we have implemented the above construction of
the finite-state automatonMϕ partly in anon-the-flyfashion.
That is, for a given propertyϕ, we construct the two NFAs, but
we do not determinise them to obtain the two corresponding
DFAs Ãϕ and Ã¬ϕ. Consequently, we do not explicitly
construct the final automatonMϕ, but instead perform steps
4–6 on-the-fly to avoid the second exponential “blow-up”.

To do so, our implementation employs the power-set con-
struction, known from compiler construction [42], in an on-
the-fly manner: Instead of only maintaining a single current
state of a deterministic automaton, our monitor maintains the
set of reachable statesof the correspondingly underlying non-
deterministic automaton. Then, the deterministic automaton
would be in an accepting state, if and only if there exists
at least one accepting state in the currently maintained setof
states (of the nondeterministic automaton).

The reason for constructing the NFAs explicitly is that
we have to check the emptiness per state for each state of
the NBAs (recall Lemma 5 and its proof). Therefore, it is
impractical to build these two NFAs on-the-fly as well.

D. Example

Now we discuss a simple but comprehensive real-world
example in more detail, which also highlights most of the
features described above.

In a C++-program, all static objects of an executable are
initialised before themain method is entered, however, their
order is undefined, and their initialisation is thus performed in
a nondeterministic order (cf. [43]). In consequence, if threads
get spawned before executingmain , it is difficult to ensure
that all resources necessary to synchronise those threads are
already initialised, such as globally available and statically
initialised mutex objects. This problem is generally knownas
the static initialisation order fiasco(cf. [44]). The “fiasco” is
an especially complicated one when large applications are built
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from a number of different frameworks which must remain
independent from each other.

Using our monitor generator with a C++ logging layer
such as the APACHE SOFTWARE FOUNDATION’ S library,
LOG4CXX3, for gaining access to signals emitted by the
application’s threads, it is possible to construct a monitor
over an alphabetΣ = 2AP , where {spawn, init} ⊆ AP ,
for a property ϕ ≡ ¬spawn U init. In other words,
the monitor reports a violation, once a thread is spawned
before the application under scrutiny has properly finishedits
initialisation.

This example further illustrates the need for having three
truth values, instead of two when monitoring a running system:

• Intuitively, a monitor forϕ should raise an alarm only, if
a thread was spawned beforeinit occurred.

• On the other hand, ifinit occurs before anyspawn has
occurred, the monitor should report thatϕ is satisfied
irrespective of the future.

• Finally, until either happens, it should return?, indicating
the necessity for further observation.

Using the translation algorithm from formulae of LTL to
Büchi automata as proposed by [45], one obtains forϕ,
respectively¬ϕ, the Büchi automata depicted in Figure 2.

q0 q1

¬spawn true

init

(a) Büchi automatonAϕ.

q0 q1

¬init true

spawn ∧ ¬init

(b) Büchi automatonA¬ϕ.

Fig. 2. The Büchi automata forϕ ≡ ¬spawn U init

Then the two nondeterministic finite automatâAϕ =
(Σ, Qϕ, Qϕ

0 , δ
ϕ, F̂ϕ) and Â¬ϕ = (Σ, Q¬ϕ, Q¬ϕ

0 , δ¬ϕ, F̂¬ϕ)
are defined with the accepting statesF̂ϕ andF̂¬ϕ, as described
in the construction leading to Lemma 5.

In our particular case, all states in̂Aϕ and Â¬ϕ become
accepting states, as only those states and transitions are shown
which contribute to the accepted language. Also note that in
this example, the two resulting finite automata are already
deterministic.

Following Definition 6, we construct an FSM as monitor
for the static initialisation order fiasco. For this purpose, we
first build the product ofÃϕ and Ã¬ϕ. Then we minimise
this product automaton to obtain the FSMMϕ depicted in
Figure 3. The figure shows the respective output symbols of
the FSM below the corresponding state labels, e.g., for state
q1 we haveλ̄(q1) = ⊥. Note that the minimisation removed
one of the originally four states of the product automaton. The

3Seehttp://www.apache.org/ .

FSM Mϕ corresponds with the original intuition, and yields
? while neither event occurred, and either⊤ or ⊥, otherwise.

q1
“⊥”

q0
“?”

q2
“⊤”

true

¬spawn ∧ ¬init

true

spawn ∧ ¬init init

Fig. 3. The deterministic FSMMϕ for ϕ ≡ ¬spawn U init .

III. LTL 3 PUT IN PERSPECTIVE

Let us compare the approach carried out in the previous
section with some accomplishments in the literature. More
specifically, we compare LTL3’s semantics when faced with
so-calledgood and bad prefixes. Furthermore, we consider
monitoring for the subclass of (co)-safety properties and we
compare LTL3’s semantics to approaches based oninformative
prefixes.

Let, as above,Σ = 2AP be an alphabet for the remainder
of this section.

A. Good/Bad Prefixes

Let us first recall the notion ofgood and bad prefixesas
introduced in [22].

Definition 8 (Good/bad prefixes [22]) Let L ⊆ Σω be a
language of infinite words overΣ. A finite wordu ∈ Σ∗ is
called

• a bad prefixfor L, if for all w ∈ Σω, uw 6∈ L,
• a good prefixfor L, if for all w ∈ Σω, uw ∈ L.

Note that every continuationuv of a bad (good) prefixu
for L by a finite wordv ∈ Σ∗ is again a bad (good) prefix
for L. A bad (good) prefixu is calledminimal, if each strict
prefix of u is not a bad (good) prefix anymore.

Using these terms, we can rephrase the semantics of LTL3

as:

Remark 9 (LTL 3 identifies good and bad prefixes)Given
an LTL-formulaϕ and a finite wordu ∈ Σ∗, then

[u |= ϕ] =







⊤ if u is a good prefix forL(ϕ)
⊥ if u is a bad prefix forL(ϕ)
? otherwise.

Thus, the monitor procedure given in the previous section
determines for a finite prefix of a potentially infinite word,
whether it is good, bad, or neither good nor bad. More
specifically, when considering the finite prefixes of an infinite
word by increasing length, the monitor identifies itsminimal
good or bad prefix, if such a prefix exists.

Note that one of the contributions of [23] is to modify a
given Büchi automaton, typically arising from a given LTL
property, into a monitor which signals the occurrence of a
minimal bad prefix. Thus, this construction yields a monitor
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which distinguishes two cases, namely[ u |= ϕ] = ⊥ and
[ u |= ϕ] 6= ⊥. At the same time, [23] does not discuss
the semantics of the resulting monitor in terms a matching
logical framework. Thus, LTL3 can be understood as a logic
which complements the constructions carried out in [23] with a
formal framework. Nevertheless, we feel that our constructions
are more direct and therefore easier to understand.

In practice, whenever a good or bad prefix is found, moni-
toring can be stopped, as every finite or infinite continuation
of the prefix yields the same semantics with respect to LTL3.
For the (minimal) monitorMϕ (see Definition 6), a good or
bad prefix leads to a state, which either outputs⊤ or ⊥, and
which is only looping back to itself. We call such a state a
trap.

Besides⊤ and⊥, there can be a further trap in the monitor,
as there can be a state, in which the output is?, and from
where no state with output⊤ or ⊥ is reachable anymore.
Consider, for example, the language defined byGFp, stating
that there are infinitely many states satisfyingp. Any finite
word can be extended to an infinite one satisfying the formula
as well as to one falsifying the formula. Thus, given any finite
word, no finite continuation yields⊤ or ⊥ with respect to
LTL3. For runtime verification, such a prefix isugly, since
after processing it, monitoring can be stopped yet with an
inconclusive result.

Definition 10 (Ugly prefix) Let L ⊆ Σω be a language of
infinite words overΣ. A finite wordu ∈ Σ∗ is called anugly
prefix for L, if there is nov ∈ Σ∗ such thatuv is either bad
or good.

We follow [24] in calling a formulaϕ non-monitorablewith
respect to a prefixu, if no ⊥ or ⊤ verdict can be obtained.
Using our terminology, we define:

Definition 11 ((Non)-monitorable) Letϕ be an LTL-formula
andu ∈ Σ∗. We callϕ non-monitorable afteru, if u is an ugly
prefix ofL(ϕ). We callϕ monitorable, if L(ϕ) has no ugly
prefix.

In other words, we callϕ monitorable, if there is nou ∈ Σ∗

such thatϕ is non-monitorable afteru.
The discussion above renders the structure of the determinis-

tic monitorMϕ for an LTL3 formulaϕ as depicted in Figure 4.
In general, a monitor has three traps, corresponding to reading
either a good, bad, or ugly prefix. As long as no trap is reached,
the monitor outputs?, while reaching a trap also implies that
monitoring can be stopped (since the output will never change
again).

In [23], the notion of anever-violate statewas introduced
for a state of a monitor, from which no bad state is reachable.
Additionally, an algorithm was outlined for merging all never-
violate states of a given Büchi automaton into a single never-
violate state. In terms of Figure 4, bothugly and good are
never-violate states, i.e., in [23], both are collapsed into a
single never-violate state. Our monitor construction yields (at
most) two such never-violate states,goodandugly. However,
we think that it is essential for a prefixu ∈ Σ∗ to distinguish
whether it is a good or an ugly prefix, as in the previous

“?”

bad
“⊥”

ugly
“?”

good
“⊤”

⊤ ⊤ ⊤

Fig. 4. The structure of the deterministic monitor

case the property to be monitored has been satisfied while in
the latter case, no satisfaction or violation can be shown by
considering continuations ofu.

Note, that the notion of non-monitorable fits well to LTL3.
In [46], however, we suggest a more precise semantics of LTL-
formulae with respect to finite words allowing to differentiate
ugly prefixes. The idea is based on using astrong as well as
a weak version of the next-state operator, essentially giving
rise to a four-valued semantics. Then, monitoring of non-
monitorable properties can still be considered meaningful, but
this discussion is beyond the scope of this paper.

B. Safety and Co-safety Properties

We continue the comparison of LTL3’s semantics with
existing concepts: The notion of bad and good prefixes was
introduced in [22] in the context of safety and co-safety
languages and formulae:

Definition 12 (Safety/Co-safety language [22])A language
L ⊆ Σω is called

• a safety language, if for all w 6∈ L, there is a prefix
u ∈ Σ∗ of w which is a bad prefix forL.

• a co-safety language, if for all w ∈ L, there is a prefix
u ∈ Σ∗ of w which is a good prefix forL.

This notion is lifted to LTL formulae in the expected
manner:

Definition 13 (Safety/Co-safety property) A formula ϕ ∈
LTL is called a safety property(co-safety property), if its
set of modelsL(ϕ) is a safety language (co-safety language,
respectively).

Let us give some examples:

formula safety co-safety
Gp •
Fq •
Xp • •
GFp
Xp ∨GFp
pU q •

The definitions of safety and co-safety properties and lan-
guages immediately yield:
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Remark 14 (Safety/Co-safety properties are monitorable)
Every LTL formula that is safety or co-safety is monitorable.

In other words, for a safety or a co-safety languageL, there
are no ugly prefixes and for a safety or co-safety formulaϕ,
the monitorMϕ has no ugly state. However, this property also
holds for (some) non safety/co-safety properties:

Lemma 15 (Monitorable is more than safety & co-safety)
The class of monitorable LTL3 properties is strictly larger
than the union of safety and co-safety properties.

Proof: Consider, for example,ϕ = ((p ∨ q)U r) ∨ Gp.
Observe that the trace

• ppp . . . satisfiesϕ,
• qqqq . . . does not satisfyϕ,
• . . . r is a good prefix forϕ (provided that one ofp or q

holds in the positions denoted with. . . , and
• . . . {¬p,¬q,¬r} is a bad prefix forϕ.

As ppp . . . satisfiesϕ but none of its finite prefixes is good,ϕ
is not a co-safety property. Asqqq . . . does not satisfyϕ but
none of its finite prefixes is bad,ϕ is neither a safety property.
Nevertheless, any finite prefix that is neither good or bad can
be extended to a good or a bad prefix: any letter containing
r makes the prefix good, while a continuation by the letter
{¬p,¬q,¬r} makes the prefix bad. Thus, the monitorMϕ

for ϕ does not have any ugly state.
The previous lemma contradicts the popular belief that mon-

itoring is only suitable for safety properties. That said, there
is something particular about safety properties: By definition,
any infinite wordw not satisfying a safety propertyϕ, must
have a bad prefixu. Hence, when we never reach the bad
trap in an automaton for a safety propertyϕ, then we know
that the wordw satisfiesϕ. Thus, assuming that one could
predict the monitor output to be the infinite sequence??? . . . ,
one could classify the property as satisfied. This supports the
intuition that, if nothing has gone wrong for an unbounded
elapse of time, the property to be checked is indeed satisfied.
The proof of the previous lemma shows that this property
does not hold for all monitorable properties. For example,
bothppp . . . andqqq . . . do not reach a trap when monitoring
ϕ = ((p ∨ q)U r) ∨ Gp. Thus, the monitorMϕ will output
the infinite sequence??? . . . when monitoring either of these
two words. However,ppp . . . satisfiesϕ while qqq . . . does
not satisfyϕ. Thus, even assuming that one could predict the
monitor output to be??? . . . , one cannot classify the property
as satisfied or violated, as bothppp . . . andqqq . . . yield the
same output sequence??? . . . .

To summarise this discussion, we note that

• violations of safety properties are reported by monitoring
procedures which check for finite prefixes of violating
words, as well as

• successful validations of co-safety properties are reported
by monitoring procedures which consider finite prefixes
of satisfying words, but additionally,

• there are monitorable properties which are neither char-
acterised by finite violating or finite satisfying prefixes.

C. Informative prefixes

In [22], the authors have introduced the notion ofinfor-
mative prefixes. The idea is to consider prefixes of infinite
words that “tell the whole story” why a formula is (not)
satisfied [22]. Consider, for example, the formulaX false.
While clearly unsatisfiable, one might argue that this becomes
only “obvious” after considering a first letter of some wordw:
Xϕ holds iff ϕ holds in the second position ofw. ForX false,
this means thatfalse should hold in the second position ofw,
which is obviouslynot the case. Thus, while the empty prefix
is not informative, every prefix of length one is.

Following the development of [22], we consider LTL formu-
lae in negation normal form, i. e. the set of formulae defined
by the following grammar:4

ϕ ::= true | false | p | ¬p (p ∈ AP)
| ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUϕ | ϕRϕ | Xϕ

The semantics is defined as expected, e. g. the semantics of
the releasequantifier is defined such thatϕ1Rϕ2 is equivalent
to ¬(¬ϕ1U¬ϕ2). We use¬ϕ as a shorthand for its positive
form, i. e. the formula obtained by negatingϕ and pushing
all negations down reaching either a Boolean constant or an
atomic proposition. Theclosurecl(ϕ) of ϕ is defined as its
set of subformulae.

Definition 16 (Informative prefix [22]) For an LTL formula
ϕ and a finite wordu = a0 . . . an with ai ∈ Σ, we say thatu is
informativefor ϕ, if there exists a mappingℓ : {0, . . . n+1} →
2cl(ϕ) such that the following holds:

• ¬ϕ ∈ ℓ(0),
• ℓ(n+ 1) = ∅, and
• for all 0 ≤ i ≤ n andψ ∈ ℓ(i), we have

– if ψ is an atomic proposition, thenai satisfiesψ,
– if ψ = ψ1 ∨ ψ2, thenψ1 ∈ ℓ(i) or ψ2 ∈ ℓ(i),
– if ψ = ψ1 ∧ ψ2, thenψ1 ∈ ℓ(i) andψ2 ∈ ℓ(i),
– if ψ = Xψ1, thenψ1 ∈ ℓ(i+ 1),
– if ψ = ψ1Uψ2, thenψ2 ∈ ℓ(i), or, ψ1 ∈ ℓ(i) and
ψ1Uψ2 ∈ ℓ(i+ 1),

– if ψ = ψ1Rψ2, thenψ2 ∈ ℓ(i) and, ψ1 ∈ ℓ(i) or
ψ1Rψ2 ∈ ℓ(i+ 1).

If u is informative forϕ, the existing mappingℓ is called a
witness for ¬ϕ in u. Note that the emptiness ofℓ(n + 1)
guarantees that all the requirements imposed by¬ϕ are
fulfilled alongu. The definition implies

Remark 17 (Informative implies bad) Letϕ be an LTL for-
mula. Every informative prefix forϕ is a bad prefix forϕ.

Note that the converse is not true, i.e., there are formulae
which have bad prefixes but no informative ones, as shown in
the examples below:

Example 18 (Informative prefixes)

4While the ideas presented below can also be developed in the version of
LTL defined in Section II (as done for example in [21]), we follow [22] to
simplify the presentation.
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• ConsiderGp andu = pq. Note thatu is a bad prefix for
Gp and that¬Gp = F¬p.5 Then,ℓ1 defined byℓ1(0) =
{F¬p}, ℓ1(1) = {F¬p,¬p}, ℓ1(2) = ∅ is a witness for
¬ϕ, showing thatu is informative forϕ.

• Considerϕ2 = G(p ∨ X false) and u = pq as before.
Asϕ2 is equivalent toGp, u is still a bad prefix forϕ2.
Note, ¬ϕ2 = F (¬p ∧ Xtrue). Thus, some witnessℓ2
should satisfyF (¬p ∧ Xtrue) ∈ ℓ2(0). As p is satisfied
in the first position ofu, it has to hold that{F (¬p ∧
Xtrue),¬p ∧ Xtrue,Xtrue} ⊆ ℓ2(1). This implies that
true ∈ ℓ2(2) 6= ∅. Thus, there is no witness for¬ϕ2 in
u. However, adding an arbitrary letter tou turns it into
an informative prefix and allowsℓ2 to be extended to a
witness for¬ϕ2.

• Considerϕ3 = G(p ∨ F false) and u = pq. As ϕ3

is equivalent toGp, u is still a bad prefix forϕ3.
Note,¬ϕ2 = F (¬p ∧ Gtrue). Now, havingGtrue as a
subformula in some possible witnessℓ3(i) requiresGtrue

to be in anyℓ3(j) for j ≥ i, astrue cannot be falsified of
any position ofu. Thus, whileu is a bad prefix showing
that ϕ3 does not hold for any continuation ofu, there is
no continuation ofu that is informative.

The example shows that the notion ofinformativenessfor
a propertyϕ depends on the syntactical representation ofϕ.
The example further highlights that checking for informa-
tive prefixes is closely related to the tableau-based [47] and
alternating-automata-based approach to model checking LTL
formulae [36]: The witnessℓ for some formula¬ϕ in u can be
considered as a finite accepting tableaux for¬ϕ, in the sense
of [47].

The notion of informativeness is used to classify safety
properties into three distinct safety levels:

Definition 19 (Safety levels [22])A safety propertyϕ ∈ LTL
is called

• intensionally safety, if all its bad prefixes are informative,
• accidentally safety, if every word that violatesϕ has an

informative prefix,
• pathologically safety, if there is a word that violatesϕ

which has no informative prefix.

We use the formulae previously studied to exemplify the
notion of safety levels:

• Gp is intensionally safety.
• G(p ∨X false) is accidentally safety.
• G(p ∨ F false) is pathologically safety.
Note, however, that all three formulae are equivalent, i.e.,

they accept the same set of models.
Note that, interestingly, [21] gives a semantical characteri-

sation of informative prefixes in terms of aweaksemantics of
LTL on finite traces, though for the discussion to come, we
stick to the syntactical presentation.

The monitor generation procedures given in [25] and [31]
follow a tableau-style approach for checking violations ofLTL
(safety) properties. More specifically, these procedures will

5Recall that¬ϕ is a shorthand for the negation ofϕ in negation normal
form.

report informative bad prefixes (as stated explicitly in [25]
and implicitly in [31]). In [22], the authors suggest that one
could search for an informative prefix forϕ as well as the
negation ofϕ.

Because of Remark 17, such a search procedure would stop
upon either some good or bad prefix—however, these prefixes
have to be informative at the same time. Hence, in all the
above mentioned approaches, it is possible that, for example,
a bad prefix is examined, meaning the property to monitor is
not satisfied, yet the word is not reported because it is not
informative.

In the setting of safety properties, one might argue that
the user of a monitor generation tool should only be allowed
to generate monitors for intensionally safety properties and
not also for accidentally or pathologically safety properties.
Then, of course, monitors identifying only informative pre-
fixes suffice to report all bad prefixes. However, while [22]
provides a decision procedure for checking whether a formula
is intensionally safety, no conversion algorithm from non-
intensionally to intensionally safety formulae is given. For a
user of a monitor generation tool, it might be interesting to
learn that the property to monitor is not intensionally safety.
However, it might be too hard and cumbersome for him or her
to carry out a translation manually—and not necessary when
following our construction.6

Though debatable, we consider monitors checking exclu-
sively for informative bad prefixes, such as in [23], inferior
to our monitors which check for bad and good prefixes,
as the latter follow the maxim of reporting a violation (or
satisfaction) as early as possible.

IV. T HREE-VALUED LTL IN THE REAL-TIME

SETTING—TLTL

In this section, we consider runtime verification for real-
time systems emittingeventsat dedicatedtime points. Thus,
for monitoring, we may observe a sequence of events ranging
over some alphabetΣ paired together with atime stamp(a real
value), identifying when exactly the event happened. Thus,
the behaviour of the system under scrutiny is described by an
(in)finite timed wordover the alphabetΣ × R

≥0.
Note, that in the discrete-time setting of LTL, we con-

sidered (sequences of) states of systems defined by Boolean
combinations of atomicpropositions,while here, we deal
with systems emittingeventsat dedicated time points. We
prefer this event-based approach in the real-time case, since
otherwise one would have to deal with certain ambiguities:
If one specifies that within 5 time units, both, propositions
a and b must evaluate to true, the question arises, whether
a and b are required to be true at the same point in time
or not. If one is indeed interested in expressing thata ∧ b
must become true within 5 time units, then the semantics
of the underlying logic must support the timed observation
of such Boolean combinations of propositions—leading to a
more complicated logic to start with. By following an event-
based approach, we avoid these issues entirely. Moreover, one

6However, there might be a price to pay: When reporting a bad but not
informative prefix to a user, it might be harder to understandfor her or him
why the prefix is indeed bad.
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can still express a proposition-based property within the event-
based framework by introducing an event for each change of
the relevant Boolean formulae. Therefore, we do not consider
the proposition-based approach in this section.

A logic suitable for expressing properties of such timed
words is timed lineartime temporal logic(TLTL), which is a
timed variant of LTL, originally introduced by Raskin in [28].
TLTL, as argued by D’Souza, can be considered a natural
counterpart of LTL in the timed setting. Consequently, our
developments in this section are for TLTL specifications.

TLTL is very well suited for expressing simple yet typical
bounded response properties, such as requiring that an event
a occurs in three time units.

In LTL, such a property is typically expressed as the formula
ϕ ≡ XXXa. However, this formulation presumes a direct cor-
respondence of discrete time delays with subsequent positions
in the word. Actually, what should really be expressed is that
the eventa occurs after three time unitsregardless how many
other events between before.

A main feature of TLTL is that it does not impose any
mutual dependency between the frequency of the occurring
events on the one hand side, and between the corresponding
time stamps on the other hand. Henceforth, TLTL is especially
suitable for specifying properties ofasynchronoussystems.

After recalling standard TLTL syntax and semantics, we
introduce a three-valued semantics for evaluating standard
TLTL formulae on finite timed words, following the same
rationale as for LTL3 (Sections IV-A and IV-B). In Section IV-
C, we continue with a detailed overview on the now more
involved monitor construction, which spans over Sections IV-
D throughout IV-F. We conclude the real-time case with
Section IV-G on issues arising in adapting our monitor con-
struction to specific platforms.

A. Preliminaries

Let us fix an alphabetΣ of events for the rest of this section.
In the timed setting, the occurrence of every eventa ∈ Σ is
associated with a corresponding time stamp and therefore a
timed word is a sequence(a0, t0)(a1, t1) . . . of timed events
(Σ × R

≥0):

Definition 20 (Timed Word [48]) An (infinite) timed
word w over the alphabetΣ is an (infinite) sequence
(a0, t0)(a1, t1) . . . of timed events (ai, ti) consisting of
symbolsai ∈ Σ, and non-negative numbersti ∈ R

≥0, such
that

• for eachi ∈ N, ti < ti+1 holds (strict monotonicity), and
such that,

• in case of infinite words, for allt ∈ R
≥0 there exists an

i ∈ N with ti > t (progress).

The lengthof a timed word is denoted with|w| where we
set|w| = ∞ for an infinite word and|w| = n for a finite word
w = (a0, t0) . . . (an−1, tn−1).

To simplify notation, we abbreviate(Σ × R
≥0) by TΣ .

Further, we defineTΣ ∗ and TΣω as the set of finite and
infinite timed words, respectively, i.e., every word inTΣ ∗

satisfies strict monotonicity and every word inTΣω satisfies
both, strict monotonicity as well as progress.

We use finite and infinite continuationsof finite timed
words throughout the section. Thereby, the strict monotonicity
of timed words is required to hold, i.e., for a finite timed
word u = (a0, t0) . . . (ai, ti) ∈ TΣ ∗, we consider only
those timed words as continuations which start with a timed
event(ai+1, ti+1) such thatti+1 > ti holds. For the sake of
simplicity, when we refer to some continuation ofu, we do
not explicitly mention this conditionti+1 > ti.

Furthermore, forw as above, we call its sequence of events
(the projection to the first component) theuntimed wordof
w, denoted withut(w) = a0a1 . . . and we writeut(L) =
{ut(w) | w ∈ L} for a finite or infinite timed language with
L ⊆ TΣ ∗ or L ⊆ TΣω, respectively.

Every eventa ∈ Σ is associated with anevent-recording
clock, xa, and anevent-predicting clock, ya. Given an (infinite)
timed wordw, the value of the event-recording clock variable
xa at positioni of w equalsti−tj, wherej is the last position
precedingi such thataj = a. If no such position exists, then
xa is assigned the undefined value, denoted by⊥. The event-
predicting clock variableya at positioni equalstk − ti, where
k is the next position afteri such thatak = a. If no such
position exists, again, the variable is assigned⊥.

We compute the values of event-recording and event-
predicting clocks with the following two functions which take
a timed wordw = (a0, t0)(a1, t1) · · · ∈ TΣ ∗∪TΣω, an event
a ∈ Σ, and an indexi as arguments:

last(w, a, i) = ti − tj iff aj = a and 0 ≤ j < i
and ak 6= a for all j < k < i

last(w, a, i) = ⊥ iff aj 6= a for all 0 ≤ j < i
next(w, a, i) = tj − ti iff aj = a and i < j < |w|

and ak 6= a for all i < k < j
next(w, a, i) = ⊥ iff aj 6= a for all i < j < |w|

For the set of all event-clocksCΣ = {xa, ya | a ∈ Σ}, we
summarise these evaluation rules with the next definition:

Definition 21 (Clock Valuation Function) A clock valua-
tion function γi : CΣ → T⊥ with T⊥ = R

≥0 ∪ {⊥} over
a timed wordw = (a0, t0)(a1, t1) · · · ∈ TΣ ∗ ∪ TΣω assigns
a positive real or the undefined value⊥ to each clock variable
corresponding to positioni such that the following holds:

γi(xa) = last(w, a, i)
γi(ya) = next(w, a, i)

The set of clock valuation functionsover the clockCΣ is
denoted withVΣ.

Thus,γi describes the evaluation of the clocks inCΣ at time
ti—but it ignores the eventai: γi(xai

) = last(w, ai, i) does
not evaluate to 0 but refers to the penultimate occurrence of
ai (if no such occurrence exists, thenγi(xai

) = ⊥). Likewise
γi(yai

) = next(w, ai, i) does not evaluate to 0 but refers
to the next future occurrence ofai (analogously, if no such
occurrence exists, thenγi(yai

) = ⊥). Therefore, at the time
ti when the eventai occurs, we refer to the last past and the
next future occurrence ofai and ignore its current occurrence:
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Remark 22 Given a timed wordw = (a0, t0)(a1, t1) · · · ∈
TΣ ∗∪TΣω, and a corresponding sequence of clock valuation
functions γ0, γ1, . . . , note that eachγi describes the time
distances to the last preceding and next subsequent events
relative to time instantti—but it is independent from the
current eventai.

This definition leads to the followinginitial clock valuation
γ0 which holds before the first timed event(a0, t0) has been
processed:

• γ0(xa) = ⊥ for all xa, and
• γ0(ya) = next(w, a, 0).

Thus, even the initial clock valuation functionγ0 (as well as
every subsequent clock valuation functionγi) depends on the
entire wordw becauseγ0(ya) = ⊥ holds iff a does not occur
in w at all. In the context of runtime verification, this imposes
a problem, since a monitor observing a running system is
unable to access future events—and consequently—it cannot
evaluate the clock valuation function. To solve this problem,
we introduce in Section IV-Dsymbolictimed runs and prove
their appropriateness for our needs.

Clock valuation functions are defined with respect to a
timed word and hence the strict monotonicity property and the
potential infinite length of timed words imply the following
two properties upon valid clock valuation functions:

Proposition 23 (Properties of Clock Valuation Functions)
Let γ ∈ VΣ be a clock valuation function over the clocksCΣ.
Then the following two conditions hold:

(a) Non-Coincidence.For all eventsa 6= a′ ∈ Σ, γ(xa) 6=
γ(xa′) and γ(ya) 6= γ(ya′).

(b) Continuity.If γ refers to an infinite timed word, then there
exists at least one clockya ∈ CΣ such thatγ(ya) 6= ⊥
holds.

Proof: Property (a), non-coincidence, holds because strict
monotonicity disallows two events(ai, ti)(ai+1, ti+1) with
ti = ti+1. Property (b), continuity, holds, since each infinite
word has an infinite supply of events and hence there must
occur some event in the future.

We use the following notation to manipulate a clock valu-
ation functionγ ∈ VΣ:

• For a clockc ∈ CΣ and a valuev ∈ T⊥ = R
≥0 ∪ {⊥}

we defineγ[c = v] ∈ VΣ with

γ[c = v](c′) = γ(c′) iff c′ 6= c
γ[c = v](c′) = v iff c′ = c

• For δ ∈ R
≥0, we define

(γ ± δ)(xa) = γ(xa) ± δ iff γ(xa) 6= ⊥
(γ ± δ)(xa) = ⊥ iff γ(xa) = ⊥
(γ ± δ)(ya) = γ(ya) ∓ δ iff γ(ya) 6= ⊥
(γ ± δ)(ya) = ⊥ iff γ(ya) = ⊥

where we requireγ(ya) ≥ δ for all event-predicting
clocksya in case ofγ + δ andγ(xa) ≥ δ for all event-
recording clocksxa in case ofγ − δ. Otherwiseγ ± δ is
invalid.

To constrain the value of a clock at a certain point in
time, i.e., to constrain the valuations of aγi, we need to
formulate constraints overT⊥. To do so, we define the set
I to encompass the intervals over the positive realsR

≥0 and
the singleton{⊥}.

Definition 24 (Intervals) The setI of intervalscontains all
intervals of the form[(l, r)] where [( and )] either be( or [,
respectively) or ] and with l, r ∈ N and l < r except for
intervals of the form[l, r] where we requirel ≤ r instead.I
also contains all intervals of the form[(l,∞) for l ∈ N. These
intervals are interpreted as subsets fromR≥0 in the usual way.

Furthermore,I contains the interval[⊥,⊥] with [⊥,⊥] =
{⊥}.

For the sake of simplicity, we sometimes write the valuet
for an interval[t, t], in particular in case of clock constraints, as
defined next. The clock constraints over the clocks inCΣ rely
on the intervalsI as their basis: Each such clock constraint
requires a number of clocks inCΣ to assume corresponding
values in a respective intervalI ∈ I.

Definition 25 (Clock Constraint) Let Σ be a finite alphabet
of events with the associated setCΣ of clocks. Then aclock
constraint is a partial functionψ : CΣ → I. If ψ(c) is
undefined, we writeψ(c) = undef.

A clock valuation functionγ ∈ VΣ over the clocksCΣ

satisfiesa clock constraintψ, iff γ(c) ∈ ψ(c) holds for all
c ∈ CΣ with ψ(c) 6= undef. Then we writeγ |= ψ.

Theset of constraintson the clocksCΣ is denoted withΨΣ

and contains all satisfiable constraintsψ.

Thus, ifψ(c) = undef for a clockc ∈ CΣ, thenψ does not
constrain the value ofc, i.e., the valueγ(c) for the clockc of
a clock valuationγ with γ |= ψ can be chosen arbitrarily.

We define the set of constraintsΨΣ to contain only the
satisfiable constraints to meet Proposition 23: Every clockval-
uation function must satisfy non-coincidence and continuity—
and hence each clock constraintψ ∈ ΨΣ must not enforce
coincident or non-continuous clock valuation functions:

Remark 26 (Properties of Clock Constraints) Each clock
constraint ψ ∈ ΨΣ has a non-coincident and continuous
solution.

The reason for using intervals in the definition of the
clock constraints is twofold: First, we can use them for the
definition of both, TLTL and the corresponding automaton
model, i.e., event-clock automata. And second, we use the fact
that ΨΣ is closed under conjunction for an efficient scheme
to symbolically execute event-clock automata:

Remark 27 (Conjunction of Clock Constraints) If the two
clock constraintsψ0, ψ1 ∈ ΨΣ are consistent, i.e., there exists
a clock valuation functionγ ∈ VΣ such thatγ |= ψi for
i = 0, 1, then theirconjunctionψ = ψ0 ∧ ψ1 is defined with

ψ(c) = ψ0(c) ∩ ψ1(c) iff ψi(c) 6= undef for i = 0, 1
ψ(c) = ψi(c) iff ψi(c) 6= undef

and ψ1−i(c) = undef

ψ(c) = undef iff ψi(c) = undef for i = 0, 1
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Above, we requireγ |= ψi for i = 0, 1 for ψ0 ∧ ψ1 to
be defined and valid—since thenγ |= (ψ0 ∧ ψ1) holds and
ψ0 ∧ψ1 has indeed a non-coincident and continuous solution.

We also use the notationψ[c = I] for ψ ∈ ΨΣ, c ∈ CΣ,
and I ∈ I, to denote the clock constraint which agrees with
ψ for all clocks c′ 6= c and yieldsI for c. Hence we have
ψ[c = I](c′) = ψ(c′) for c′ 6= c and ψ[c = I](c) = I.
Analogously,ψ[c = undef] is undefined forc and agrees with
ψ for all other clocksc′ 6= c. Finally, ψ + δ with δ ∈ R

≥0 is
defined as

(ψ + δ)(xa) = [(l + δ, r + δ)] iff ψ(xa) = [(l, r)]
(ψ + δ)(xa) = ψ(xa) iff ψ(xa) ∈ {[⊥,⊥] , undef}
(ψ + δ)(ya) = [(l−̇δ, r − δ)] iff ψ(ya) = [(l, r)]
(ψ + δ)(ya) = ψ(ya) iff ψ(ya) ∈ {[⊥,⊥] , undef}

where we usea−̇b = max{0, a − b} and where we require
that no interval(ψ + δ)(ya) = [(l−̇δ, r − δ)] becomes empty.
Otherwise, if at least one interval becomes empty,ψ + δ is
invalid.

In what follows, we use some basic relationships between
clock valuation function and clock constraints:

Fact 28 (Clock Valuation Functions & Constraints) Let
γ ∈ VΣ be a clock valuation function and letψ ∈ ΨΣ be a
clock constraint such thatγ |= ψ holds.

(a) If γ+ δ is valid, thenψ+ δ is valid as well andγ+ δ |=
ψ + δ holds.

(b) For a clock c ∈ CΣ and a valuev ∈ T⊥ with v ∈ I for
some intervalI ∈ I, γ[c = v] |= ψ[c = I] holds.

(c) For a clock c ∈ CΣ and an arbitrary valuev ∈ T⊥
γ[c = v] |= ψ[c = undef] holds.

B. Syntax and Semantics of TLTL3

For a finite setΣ of events, we introduce the formulae of
TLTL by adding to LTL two new forms of atomic formulae:
First, ⊳a ∈ I asserts that the time sincea ∈ Σ has occurred
the last time lies within the intervalI ∈ I. And second,⊲a ∈
I analogously asserts that the time untila occurs again lies
within I. The semantics of⊳a ∈ I is thatγ(xa) ∈ I must hold
at the point of evaluation, and analogously, in case of⊲a ∈ I,
it is required thatγ(ya) ∈ I holds. This timed variant of LTL
is taken from [29] where is called LTLec.

Definition 29 (TLTL Formulae [29]) The set offormulaeϕ
of TLTL is defined by the grammar

ϕ ::= true | a | ⊳a ∈ I | ⊲a ∈ I | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ | Xϕ,

for a ∈ Σ and I ∈ I.

Again, as in the discrete-time case, we use three abbrevia-
tions in our notation:ϕ∧ψ for ¬(¬ϕ∨¬ψ), Fϕ for true U ϕ,
andGϕ for ¬(true U ¬ϕ). Additionally, we write⊳a /∈ I
for ¬(⊳a ∈ I) and ⊲a /∈ I for ¬(⊲a ∈ I) respectively.
The semantics of the untimed operators of TLTL formulae
is defined as it is for (discrete time) LTL. By adding the
semantics for⊳a ∈ I and ⊲a ∈ I, we obtain an inductive
definition of the semantics of TLTL over infinite timed words:

Definition 30 (Semantics of TLTL [29]) Let w ∈ TΣω be
an infinite timed word withw = (a0, t0)(a1, t1) . . . , and let
i ∈ N

≥0. Then the following holds:

w, i |= true

w, i |= ¬ϕ iff w, i 6|= ϕ
w, i |= a iff ai = a
w, i |= ⊳a ∈ I iff γi(xa) ∈ I
w, i |= ⊲a ∈ I iff γi(ya) ∈ I
w, i |= ϕ1 ∨ ϕ2 iff w, i |= ϕ1 or w, i |= ϕ2

w, i |= ϕ1Uϕ2 iff ∃k ≥ i with w, k |= ϕ2

and ∀l : (i ≤ l < k ∧ w, l |= ϕ1)
w, i |= Xϕ iff w, i+ 1 |= ϕ

Finally, we setw |= ϕ iff w, 0 |= ϕ.

To illustrate the definition of the syntax and the semantics
of TLTL, we give some example properties.

Example 31 (TLTL properties)
• G(¬alive→ ⊲alive ∈ [0, 5]) means that whenever some

event different fromalive occurs, then the eventalive
must occur within 5 time units again. Note that this exam-
ple does allow a sequence. . . , (alive, ti)(alive, ti+1) . . .
with ti+1−ti > 5, i.e., two adjacent occurrences ofalive
may be separated by an arbitrary period of time.

• G(⊲alive ∈ [0, 5]) requires that from every given point
in time, alive will occur within the next 5 time units. In
this example, the subword. . . , (alive, ti)(alive, ti+1) . . .
with ti+1−ti > 5 is ruled out, sinceγi(yalive) = ti+1−ti
is required to be within[0, 5].

• G(req → ⊲ack ∈ [0, 5]) means that if a request event
req arrives, then it must be handled with an acknowledge
eventack within 5 time units.

• ⊲alive ∈ [0, 2]Udone states that the eventdone has to
occur eventually and that until then, the eventalive must
occur every 2 time units.

• G(req → ⊲req /∈ [0, 5]) requires that two subsequent
request eventsreq are separated by strictly more than 5
time units.

• G(actuator → ⊳error ∈ [⊥,⊥]) states that if an
actuator event occurs, then previously, noerror has
occurred (equivalently, we could writeG(error →
G¬actuator) in standard LTL).

Analogously to the discrete-time case, we now define a 3-
valued semantics for TLTL, yielding the logic TLTL3.

Definition 32 (Semantics of TLTL3) Let u ∈ TΣ∗ denote a
finite timed word. Thetruth valueof a TLTL3 formulaϕ with
respect tou, denoted with[u |= ϕ], is an element ofB3 and
defined as follows:

[u |= ϕ] =











⊤ if ∀σ such thatuσ ∈ TΣω uσ |= ϕ

⊥ if ∀σ such thatuσ ∈ TΣω uσ 6|= ϕ

? otherwise.

In the above definition, the truth value of every possible
infinite continuationσ of a given finite timed wordu is eval-
uated according to TLTL-semantics. Sinceσ is a continuation
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of u = (a0, t0) . . . (ai, ti), we only have to consider those
infinite wordsσ which start with a timed event(ai+1, ti+1)
such thatti+1 > ti holds.

To illustrate the three-valued semantics, we discuss the
evaluation of the first four example properties from above.

Example 33 (TLTL3 Evaluation)
• G(¬alive → ⊲alive ∈ [0, 5]) evaluates always to⊤ if

Σ = {alive} holds. If Σ contains any other element,
then the TLTL3-semantics yields either⊥ or ?: If an event
a 6= alive occurred andalive did not occur within 5 time
units, then the semantics evaluates to⊥. Otherwise, the
result is?.

• G(⊲alive ∈ [0, 5]) evaluates either to⊥ or ? again. If the
evaluated finite prefixu contains a period of time which
is longer than 5 time units and which does not contain a
alive action, then the result is⊥. Otherwise, it is?.

• G(req → ⊲ack ∈ [0, 5]) yields⊥ if there occurs areq
event which is not followed by anack event within 5 time
units. Otherwise the result is?.

• ⊲alive ∈ [0, 2]Udone evaluates to? if done has not
occurred so far while two subsequent occurrences of
alive have never been separated by more than 2 time
units. If done occurred already andalive has been
signalled on time beforehand, then the formula evaluates
to ⊤. Finally, if there are two subsequent occurrences of
alive which are separated by strictly more than 2 time
units beforedone occurred, then the formula evaluates
to ⊥.

C. Overview on TLTL3 Monitoring

In this section, we outline our monitor construction for
TLTL3 which we concretise in the subsequent sections. To
build a monitorMϕ for a given TLTL3-propertyϕ, we follow
roughly the approach taken in the discrete-time case. Thus,
we look for a procedure to determine whether there exists
an accepting and/or rejecting infinite continuation of a given
finite prefix. To obtain such a procedure, we generate for
a TLTL3-propertyϕ the two event-clock automataAϕ

ec and
A¬ϕ

ec corresponding toϕ and its negation¬ϕ, which accept
the timed words satisfying and respectively violatingϕ [49].
Then, following the concepts of the discrete-time case, we run
both of them in parallel in order to check whether there exist
infinite continuations which letAϕ

ec and/orA¬ϕ
ec accept.

However, in contrast to the discrete-time setting, this pro-
cedure facespredicting clocksand a more complexempti-
ness checkas additional obstacles. Both issues are addressed
separately in Sections IV-D and IV-E, respectively. Then in
Section IV-F, having suitable techniques at hand, we build
the final monitor, following closely the scheme used in the
discrete-time setting.

Symbolic Runs of Event-Clock Automata (Section IV-D):
As starting point for the monitoring procedure, we recall the
Definition of event-clock automata (Definition 34) and their
timed runs (Definition 35) over infinite words. In these timed
runs, predicting clocks anticipate the time until some event
occurs the next time in the future. Given a fixed infinite

timed word, such an approach does not impose a problem,
however, having only access to a finite prefix of a subsequently
continued timed word, it is not possible to evaluate predicting
clocks directly. Instead, our monitor executes the event-clock
automaton symbolically by maintaining pairs of automaton
states and symbolic clock valuations (Definition 36) which
describe the viable values for each predicting clock as clock
constraint.

After developing a procedure to implement a transition
symbolically (Figure 6) and proving that this procedure is
indeed abstracting all concrete transitions (Lemma 43), we
define symbolic timed runs (Definition 41) of event-clock
automata. These symbolic timed runs are not requiring any
information beyond the currently known finite prefix of the
observed timed word (Remark 42) and are therefore a suitable
means for runtime verification. Then we prove that every
timed run is abstracted by a corresponding symbolic timed
run (Lemma 43).

It would remain to show the converse, i.e., that every sym-
bolic timed run is concretised by a corresponding timed run.
However, this is not the case as there are spurious symbolic
timed runs which cannot be concretised (Proposition 44). But
we can use a backward simulation argument to show that every
individual symbolic transition has a corresponding concrete
transition (Lemma 45). At this point, we can prove that, given
an infinite timed word, every symbolic timed run over some
finite prefixof the given word can be continued by an ordinary
infinite timed run iff there exists a timed run over the entire
infinite word (Theorem 46). This leads directly to a criterion
for runtime verification (Corollary 47): Given a finite prefix
of a timed word, this prefix can be continued into an accepted
word iff there exists a symbolic timed run leading to a pair of
a state and a symbolic clock valuation which gives rise to a
non-empty language. Hence, we have to address the emptiness
check for symbolic states, as discussed in the next section.

Emptiness Check for Symbolic States (Section IV-E):
Thus, after reading a finite timed word, we have a pair
with a state of the original event-clock automaton and a
symbolic clock valuation describing the viable valuationsof
each predicting clock. Now we have to check whether there
exists an infinite timed word which continues the given prefix
and which leads the automaton to acceptance. Starting with
general quotient automata (Definition 48) which work with
any time-abstract bisimulation relation (Definition 49, [50]),
and the emptiness check based upon such automata (Theo-
rem 50, [48]), we obtain a look-up table which answers the
question whether a pair consisting of a state and a bisimulation
equivalence class has an empty language or not. To use this
look-up table, we express symbolic clock valuations as the
union of a set of equivalence classes of the underlying time-
abstract bisimulation (following the condition given in Corol-
lary 51). Finally, we recall the region equivalence for event-
clock automata (Definition 52, [51], [48]) as one particular
instance of a bisimulation relation and show how to compute
a set of regions which covers a given symbolic clock valuation.

A Monitor Procedure for TLTL3 (Section IV-F): As in
the discrete-time setting, given a propertyϕ we run two
automata in parallel, namely one forϕ and another one for¬ϕ.
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We symbolically execute the event-clock automatonAϕ
ec and

check the emptiness for each reached pair consisting of a state
and a symbolic clock valuation. In parallel, we do the same
with the automatonA¬ϕ

ec corresponding to the negated property
¬ϕ. Then we combine the results of these two evaluations
following directly the semantics of TLTL3 to obtain the final
verdict.

D. Symbolic Runs of Event-Clock Automata

We first recall event-clock automata: For a given finite
alphabetΣ and a corresponding setCΣ of clocks, an event-
clock automaton is a finite state automaton whose edges are
annotated both with input symbols fromΣ and with clock
constraints fromΨΣ. Intuitively, such an edge is enabled after
reading some timed word, if the corresponding clock valuation
function satisfies the clock constraint of the edge in concern.

Definition 34 (Event-Clock Automaton [30] as in [29])
Let Σ be a finite alphabet andCΣ the corresponding set
of event-recording and event-predicting clocks. Then an
event-clock automatonis defined asAec = (Σ, Q,Q0, E, F )
with the following components:

• Q is a finite set of states,
• Q0 ⊆ Q is the set of initial states,
• F ⊆ 2Q is the set of accepting state sets following

the generalised B̈uchi acceptance condition, as explained
below, and

• E ⊆ Q× Σ × ΨΣ ×Q as the finite set of transitions.
We further defineKAec

as the biggest constant appearing in
the constraints of an event-clock automatonAec.

For the sake of simplicity, we writeK instead ofKAec

whenAec is clear from the context. An edgee = (q, a, ψ, q′)
represents a transition from stateq upon eventa to stateq′,
where the clock constraintψ then specifies whene is enabled.
A sequence of pairs consisting of states and clock valuation
functions which corresponds to a sequence of respectively
enabled transitions gives rise to a timed run.

Definition 35 (Timed Run) A timed run θ of an automa-
ton Aec = (Σ, Q,Q0, E, F ) over a timed wordw =
(a0, t0)(a1, t1) · · · ∈ TΣω is an infinite sequence of state and
clock valuation pairs(q0, γ0)(q1, γ1) . . . such that

• q0 is an initial state, i.e.,q0 ∈ Q0,
• eachγi assumes values according to Definition 21 (thus
γ0 must be initial), and such that

• there exists a transition(qi, ai, ψ, qi+1) ∈ E with γi |= ψ
for all i ≥ 0.

A timed run θ of an automatonAec over a timed word
w ∈ TΣω is called accepting, iff for each Fi ∈ F , a state
q ∈ Fi exists such thatq occurs infinitely often inθ. Finally,
a timed wordw is acceptedby Aec, i.e., w ∈ L(Aec), iff
there exists an accepting runθ of Aec over w. The use of
extended B”uchi acceptance condition instead of the standard
one is due to the construction given in [49].

For runtime verification, event-predicting clock variables
pose a problem, since the time to the next future occurrence of

an actiona is predicted, while this information is not available
yet—at least in the online monitoring approach. We solve
this problem by representing the valuation of predicting clock
variablessymbolically.

When the automaton takes a transition(qi, ai, ψ, qi+1), then
the clock constraintψ ∈ ΨΣ either leaves a variablec ∈ CΣ

unconstrained (i.e.,ψ(c) = undef) or associates a variablec
with an intervalI ∈ I (i.e.,ψ(c) = I) to requireγi(c) ∈ I. In
the course of a symbolic run of an event-clock automaton, we
do not know the actual value of any event-predicting clock and
therefore we cannot evaluate any interval constraintγi(ya) ∈ I
which involves an event-predicting clockya. However, we can
assume that each such clock constraint will be satisfied in the
future and add it to a list of constraints to be checked later on.
But instead of maintaining each such constraint individually,
we only maintain their conjunction—which is again a single
clock constraint (see Remark 27).

Thus, when we symbolically execute an event-clock au-
tomatonAec = (Σ, Q,Q0, E, F ), we use pairs(q,Γ) with
Γ ∈ ΨΣ instead of pairs(q, γ) with γ ∈ VΣ. During such
a symbolic execution, we always know the values of event-
recording clocks while we do not know the values of event-
predicting clocks. Hence, the clock constraintΓ in such a
pair (q,Γ) determines a single value for each event-recording
clock usingΓ(xa) = [l, l] with l ∈ T⊥. In case of an event-
predicting clock,Γ describes the valid range of values which
are consistent with the constraints that occurred so far. Thus,
Γ(ya) is either undefined or evaluates to an arbitrary interval
from I. For event-recording and event-predicting clocks, the
interval [⊥,⊥] is allowed in symbolic clock valuations: It
means that the corresponding event either did not occur in
the past or will not occur in the future.

This discussion yields the following definition:

Definition 36 (Symbolic Clock Valuation) A symbolic
clock valuation is a clock constraintΓ ∈ ΨΣ where
Γ(xa) = [l, l] with l ∈ T⊥ holds for all event-recoding clocks.

Intuitively, a clock valuation functionγ satisfies a symbolic
clock valuationΓ, i.e., γ |= Γ, iff γ would have satisfied
all guards subsumed byΓ during a symbolic run of the
corresponding automaton.

When we symbolically run an event-clock automaton, our
algorithm has to maintain a set of pairs(q,Γ). This set contains
the pairs which arereachable from the initial set of pairs
{(q0,Γ0) | q0 ∈ Q0}. Herein,Γ0 is the initial symbolic clock
valuation:

Definition 37 (Initial Symbolic Clock Valuation) The ini-
tial symbolic clock valuationΓ0 for a set CΣ of clocks
evaluates toΓ0(xa) = [⊥,⊥] for all event-recoding clocks
xa and setsΓ0(ya) = undef for all event-predicting clocks
ya.

But before describing symbolic runs, let us first consider
how to compute the sequence of clock valuation functions
γ0, γ1, . . . for a given timed wordw = (a0, t0)(a1, t1) . . .
This sequence can be computed directly, following their defini-
tion. However, in case of runtime verification, we are interested
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(a, 2)(b, 4)(b, 5)(a, 7)(b, 8)(a, 9)(b, 11) . . .

γ3

γ̄3

(a, 2)(b, 4)(b, 5)(a, 7)(b, 8)(a, 9)(b, 11) . . .

γ4

γ̄4

i
γi γ̄i

xa ya xb yb xa ya xb yb

-1 —- ⊥ 2 ⊥ 4
0 ⊥ 5 ⊥ 2 0 5 ⊥ 2
1 2 3 ⊥ 1 2 3 0 1
2 3 2 1 3 3 2 0 3
3 5 2 2 1 0 2 2 1
4 1 1 3 3 1 1 0 3

Fig. 5. Incremental and Ordinary Clock Valuations

in computing these sequencesincrementally to derive an
incremental scheme for the computation of symbolic timed
runs.

For this, let us understand the sequences of clock valuation
functions in full detail. In Figure 5, we show a prefix of a
timed word over the alphabetΣ = {a, b}. Hence, every clock
valuationγi refers two four timed events, namely to the last
respective occurrence ofa and b, as expressed by the values
of xa andxb, and to the next occurrence of these two events,
described byya andyb. Thereby, the arrows in Figure 5 denote
the events referred to byγ3 and γ4, respectively (we will
explainγ̄3 andγ̄4 in the very next paragraphs). More precisely,
the solid arrows show the events referred byxa andya while
the dashed ones correspond toxb and yb. So for example,
γ3(xa) = 5 sinceγ3 refers to(a, 2) while t3 = 7. In case of
γ4, we draw an arrow with a thick pen if the referred event
changed fromγ3 to γ4, e.g.,xa refers inγ4 to (a, 7) while
it did refer to (a, 2) in γ3. Furthermore, the left part of the
table in Figure 5 shows the clock valuationsγi for i = 0, . . . , 4
where we also typeset those values in boldface which are based
on a newly referred event.

In general, to transit from(qi, γi) to (qi+1, γi+1), the timed
event(ai, ti) is processed in following some enabled transition
e = (qi, ai, ψ, qi+1). Thus, we attempt to computeγi+1 from
γi and(ai, ti). But Definition 21 of clock valuation functions
leads to the equation

γi+1 = (γi + δi+1)[xai
= δi+1][yai+1 = next(w, ai+1, i+ 1)]

(1)
for i ≥ 0 where we useδi+1 = ti+1 − ti as abbreviation.
Therein, the incremental computation ofγi+1 involves not
only the timed event(ai, ti) but also the next timed event
(ai+1, ti+1):

• The reset[xai
= δi+1] uses the time stampti+1.

• The reset[yai+1 = next(w, ai+1, i + 1)] refers toai+1

and toti+1.

This fact is reflected in the table of Figure 5: The values of
xai

and ofyai+1 with respect toγi+1 are typeset in bold face,
since they both refer to different events than they did with
respect toγi.

Therefore, we cannot define a relation(q, γ)
(a,δ)
−→ (q′, γ′)

describing the transition from a pair(q, γ) to a pair (q′, γ′)
on the occurrence of an actiona after a delayδ without a
reference to the next subsequently occurring event.

Since this problem persists at the symbolic level as well,

i.e., we cannot define a relation(q,Γ)
(a,δ)
−→ (q′,Γ′) without

referring to the next subsequently occurring event, we have
to get rid of this look-ahead. To do so, we use asequence of
incremental clock valuation functions, denoted with̄γi, in the
incremental and symbolic execution of event-clock automata.
Since the original definition of clock valuation functions is
necessary to define the semantics of TLTL and TLTL3, as
well as to define timed runs, we could not use incremental
valuation right from the beginning. Instead, depending on the
context, we have to switch between both definitions.

Definition 38 (Incremental Clock Valuation Function)
For a finite alphabet Σ and an associated set
CΣ = {xa, ya | a ∈ Σ} of clocks, an incremental
clock valuation function̄γi : CΣ → T⊥ over a timed word
w = (a0, t0)(a1, t1) · · · ∈ TΣ ∗ ∪TΣω assigns a positive real
or the undefined value⊥ to each clock variable corresponding
to positioni such that the following holds:

γ̄i(xa) = last(w, a, i) iff ai 6= a
γ̄i(xa) = 0 iff ai = a
γ̄i(ya) = next(w, a, i)

Thus,γ̄i describes the values of the clocks fromCΣ directly
after the timed event(ai, ti) occurred, i.e.,̄γi(xai

) = 0. In
contrast,γi ignores the timed event(ai, ti), i.e., γi(xai

) =
last(w, ai, i) which evaluates either toti − tj for the largest
j < i with aj = ai or to ⊥ if no suchj exists.

Hence, in Figure 5, we show the clock valuation functions
γ3 andγ4 as acursorwhich isplaced uponsome timed event,
whereas the incremental clock valuation functionsγ̄3 and γ̄4

are shown as acursor which is placed betweentwo timed
events.

Since γ̄0 already depends on the event(a0, t0), we need
an initial valuation function precedinḡγ0. We introduce the
initial incremental clock valuation function̄γ−1 and define it
with respect to an infinite timed wordw ∈ TΣω as follows:

• γ̄−1(xa) = ⊥ for all xa,
• γ̄−1(ya) = tj for j ≥ 0 andaj = a and whereak 6= a

holds for all0 ≤ k < j, and
• γ̄−1(ya) = ⊥ if a does not occur inw at all.

Figure 5 shows the valuations of the incremental clock
valuation functionsγ̄i in comparison to the original and
corresponding clock valuation functionsγi. Note that in case
of γ̄i, either both,xa andya, orxb together withyb, are chang-
ing their referred events. This is always the case, since the
incremental computation of̄γi+1 only involves(ai+1, ti+1)—
and does not refer to(ai, ti) anymore.

Assume that an automaton at(qi, γ̄i−1) is about to process
the timed event(ai, ti) from the timed wordw with transition
e = (qi, ai, ψ, qi+1). To do so, it must first computeγi to
check whethere is enabled, i.e.,γi |= ψ. By following the
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definitions, we find that

γi = (γ̄i−1 + δi)[yai
= next(w, ai, i)] (2)

with δi = ti−ti−1 for i > 0 andδ0 = t0. If γi |= ψ holds, the
transition is enabled and we compute the next pair(qi+1, γ̄i)
with

γ̄i = γi[xai
= 0] . (3)

Thus, we use

γ̄i = (γ̄i−1 + δi)[yai
= next(w, ai, i)][xai

= 0] (4)

for the incremental computation of̄γi. Note that Equation (4)
refers to future events beyond(ai, ti) only in terms of
next(w, ai, i). Hence, using Equations (2) and (4), we write

(q, γ̄)
(a,δ)
−→ (q′, γ̄′)

for an event-clock automatonAec = (Σ, Q,Q0, E, F ) with
q, q′ ∈ Q and γ̄, γ̄′ ∈ VΣ iff there exits a transitione =
(q, a, ψ, q) and av ∈ T⊥ such thatγ̄ + δ is defined (see the
discussion after Remark 27), and such that(γ̄+ δ)[ya = v] |=
ψ as well asγ̄′ = (γ̄ + δ)[ya = v][xa = 0] holds.

Furthermore, we expand the transition relation to finite and
infinite timed words:(qi, γ̄i−1)

u
−→ (qi+k, γ̄i+k−1) holds for

a finite timed wordu = (a0, t0) . . . (ak−1, tk−1) ∈ TΣk if
there exists a sequence of pairs(qi, γ̄i−1) . . . (qi+k, γ̄i+k−1)

with (qi+j , γ̄i+j−1)
(aj ,δj)
−→ (qi+j+1, γ̄i+j) for 0 ≤ j ≤ k − 1

and δ0 = t0 and δj = tj − tj−1 for j > 0. Note that for
(qi, γ̄i−1)

u
−→ (qi+k, γ̄i+k−1) to hold,u must be compatible

to γ̄i−1, i.e., the evaluations of the event-predicting clocks
must match the occurring events inu.

In case of an infinite wordσ = (a0, t0) · · · ∈ TΣω, we write
(qi, γ̄i−1)

σ
−→ if there exists a sequence of pairs(qi, γ̄i−1) . . .

with (qi+j , γ̄i+j−1)
(aj ,δj)
−→ (qi+j+1, γ̄i+j) for 0 ≤ j and again

with δ0 = t0 andδj = tj − tj−1 for j > 0.
If the sequence of statesqi, qi+1 . . . is accepting, then

we write (qi, γ̄i−1)
σ

−→↓. As in the finite case,σ must be
compatible toγ̄i−1 for (qi, γ̄i−1)

σ
−→ to hold.

Definition 39 (Continuation Language) Let Aec =
(Σ, Q,Q0, E, F ) be an event-clock automaton. Then we
define for a pair (q, γ̄) with q ∈ Q and γ̄ ∈ VΣ the
continuation languageL(Aec(q, γ̄)) of Aec with

L(Aec(q, γ̄)) =
{

σ ∈ TΣω | (q, γ̄)
σ

−→↓
}

We now raise incremental clock valuation functions and
their transitions to the symbolic level: In the definition of
symbolic runs of event clock automata, we use symbolic
clock valuations that are abstractions of incremental clock
valuation functions. We denote theseincremental symbolic
clock valuationswith Γ̄−1, Γ̄0, . . .

Given a pair(qi, Γ̄i−1), a transitione = (qi, ai, ψ, qi+1),
and a single timed event(ai, ti), we have to check whether
the transition is enabled, and if so, we have to compute
the corresponding new pair(qi+1, Γ̄i). To check whether the
transition is enabled and to compute the resulting symbolic
state, we use the proceduresymb step((qi, Γ̄i−1), δ, e), shown

procedure symb step((qi, Γ̄i−1), δ, e)
{ with e = (qi, ai, ψ, qi+1) }

begin
{ --------------------------------------- }
{ step 1: elapse time }
if Γ̄i−1 + δ is invalid then

return constraint violation ;
Γ̄′

i−1 := Γ̄i−1 + δ ;

{ --------------------------------------- }
{ step 2: reset yai

}
if Γ̄′

i−1(yai
) 6= undef and 0 /∈ Γ̄′

i−1(yai
) then

return constraint violation ;
Γi := Γ̄′

i−1[yai
= undef] ;

{ --------------------------------------- }
{ step 3: process guard }
if not (∃γ with γ |= Γi and γ |= ψ) then

return constraint violation ;
Γ′ := Γi ∧ ψ ;

{ --------------------------------------- }
{ step 4: reset xai

}
Γ̄i := Γ′[xai

= 0] ;
return (qi+1, Γ̄i) ;
end

Fig. 6. Proceduresymb step((qi, Γ̄i−1), δ, e)

in Figure 6. It takes the original pair(qi, Γ̄i−1), the elapsed
time δ, with δ = t0 for i = 0 and δ = ti − ti−1 for i > 0,
and the transitione. The procedure symbolically computes
the transition according to Equation (4) and either returns
(qi+1, Γ̄i) if the transitione is enabled or reports a constraint
violation otherwise.

Note that the condition thatΓi andψ are consistent in step
3) of symb step requires that there exists aγ ∈ VΣ with
γ |= Γi ∧ ψ. Since eachγ ∈ VΣ satisfies non-coincidence
and continuity, see Proposition 23, this condition ensuresthat
Γi ∧ ψ satisfies these two properties as well.

In the following lemma, we show that each concrete
transition from (qi, γ̄i−1) to (qi+1, γ̄i) has a corresponding
symbolic transition from(qi, Γ̄i−1) to (qi+1, Γ̄i) as computed
by symb step. Thus, we write

(qi, Γ̄i−1)
(ai,δ)
−→ (qi+1, Γ̄i)

iff (qi+1, Γ̄i) = symb step((qi, Γ̄i−1), δ, e) holds for somee =
(qi, ai, ψ, qi+1).

Lemma 40 (Abstracting a Transition) Let w =
(a0, t0)(a1, t1) · · · ∈ TΣω be a timed word with the
corresponding sequences of clock valuation functions
γ0, γ1, . . . and incremental clock valuation functions
γ̄−1, γ̄0, . . . Fix somei ≥ 0 and setδ = ti − ti−1 for i > 0
and δ = t0 for i = 0. Let e = (qi, ai, ψ, qi+1) be an enabled
transition, i.e.,γi |= ψ.

Then for a pair (qi, Γ̄i−1) with γ̄i−1 |= Γ̄i−1,
symb step((qi, Γ̄i−1), δ, e) yields (qi+1, Γ̄i) with γ̄i |= Γ̄i.

Proof: We follow the proceduresymb step in a stepwise
manner, where we first show that step 1) leads to(γ̄i−1+δ) |=
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Γ̄′
i−1. Then step 2) yields aΓi which is an abstraction ofγi,

i.e., γi |= Γi, and consequently step 3) does not find any
inconsistency. Finally, we prove that step 4) must produce a
Γ̄i such that̄γi |= Γ̄i.

Below, we use the fact that either̄γi−1(ya) = ⊥ or
γ̄i−1(ya) ≥ δ must hold for each event-predicting clockya

as at leastδ time units pass by until the next event occurs.

1) Elapse Time: We have γ̄i−1 |= Γ̄i−1, and hence by
Fact 28, if γ̄i−1 + δ is indeed valid, then̄γi−1 + δ |=
Γ̄i−1 + δ = Γ̄′

i−1 must hold as well.
But γ̄i−1 +δ is valid since we have either̄γi−1(ya) = ⊥
or γ̄i−1(ya) ≥ δ for all ya—and henceforth̄γi−1 + δ |=
Γ̄′

i−1 holds.
2) Resetyai

: From the preceding step, we know thatγ̄i−1+
δ |= Γ̄′

i−1 holds.
(γ̄i−1+δ)(yai

) = 0 must hold sinceai is the event being
currently processed. Thussymb step does not report a
constraint violation.
Then, by Fact 28, we obtain(γ̄i−1 + δ)[yai

=
next(w, ai, i)] |= Γ̄′

i−1[yai
= undef], i.e., γi |= Γi.

3) Process the Guard: Since the transitione =
(qi, ai, ψ, qi+1) is enabled, we knowγi |= ψ. From the
preceding step, we also haveγi |= Γi, and therefore,ψ
andΓi must be consistent withγi |= Γi ∧ ψ = Γ′.

4) Reset xai
: γ̄i and γi differ only in the value forxai

which is reset to 0 in̄γi (see Equation (3)). From the
preceding step, we haveγi |= Γ′ and thus we obtain, by
Fact 28,γ̄i = γi[xai

= 0] |= Γ′[xai
= 0] = Γ̄i.

This concludes the proof, assymb step returns(qi+1, Γ̄i) with
γ̄i |= Γ̄i.

Based uponsymb step, and analogous to timed runs of
an event-clock automatonAec = (Σ, Q,Q0, E, F ), we
now define symbolic timed runs over a timed wordw =
(a0, t0)(a1, t1) · · · ∈ TΣω as an infinite sequence of pairs
Θ = (q0, Γ̄−1)(q1, Γ̄0) . . . For these symbolic timed runs, we
have to define the initial symbolic clock valuation̄Γ−1. By
inspectingγ̄−1, we find that we can use the initial symbolic
clock valuation as given by Definition 37 without modification,
i.e., we setΓ̄−1 = Γ0. Thus, we arrive at the following
definition:

Definition 41 (Symbolic Timed Run) A symbolic timed run
Θ of an event-clock automatonAec = (Σ, Q,Q0, E, F ) over
an infinite timed wordw = (a0, t0)(a1, t1) · · · ∈ TΣω is a
sequence of pairs(q0, Γ̄−1)(q1, Γ̄0) . . . such that the following
conditions are met:

• qi ∈ Q holds for all i ≥ 0 and q0 ∈ Q0 holds for the
starting state.

• Γ̄i ∈ ΨΣ is a symbolic clock valuation (Definition 36)
for i ≥ i and Γ̄−1 is the initial symbolic clock valuation
(Γ̄−1 = Γ0 and following Definition 37).

• For all 0 ≤ i and with δ0 = t0 and δi = ti − ti−1,

(qi, Γ̄i−1)
ai,δi
−→ (qi+1, Γ̄i) holds.

Sincesymb step does not receive any information beyond
the currently processed timed event(ai, ti), no informa-
tion on future events beyond the already observed prefix

(a0, t0) . . . (ai, ti) is necessary to compute a prefix of a
symbolic timed run.

Remark 42 (Symbolic Timed Runs are not Previsionary)
To compute a prefix(q0, Γ̄−1) . . . (qi+1, Γ̄i) of a symbolic
timed run Θ = (q0, Γ̄−1)(q1, Γ̄0) . . . for a prefix
u = (a0, t0) . . . (ai, ti) of an infinite timed word
w = (a0, t0)(a1, t1) . . . , no information beyondu is
necessary.

Hence, symbolic timed runs are feasible as a tool for
(online) runtime verification where we are provided with an
incrementally expanded finite prefix of some system trace.
But beyond its feasibility as a technique, it remains to prove
that symbolic timed runs are semantically adequate as an
abstraction of all possible concrete behaviours.

Lemma 40 is the first step towards that goal, where we
show that each concrete transition can be abstracted into a
corresponding symbolic transition. In the next lemma, we
expand this statement to entire timed runs.

Lemma 43 (Abstracting Timed Runs) Let Aec =
(Σ, Q,Q0, E, F ) be an event-clock automaton and let
w = (a0, t0)(a1, t1) · · · ∈ TΣω be an infinite timed word
with a timed runθ = (q0, γ0)(q1, γ1) . . .

Then there exists a symbolic timed runΘ =
(q0, Γ̄−1)(q1, Γ̄0) . . . over w which is based upon the
same sequence of statesq0, q1 . . . as θ.

Moreover γ̄i |= Γ̄i holds for the sequencēγ−1, γ̄0, . . . of
incremental clock valuation functions as determined byw for
all i ≥ −1.

Proof: The infinite timed wordw determines a unique se-
quenceγ0, γ1, . . . of clock valuation functions (Definition 21)
as well as a unique sequenceγ̄−1, γ̄0, . . . of incremental clock
valuation functions (Definition 38).

To constructΘ, we first setΓ̄−1 = Γ0 following Defini-
tion 41 and obtain immediatelȳγ−1 |= Γ̄−1. Since there exists
a timed runθ = (q0, γ0)(q1, γ1) . . . , there exists for eachi ≥ 0
an enabled transitionei = (qi, ai, ψ, qi+1) facilitating the
transition from(qi, γi) to (qi+1, γi+1). But then, the condition
to apply Lemma 40 is satisfied:γ̄−1 |= Γ̄−1 holds ande0 is an
enabled transition. Consequently, Lemma 40 yields the pair

(q1, Γ̄0) = symb step((q0, Γ̄−1), δ0, e0)

with γ̄0 |= Γ̄0. Then again, the condition to apply Lemma 40
is satisfied and we obtain the the required symbolic timed run
Θ = (q0, Γ̄−1)(q1, Γ̄0) . . . inductively.

At this point, we are tempted to show the converse, i.e., that
each symbolic timed run gives rise a corresponding ordinary
timed run. However, this is not the case: If we take some
transition with a guardψ(ya) = [0,∞), then it is required
that the eventa occurs eventually in the future (in fact, such
a guard is equivalent toFa in standard LTL). But ifa never
occurs again, then this misbehaviour remains undetected by
symb step. On the other hand, at the concrete level of ordinary
timed runs, ifa never occurs again, we haveγi(ya) = ⊥ and
the transition with the guardψ(ya) = [0,∞) is not enabled
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at the concrete level. Thus, not every symbolic timed run has
a corresponding ordinary timed run—leading to the following
proposition:

Proposition 44 There exists an event-clock automatonAec =
(Σ, Q,Q0, E, F ) and an infinite timed word w =
(a0, t0)(a1, t1) · · · ∈ TΣω with a symbolic timed runΘ =
(q0, Γ̄−1)(q1, Γ̄0) . . . such that there exists no ordinary timed
run θ = (q0, γ0)(q1, γ1) . . . overw which is based upon the
same sequence of statesq0, q1 . . . as Θ.

Nevertheless, we can show that each symbolic transition
yields a corresponding concrete transition. To show this, we
need to resort to a backward simulation argument, leading to
Lemma 45. Using this lemma, we finally prove in Theorem 46
that every finite prefix of a symbolic timed run has a corre-
sponding finite prefix of a timed run: We choose a suitable
clock valuation function for the last pair of the symbolic timed
run and concretise the run with a backward simulation. Then
we show in Theorem 46 how to expand this prefix of a timed
run into a suitable infinite timed run.

Lemma 45 (Concretising a Symbolic Transition)

Let (qi, Γ̄i−1)
(ai,δ)
−→ (qi+1, Γ̄i) via a transition

e = (qi, ai, ψ, qi+1). Then for all γ̄i |= Γ̄i and for
all

γ̄i−1 = (γ̄i − δ)[yai
= δ][xai

= Γ̄i−1(xai
)]

the following two conditions hold:

• γ̄i−1 |= Γ̄i−1

• (qi, γ̄i−1)
(ai,δ)
−→ (qi+1, γ̄i) holds via the transitione.

Proof: We show the first claim by contradiction and
thereupon prove the second claim using the first one.

Assumēγi−1 |= Γ̄i−1 does not hold.Then one of the follow-
ing four cases must arise—which we drive into a contradiction
individually:

• γ̄i−1(xai
) /∈ Γ̄i−1(xai

): In the definition ofγ̄i−1 in the
lemma statement, we use[xai

= Γ̄i−1(xai
)] and hence

we always havēγi−1(xai
) ∈ Γ̄i−1(xai

).
• γ̄i−1(xa) /∈ Γ̄i−1(xa) for a 6= ai: Sincea 6= ai holds, the

constraints onxa are only affected by the elapsing time.
We distinguish two cases:

– If Γ̄i−1(xa) = [⊥,⊥], thenΓ̄i(xa) = [⊥,⊥] as well
and hencēγi(xa) = ⊥ must hold. But then we have
γ̄i−1(xa) = ⊥ and therefore we find̄γi−1(xa) =
⊥ ∈ [⊥,⊥] = Γ̄i−1(xa).

– If Γ̄i−1(xa) = [l, l], thenΓ̄i(xa) = [l+δ, l+δ] holds
such that̄γi(xa) = l+ δ must hold. Then we obtain
γ̄i−1(xa) = l and arrive at̄γi−1(xa) = l ∈ [l, l] =
Γ̄i−1(xa).

• γ̄i−1(yai
) /∈ Γ̄i−1(yai

): Because of the check in step 2)
of symb step (see Figure 6)0 ∈ (Γ̄i−1(yai

) + δ) must
hold since otherwise,symb step would have reported a
constraint violation. Hence we haveδ ∈ Γ̄i−1(yai

). On
the other hand, the definition of̄γi−1 in the statement of
the lemma resetsyai

to δ and consequently,̄γi−1(yai
) ∈

Γ̄i−1(yai
).

• γ̄i−1(ya) /∈ Γ̄i−1(ya) for a 6= ai: In the case ofa 6= ai,
the constraints onya are only affected by the elapsing
time leading to the following two cases:

– If Γ̄i−1(ya) = [⊥,⊥], thenΓ̄i(ya) = [⊥,⊥] as well.
Thus,γ̄i(ya) = ⊥ must hold resulting in̄γi−1(ya) =
⊥ such thatγ̄i−1(ya) = ⊥ ∈ [⊥,⊥] = Γ̄i−1(ya)
holds.

– If Γ̄i−1(ya) = [(l, r)], then Γ̄i(ya) = [(l−̇δ, r − δ)]
holds and consequentlȳγi(ya) must be chosen from
[(l−̇δ, r − δ)]. But then we havēγi−1(ya) ∈ [(l−̇δ +
δ, r − δ + δ)] ⊆ [(l, r)] = Γ̄i−1(ya).

Since the constraints for each individual clock are satisfied,
we know thatγ̄i−1 |= Γ̄i−1 holds.

Assume(qi, γ̄i−1)
(ai,δ)
−→ (qi+1, γ̄i) does not hold.Then the

transition e = (qi, ai, ψ, qi+1) is not enabled at(qi, γ̄i−1).
Following Equation (2), we haveγi = (γ̄i−1 + δ)[yai

=
γ̄i(yai

)] (sinceyai
= next(w, ai, i) = γ̄i(yai

)). Sinceγi 6|= ψ,
one of the following two cases must arise:

• γi(xai
) /∈ ψ(xai

): Since γi(xai
) = Γ̄i−1(xai

) + δ, it
follows that Γ̄i−1 + δ andψ are inconsistent. But then,
symb step reports in step 3) a constraint violation.

• γi(c) /∈ ψ(c) for an event-recoding or event-predicting
clock c 6= xai

: Since γ̄i = γi[xai
= 0] we haveγ̄i(c) =

γi(c) and hencēγi(c) /∈ ψ(c), i.e., γ̄i 6|= ψ. Because of
step 3) in symb step, Γ̄i ⇒ ψ holds and we therefore
arrive atγ̄i 6|= Γ̄i which contradicts the lemma statement.

Theorem 46 (Symbolic Simulation) Let u =
(a0, t0) . . . (ai, ti) ∈ TΣ ∗ be a finite timed word and
let σ = (ai+1, ti+1)(ai+2, ti+2) . . . ∈ TΣω be an infinite
continuation ofu.

The infinite timed worduσ is accepted by an event-clock
automatonAec = (Σ, Q,Q0, E, F ), i.e., uσ ∈ L(Aec), iff
there exists

(a) a finite symbolic timed runΘ = (q0, Γ̄−1) . . . (qi+1, Γ̄i)
overu,

(b) an infinite timed runθ = (qi+1, γi+1)(qi+2, γi+2) . . .
starting at (qi+1, γi+1) and acceptingσ, and

(c) an incremental clock valuation function̄γi ∈ VΣ with
γ̄i |= Γ̄i such thatγi+1 = (γ̄i + δ)[yai+1 = v] holds for
someδ ∈ R

≥0 and somev ∈ T⊥.

Proof: Assumeuσ ∈ L(Aec) holds. Then there exists
an accepting timed runθ′ = (q0, γ0)(q1, γ1) . . . over uσ.
Thus, by Lemma 43, there exists a symbolic timed runΘ′ =
(q0, Γ̄−1)(q1, Γ̄1) . . . over uσ with γ̄i |= Γ̄i for all i > 0 as
well. We take the prefixΘ = (q0, Γ̄−1) . . . (qi+1, Γ̄i) of Θ′

and the suffixθ = (qi+1, γi+1)(qi+2, γi+2) . . . of θ′ to meet
conditions (a) and (b) of the lemma statement, respectively.
Condition (c) is satisfied since Lemma 43 ensures thatγ̄i |= Γ̄i

holds and sincēγi and γi+1 are being determined mutually
consistently byuσ.

AssumeΘ, θ, and γ̄i exist as required in conditions (a) to
(c). Then we construct an accepting infinite timed runθ′ =
(q0, γ0)(q1, γ1) . . . overuσ to showuσ ∈ L(Aec). To do so,
we take the timed runθ = (qi+1, γi+1)(qi+2, γi+2) . . . over
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σ as suffix inθ′. It remains to construct the connected prefix
(q0, γ0) . . . (qi+1, γi+1) of θ′.

We have γ̄i |= Γ̄i and (qi, Γ̄i−1)
(ai,δi)
−→ (qi+1, Γ̄i) and

hence we can apply Lemma 45 to obtainγ̄i−1 such that

(qi, γ̄i−1)
(ai,δi)
−→ (qi+1, γ̄i) with γ̄i−1 |= Γ̄i−1. By applying

Lemma 45 inductively, we obtain(q0, γ̄−1) . . . (qi+1, γ̄i). Us-
ing Equation (2), we finally obtain(q0, γ0) . . . (qi+1, γi+1), as
required.

Rereading the statement of Theorem 46 in abstract terms,
the theorem states that a finite prefixu can be continued
to an infinite worduσ, iff u has a symbolic timed runΘ
which ends in a pair(qi+1, Γ̄i) which is non-empty, i.e., which
has a concretisation(qi+1, γ̄i) with a non-empty continuation
language. This is exactly the statement of Corollary 47 below.

Corollary 47 (Runtime Verification Criterion) Let u =
(a0, t0) . . . (ai, ti) ∈ TΣ ∗ be a finite timed word and let
Aec = (Σ, Q,Q0, E, F ) be an event-clock automaton.

Then there exists an infinite continuationσ ∈ TΣω of u
with uσ ∈ L(Aec) iff there exists a finite symbolic timed
run Θ = (q0, Γ̄−1) . . . (qi+1, Γ̄i) over u and an incremental
clock valuation function̄γi ∈ VΣ with γ̄i |= Γ̄i such that
L(Aec(qi+1, γ̄i)) 6= ∅.

Proof: Assumeσ with uσ ∈ L(Aec) exists.Then we
apply Theorem 46 to obtainΘ and γ̄i.

AssumeΘ and γ̄i exist.Since the language accepted from
(qi+1, γ̄i) is non-empty, there must exist an infinite con-
tinuation σ ∈ TΣω with (qi+1, γ̄i)

σ
−→↓, i.e., there ex-

its a sequence(qi+1, γ̄i)(qi+2, γ̄i+1) . . . acceptingσ. Using
Equation (2), we obtain a corresponding timed runθ =
(qi+1, γ

′
i+1)(qi+2, γ

′
i+2) . . . and apply Theorem 46 to find

uσ ∈ L(Aec).
In both, Theorem 46 and its Corollary 47, we need to find

a suitable concrete and suitable incremental clock valuation
function γ̄i ∈ VΣ of some symbolic clock constraintΓ̄i ∈ ΨΣ,
i.e., γ̄i |= Γ̄i must hold andγ̄i must give rise to some
infinite and accepting continuationσ. We note thatsymb step

ensures̄Γi ∈ ΨΣ and therefore,̄Γi has a non-coincident and
a continuous solution (see Remark 26). To ensureγ̄i ∈ VΣ,
we need to make sure thatγ̄i also satisfies these properties.
Otherwise γ̄i would prescribe a sequence of timed events,
which is not a timed word, see Proposition 23.

E. Emptiness Check for Symbolic States

Taking Corollary 47 as starting point, we discuss in this
section how to determine for a given event-clock automaton
Aec = (Σ, Q,Q0, E, F ) and a corresponding pair(q, Γ̄)
whether there exists an incremental clock valuation function
γ̄ ∈ VΣ with γ̄ |= Γ̄ such thatL(Aec(q, γ̄)) 6= ∅.

Thus, we develop in this section a procedureemptyAec
(q, Γ̄)

which returnstrue iff for all γ̄ ∈ VΣ with γ̄ |= Γ̄ it holds that
L(Aec(q, γ̄)) = ∅.

Looking at the scheme developed in the discrete-time set-
ting, we are now tempted to check for every stateq of the
event-clock automaton, whether the language accepted from
stateq is empty. However, this would yield wrong conclusions,

0 1 2
a b[xa ≥ 2]

a[xa ≤ 1]

Fig. 7. Event-clock automaton

as exemplified by the automaton shown in Figure 7. While the
language accepted in state2 is non-empty and, despite, state
2 is reachable, the automaton does not accept any word when
starting in state0. The constraint when passing from state1 to
2 requires the clockxa to evaluate to at least2. This, however,
prevents the self-loop in state2 from being enabled.

Thus, to implement the emptiness check, the event-clock
automaton itself is too coarse as an abstraction of the infinite
statespace spawned by the states of the automaton and the
clock valuation functions.

The standard technique to determine the emptiness of an
event-clock automaton (and of timed automata in general) re-
lies on the translation of event-clock automata intoregion au-
tomata[48]. A region automaton is an ordinary (generalised)
Büchi automaton whose states are pairs(q, [γ̄]≈R

) whereq is
a state of the original event-clock automaton and[γ̄]≈R

is a
clock region. A clock region[γ̄]≈R

= {γ̄′ ∈ VΣ | γ̄′ ≈R γ̄} is
an equivalence class of incremental clock valuation functions
in VΣ determined by theregion equivalence≈R.

However, the region equivalence is justone possible choice
to implement the emptiness check. Every other equivalence
relation≈ over VΣ meeting the following three conditions is
suitable for that purpose: (1) the relation has finite index,(2)
it is a bisimulation, and (3) each incremental symbolic clock
valuation (as they are used in symbolic timed runs) equals the
union of a set of equivalence classes[γ̄]≈. From these three
conditions, only the third one is specific to our approach.

Below, we introduce the relevant definitions underlying
these three conditions. Then we formulate the emptiness check
as used in this paper and prove its correctness. Finally, for
the sake of completeness, we recall the region equivalence
for event-clock automata [30], as one possible choice for a
suitable equivalence relation.

We start with the definition of the quotient Büchi automaton
of an event-clock automaton according to an equivalence
relation on incremental clock valuation functions:

Definition 48 (Quotient Automaton, following [30]) 7 For
an event-clock automatonAec = (Σ, Q,Q0, E, F ) and
an equivalence relation≈ on incremental clock valua-
tion functions, we define thequotient automatonAeq/≈ =
(Σ, Q/≈, Q0/≈, E/≈, F/≈) as a generalised B̈uchi automa-
ton with

• Q/≈ being the set of states which is defined withQ/≈ =
{(q, [γ̄]≈) | q ∈ Q and γ̄ ∈ VΣ},

7The automata we define here as quotient automata are denoted with
region automataReg∼=(A) in [30]. More precisely, in [30], region automata
are not defined directly but in terms of labelled transition systems. In the
definition of these labelled transition systems, the authors use incremental
clock valuation functions—but without explicitly statingthe change from
ordinary to incremental clock valuation functions. Nevertheless, the definition
in [30] and our own definition yield the same automata.
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• Q0/≈ as the set of initial states withQ0/≈ =
{(q, [γ̄−1]≈) | q ∈ Q0 and γ̄−1 ∈ VΣ being initial},

• E/≈ which is the set of transitions, where we define
((q, [γ̄]≈), (q′, [γ̄′]≈), a) ∈ E/≈ iff there existβ̄ ∈ [γ̄]≈

and β̄′ ∈ [γ̄′]≈ such that(q, β̄)
a,δ
−→ (q′, β̄′) holds for

someδ ∈ R
≥0, and with

• F/≈ as the set of accepting state sets (generalised
Büchi acceptance, recall Definition 3 and the subsequent
discussion), where we useF/≈ = {Fi/≈ | Fi ∈ F} for
Fi/≈ = {(q, [γ̄]≈) | q ∈ Fi and γ̄ ∈ VΣ}.

Note that the automatonAeq/≈ is an ordinary (generalised)
Büchi automaton and hence, we can check the emptiness of
the language accepted from a particular state(q, [γ̄]≈) ∈ Q/≈
of Aeq/≈ in the same way as in the discrete-time case [38].

We thus need to show that such a check is sufficient in our
setting. For this purpose, the employed equivalence relation
needs to satisfy the key property of being a time-abstract
bisimulation:

Definition 49 (Time-Abstract Bisimulation, following [50])
An equivalence relation≈ is a time-abstract bisimulationfor

an automatonAec = (Σ, Q,Q0, E, F ), iff (q, γ̄1)
a,δ1
−→ (q′, γ̄′1)

for two statesq, q′ ∈ Q, two incremental clock valuations
γ̄1, γ̄

′
1 ∈ VΣ, an eventa ∈ Σ, and a delayδ1 ∈ R

≥0 implies
that for every equivalent incremental clock valuationγ̄2 ≈ γ̄1,
there exists another incremental clock valuationγ̄′2 ≈ γ̄′1 and

a delayδ2 ∈ R
≥0 such that(q, γ̄2)

a,δ2
−→ (q′, γ̄′2) holds.

If an equivalence relation≈ is a time-abstract bisimulation
with finite index for an automatonAec = (Σ, Q,Q0, E, F )
which accepts the timed languageL(Aec) ⊆ TΣω, then the
corresponding quotient automatonAec/≈ accepts the corre-
sponding untimed languageut(L(Aec)) [30], [50]. Hence,
given a pair (q, γ̄), we can check whether the language
L(Aec(q, γ̄)) accepted byAec continuing from(q, γ̄) is empty
or not by performing the emptiness check onAec/≈ for
the state(q, [γ̄]≈), i.e., by checkingL(Aec/≈(q, [γ̄]≈)) = ∅,
whereAec/≈(q, [γ̄]≈) is the automaton identical toAec/≈ ex-
cept for the set of initial states which is changed to{(q, [γ̄]≈)}.

Theorem 50 (Emptiness Check with Bisimulation [48])
Let Aec = (Σ, Q,Q0, E, F ) be an event-clock automaton
and let the relation ≈ be a time-abstract bisimulation
for Aec. Then, for a stateq ∈ Q and an incremental
clock valuation functionγ̄ ∈ VΣ, L(Aec(q, γ̄)) = ∅ iff
L(Aec/≈(q, [γ̄]≈)) = ∅.

Next, we describe a way to perform the emptiness check
for a pair(q, Γ̄) as it occurs in symbolic timed runs. To do so,
we compute a (minimal) setcover≈(Γ̄) of equivalence classes
such that

{

γ̄ ∈ VΣ | γ̄ |= Γ̄
}

=
⋃

[γ̄]≈∈cover≈(Γ̄)

[γ̄]≈

holds. Then, the untimed language accepted from(q, Γ̄) (i.e.,

⋃

L(Aec(q, γ̄)) for γ̄ |= Γ̄) is determined with

ut





⋃

γ̄|=Γ̄

L(Aec(q, γ̄))



 =
⋃

[γ̄]≈∈cover≈(Γ̄)

L(Aec/≈(q, [γ̄]≈)) ,

yielding a way to implement the procedureemptyAec
(q, Γ̄)

which returns true iff for all γ̄ ∈ VΣ with γ̄ |= Γ̄,
L(Aec(q, γ̄)) = ∅ holds, as stated in the following corollary:

Corollary 51 (Emptiness Check for Symbolic Runs)Let
Aec = (Σ, Q,Q0, E, F ) be an event-clock automaton and let
the relation≈ be a time-abstract bisimulation forAec.

Then for a stateq ∈ Q and a symbolic clock valuation
Γ̄ ∈ ΨΣ, we haveemptyAec

(q, Γ̄) = true iff
⋃

[γ̄]≈∈cover≈(Γ̄)

L(Aec/≈(q, [γ̄]≈)) = ∅

holds.

This leads to the following procedure for the emptiness
check for the event-clock automatonAec = (Σ, Q,Q0, E, F )
upon the equivalence relation≈:

• Precomputation: Generate the quotient automaton
Aec/≈ and determine for each state(q, [γ̄]≈) of Aec/≈
whetherL(Aec/≈(q, [γ̄]≈)) is empty or not. Store the
result in a look-up tableT with T [q, [γ̄]≈] = true if
L(Aec/≈(q, [γ̄]≈)) = ∅ and false otherwise.

• Emptiness Check:To answer the emptiness check for a
pair (q, Γ̄), compute

emptyAec
(q, Γ̄) =

∧

[γ̄]≈∈cover≈(Γ̄)

T [q, [γ̄]≈] .

Then the language accepted from(q, Γ̄) by Aec is empty,
iff emptyAec

(q, Γ̄) returnstrue.
It remains to recall the region equivalence≈R which is a

time-abstract bisimulation with finite index and to show how
to computecover≈R

(Γ̄) for ≈R.
Below, we use the following abbreviation for the fractional

period of time to pass by until a clock value changes its
integral part: For all event-recoding clocksxa ∈ CΣ, we set
〈γ̄(xa)〉 = ⌈γ̄(xa)⌉ − γ̄(xa) (the time until γ̄(xa) reaches
⌈γ̄(xa)⌉) and for all event-predicting clocksya ∈ CΣ, we
set 〈γ̄(ya)〉 = γ̄(ya) − ⌊γ̄(ya)⌋ (the time until γ̄(ya) reaches
⌊γ̄(ya)⌋).

Definition 52 (Region Equivalence [51], [48])LetK be the
biggest constant occurring in some constraint of an event-
clock automatonAec = (Σ, Q,Q0, E, F ). Then we define
the region equivalencerelation ≈R on incremental clock
valuations inVΣ for Aec, such that̄γ1, γ̄2 ∈ VΣ are equivalent,
symbolicallyγ̄1 ≈R γ̄2, iff all the following conditions hold:

• (agreement on undefined)
for all z ∈ CΣ, γ̄1(z) = ⊥ iff γ̄2(z) = ⊥

• (agreement on integral part)
for all z ∈ CΣ, if γ̄1(z) ≤ K or γ̄2(z) ≤ K, then
⌊γ̄1(z)⌋ = ⌊γ̄2(z)⌋

• (agreement on fraction’s order)
For all z1, z2 ∈ CΣ with γ̄1(z1) ≤ K and γ̄2(z2) ≤ K,
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procedure monitorAec (a, δ)
begin
{ ---------------------------------------- }
{ step 1: initialisation (first call only) }
if first time then
P :=

˘

(q, Γ̄) | q ∈ Q0 ∧ Γ̄ is initial
¯

;

{ ---------------------------------------- }
{ step 2: symbolic step }
P ′ :=

˘

(q′, Γ̄′) | (q, Γ̄) ∈ P
∧ e = (q, a, ψ, q′) ∈ E
∧ (q′, Γ̄′) = symb step((q, Γ̄), δ, e) } ;

P := P ′ ;

{ ---------------------------------------- }
{ step 3: emptiness check }
if

V

(q,Γ̄)∈P
emptyAec

(q, Γ̄) then
return ⊥

else
return ?

end

Fig. 8. ProceduremonitorAec
(a, δ)

– 〈γ̄1(z1)〉 = 0 iff 〈γ̄2(z1)〉 = 0
– 〈γ̄1(z1)〉 ≤ 〈γ̄1(z2)〉 iff 〈γ̄2(z1)〉 ≤ 〈γ̄2(z2)〉.

To constructcover≈R
(Γ̄), we use an equivalent description

of the regions[γ̄]≈R
given as a set of constraints assembled

according to the following rules [48]:
• For every clockc ∈ CΣ choose exactly one constraint

from the set

choice(c) =
{γ̄(c) = v | v = ⊥, 0, 1, . . . ,K} type (1)

∪ {v − 1 < γ̄(c) < v | v = 1, . . . ,K} type (2)
∪ {γ̄(c) > K} type (3)

• and for each pair of clocksc 6= c′ ∈ CΣ which are both
restricted by a type (2) constraint, choose additionally one
constraint of the form

〈γ̄(c)〉 ⊲⊳ 〈γ̄(c′)〉 with ⊲⊳∈ {<,=, >} . type (4)

Hence, to computecover≈R
(Γ̄), we have to find all con-

straint sets which obey these two rules and which are con-
sistent with Γ̄. First, we note that̄Γ does not impose any
constraint between the values of two distinct clocks and
therefore,̄Γ does not restrict the choice of type (4) constraints
in cover≈R

(Γ̄). Consequently, to computecover≈R
(Γ̄), we

determine for each clockc the subsetchoiceΓ̄(c) ⊆ choice(c)
of constraints which are consistent with̄Γ. Then,cover≈R

(Γ̄)
consists exactly of those regions[γ̄]≈R

which are determined
by constraints chosen from the restricted setchoiceΓ̄().

This concludes our algorithm to computeemptyAec
(q, Γ̄)

which is based upon the equivalence given in Corollary 51
and which uses the scheme described above for computing
cover≈(Γ̄).

F. A Monitor Procedure for TLTL3
We are now ready to present a monitor procedure for check-

ing TLTL properties according to the three-valued semantics.

procedure monitorϕ(a, δ)
begin
{ ---------------------------------------- }
{ step 1: symbolic step }
rϕ := monitorAϕ

ec
(a, δ) ;

r¬ϕ := monitorA¬ϕ
ec

(a, δ) ;

{ ---------------------------------------- }
{ step 2: compute verdict }
if rϕ = ⊥ then return ⊥ ;
if r¬ϕ = ⊥ then return ⊤ ;
return ? { note: rϕ = r¬ϕ = ? }
end

Fig. 9. Proceduremonitorϕ(a, δ)

We symbolically execute the event-clock automatonAϕ
ec

and check the emptiness for each reached pair consisting of
a state and a symbolic clock valuation. In Figure 8, we show
the proceduremonitorAec

(a, δ) used to process a timed word
w = (a0, t0)(a1, t1) . . . event-wise. After reading an event
(ai, ti) (given as an eventa = ai and a delayδ = ti − ti−1

for i > 0 and δ = 0 for i = 0), monitorAec
(a, δ) returns

⊥ if the prefix u = (a0, t0) . . . (ai, ti) cannot be continued
infinitely with a σ ∈ TΣω such that the underlying event-
clock automatonAec would acceptuσ. Note thatP is a global
variable keeping track of the currently reached set of symbolic
states.

In the implementation ofmonitorAec
, we combine the

results of Sections IV-D and IV-E:monitorAec
executes in

parallel all symbolic timed runs which match the observed
prefix and checks for the existence of possible continuations—
according to the runtime verification criterion, as stated in
Corollary 47 taken from Section IV-D. The runtime verifica-
tion criterion involves an emptiness check for symbolic timed
runs, which is in turn implemented according to Corollary 51
taken from Section IV-E.

Similar as in the discrete-time setting, given a propertyϕ we
run two versions of this monitor procedure in parallel, namely
one forϕ and another one for¬ϕ. Then we combine the results
of these two evaluations following directly the semantics of
TLTL3 to obtain the final verdict.

In Figure 9, we show the monitor proceduremonitorϕ(a, δ)
for a TLTL3-propertyϕ. monitorϕ(a, δ) also reads a finite
prefix event-wise in terms of an eventa and a delayδ and
returns either⊥,⊤, or ?, as determined by the semantics of
TLTL3.

G. Platform Adaption

In this section we discuss two practical issues arising in
an implementation of the scheme laid out in the preceding
sections, namely therepresentation of time valuesand the
detection of deadline expirations.The problem of representing
time values arises as we use real values for time values
throughout the construction whereas we cannot represent reals
with infinite precision. The problem of deadline expiration
detection originates in the fact that our monitoring procedure
is only reacting to incoming events, i.e., if an event is overdue,
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this is not detected until another event is processed. Belowwe
discuss both issues.

Representing Time Values:We based our construction
on timed words involving non-negative real numbers as time
stamps. But in any practical case, the occurring time stamps
will be rational numbers, mostly expressed as counters with
respect to a fixed denominator determined by some clock fre-
quency. The correctness of our approach in such a setting relies
on the following two properties of our monitor construction:

• Monitor computations are precision independent.Our
monitor construction manipulates time values only in
terms of additions, subtractions, comparisons, and assign-
ments of integers. Since any rational- or integer-based
time representation is closed under these operations, the
system-wide used type for time values is sufficient for
monitor-internal use as well.

• Monitor generation is precision independent.The gen-
erated monitor itself remains unaffected by the required
precision for processing time stamps—only the type for
representing time stamps must be chosen appropriately. If
the region equivalence is used for the emptiness check,
then the precomputed tableT [q, [γ̄]≈] following Corol-
lary 51 remains unaffected as well.

Summarised, to adapt our approach for a given system, it
is only necessary to use the system’s type for time values
throughout the generated monitor.

Detection of Deadline Expirations:Our construction
ensures that if a finite prefixu cannot be continued into an
infinite word uσ satisfying some TLTL-propertyϕ, then the
monitormonitorϕ will detect this fact immediately, i.e., foru
of minimal length. However, in case of timed words, the lack
of events is an input in itself. For example, if an eventa is
required byϕ to occur within4 seconds, then a quiescence of
6 seconds is meaningful with respect to our propertyϕ which
cannot be satisfied anymore. Butmonitorϕ will only detect the
expired deadline, once the next event is being processed by
monitorϕ. There are three principal choices for dealing with
this issue:

• No further precaution.In some cases, the behaviour as
provided bymonitorϕ is sufficient and hence no further
provisions are necessary.

• Statically scheduled interrupts.If it is enough to detect an
expired deadline within a certain period of time, then one
can use an interrupt to send a special event tomonitorϕ
at a fixed rate, which is only used for checking deadline
violations.

• Dynamically scheduled interrupts.Alternatively, we can
compute insymb step the very next deadline to occur
in monitoringϕ and¬ϕ. Then one can dynamically set
a timeout interrupt for this minimal period of time and
send an special event tomonitorϕ.

In any case, it is a simple matter to implement the desired
detection of deadline expirations for the timed monitor, given
that the corresponding interrupt types are provided by the
target platform.

V. CONCLUSIONS

In this paper, we presented a runtime verification approach
for properties expressed either in lineartime temporal logic
(LTL) or timed lineartime temporal logic (TLTL), suitable for
monitoring discrete-time and real-time systems, respectively.

Before introducing our technical approach, we discussed the
relationship of runtime verification with model checking and
testing in depth, thereby identifying its distinguishing features.

In contrast to LTL (TLTL), runtime verification deals with
finite runs, thus asking for an LTL semantics on finite traces.
We proposed a three-valued semantics: In our understanding
of runtime verification, we consider a finite trace as an
incrementally observed finite prefix of an unknown infinite
trace, causing correctness properties to evaluate to either true,
falseor inconclusive.

For LTL3, a conceptually simple monitor generation pro-
cedure is given, which isoptimal in two respects: First,
the size of the generated deterministic monitor isminimal,
and, second, the monitor identifies a continuously monitored
trace as either satisfying or falsifying a propertyas early as
possible. Subsequently, we related our approach with existing
techniques. Thereby, we identified themonitorable properties
asstrictly containing safety and co-safety properties.

For the real-time logic TLTL, we started with an analogous
definition of a three-valued semantics. The resulting monitor
construction, however, is technically much more involved.
Automata for TLTL employ so-calledevent recordingand
event predictingclocks. Since in runtime verification the future
of a trace is not known, such predicting clocks are difficult to
handle. Introducingsymbolicclock valuations, we were able
to mimic the general approach as taken in the discrete-time
case for constructing real-time monitors.

In this paper, we laid out the foundation for discrete-time
and real-time monitoring of LTL and respectively TLTL prop-
erties. It remains to put these foundations into practice, and,
as our long term goal, into common practice. For the discrete-
time case, we have already implemented a prototype showing
the feasibility of our approach, while an implementation for
the real-time case remains to be done as part of future work.
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