T UM

INSTITUT FUR INFORMATIK

Runtime Verification for LTL and TLTL

Andreas Bauer, Martin Leucker, Christian Schallhart

TUM-I0724
Dezember 07

TECHNISCHE UNIVERSITAT MUNCHEN



TUM-INFO-12-10724-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©2007

Druck: Institut f ur Informatik der
Technischen Universit at Munchen



Runtime Verification for LTL and TLTL

Andreas Bauer, Martin Leucker, Christian Schallhart

Abstract— This paper studies runtime verification of prop-
erties expressed either in lineartime temporal logic (LTL) or
timed lineartime temporal logic (TLTL). It classifies runti me
verification in identifying its distinguishing features to model
checking and testing, respectively. It introduces a threeralued
semantics (with truth values true, false, inconclusive) as an
adequate interpretation as to whether a partial observatio of
a running system meets an LTL or TLTL property.

For LTL, a conceptually simple monitor generation procedure
is given, which is optimal in two respects: First, the size of
the generated deterministic monitor is minimal, and, second,
the monitor identifies a continuously monitored trace as etter
satisfying or falsifying a property as early as possible. The
presented approach is furthermore related to the properties
monitorable in general and is compared to existing conceptin
the literature. It is shown that the set of monitorable properties
does not only encompass theafety and co-safety properties but
is strictly larger.

For TLTL, the same road map is followed by first defining
a three-valued semantics. The corresponding constructionf a
timed monitor is more involved, yet, as is shown, possible.

Index Terms—D.2.4.a - Assertion checkers D.2.5.g - Monitors
- F.3.1.a - Assertions

|. INTRODUCTION

Verification comprises all techniques suitable for showing

that a system satisfies its specificatiduntime verification

Runtime verification deals (only) with thdetectionof vio-
lations (or satisfactions) of correctness properties—thsinot
concerned with any consequential measures and thus it does
not influence the program’s functional behaviour. However,
runtime verification is at the core of those approaches which
react on faults at runtimeMonitor-oriented programming
[12], for example, aims at a programming methodology that
allows for the execution of code whenever monitors observe
a violation of a given correctness propefuntime reflection
[13], to name a further example, is an architecture pattean t
is applicable for systems in which monitors are enrichedh wit
a diagnosis and reconfiguration layer.

A. Runtime Verification versus Model Checking

While runtime verification shares also many similarities
with model checkingthere are important differences:

« In model checkingall executionsof a given system are
examined to answer whether these satisfy a given cor-
rectness property—which corresponds to the language
inclusion problem. In contrast, runtime verification deals
with the word problem. For most logical frameworks,
the word problem is of far lower complexity than the
inclusion problem, e.g. in case of LTL see [14] and [15].

deals with those verification techniques that allow chegkin
whether an execution of a system under scrutiny satisfies
or violates a given correctness property. It aims to be a

While model checking, especially when considering LTL,
considersinfinite traces, runtime verification deals with
finite traces—as non-idealised executions are necessarily

lightweight verification technique complementing other ver-
ification techniques such awmodel checkind2] and testing
[31.

In runtime verification, a correctness propegtys typically
automatically translated intoraonitor. Such a monitor is then
used to check theurrent execution of a system or a (finite
set of) recordedexecution(s) with respect to the property
In the former case, we speak ohline monitoringwhile in
the latter case we speak offline monitoring

Formally, whenZ(y)
given by propertyp, runtime verification boils down to check-
ing whether the execution is an element of (). Thus, in its

finite.

While in model checking a complete model is given
allowing to consider arbitrary positions of a trace, rurgim
verification, especially when dealing with online moni-
toring, considers finite executions of increasing size. For
this, a monitor should be designed to consider executions
in anincremental fashion

These differences make it necessary to adapt the concepts
denotes the set of valid executionsdev_e_lOp_Ed in model checking to be_ applicable in ru_ntlme
verification. For example, the second item asks for coming up

with a semantics for LTL on finite traces that mimics LTL's

mathematical essence, runtime verification reduces tavthid semantics on infinite traces—which we do in the the first part

problem i.e., the problem whether a given word is includeﬁf the paper. Note that LTL is originally de“f.‘ed on f'”_'te.
: races as well [16]. However, as we argue, this semantics is
in some language.

L . e . ot suitable for runtime verification.

Correctness properties in runtime verification specify all - . . .
admissible individual executions of a system and are uguall. From an application point of VIew, there are also '”?F’O”?‘”t
formulated in some variant of linear temporal logic, such ffer.ences b_e.twe.en model checklng and runtime ver|f|u§1t|o
LTL [4], as seen for example in [5], [6], [7], [8], [9], [10]. & Runtime verification deals only with observed executions.

also linearu-calculus variants are used, for example in [11].Thus It IS applicable tlack box SVSte_m‘W which no system .
model is at hand. In model checking, however, a precise

description of the system to check is mandatory as, before

A preliminary version of this paper appeared at FSTTCS 2006 [ ) ) :
actually running the system, all possible executions mest b

The authors are with the Technische Universitat Mincl@ermany.



checked: traces. In runtime verification, our goal is to check
Furthermore, model checking suffers from the so-called LTL properties giveriinite prefixes of infinite traces.
state explosion problenwhich terms the fact that analysingrnerefore, LTl,’s syntax coincides with LTL, while its seman-
all executions of a system is typically been carried out Qy.s is given for finite traces. To implement the idea that, fo
generating the whole state space of the underlying systeMgiven LTL, formula, its meaning for a prefix of an infinite
which becomes often infeasibly huge. Considering a singlg,ce should correspond to its meaning considered as an LTL
run, on the other hand, does usually not yield any memofymyla for the full infinite trace, we usthree truth values:
problems, provided that when monitoring online only a finitg,.,, . false, andinconclusive denoted respectively by, L,
history of the current execution has to be stored. and 7. More precisely, given a finite word and an LTl

In online monitoring, the complexity fogeneratingthe formula o, the semantics is defined as follows:
monitor procedure is often negligible, as the monitor is-typ

ically only generated once. However, tltemplexity of the
monitor, i. e., its memory and computation time requirements
for checking an execution are of important interest, as the®
monitor is part of the running system and should influence
the system as little as possible.

« if there is no continuation ofi satisfyingy (considered

as an LTL formula), the value ap is false;

if every continuation ofu satisfiesy (considered as an

LTL formula), it is true;

«» otherwise, the value ismconclusivesince the observations
so far are inconclusive, and neithete or false can be

. e . determined.
B. Runtime Verification versus Testing

As runtime verification does not consider each possib
execution of a system, but just a single or a finite subs%
it shares similarities withesting both are usually incomplete.

Typically, in testing one considers a finite set of finite ibpu

While there are actually semantics for LTL on finite traces
0], [21], these use (only) two truth values. We strongly
eélieve that only two truth values lead to misleading ressinlt
runtime verification: Consider the formute U init (read:not

. . . until init) stating that nothing bad) should happen before
output sequences formingest suitg19]. Test-case execution? """ ) ating 9 .(M app
e init function is called. If within an executiom becomes

is then checking whether the output of a system agrees véth rue beforeinit, the formula is violated and thuflse (for

E;%(gfttitone’ when giving the input sequence to the SySt%Wy continuation of the current execution). If, on the other

A different form of testing, however, is closer to runtimehand’ the init function has been called and pdias been

N . .. observed before, the formula isue, regardless of what will
verification, namelyracle-based testinfg]. Here, a test-suite ’ ue, reg

. : appen in the future. Besides observing failures, for rigsti
is only formed by input-sequences. To make sure that the T )

. L and verification, it is equally important to know whether gom
output of the system is as anticipated, a so-calésd oracle

e 1 be desgned and “attached (o e system under RPPE1Y 8 0SS orwhethr e curent hsereton s
This oracle then observes the system under test and check property

A . e Siffoccur.
number of properties, i.e. in terms of runtime verificatibe t Originallv. we proposed this three-valued semantics asd it
oracle acts as a monitor. Thus, in essence, runtime veiificat ginatly, prop

can be understood as this form of testing. There are, howevc%jicf:rt;untg:ee (;’:ff'r‘:fg“t‘)’” IT &l‘rr::xvzvneé’ 32:2.? Ii SS[SQ]“E;:
differences in the foci of runtime verification and orackesbd PLS w : y ®up !

- : . . ! . bad prefix(of a Buchi automaton) is defined as a finite prefix
testing: In testing, an oracle is typically defined directather . . .
than generated from some high-level specification. On tM’ehICh cannot be the prefix of any accepting trace. Dually, a
other hand. in the domain of runtime verification. we do n(%OOd prefixis a finite prefix such that any infinite continuation

consider the provision of a suitable set of input sequermesﬁr:;th% rtr;ascfhgll!)lats)?s %?%euﬁt?_j\'lalltuf desxearﬁi}llwtgzg ‘FAZZS”E?@S
“exhaustively” test a system. ' P

(of formulae) are mapped tfulse, “good prefixes” evaluate
to true, while the remaining prefixes yielshconclusive
For a given LTl; formula, we describe how to construct a
In this paper, we introduce LT as a lineartime temporal (deterministic) finite state machine (FSM) with three otitpu
logic designed for runtime verification. As Pnueli's LTL [4]symbols. This automaton reads finite traces and yields their
is a well-accepted lineartime temporal logic used for speghree-valued semantics. Thus, monitors for three-valwed f
fying properties of infinite traces one usually wants to &egnylae classify prefixes as one god = T, bad = L, or ?
properties specified in LTL in runtime verification as well(neither good nor bad). Standard minimisation techniques for
However, one has to interpret their semantics with respeotms can be applied to obtain a unique FSM thaspsimal
to finite prefixes as they arise in observing actual systemgith respect to its number of states. In other words, any lemal
This approach to runtime verification is summarised in thesM must be non-deterministic or check a different property

C. Monitoring of Discrete-Time Properties

following rationale: As an FSM can straightforwardly be deployed, we obtain a
Pnueli’s LTL [4] is a well-accepted lineartime tem- practical framework for runtime verification.
poral logic used for specifying properties of infinite The proposed semantics of LTlhas a valuable implication

. L _ _ _ for a corresponding monitor. It requires the monitor to mpo
Note, that it is possible to automaticallgarn [17] and verify a system

model, thereby applying model checking techniques to aniaipmknown a ViOIatiQn Of_a given propertyas early a§ possibleSincg
system [18]. any continuation of a bad (good) prefix is bad (respectively



BAUER et al. RUNTIME VERIFICATION FOR LTL AND TLTL 3

good), there exists minimal bad (good) prefix for every bad While the general scheme developed for LTproves to
(good) prefix. In runtime verification, we are interested ibe applicable in the real-time setting as well, the monitor
getting feedback from the monitor as early as possible, i. eonstruction is technically much more involved. Automata f
for minimal prefixes, let them be either good or bad. SincELTL employ so-calledevent recordingand event predicting
all bad prefixes for a formula yield false and good prefixes clocks. Since in runtime verification, the future of a trase i
yield true, also minimal ones do so. Thus, the correctness nbt known, event predicting clocks are difficult to handle.
our monitor procedure ensures that alreadyrfonimalgood We introducesymbolic timed runsand show their benefit
or bad prefixes eithetrue or false is obtained. for checking promises efficiently, avoiding a possible but
In [23], a Bichi automaton was modified to serve as generally expensive translation of event-clock automata t
monitor reportingfalse for minimal bad prefixes. However, (predicting-free) timed automata [30].
no precise semantics in terms of LTL of the resulting monitor So far, not many approaches for runtime verification of
was given. As such, LT.can be understood as a logic whictreal-time properties have been given. [31] studies monitor
complements the constructions carried out in [23] with generation based on LTL enriched with a freeze quantifier
formal framework. Nevertheless, we feel that our consionst for time. In [32] and [33],fault diagnosisfor timed systems
are more direct and therefore easier to understand. is examined, a problem that shares some similarities with
In this paper, we further discuss, which LI lproperties runtime verification yet is more complicated. However, in
are monitorable at all. We follow the definition given by these approaches, only timed automata or event-recording
Pnueli and Zaks in [24] essentially stating that a propesty automata are used and no prediction of events is supported.
monitorable with respect to a trace whenever a correspgndifLTL is event-based, meaning that the system emits events
monitor might still report a violation (or satisfaction). eV when the system’s state has changed. In [34] monitoring
point out the precise relation to Rosu’s notion néver of continuous signals is considered, which is intrinsicall
violate stateg23] in monitors, which is similar yet not the different to observing discrete signals in a continuousetim
same. Moreover, we recall the notion of safety and co-safetpmain.
properties. We show that the popular belief that monitoring
only suitable for safety properties is misleading: Thelak g oyutline

monitorable properties is richer than the union of safetgt an . : e
prop ¥ In Section II, we develop our runtime verification approach

co-safety properties. Flnally, we discuss runtime verira for the discrete-time setting. After recalling standard._LSyn-
based on good/bad-prefixes compared to approaches baseé; on

Kupferman’s and Vardi’s notion dhformative prefixesas for XL?g?mSj?eagacfsiﬁigev\l/gtr?:uﬁglglir:hrtehee-ﬁlrl:a?vz(leunéznlgc? fo
example the approach shown in [25]. We argue that runtirt L3. Then we develo and )(;iscusg a monitor construc%ion
verification should be based on good/bad prefixes rather t 3 P

n°. U
on informative prefixes, as it follows thees early as possible echnique to produce for an LTL-properfy a deterministic
maxim.

finite-state machine\¥ which evaluatesy on finite traces
Note that multi-valued versions of LTL have been consicﬁccording 0 LTls. Finally, we demonstrate this approach with
ered, for example in [26]. There, the semantics is defined 3r

n example from concurrent C++-development practice.
infinite traces and the resulting logics and model checkinc%

Section Il analyses the structure of the developed magyitor
approaches are completely different from IzTLMoreover,

mplements the notions of good and bad prefixes wily
these logics are helpful in model checking abstractions 8¥ef|xes to characterise the instant when properties become

. non-monitorableMoreover, we discuss monitoring in the light

systems or of software product lines [27], and we do not see . .

. : . . - Of safety and co-safety properties and compare our work with

any benefit of the developed ideas in the setting of runtlmg . . )

S ideas based oimformativeprefixes.

verification. . . I

In Section 1V, we expand our runtime verification approach

for thereal-timesetting. After recalling standard TLTL syntax
D. Monitoring of Real-time Properties and semantics, we introduce a three-valued semantics ko eva

In the second part of the paper, we address real-time Syg\_te standard TLTL formulae on finitemed words, yielding

tems. We base our ideas on tiraed lineartime temporal logic "€ three-valued logic TLTL. Then we develop and discuss

(TLTL), a logic originally introduced by Raskin in [28]. TILT; a monitor construc_tpn_techmgue to pr_oduce for an TLTL-

as argued by D’Souza, can be considered a natural courtter _5?per_tygp a deterministic _monltOV\/l%" which evaluateg on

of LTL in the timed setting: He showed in [29] that, ove inite timed traces according to TLEL

timed traces, TLTL is equally expressive as first-orderdpgi

transferring Kamp’s famous result that, over words, LTL anH- THREE-VALUED LTL IN THE DISCRETETIME SETTING

first-order logic coincide with respect to expressivend®j [  In this section, we consider runtime verification for syséem

to the world of real-time systems. whose behaviour is characterised by a sequence of statek whi
We define a three-valued version of TLTL for finititmed occur at discrete time steps. These states are then abstract

traces resulting in the logic TLT4, following a similar with a set of atomic propertiesP which evaluate to either true

approach as for LTL. Moreover, for a TLELformula we or false in such a state. Thus, the behaviour of the systerrund

describe how to construct a monitor yielding the semantissrutiny is described by an (in)finite word over the alphabet

for a finite timedtrace, again, “as early as possible”. 2AP Linear temporal logic (LTL) is a well-accepted logic to



specify properties of infinite words [4], and, consequerdiy

developments in this section are for LTL specifications. w,i = true
After recalling standard LTL syntax and semantics, we i = —p iff  w,ifEp
introduce in this section a three-valued semantics to et@lu w,i = p iff D E a;
standard LTL formulae on finite words yielding to the logic  w,i = ¢, V ¢y  iff w,i = @1 OF w,i = @2
LTL5 . Thereby, LTl distinguishes three cases: w,i = pr1Ugps  ff Fk > i with w, k = @2
« Either the observed finite word is sufficient to prove , and Vi <l<kwithwl= e
that the monitored property holds independently of the w,i =X iff w,i+ 1l
yet unknown futuréehaviour, or Further, w |= ¢ holds iffw, 0 |= ¢ holds.

« the observed finite word already indicates that cannot

be satisfied in any possible future continuationfinally, ~ We denote withC(p) = {w € £¥ | w |= ¢} the set of
« neither of both casesccurred so far. models of an LTL-formulap. Two LTL-formulae ¢ and

are calledequivalent written as¢ = 1, iff L(p) = L(¥)
holds. The languag€(y), generated by an LTL-formule,

a regular set of infinite traces and can be described by a
corresponding Biichi automaton defined next.

Having the semantics of LTL at hand, we develop and
discuss a monitor construction technique to produce f
an LTL-propertyy a deterministic finite-state machingt¥
which evaluatesy on finite traces according to LEethus

enabling a most predictive evaluation of Once it can be pefinition 3 ((Nondeterministic) Biichi automaton (NBA))

decided thatp will remain either satisfied or unsatisfied, they (nondeterministic) Biichi automaton (NBAj a tuple
monitor will provide this information immediately. FingJlwe A=(2,Q,0Q0,0, F), where

demonstrate this approach with an example from concurrent

C++-development practice. - x 5@ f|_n|_te alphabet,
o @ is a finite non-empty set of states,

o Qo C Q is a set of initial states,
e 0:Q x X — 29 is a transition function, and

A. Preliminaries « ' C Qis a set of accepting states.

For the remainder of this section, I&P be a finite set  \\x extend the transition functigh: Qx¥ — 29, as usual
of atomic propositions and = 24P a finite alphabet. We to &' : 29 x ©* — 22 by §'(Q’,¢) = Q' and 5/(&2/ ua) = '
write a; for any single element of, i.e., a; is a possi- U 5(¢,a) for Q' C Q’ W e S anda e’ -

. . )q' €6 (Q" ) g, = W, ) .
bly empty set of propositions taken frofP. Finite traces simplify notation, we usé for both & and&'.

* I .
over ¥ are elements of:*, and are usually denoted with A \\/n of an automatomd on a wordw — aoay ... € X is

u,v,u v, u1,v1,us, ..., Whereas infinite traces are elementg sequence of states and actigns: goaoq1aigs . . ., Where

. 12 . L
of ¥*, usually denoted withy, w',wy, ws, ... We also write | "¢ an jnitial state otA and where we havei,; € 5(q;, a;)
e.g.{p,q}{p}... for afinite or infinite wordaga, ... With 5. 211'; ¢ N. For a runp, let Inf(p) denote the states visited

ao = {p,q} anda, = {p}. If clear from the context, we also infinitely often. A runp of an NBA A is calledacceptingiff
drop the brackets around singletons, i.e., we wjieg} p. .. Inf(p) N F # 0.

for the same wordiga; ... Finally, we call the concatenation A * yondeterministic finite automaton (NFA) A =

wv of two finite wordsw and v finite continuationof « with (£,Q,Qo,0, F) is an automaton wherg, Q, Qo, 8, and F
v. Similarly, the concatenatiomw of v with an infinite word ;.o defined as for a Biichi automaton, but which operates on

w is calledinfinite continuationof u with w. finite words. Arun of A on a wordw = aq...a, € %*
Then the syntax and semantics of LTL on infinite traces j§ 5 sequence of states and actigns: goaogias .

-+ AnQn+1,
defined as follows. where qo is an initial state ofA and for alli € N we h;ve
gi+1 € 6(gi,a;). The run is called accepting i, +1 € F.
An NFA is called deterministiciff for all ¢ € @, a € %,
[6(g,a)] = 1, and |Qo| = 1. We use DFA to denote a
deterministic finite automaton.

In case of Buchi automata, we did not introduce their
deterministic variant since not every NBA can be converted
with p € AP. into an equivalent deterministic one. Furthermore, our itoon
construction allows to apply determinisation once we have
converted all NBAs into NFAs—thereby yielding a determin-
istic finite-state machine. The resulting FSM can be mingais
to obtain an FSM with a provable minimal number of stétes.

Finally, let us recall the notion of &nite-state machine
(FSM), which is a finite state automaton enriched with output

Definition 1 (LTL formulae) The set of LTL formulae is
inductively defined by the grammar

pu=true|pl-pleVelpUeplXe

In addition, we use three abbreviations, namely\ ¢ for
—(mp V), o — 1 for —p Vb, Fo for true U ¢, andGp
for =(true U —¢).

Definition 2 (LTL semantics) Letw = aga, ... € ¥ be a _ _ _ _ _

infinit d withi € N bei it Th defi th Note that in many practical cases, the monitor will be baseectdy on
nfnite Wor with: € elng a pQSI on. en we define g, underlying nondeterministic automata and will be debeised on-the-fly
semantics of LT} formulae inductively as follows using the power-set construction (cf. the discussion a¢ttteof Section II-C.)



BAUER et al. RUNTIME VERIFICATION FOR LTL AND TLTL 5

formally denoted with a tupl€X, @, Qo, 5, A, A), whereX, @, construct an FSMM?¥ that reads finite words € ¥* and
Qo, and ¢ are defined as before and wheteis the output outputs[u = ] which is a value inBs.

alphabet used in the output function: Q — A. The output ~ For an NBA A, we denote by4(q) the NBA that coincides
of an FSM, defined by the functiok, is thus determined by with A except for the set of initial state§g, which is
the current statg € @ alone, rather than by input symbolsredefined inA(q) as Qo = {q}. Let us fix ¢ € LTL for

As before,§ extends to the domain of words as expected. Fdte rest of this section, and let? = (X,Q%,QF, 7, F?)

a deterministic FSM, we denote withalso the function that denote the NBA, which accepts all models @f and let
yields for a given word: the output in the state reached by A™* = (2,Q7%,Q,%,67%, F7¥) denote the NBA, which
rather than the sequence of outputs. accepts all words falsifying. The corresponding construction
is standard [35] and explained, for example in [36]. Notéd tha
in order to obtain the complement of an NBA, we merely

e - need to complement the formula, rather than the originahBu
To overcome difficulties in defining an adequate Booleay,;omaton itself.

semantics for LTL on finite traces, we propose a three-valued-, 1o automatopd®, we define a functioF? : Q¥ — B
semantics. The intuition is as follows: in theory, we obeerv(with B = {T, L)) where we sefF#(q) = T iff £(A?(q)) #

an infinite. sequence of some system. For a given formula(z)’ i.e., we evaluate a statg to T iff the language of the
v, thus eitherw = ¢ or not. In practice, however, we can, yomaton starting in staigis not empty. To determing# (q),
only observe a finite prefix of w. Consequently, we let the o jgentify in linear time the strongly connected composent
semantics of with respect tou be true, ifuw’ = ¢ for every iy 4o which can be done using Tarjan’s algorithm [37]
possible contlnuatlomu’_. On the_ other _hand_, i’ is not a or nested depth-first algorithms as examined in [38]. Using
model of ¢ for all possible infinite continuations’ of u, we F¢. we define the NFAA® — (2, Q¥ 607550’1350) with
define the semantics @b with respect tou as false. In the g, _ (¢ € Q° | F?(g) = T}. Analogously, we set
remaining case, the truth value ofy’ andp depends onv'. AP = (5,Q7°,Q7%,67%, %) with F~% = {q € Q™ |
Thus, we define the semantics ofwith respect top to be F(q) = ’T}. PEo T
inconclusive denoted with ?, to signal that the so far observed
prefix u itself is insufficient to determine howy evaluates in
any possible future continuation af

We define our three-valued_ semantics IE‘TtO Interpret Lemma 5 (LTL 3 evaluation) With the notation as before, we
common LTL formulae, as defined in Definition 1 on flnlt%ave
prefixes to obtain a truth value from the & = {L,?, T} R
as follows: T ifug L(A)

[ul @l =<{ L ifugL(A®)
7 ifue L(A?)NL(AY)

B. Syntax and Semantics of LsTL

Having .A¥ and A~ at hand, we evaluate: |= ¢] accord-
ing to the following Lemma:

Definition 4 (Three-valued semantics of LTL) Let u € »*
denote a finite word. Thé&uth valueof a LTL; formula ¢

with respect tou, denoted withu = ], is an element oB3 Proof: Let A = (3,Q7%,Q,%,567%, F~¥) denote the
defined as follows: NBA such that£(A™¥) = L(~y). Feeding a finite word
T ifVoeX¥ uo ko u € X to A7?, we reach the Seﬂ’(QE“’,U) c Q7% of

B . . states. Thus, if there exists a statec 67%(Q,%,u) such
uEel=1 L ifvoeX:uolee that £(A™%(q)) # 0, then we can choose an infinite word
7 otherwise o € L(A™¥(q)) in order to expand: into uoc € L(A%).

initi i- ()7
Note that in the above definition, we use the semantic functi@ @&finition of the NFAA™?, such a statg € 677(Q,", u)

[u = ¢] as well as the standard notatiar = : Since we exists, iff u E.(AW) holds. .
introduce a three-valued semantics on finite words, we rave t 1herefore, if u ¢ L(A™7) holds, then every possible
use a semantic functiofu = ] to denote the truth value of continuationuo of u will be rejected by.A™7, i.e., every
& with respect to a finite word. On the other hand, for the POSSible continuatiomo will violate = and satisfy, and
standard two-valued semantics of LTL, we only write = ,  "€nce we haveo [= ¢ for all o € ¥¢. If this is the case, by
to assert thatio satisfiesyp. Definition 4, [u |= ¢ = T. _ .

Note that already in [16], a coherent semantics for both, LTL BY Substitutingy for =, we obtainfu = ¢] = L if u ¢
on finite and infinite words is given. However, in runtime vers(A?)- Finally, if u € £(A?) N L(A"%), then there exist two
ification, we aim at checking LTL properties of infinite trace continuationss # o’ € X such thatuo |= ¢ anduo’ = ¢
by considering their finite prefixes. This renders the steshda®Nd thereforeu = o] =7. u

two-valued LTL semantics on finite traces as inappropriate i 1€ lemma yields the following procedure to evaluate the
our case. semantics ofp for a given finite traceu: we evaluate both

ue L(A?) andu € L(A®) and use Lemma 5 to determine
) ) [u = ¢]. As a final step, we now define a (deterministic)
C. Monitor Construction for LT4 FSM M¢ that outputs for each finite word its associated
Now we develop an automata-based monitor procedure three-valued semantical evaluation with respect to some LT
LTL 3. More specifically, for a given formulg € LTL3, we formula .



Emptiness

Input (1) Formula (2) NBA  (3) per state (4) NFA (5) DFA (6) FSM
® — : o ” A AT — M
B e — ATY Fe A~ A~ —
Fig. 1. The procedure for getting: = ] for a giveny
Let A¢ and A% be the deterministic versions of? and to specify certain properties and thereby rules out some

A~%, which can be computed in a standard manner using the complicated cases exercising the worst case complexity.
power-set construction. Then, we define the FSM in question Note that our construction yields an optimal monitor

as a product ofd¥ and A™%. regardless whatever fragment of LTL is considered.
o Second, it is possible to use a variant of LTL which is
Definition 6 (Monitor M?¥ for an LTL 3 formula ¢) still capable to express all LTL-expressible properties bu
Let 42 = (%,Q%.{¢}}, 6%, F¥) and A% = which requiresstrictly longer formulagior some of these
(2,Q7%,{q,%},07%, F¢) be the DFAs withL(A?) = properties.
ﬁ(A*")A and £(A™¥) = L(A7¥), where NFAs A% « Third, one could abandon a single monolithic and deter-
and A™¥ are as defined above. Then we define the ministic automaton as monitor procedure, and use instead
product automatonA? = A¥ x A7¥ as the FSM an alternative concept such as synchronising automata,
(2,Q,q,6,)\), whereQ = Q¥ x Q7%, g = (¢¥,9,%), hereby trading the size of automaton with an increased
5((¢,q"),a) = (69(¢q,a),67%(¢',a)), and X : Q — Bs is computational overhead at runtime [41].
defined by Moreover, we have implemented the above construction of
T ifg g F¢ the finite-state automatan¥ partly in anon-the-flyfashion.
Mg, d) =< L ifqgF? That is, for a given property, we construct the two NFAs, but
? ifqge F¥ andq € Fv. we do not determinise them to obtain the two corresponding

. . : o DFAs A¥ and A™¢. Consequently, we do not explicitly
Themonitor M? of ¢ is obtained by minimising the producteonsiryct the final automatai®, but instead perform steps

automatonA? . 4-6 on-the-fly to avoid the second exponential “blow-up”.
We sum up our entire construction in Figure 1 and conclude T0 do so, our implementation employs the power-set con-
by formulating the correctness theorem. struction, known from compiler construction [42], in an on-

the-fly manner: Instead of only maintaining a single current
Theorem 7 (LTL monitor correctness) Let ¢ € LTL; and State of a deterministic automaton, our monitor maintfiies t

let M¥ = (,Q, qo, 6, \) be the corresponding monitor. Then Set of reachable statesf the correspondingly underlying non-

for all w € ©* the following holds: deterministic automaton. Then, the deterministic automat
would be in an accepting state, if and only if there exists
[u = @] = A(6(qo, u)) at least one accepting state in the currently maintainedfset

Proof: The theorem follows directly from the monitorStates (of the nondeterministic automaton).
construction given in Definition 6 and Lemma 5 on the The reason for constructing the NFAs explicitly is that
evaluation of LTLs. we have to check the emptmess_ per state for each st_at_e of

Complexity: Consider Figure 1: Giverp, step 1 requires _the NBAS (recall_ Lemma 5 and its proof). Therefore, it is
replication and negation aj, i.e., it is linear in the original IMpPractical to build these two NFAs on-the-fly as well.
size. Step 2, the construction of the NBAs, causes an expo-
nential “blow-up” in the worst-case. Steps 3 and 4, leading
A¢ and A~#, do not change the size of the original automatb.' Example
Then, computing the deterministic automata in step 5, Gause Now we discuss a simple but comprehensive real-world
in general an exponential “blow-up” in size, for a secondetimexample in more detail, which also highlights most of the
In total the FSM of step 6 will have double exponential sizfeatures described above.
with respect top). In a C++-program, all static objects of an executable are
The size of the final FSM is i)(22") but can be minimised initialised before thenain method is entered, however, their
with standard algorithms for FSMs [39] to derive aptimal order is undefined, and their initialisation is thus perfedin
deterministic monitor with a minimal numbg(rn)of states. e tha nondeterministic order (cf. [43]). In consequence, it#us
worst case, however, a lower bound ©f2* ") applies to get spawned before executimgain , it is difficult to ensure

the number of states, as proved in [40]. ~ that all resources necessary to synchronise those threads a
Thus, better complexity results in other approaches, fike talready initialised, such as globally available and stdic
one in [8], are due to one of the following reasons: initialised mutex objects. This problem is generally knoasm

« First, one can use a fragment of LTL whichsigictly less the static initialisation order fiascdcf. [44]). The “fiasco” is
expressivehan full LTL, i.e., one gives up the possibility an especially complicated one when large applicationsuaite b



BAUER et al. RUNTIME VERIFICATION FOR LTL AND TLTL 7

from a number of different frameworks which must remaikfSM M¢¥ corresponds with the original intuition, and yields
independent from each other. ? while neither event occurred, and eith&ror |, otherwise.
Using our monitor generator with a C++ logging layer
such as the AACHE SOFTWARE FOUNDATION’S library,
Loc4cxx3, for gaining access to signals emitted by the
application’s threads, it is possible to construct a manito
over an alphabeE = 247, where {spawn,init} C AP,
for a property p = -spawn U init. In other words,
the monitor reports a violation, once a thread is spawned
before the application under scrutiny has properly finisied
initialisation. Fig. 3. The deterministic FSNMM¥ for ¢ = —spawn U init .
This example further illustrates the need for having three
truth values, instead of two when monitoring a running syste

« Intuitively, a monitor fory should raise an alarm only, if [1l. LTL 3 PUT IN PERSPECTIVE
a thread was spawned befareit occurred. Let us compare the approach carried out in the previous

« On the other hand, ifnit occurs before anypawn has  gection with some accomplishments in the literature. More
occurred, the monitor should report thatis satisfied specifically, we compare LT{s semantics when faced with

true true

spawn A —init ﬁi\ init
on

W
—spawn A —init

irrespective of the future. ~ so-calledgood and bad prefixes. Furthermore, we consider
« Finally, until either happens, it should retutnindicating - monitoring for the subclass of (co)-safety properties ared w
the necessity for further observation. compare LTls’s semantics to approaches basedrdarmative

Using the translation algorithm from formulae of LTL toprefixes.

Buchi automata as proposed by [45], one obtains ¢or  Let, as abovey = 24F be an alphabet for the remainder
respectively—p, the Blchi automata depicted in Figure 2. of this section.

“spawn true

A. Good/Bad Prefixes

Let us first recall the notion ofood and bad prefixesas
introduced in [22].

Definition 8 (Good/bad prefixes [22])Let L C ¥¢ be a
language of infinite words ovex. A finite wordu € ¥* is
—init true called

o a bad prefixfor L, if for all w € ¥, ww & L,
spawn N\ —init o agood prefixfor L, if for all w € 3¢, uw € L.
Note that every continuationv of a bad (good) prefix
(b) Biichi automatonAd™¢. for L by a finite wordv € ¥* is again a bad (good) prefix
for L. A bad (good) prefix: is calledminimal if each strict
prefix of u is not a bad (good) prefix anymore.

Using these terms, we can rephrase the semantics of LTL
as:

(a) Buchi automatonA®.

Fig. 2. The Bichi automata fap = —spawn U init

Then the two nondeterministic finite automaté#® =
(2,Q%,Q¢,6¢,F?) and A~ = (2,Q7%,Q,%,0°¢, %)
are defined with the accepting stafes and ¢, as described
in the construction leading to Lemma 5.

In our particular case, all states ¥ and A™¢ become

Remark 9 (LTL 3 identifies good and bad prefixes)Given
an LTL-formulay and a finite wordu € >*, then

accepting states, as only those states and transitionb@anans T if wis a good prefix forl(y)
which contribute to the accepted language. Also note that in [y =] =< L if uis a bad prefix forL(y)
this example, the two resulting finite automata are already ?  otherwise

deterministic. _ . . . :
Following Definition 6, we construct an FSM as monitor Thus, the monitor procedure given in the previous section

for the static initialisation order fiasco. For this purpose determine_s -for a finite prefix of a potentially infinite word,
first build the product ofi® and A~¢. Then we minimise Whether it is good, bad, or neither good nor bad. More
this product automaton to obtain the FSM® depicted in specmcal_ly, whep considering the f|r}|te preﬂxg_s of an inéni
Figure 3. The figure shows the respective output symbols §Prd by increasing length, the monitor identifies itsnimal
the FSM below the corresponding state labels, e.g., foe st@eod or bad prefix, if such a _preflx exists. ) .

g1 we haveX(g1) = L. Note that the minimisation removed Note that one of the contributions of [23] is to modify a

one of the originally four states of the product automatdre T 9Ven BUc_hi automat(_)n, typi_cally_arising from a given LTL
property, into a monitor which signals the occurrence of a

3Seehttp://www.apache.org/ . minimal bad prefix. Thus, this construction yields a monitor



which distinguishes two cases, namély: = ¢] = L and

[u | ¢] # L. At the same time, [23] does not discuss

the semantics of the resulting monitor in terms a matching
logical framework. Thus, LTk can be understood as a logic

which complements the constructions carried out in [23hwit J TR
formal framework. Nevertheless, we feel that our constonst / l/ \
are more direct and therefore easier to understand.
In practice, whenever a good or bad prefix is found, moni- “r

toring can be stopped, as every finite or infinite continuatio ' '
of the prefix yields the same semantics with respect tosL.TL

For the (minimal) monitotM¥ (see Definition 6), a good or
bad prefix leads to a state, which either outputer L, and Fig. 4. The structure of the deterministic monitor

which is only looping back to itself. We call such a state a

trap.

BesidesT and_L, there can be a further trap in the monitorgase the property to be monitored has been satisfied while in
as there can be a state, in which the output,isnd from the latter case, no satisfaction or violation can be shown by
where no state with output or L is reachable anymore.considering continuations af.

Consider, for example, the language definedthyp, stating Note, that the notion of non-monitorable fits well to LJ.L
that there are infinitely many states satisfyingAny finite  In [46], however, we suggest a more precise semantics of LTL-
word can be extended to an infinite one satisfying the formui@rmulae with respect to finite words allowing to differeaté

as well as to one falsifying the formula. Thus, given any énitugly prefixes. The idea is based on usingt@ng as well as
word, no finite continuation yieldS™ or L with respect to & weakversion of the next-state operator, essentially giving
LTL3. For runtime verification, such a prefix isgly, since rise to a four-valued semantics. Then, monitoring of non-
after processing it, monitoring can be stopped yet with @nonitorable properties can still be considered meaningfut
inconclusive result. this discussion is beyond the scope of this paper.

Definition 10 (Ugly prefix) Let L C X be a language of g Safety and Co-safety Properties
infinite words over¥. A finite wordu € ¥* is called anugly

prefix for L, if there is nov € ¥* such thatuv is either bad
or good.

We continue the comparison of LEls semantics with
existing concepts: The notion of bad and good prefixes was
introduced in [22] in the context of safety and co-safety

We follow [24] in calling a formulap non-monitorablevith  languages and formulae:
respect to a prefix, if no L or T verdict can be obtained.

Using our terminology, we define: Definition 12 (Safety/Co-safety language [22]A language
L C %% is called
Definition 11 ((Non)-monitorable) Lety be an LTL-formula | 5 safety languageif for all w ¢ L, there is a prefix

andu € ¥*. We cally non-monitorable after, if « is an ugly u € ¥* of w which is a bad prefix fot.
prefix of L(). We call monitorable if L(o) has no ugly 3 co-safety languagf for all w € L, there is a prefix
prefix. u € ¥* of w which is a good prefix for..

In other words, we calp monitorable if there isnou € X*  Tpjs notion is lifted to LTL formulae in the expected
such thatp is non-monitorable aftet. manner:

The discussion above renders the structure of the detesmini

tic monitor M¥ for_an LTLs formulay as depicted in_ Figu_re 4. Definition 13 (Safety/Co-safety property)A formula ¢ €
In general, a monitor has three traps, corresponding tangad, 1| is called asafety property(co-safety property if its

either a good, bad, or ugly prefix. As long as no trap is reachegl; model%(y) is a safety language (co-safety language,
the monitor outputg, while reaching a trap also implies thatrespectively).

monitoring can be stopped (since the output will never ckang
again). Let us give some examples:
In [23], the notion of anever-violate statavas introduced

. . . formula safety | co-safet
for a state of a monitor, from which no bad state is reachable. y y
" . . . Gp °

Additionally, an algorithm was outlined for merging all regv ja
violate states of a given Buchi automaton into a single neve d

. . Xp ° °
violate state. In terms of Figure 4, botlgly and good are el
never-violate states, i.e., in [23], both are collapsea iat < p oF
single never-violate state. Our monitor constructiondgefat pVGIp
most) two such never-violate statggodandugly. However, rUq °

we think that it is essential for a prefixe >* to distinguish ~ The definitions of safety and co-safety properties and lan-
whether it is a good or an ugly prefix, as in the previouguages immediately yield:



BAUER et al. RUNTIME VERIFICATION FOR LTL AND TLTL 9

Remark 14 (Safety/Co-safety properties are monitorable) C. Informative prefixes
Every LTL formula that is safety or co-safety is monitorable |, [22], the authors have introduced the notion ipfor-

mative prefixesThe idea is to consider prefixes of infinite
words that tell the whole story why a formula is (not)
satisfied [22]. Consider, for example, the formuldfalse.
Pvhile clearly unsatisfiable, one might argue that this bezem
only “obvious$ after considering a first letter of some woud
X ¢ holds iff ¢ holds in the second position af. For X false,
Lemma 15 (Monitorable is more than safety & co-safety) this means thatalse should hold in the second position of
The class of monitorable LLproperties is strictly larger which is obviouslynot the case. Thus, while the empty prefix
than the union of safety and co-safety properties. is not informative, every prefix of length one is.

Following the development of [22], we consider LTL formu-
lae in negation normal form, i. e. the set of formulae defined
by the following grammaf-:

In other words, for a safety or a co-safety langudgehere
are no ugly prefixes and for a safety or co-safety formgila
the monitorM¥ has no ugly state. However, this property als
holds for (some) non safety/co-safety properties:

Proof: Consider, for examplep = ((p vV q)Ur) V Gp.
Observe that the trace

e ppp... satisfiesyp,

e qqqq. .. does not satisfyp, p = true | false [ p | —p (p € AP)
o ...7 is a good prefix fory (provided that one of or g leVeleheleUp|pRe | Xo

holds in the positions denoted with., and The semantics is defined as expected, e.g. the semantics of
o ...{=p,—q,—r} is a bad prefix forp. the releasequantifier is defined such that Ry- is equivalent

As ppp . .. satisfiesp but none of its finite prefixes is good, t0 =(—p1 U—gs). We use—p as a shorthand for its positive

is not a co-safety property. Agyq ... does not satisfyp but form, i.e. the formula obtained by negatigg and pushing

none of its finite prefixes is bagh is neither a safety property. all negations down reaching either a Boolean constant or an

Nevertheless, any finite prefix that is neither good or bad catpomic proposition. Thelosure cl(¢) of ¢ is defined as its

be extended to a good or a bad prefix: any letter containiagt of subformulae.

r makes the prefix good, while a continuation by the letter

{-p, ~q,—r} makes the prefix bad. Thus, the monitst® Definition 16 (Informative prefix [22]) For an LTL formula

for ¢ does not have any ugly state. B o and afinite wordu = ag . . . a,, With a; € X, we say that is
The previous lemma contradicts the popular belief that moimformativefor ¢, if there exists a mapping: {0,...n+1} —

itoring is only suitable for safety properties. That salere 2¢(¥) such that the following holds:

is something particular about safety properties: By définjt - € £(0),

any infinite wordw not satisfying a safety property, must ¢ 4+ 1) = ¢, and

have a bad prefix. Hence, when we never reach the bad , for all 0 < i < n and v € £(i), we have

trap in an automaton for a safety propegy then we know — if 4 is an atomic proposition, thea, satisfiesy,

that the wordw satisfiesp. Thus, assuming that one could e : .

predict the monitor output to be the infinite sequente. . ., _ :]: Z ; ZE Xzz :22231 g igg 2:13)12/;2666(;()@)

one could classify the property as satisfied. This suppb#s t —if b = Xy th'enwl cli+1) '
intuition that, if nothing has gone wrong for an unbounded — i = 1y U,1/12 then vy € f(i), or, 1 € £(i) and
elapse of time, the property to be checked is indeed satisfied 1 Uty € £(i +’1) Y

The proof of the previous lemma shows that this property — i b = by Rib tr;en by € £(i) and, b1 € £(i) or
does not hold for all monitorable properties. For example, b1 R € £(i +’1) '

bothppp ... andqqq ... do not reach a trap when monitoring e '

¢ = ((pVq)Ur)V Gp. Thus, the monitotM¥# will output  |f 4 is informative fory, the existing mapping is called a

the infinite sequenc@??... when monitoring either of these witnessfor - in u. Note that the emptiness din + 1)

two words. Howeverppp... satisfiesy while gqq... does guarantees that all the requirements imposed -y are
not satisfy,. Thus, even assuming that one could predict thgifilled alongw. The definition implies

monitor output to b&?? ..., one cannot classify the property

as satisfied or vioIated,7as botipp ... andqqq ... yield the  Remark 17 (Informative implies bad) Lety be an LTL for-
same output sequencer. ... mula. Every informative prefix fop is a bad prefix fore.
To summarise this discussion, we note that

procedures which check for finite prefixes of vioIatinthiCh have bad prefixes but no informative ones, as shown in
words, as well as the examples below:

« successful validations of co-safety properties are replort
by monitoring procedures which consider finite prefixeExample 18 (Informative prefixes)

of satisfying words, but additionally, .y
; ; ; ; “While the ideas presented below can also be developed inettsom of
» there are monitorable properties which are neither Ch%ﬁ'L defined in Section Il (as done for example in [21]), we éo¥ [22] to

acterised by finite violating or finite satisfying prefixes. simpiify the presentation.



10

« ConsiderGp andu = pq. Note thatu is a bad prefix for report informative bad prefixes (as stated explicitly in][25
Gp and that—-Gp = F—p.° Then,/; defined by/;(0) = and implicitly in [31]). In [22], the authors suggest thateon
{F-p}, £4(1) = {F-p,—p}, £1(2) = 0 is a witness for could search for an informative prefix fgr as well as the
-, showing thatu is informative foryp. negation ofip.

o Considery, = G(p V Xfalse) and u = pq as before.  Because of Remark 17, such a search procedure would stop
As 5 is equivalent taG'p, u is still a bad prefix forps.  upon either some good or bad prefix—however, these prefixes
Note, =p2 = F(—p A Xtrue). Thus, some witnes& have to be informative at the same time. Hence, in all the
should satisfyF'(—p A Xtrue) € £5(0). Asp is satisfied above mentioned approaches, it is possible that, for exampl
in the first position ofu, it has to hold that{ F(—p A a bad prefix is examined, meaning the property to monitor is
Xtrue),—p A Xtrue, X true} C ¢5(1). This implies that not satisfied, yet the word is not reported because it is not
true € £2(2) # (). Thus, there is no witness forp, in  informative.

u. However, adding an arbitrary letter to turns it into In the setting of safety properties, one might argue that
an informative prefix and allows, to be extended to a the user of a monitor generation tool should only be allowed
witness for-s. to generate monitors for intensionally safety propertind a

o Considerys = G(p V Ffalse) and u = pq. As p3 not also for accidentally or pathologically safety projest
is equivalent toGp, u is still a bad prefix forps. Then, of course, monitors identifying only informative pre
Note, ~p2 = F(=p A Gtrue). Now, havingGtrue as a fixes suffice to report all bad prefixes. However, while [22]
subformula in some possible witnés$:) requiresGtrue  provides a decision procedure for checking whether a faamul
to be in any/;(j) for j > i, astrue cannot be falsified of is intensionally safety, no conversion algorithm from non-
any position ofu. Thus, whileu is a bad prefix showing intensionally to intensionally safety formulae is giverora
that 3 does not hold for any continuation of there is user of a monitor generation tool, it might be interesting to
no continuation ofu that is informative. learn that the property to monitor is not intensionally safe

However, it might be too hard and cumbersome for him or her

The example shows that the notion iaformativenessor 14 carry out a translation manually—and not necessary when
a propertyy depends on the syntactical representationpof following our constructior.

The example further highlights that checking for informa- r,4gh debatable, we consider monitors checking exclu-
tive prefixes is closely related to the tableau-based [4€] agjely for informative bad prefixes, such as in [23], inferio
alternating-automata-based approach to model checkittg L, our monitors which check for bad and good prefixes,

formulae [36]: The witnesé for some formula~¢ in u canbe 45 the Jatter follow the maxim of reporting a violation (or
considered as a finite accepting tableaux-fqr, in the sense satisfaction) as early as possible.

of [47].
The notion of informativeness is used to classify safety IV. THREE-VALUED LTL IN THE REAL-TIME
properties into three distinct safety levels: SETTING—TLTL

In this section, we consider runtime verification for real-
time systems emittingventsat dedicatedime points Thus,
for monitoring, we may observe a sequence of events ranging
« intensionally safetyif all its bad prefixes are informative, gyer some alphabét paired together with ime stamp(a real
- accidentally safetyif every word that violates> has an ygjue), identifying when exactly the event happened. Thus,

Definition 19 (Safety levels [22])A safety property € LTL
is called

informative prefix, . _ the behaviour of the system under scrutiny is described by an
« pathologically safetyif there is a word that violates (in)finite timed wordover the alphabeE x R0,
which has no informative prefix. Note, that in the discrete-time setting of LTL, we con-

We use the formulae previously studied to exemplify th%;dere_d (;equences Of.) states .Qf SyStemS defined by Boolean
notion of safety levels: combinations of atomigropositions, while here, we deal
G is 'ntens'onall' safet with systems emittingeventsat dedicated time points. We
* GpIsi lonatly satety. prefer this event-based approach in the real-time casee sin
o G(pV Xfalse) is accidentally safety. . . . oo
G(p v Flalse) is pathologicall safe'; otherwise one would have to deal with certain ambiguities:
« GlpV Ffalse) is p gicaly Y- _ _If one specifies that within 5 time units, both, propositions
Note, however, that all three formulae are equivalent, i.; and, must evaluate to true, the question arises, whether
they accept the same set of models. _ ~ a andb are required to be true at the same point in time
Note that, interestingly, [21] gives a semantical cham&cte 5. not If one is indeed interested in expressing that b
sation of informative prefixes in terms ofvgeaksemantics of st become true within 5 time units. then the semantics

LTL on finite traces, though for the discussion to come, W& the underlying logic must support the timed observation
stick to the syntactical presentation. of such Boolean combinations of propositions—leading to a
The monitor generation procedures given in [25] and [3Hqre complicated logic to start with. By following an event-
follow a tableau-style approach for checking violationd®k | ,5ag approach, we avoid these issues entirely. Moreawer, o

(safety) properties. More specifically, these procedurds w

SHowever, there might be a price to pay: When reporting a badnbt
5Recall that—¢ is a shorthand for the negation ¢f in negation normal informative prefix to a user, it might be harder to understéorcher or him
form. why the prefix is indeed bad.



BAUER et al. RUNTIME VERIFICATION FOR LTL AND TLTL 11

can still express a proposition-based property within thene  satisfies strict monotonicity and every word Y satisfies
based framework by introducing an event for each changehuith, strict monotonicity as well as progress.
the relevant Boolean formulae. Therefore, we do not conside We use finite and infinite continuationsof finite timed

the proposition-based approach in this section. words throughout the section. Thereby, the strict monatoni
A logic suitable for expressing properties of such timedf timed words is required to hold, i.e., for a finite timed
words istimed lineartime temporal logi€TLTL), which is a word v = (ag,to)...(a;,t;) € TX*, we consider only

timed variant of LTL, originally introduced by Raskin in [R8 those timed words as continuations which start with a timed
TLTL, as argued by D’'Souza, can be considered a natuelent(a;;1,%;+1) such thatt; ;1 > t; holds. For the sake of
counterpart of LTL in the timed setting. Consequently, owsimplicity, when we refer to some continuation @f we do
developments in this section are for TLTL specifications. not explicitly mention this conditiom; 1 > ¢;.

TLTL is very well suited for expressing simple yet typical Furthermore, forv as above, we call its sequence of events
bounded response properties, such as requiring that ar e\#@re projection to the first component) thtimed wordof
a occurs in three time units. w, denoted withut(w) = agay ... and we writeut(£) =

In LTL, such a property is typically expressed as the formulaut(w) | w € L} for a finite or infinite timed language with
© = X X Xa. However, this formulation presumes a direct cor£ C TX™ or £ C TX*“, respectively.
respondence of discrete time delays with subsequent@ositi Every eventa € X is associated with aevent-recording
in the word. Actually, what should really be expressed i¢ thalock z,, and arevent-predicting clocky,. Given an (infinite)
the eventu occurs after three time unitegardless how many timed wordw, the value of the event-recording clock variable
other events between before x4 at position; of w equalst; —t;, wherej is the last position

A main feature of TLTL is that it does not impose anyreceding: such thata; = a. If no such position exists, then
mutual dependency between the frequency of the occurring is assigned the undefined value, denotedLbyrhe event-
events on the one hand side, and between the correspondgireglicting clock variabley, at position: equalst;, —¢;, where
time stamps on the other hand. Henceforth, TLTL is espgcialt is the next position aftei such thata; = a. If no such
suitable for specifying properties akynchronousystems.  position exists, again, the variable is assigned

After recalling standard TLTL syntax and semantics, we We compute the values of event-recording and event-
introduce a three-valued semantics for evaluating stahdaredicting clocks with the following two functions whichkia
TLTL formulae on finite timed words, following the samea timed wordw = (ag, to)(a1,t1)--- € TX*UTX*, an event
rationale as for LTk (Sections IV-A and IV-B). In Section IV- « € ¥, and an index as arguments:
C, we continue with a detailed overview on the now more
involved monitor construction, which spans over Sections | . .
D throughout IV-F. We conclude the real-time case with and ay, #aforall j<k<i

i last(w, a,1) = L iff a;jFaforal 0<j<i

Section V-G on issues arising in adapting our monitor con- . . S

. o next(w,a,i) =t; —t; iff a;=cand i<j<|wl
struction to specific platforms. . .
and ap #aforal i<k<j

next(w,a,i) = L iff a;jFaforal i<j<|uw

last(w,a,i) =t; —t; iff a; =aand 0<j<i

A. Preliminaries
For the set of all event-clock€s = {z,,y, | a € X}, we

Let us fix an alphabet of events for the rest of this section.symmarise these evaluation rules with the next definition:
In the timed setting, the occurrence of every everg X is

associated with a corresponding time stamp and thereforgygqnition 21 (Clock Valuation Function) A clock valua-

timed v!oord is a sequendeo, to)(ai,t1)... of timed events o nction vi o O — Ty with T, = R0 U {L} over

(3 x R=7): a timed wordw = (ao, to)(a1,t1) - € TX* U TX* assigns
a positive real or the undefined valueto each clock variable

Definition 20 (Timed Word [48]) An  (infinite)  timed corresponding to position such that the following holds:
word w over the alphabetX is an (infinite) sequence

(ao,to)(a1,t1)... of timed events(a;,t;) consisting of 7i(2a) = last(w, a,1)
symbolsa; € 3, and non-negative numbers € R=°, such Yi(Ya) = next(w, a, i)
that The set of clock valuation functionsver the clockCy; is
o for eachi € N, ¢; < t,,1 holds §trict monotonicity, and denoted withVx;.
such that,
« in case of infinite words, for alt € R=° there exists an  Thus,y; describes the evaluation of the clockgg at time
i € N with ¢; > ¢ (progresk t,—but it ignoresthe eventa;: v;(z,,) = last(w, a;,7) does

not evaluate to 0 but refers to the penultimate occurrence of
The lengthof a timed word is denoted withu| where we «; (if no such occurrence exists, thep(z,,) = ). Likewise
set|w| = oo for an infinite word andw| = n for a finite word  ~;(y,,) = next(w,a;,i) doesnot evaluate to 0 but refers
w = (ag,t0) - .- (An-1,tn—1). to the next future occurrence af (analogously, if no such
To simplify notation, we abbreviat€x x RZ%) by T¥. occurrence exists, thef(y,,) = L). Therefore, at the time
Further, we defineTx* and TX“ as the set of finite and ¢; when the event; occurs, we refer to the last past and the
infinite timed words, respectively, i.e., every word fRY* next future occurrence af; and ignore its current occurrence:



12

Remark 22 Given a timed wordw = (ag,t0)(a1,t1) - € To constrain the value of a clock at a certain point in
TYX*UTX®, and a corresponding sequence of clock valuatiotme, i.e., to constrain the valuations of g, we need to
functions 4,71, ..., note that eachy; describes the time formulate constraints ovef’; . To do so, we define the set
distances to the last preceding and next subsequent eveht® encompass the intervals over the positive r&i8 and
relative to time instantt,—but it is independent from the the singleton{ L }.

current event;.
' Definition 24 (Intervals) The setZ of intervalscontains all

This definition leads to the followingnitial clock valuation intervals of the form[i,+) where [ and ) either be( or |,
~o Which holds before the first timed eveftty, ty) has been respectively) or | and withl,» € N and ! < r except for
processed: intervals of the forml, r] where we requird < r instead.Z

e Yo(zq) = L for all z,, and also contains all intervals of the forifl, oc) for I € N. These

o 70(ya) = next(w, a,0). intervals are interpreted as subsets fré&i° in the usual way.

Thus, even the initial clock valuation functiog (as well as LFurthermore,I contains the interval L, 1] with [L, 1] =
every subsequent clock valuation functigy) depends on the L}
entire wordw becausey,(y,) = L holds iff « does not occur  For the sake of simplicity, we sometimes write the value
in w at all. In the context of runtime verification, this imposesor an intervalt, ¢], in particular in case of clock constraints, as
a problem, since a monitor observing a running system dgfined next. The clock constraints over the clockg'inrely
unable to access future events—and consequently—it canoqtthe intervalsZ as their basis: Each such clock constraint
evaluate the clock valuation function. To solve this prahle requires a number of clocks iy, to assume corresponding
we introduce in Section IV-Bsymbolictimed runs and prove values in a respective intervale 7.
their appropriateness for our needs.

Clock valuation functions are defined with respect to Refinition 25 (Clock Constraint) Let ¥ be a finite alphabet
timed word and hence the strict monotonicity property ared t9f events with the associated et of clocks. Then alock
potential infinite length of timed words imply the followingconstraintis a partial functiony : Cs — Z. If ¢(c) is
two properties upon valid clock valuation functions: undefined, we write)(c) = undef.

A clock valuation functiony € Vs over the clocksCy
Proposition 23 (Properties of Clock Valuation Functions) Satisfiesa clock constrainty, iff y(c) € 4 (c) holds for all

Let~ € Vs, be a clock valuation function over the clooks, ¢ € Oz With ¥)(c) 7 undef. Then we writey |= ¢. _
Then the following two conditions hold: Theset of constrainten the clocky, is denoted withVs,

() Non-CoincidenceFor all eventsa # ' € 5, ~(a) % and contains all satisfiable constraints
Y(xa) and y(ya) # 7(Yar)- Thus, if¢(¢) = undef for a clockc € Cy;, theny does not
(b) Continuity.If v refers to an infinite timed word, then thereconstrain the value df, i.e., the valuey(c) for the clocke of
exists at least one clock, € Cx such thaty(y,) # L a clock valuationy with - |= ¢» can be chosen arbitrarily.
holds. We define the set of constraintss;, to contain only the
satisfiable constraints to meet Proposition 23: Every claik
Proof: Property (a), non-coincidence, holds because strightion function must satisfy non-coincidence and contjaH
monotonicity disallows two eventsa;,t;)(ai+1,ti+1) With  and hence each clock constrainte ¥y, must not enforce

t; = t;y1. Property (b), continuity, holds, since each infinitegincident or non-continuous clock valuation functions:
word has an infinite supply of events and hence there must

occur some event in the future. m Remark 26 (Properties of Clock Constraints) Each clock
We use the following notation to manipulate a clock valusonstrainty € Wy has a non-coincident and continuous
ation functiony € Vx: solution.
o Fora (?Iockc € Cy and a valuev € T, = R=0U {1} The reason for using intervals in the definition of the
we definey[c = v] € Vx with clock constraints is twofold: First, we can use them for the
Ne=](d) = () iff ¢ £ definitiqn of both, TLTL and the corresponding automaton
_ N — e model, i.e., event-clock automata. And second, we use tie fa
Y[e=](d)=wv iff ¢ =c ; . . .
that Uy, is closed under conjunction for an efficient scheme
« Foré € R=Y, we define to symbolically execute event-clock automata:
(v £0)(xa) = v(2a) £ 6 ?ﬁ V(wa) # L Remark 27 (Conjunction of Clock Constraints) If the two
(y£0)(za) = L !ﬁ V(za) = L clock constraints)y, 1)1 € ¥y, are consistent, i.e., there exists
(Y £0)(Ya) = 7(ya) T 6 !ﬁ V(ya) # L a clock valuation functiony € V5 such thaty | 1; for
(Y £0)(ya) = L iff v(ya) = L i = 0,1, then theirconjunctiony = ¢ A ¢ is defined with
where we requirey(y,) > ¢ for all event-predicting  +(c) = 1o(c) N1(c) iff  wi(c) # undef for i = 0,1
clocksy, in case ofy + 4§ andvy(z,) > § for all event-  +)(c) = ;(c) iff  4;(c) # undef
recording clockse,, in case ofy — 4. Otherwisey 4 is and 1_;(c) = undef

invalid. ¥(c) = undef iff  1;(c) = undef for i = 0,1



BAUER et al. RUNTIME VERIFICATION FOR LTL AND TLTL 13

Above, we requirey = 1; for i = 0,1 for ¥9 A 91 to Definition 30 (Semantics of TLTL [29]) Let w € T be
be defined and valid—since then = (¢ A 1) holds and an infinite timed word withw = (ag,to)(a1,t1) ..., and let
1o A1py has indeed a non-coincident and continuous solutiohce N=°. Then the following holds:

We also use the notation[c = I] for ¢ € Uy, ¢ € Cy, w,i = true

and/ € Z, to denote the clock constraint which agrees with w, i = - i w,i

¢ for all clocks ¢’ # ¢ and yieldsI for ¢. Hence we have w’z. - GSO i a—a 7
_ AN / / _ _ ’ i —

Yle = I)() = () for ¢ # c and¢[c = I](c) = I. wile<a el iff m(wa) el

Analogously,[c = undef] is undefined for: and agrees with

. . . ) cerl iff i(ya) €1
W for all other clockse’ # c. Finally, v + 6 with § € R=0 is i [=Dq € ! 7ilba) €

w,i|:<,01\/<p2 iff wvi':(pl Orwvi':(pQ

defined as w,i = e1Ugpy  ff Jk > with w, k = oo
(0 +0)(wa) = [(I+06,r+0) iff Y(xa)=[lr) and Vi:(i<l<kAw,lkE=q@p)
(1/)4'5)(%):1/)( ) iff 1/’(%)6{[ ,J_],undef} ’UJ,Z":X(,O iff w,i—i—l ':(p
(¥ +0)(ya) = [I—0,r — &) iff wgya§ =[]

(¥ +0)(Ya) = ¥(Ya) iff (ya) € {[L, L], undef} Finally, we setw | ¢ iff w,0 | .

To illustrate the definition of the syntax and the semantics

{
where we usei—b = max{0,a — b} and where we require ) -
of TLTL, we give some example properties.

that no interval(v) + 8)(y.) = [[—d,r — &) becomes empty.
Otherwise, if at least one interval becomes empty- 6 is

invalid. Example 31 (TLTL properties)
In what follows, we use some basic relationships betweene G(—alive — >aive € [0,5]) means that whenever some
clock valuation function and clock constraints: event different fromulive occurs, then the eventlive
must occur within 5 time units again. Note that this exam-
Fact 28 (Clock Valuation Functions & Constraints) Let ple does allow a sequence. , (alive, t;)(alive, tit1) . ..
v € Vs be a clock valuation function and let € Uy, be a with ¢4, —1; > 5, i.e., two adjacent occurrences @five
clock constraint such that |= ¢ holds. may be separated by an arbitrary period of time.

e G(>aive € [0,5]) requires that from every given point
in time, alive will occur within the next 5 time units. In
this example, the subword. , (alive, t;)(alive, ti11) . . .

(a) If v+ 4 is valid, theny + ¢ is valid as well andy+ 4 =
1 + ¢ holds.

(b) For a clocke € Cx, and a valuev € T, with v € I for ) i ;
some intervall € Z, v[c = v] |= [c = I] holds. with £;.1 —t; > 5 is ruled out, sinceyi (yarive) = ti+1—ti

(c) For a clockc¢ € Cx and an arbitrary valuev € T Is required to be withir{0, 5], .
~[e = v] = ¥l = undef] holds. o G(req — >qck € [0,5]) means that if a request event

req arrives, then it must be handled with an acknowledge
eventack within 5 time units.

B. Syntax and Semantics of TLsTL o Dalive € [0,2]Udone states that the evenione has to
For a finite set® of events, we introduce the formulae of ~ occur eventually and that until then, the evefitve must

TLTL by adding to LTL two new forms of atomic formulae: occur every 2 time units.

First, <1, € I asserts that the time sineec ¥ has occurred ¢ G(req — >.q ¢ [0,5]) requires that two subsequent

the last time lies within the intervdl € Z. And second>, € request eventseq are separated by strictly more than 5

1 analogously asserts that the time untibccurs again lies time units.

within I. The semantics ofi, € I is thaty(z,) € I musthold ¢ G(actuator — <epror € [L,1]) states that if an

at the point of evaluation, and analogously, in case pfc I, actuator event occurs, then previously, neror has

it is required thaty(y,) € I holds. This timed variant of LTL occurred (equivalently, we could writ& (error —

is taken from [29] where is called LTL. G-actuator) in standard LTL).

Analogously to the discrete-time case, we now define a 3-

Definition 29 (TLTL Formulae [29]) The set offormulaey valued semantics for TLTL, yielding the logic TLEL

of TLTL is defined by the grammar

pu=true|la| < €l |a€l|~p|oeVeleUp|Xp, Definition 32 (Semantics of TLTL3) Letwu € T'>* denote a
finite timed word. Theruth valueof a TLTL; formula ¢ with
forae ¥ andl €. respect tou, denoted withiu |= ¢], is an element oB; and

Again, as in the discrete-time case, we use three abbrevdefmed as follows:

tions in our notationp A for —(—pV ), Fp for true U ¢, T if Vo such thatuo € TY“ uo = ¢
and Gy for =(true U —¢). Additionally, we write <, ¢ I [ul= o] =< L if Vo such thatuo € TS* uo - ¢
for =(<, € I) andr>, ¢ I for =(>, € I) respectively. 2 otherwise

The semantics of the untimed operators of TLTL formulae

is defined as it is for (discrete time) LTL. By adding the In the above definition, the truth value of every possible
semantics forq, € [ andr>, € I, we obtain an inductive infinite continuations of a given finite timed word: is eval-
definition of the semantics of TLTL over infinite timed wordsuated according to TLTL-semantics. Singés a continuation



14

of u = (ao,to0)...(a;,t;), we only have to consider thosetimed word, such an approach does not impose a problem,
infinite wordso which start with a timed eventu;;1,t;41) however, having only access to a finite prefix of a subseqguentl
such thatt;; > t; holds. continued timed word, it is not possible to evaluate préuict
To illustrate the three-valued semantics, we discuss thkcks directly. Instead, our monitor executes the evémtkc
evaluation of the first four example properties from above. automaton symbolically by maintaining pairs of automaton
states and symbolic clock valuations (Definition 36) which
Example 33 (TLTL3 Evaluation) describe the viable values for each predicting clock askcloc

o G(—alive — Baive € [0,5]) evaluates always ta if ~constraint. _ _ -
¥ = {alive} holds. If ¥ contains any other element, After developing a procedure to implement a transition
then the TLTh-semantics yields either or ?: If an event Symbolically (Figure 6) and proving that this procedure is
a # alive occurred andulive did not occur within 5 time indeed abstracting all concrete transitions (Lemma 43), we

units. then the semantics evaluateslto Otherwise. the define symbolic timed runs (Definition 41) of event-clock
result is?. automata. These symbolic timed runs are not requiring any

o G(Baive € [0,5]) evaluates either ta_ or ? again. If the information beyond the currently known finite prefix of the
evaluated finite prefix. contains a period of time which observed timed word (Remark 42) and are therefore a suitable

is longer than 5 time units and which does not contain A€ans for runtime verification. Then we prove that every
alive action. then the result is.. Otherwise. it is?. timed run is abstracted by a corresponding symbolic timed
o G(req — >a € [0,5]) yields L if there occurs areq Fun (Lemma 43).

event which is not followed by ak event within 5 time [t would remain to show the converse, i.e., th_at every sym-
units. Otherwise the result i& bolic timed run is concretised by a corresponding timed run.

Bative € [0,2]Udone evaluates to? if done has not However, this is not the case as there are spurious symbolic

occurred so far while two subsequent occurrences Bfed runs which cannot be concretised (Proposition 44). Bu
alive have never been separated by more than 2 tinf¢€ can use a backward simulation argument to show that every
units. If done occurred already andalive has been indivipl_ual symbolic transition ha§ a corresponding concrete
signalled on time beforehand, then the formula evaluaté@nsition (Lemma 45). At this point, we can prove that, give

to T. Finally, if there are two subsequent occurrences i infinite timed word, every symbolic timed run over some
alive which are separated by strictly more than 2 timdinite prefixof the given word can be continued by an ordinary

units beforedone occurred. then the formula evaluatednfinite timed run iff there exists a timed run over the entire
to L. infinite word (Theorem 46). This leads directly to a criterio

for runtime verification (Corollary 47): Given a finite prefix
) o of a timed word, this prefix can be continued into an accepted
C. Overview on TLT{ Monitoring word iff there exists a symbolic timed run leading to a pair of
In this section, we outline our monitor construction fom state and a symbolic clock valuation which gives rise to a
TLTL3 which we concretise in the subsequent sections. f@n-empty language. Hence, we have to address the emptiness
build a monitorM¢ for a given TLTLs-propertyy, we follow check for symbolic states, as discussed in the next section.
roughly the approach taken in the discrete-time case. Thus, Emptiness Check for Symbolic States (Section IV-E):
we look for a procedure to determine whether there existhus, after reading a finite timed word, we have a pair
an accepting and/or rejecting infinite continuation of aegiv with a state of the original event-clock automaton and a
finite prefix. To obtain such a procedure, we generate feymbolic clock valuation describing the viable valuatiafs
a TLTLs-property ¢ the two event-clock automatd?. and each predicting clock. Now we have to check whether there
A_¥ corresponding tap and its negation-y, which accept exists an infinite timed word which continues the given prefix
the timed words satisfying and respectively violatind49]. and which leads the automaton to acceptance. Starting with
Then, following the concepts of the discrete-time case,wre rgeneral quotient automata (Definition 48) which work with
both of them in parallel in order to check whether there exiahy time-abstract bisimulation relation (Definition 490Th
infinite continuations which lefA¢. and/or.A_¥ accept. and the emptiness check based upon such automata (Theo-
However, in contrast to the discrete-time setting, this-proem 50, [48]), we obtain a look-up table which answers the
cedure facegredicting clocksand a more complexempti- question whether a pair consisting of a state and a bisiiulat
ness checlas additional obstacles. Both issues are addresssfliivalence class has an empty language or not. To use this
separately in Sections IV-D and IV-E, respectively. Then ilvok-up table, we express symbolic clock valuations as the
Section IV-F, having suitable techniques at hand, we builchion of a set of equivalence classes of the underlying time-
the final monitor, following closely the scheme used in thabstract bisimulation (following the condition given in ©b
discrete-time setting. lary 51). Finally, we recall the region equivalence for even
Symbolic Runs of Event-Clock Automata (Section IV-D3lock automata (Definition 52, [51], [48]) as one particular
As starting point for the monitoring procedure, we recaé thinstance of a bisimulation relation and show how to compute
Definition of event-clock automata (Definition 34) and theia set of regions which covers a given symbolic clock valumatio
timed runs (Definition 35) over infinite words. In these timed A Monitor Procedure for TLTL (Section IV-F): As in
runs, predicting clocks anticipate the time until some évethe discrete-time setting, given a property we run two
occurs the next time in the future. Given a fixed infinitautomata in parallel, namely one fprand another one fofp.



BAUER et al. RUNTIME VERIFICATION FOR LTL AND TLTL 15

We symbolically execute the event-clock automaiify and an actiona is predicted, while this information is not available
check the emptiness for each reached pair consisting ofa stget—at least in the online monitoring approach. We solve
and a symbolic clock valuation. In parallel, we do the santhis problem by representing the valuation of predictirackl
with the automatord_¥ corresponding to the negated propertyariablessymbolically

—p. Then we combine the results of these two evaluationsWhen the automaton takes a transit{gn a;, ¥, ¢;+1), then
following directly the semantics of TLTJ-to obtain the final the clock constraint) € Uy, either leaves a variable € Cx,

verdict. unconstrained (i.es(c) = undef) or associates a variabte
with an intervall € Z (i.e.,¢(c) = I) to requirey;(c) € I.In
D. Symbolic Runs of Event-Clock Automata the course of a symbolic run of an event-clock automaton, we

o not know the actual value of any event-predicting cloat an

erefore we cannot evaluate any interval constrgify,) € I
g/rléiCh involves an event-predicting clogk. However, we can
assume that each such clock constraint will be satisfieddn th

annotated both with input symbols frodi and with clock . : .
constraints froml'y. Intuitively, such an edge is enabled aﬂegjtur.e and add it tq a l!SF of constraints to be checl_<ed_ 'f’*"‘er 0
ut instead of maintaining each such constraint indivitjial

reading some timed word, if the corresponding clock vaturati L . . . o . .
we only maintain their conjunction—which is again a single

function satisfies the clock constraint of the edge in camcer .
g clock constraint (see Remark 27).

Definition 34 (Event-Clock Automaton [30] as in [29]) Thus, Whei W; symbog:zi;ly execute an everllt-clo.crlf au-
Let X be a finite alphabet and’s. the corresponding set tomaton Aee = (%,Q,Qo, B, F), we use pairgg, T') wit

of eventrecording and event-predicting clocks. Then dn € Y= instead of pair(g,y) with v € Vs. During such
event-clock automatois defined asA.. = (%, Q, Qo, E, F) a symbolic execution, we always know the values of event-
with the following components: « e recording clocks while we do not know the values of event-

. - predicting clocks. Hence, the clock constraintin such a
- Qisa flnltehset of sftgt_e_s,l pair (¢,I") determines a single value for each event-recording
. gog %lei; ?hseets((;t Ig;tlzczft:i, state sets foIIowinCIOCk using['(z,) = [1,1] with I € T... In case of an event-
. thegeneralised o acceptanﬁe c?ondition as explaine%redlcung cIock,l_“ describes thg valid range of values which
below. and ' Fr(e 30_n5|s_;[ﬁnt Wltg tfhe gonstralrlns tthatt occurrebqtso fa_m?]'h |
’ . " ) is either undefined or evaluates to an arbitrary interva
« EC@x E x ¥y x @ as the finite set of transmon_s. ) fro%n 7. For event-recording and event-predicting C|(})/CkS, the
We further definei 4, as the biggest constant appearing iNnteryal [L, 1] is allowed in symbolic clock valuations: It

the constraints of an event-clock automatdp.. means that the corresponding event either did not occur in

For the sake of simplicity, we writd¢ instead of K, the past or will not occur in the future.
when A.. is clear from the context. An edge= (¢, a, %, ¢') This discussion yields the following definition:
represents a transition from stajeupon eventz to stateq’,
where the clock constraint then specifies wheais enabled.
A sequence of pairs consisting of states and clock valuatif
functions which corresponds to a sequence of respectivel

enabled transitions gives rise to a timed run. Intuitively, a clock valuation functiory satisfies a symbolic

o ] . clock valuationT, i.e., v = T, iff v would have satisfied

We first recall event-clock automata: For a given finit
alphabet® and a corresponding séts; of clocks, an event-
clock automaton is a finite state automaton whose edges

Definition 36 (Symbolic Clock Valuation) A symbolic
ck valuationis a clock constraintl’ € Wy where
«) = [l,]] with [ € T, holds for all event-recoding clocks.

ton Aee = (3,Q,Qo, E,F) over a timed wordw = ¢orresponding automaton.
(ao, to)(a1,t1) - -- € TX* is an infinite sequence of state and \yhen we symbolically run an event-clock automaton, our
clock valuation pairs(qo,Y0)(q1,71) - .- such that algorithm has to maintain a set of pajtg I'). This set contains
e (o IS an initial state, i.e.go € Qo, the pairs which araeachablefrom the initial set of pairs
« each~; assumes values according to Definition 21 (thug(q,,T) | go € Qo}. Herein,I'y is the initial symbolic clock
~o must be initial), and such that valuation:
« there exists a transitio(y;, a;, 1, ¢i+1) € E with; = ¢
for all 7 > 0. Definition 37 (Initial Symbolic Clock Valuation) The ini-

tial symbolic clock valuationl'y for a set Cyx of clocks
evaluates tol'g(z,) = [L, L] for all event-recoding clocks
x, and setsl'g(y,) = undef for all event-predicting clocks

Ya-

A timed run 6 of an automatonA4.. over a timed word
w € TX* is calledaccepting iff for each F; € F, a state
q € F; exists such thag occurs infinitely often ind. Finally,
a timed wordw is acceptedby A.., i.e., w € L(A..), iff
there exists an accepting r#hof A.. over w. The use of  But before describing symbolic runs, let us first consider
extended B"uchi acceptance condition instead of the standhow to compute the sequence of clock valuation functions
one is due to the construction given in [49]. 0,71, ... for a given timed wordw = (ao,to)(a1,t1) ...

For runtime verification, event-predicting clock variableThis sequence can be computed directly, following theimdefi
pose a problem, since the time to the next future occurrehcetion. However, in case of runtime verification, we are insted



16

Therefore, we cannot define a relatiéq ) @) (¢,
describing the transition from a pafy, ) to a pair(¢’,v’)
on the occurrence of an action after a delayd without a
reference to the next subsequently occurring event.

Since this problem persists at the symbolic level as well,

i.e., we cannot define a relatiofg, I") ) (¢’,T") without

i i i referring to the next subsequently occurring event, we have
Za | Yo [ 2 | 0 7ﬁ’ to get rid of this look-ahead. To do so, we ussemuence of

> incremental clock valuation functiondenoted withy;, in the

1 incremental and symbolic execution of event-clock aut@mat
3

1

3

BN RO

Since the original definition of clock valuation functiors i
necessary to define the semantics of TLTL and Ti,Ths
well as to define timed runs, we could not use incremental
valuation right from the beginning. Instead, dependingloa t
context, we have to switch between both definitions.

| of w| N of H &

INFNIINIEREG NS

o|N| oo H H &

| a1l w| N H|
W N | | H
W | W k| N

Fig. 5. Incremental and Ordinary Clock Valuations

in computing these sequencéscrementallyto derive an Definition 38 (Incremental Clock Valuation Function)
incremental scheme for the computation of symbolic timddr @ finite alphabet ¥ and an associated set
runs. Cy = {z4,ya | a € X} of clocks, anincremental
For this, let us understand the sequences of clock valuatgACcK valuation functiony, :*CE _LTL over a timed word
functions in full detail. In Figure 5, we show a prefix of a¥ = (@0,t0)(a1,t1)--- € TX™ U TX™ assigns a positive real
timed word over the alphabét = {a, b}. Hence, every clock the undefined value to each clock variable corresponding
valuation~; refers two four timed events, namely to the ladf POsitioni such that the following holds:
respective occurrence af andb, as expressed by the values

Fi(xe) = last(w,a,i) iff a; #a
of z, andx;, and to the next occurrence of these two events, Silza) = 0 i o —a
described by, andy,. Thereby, the arrows in Figure 5 denote 5i(ya) = next(w,a,i)

the events referred to bys and 4, respectively (we will

explainys andy, in the very next paragraphs). More precisely, Thus,5; describes the values of the clocks frata directly
the solid arrows show the events referredsdyandy, while after the timed eveni{a;,t;) occurred, i.e.;(z4,) = 0. In
the dashed ones corresponditp and y,. So for example, contrast,y; ignoresthe timed even{(a;,t;), i.e., vi(z.,) =
v3(za) = 5 sinces refers to(a, 2) while 3 = 7. In case of |ast(w, a;,7) which evaluates either t, — t; for the largest
74, we draw an arrow with a thick pen if the referred event < ; with a; = a; or to L if no suchj exists.

changed fronmys to 4, e.9.,2, refers iny, to (a,7) while  Hence, in Figure 5, we show the clock valuation functions
it did refer to (a,2) in 5. Furthermore, the left part of the .. and~, as acursorwhich isplaced uporsome timed event,
table in Figure 5 shows the clock valuatiopsfor i = 0,...,4  \whereas the incremental clock valuation functiogsand 7,

where we also typeset those values in boldface which arelbages shown as aursor which is placed betweerwo timed
on a newly referred event. events.

In general, to transit fronig;, v;) t0 (gi11,7i+1), the imed  sSince 7, already depends on the evefa, t,), we need
event(a;, t;) is processed in following some enabled transitiogn initial valuation function preceding,. We introduce the
e = (¢i,a;, v, ¢i+1). Thus, we attempt to compute; from jnitial incremental clock valuation functiof_; and define it

7i and(a;, ¢;). But Definition 21 of clock valuation functions with respect to an infinite timed worad € TX* as follows:

leads to the equation .« 5 1(za) = L for all z,,

o ¥-1(yq) =t; for j > 0 anda; = a and wherea;, # a
holds for all0 < k < j, and
e 7-1(yq) = L if a does not occur inv at all.

Yit1 = (Vi + 0i41)[Ta; = dit1][Yasy, = next(w,ait1,i+ 1)]
1)
for ¢ > 0 where we use);y; = t;.1 — t; as abbreviation. . ) )
Therein, the incremental computation of,; involves not ~ Figure 5 shows the valuations of the incremental clock
only the timed even{a;, ;) but also the next timed eventvaluation functions; in comparison to the original and
(@is1,tit1): correspondlng clock valuation functions. Note that in case
) of 4;, either both;, andy,, or x; together withy,, are chang-
« The resefz,, = d;1.1] uses the time stamf),... ing their referred events. This is always the case, since the
o The resetly,,,, = next(w,a;i1,i + 1)] refers t0ait1  jncremental computation af;11 only involves (a1, tiy1)—
and t0t; . and does not refer téu;, ¢;) anymore.
This fact is reflected in the table of Figure 5: The values of Assume that an automaton @t,~;—1) is about to process
x,, and ofy,, ., with respect toy;;; are typeset in bold face, the timed eventa;, ¢;) from the timed wordw with transition
since they both refer to different events than they did with = (g;,a;,%,¢;+1). To do so, it must first compute; to
respect toy;. check whether is enabled, i.e.;; = . By following the

i+1



BAUER et al. RUNTIME VERIFICATION FOR LTL AND TLTL 17

definitions, we find that procedure symb_step((gi,1"i-1), 0, )
. { with e=(¢,ai,¥,qi+1) }
vi = (Fie1 + 0:)[Ya;, = next(w, a;,1)] 2 ?egln )
with §; = ¢; —t;—1 fori > 0 anddy = to. If v; = % holds, the { step 1: elapse tinme }
transition is enabled and we compute the next pair1,7;) if Tioi+¢ is invalid then
with return constraint _violation
B Iy = Tii1496
¥i = ilTa; = 0] . 3) ' '
_______________________________________ }
Thus, we use { step 2: reset ya, } _
(e . o o _ if Tj_1(ya;) # undef and 0 ¢ T';_;(ya;) then
% = (i1 + 0i)[ya; = next(w, @i, 8)][zq; = 0] ) return constraint _violation ;
for the incremental computation 6f. Note that Equation (4) Ti = Tioalya, = undef] ;
refers to future events beyonth,,¢;) only in terms of [ e }

next(w, a;, t). Hence, using Equations (2) and (4), we writ¢ ¢ step 3: process guard }
@, if not (3y with v =Ty and v =) then
(¢,7) — (¢",7") return constraint _violation ;
' = Iy A ;
for an event-clock automatod.. = (¥, Q, Qo, E, F) with v
q,¢ € Q and 7,5 € Vs iff there exits a transitiore = { ~-rmrm }
(¢,a,9,¢) and av € T, such thaty + § is defined (see thel ~{ step 4: reset wq, }
discussion after Remark 27), and such that6)[y, = v] = E;tu'r; ?[m“ifz.)o]_ ’
¢ as well asy’ = (7 + 6)[ya = v][z, = 0] holds. ond bt
Furthermore, we expand the transition relation to finite ard
infinite timed words:(g;, 7i—1) LN (Gi+k,Yi+k—1) holds for
a finite timed wordu = (ag,to) ... (ap_1,t5_1) € TE" if
there exists a sequence of palg, ¥i—1) - - (¢itk, Vitk—1)

. _ (aj,é
With (g4, Vitj—1)

Fig. 6. Procedur@ymb_step((q;,Ti—1),9,¢€)

%) (@ivjs1,%i+j) for 0 < j < k—1 in Figure 6. It takes the original paily;,;_1), the elapsed
anddy = to anddé; = t; —t;_; for j > 0. Note that for time §, with 6 =t for i = 0 andé = t; — t;_; for i > 0,
(¢i,%i—1) — (qivk,Visrr—1) to hold,u must be compatible and the transitione. The procedure symbolically computes
to 7;_1, i.e., the evaluations of the event-predicting clockihe transition according to Equation (4) and either returns
must match the occurring eventsin (giv1,T;) if the transitione is enabled or reports a constraint
In case of an infinite word = (ag, tp) - -- € TX“, we write violation otherwise.
(qi,7i—1) = if there exists a sequence of pafrg, 7;_1) . .. Note that the condition thdt; and) are consistent in step
With (isj Fi45-1) (a5.95) (Gi4j41,7:+;) for 0 < j and again 3) Of symb.step requires that there exists @ € Vs with
with §p =t andd; =t; —t;—q for j > 0. v E Ty A . Since eachy €V satl_sfles n(_)r_1-com<:|dence
If the sequence of stateg,qi.1... is accepting, then and contm_wfcy, see Proposition 23, this condition enstias
we write (¢;,7i-1) ——|. As in the finite caseg must be T'; A1) satisfies f[hese two properties as well.
compatible t07; 1 for (g;,%i-1) — to hold. In the following lemma, we show that each concrete
transition from (¢;,%;-1) t0 (¢;+1,%) has a corresponding
symbolic transition from(q;, T';_1) to (¢;11, ;) as computed

Definition 39 (Continuation Language) Let A, = )
WQV symb_step. Thus, we write

(3,Q,Q0,E,F) be an event-clock automaton. Then
define for a pair(¢,5) with ¢ € Q and ¥ € Vg the
continuation languag€(A..(q,7)) of A.. with

= (ai,d) =
(¢, Tic1) — (qip1, 1)

" iff (¢i+1,1;) = symb_step((¢;,T;-1), 9, e) holds for some =
‘C(Aec(Qa’_}/)) = {U € Py | (qvﬁ/) —>l} (qi,ai,w,qurl).

We now raise incremental clock valuation functions anfdama 40 (Abstracting a Transition) Let  w _
their transitions to the symbolic level: In the definition Of(ao to)(ar,t1)--- € TX* be a timed word with the
symbolic runs of event clock automata, we use symbolig,osnonding sequences of clock valuation functions
clock valuations that are abstractions of incremental kclo 0,7,... and incremental clock valuation functions

valuation functions. We denote thesecremental symbolic 51,70, ... Fix somei > 0 and set§ = t; — t;_, for i > 0
clock valuationswith I'_y, I'p, . ...

: _ . and o = ¢y for i = 0. Lete = (¢;, ai, v, gi+1) be an enabled
GNen. a pa'r(‘lhri—l)a a transitione = (Qi7ai7¢7%’+l)’ transition, i.e.,; ': 1.
and a sm_g_le t|_med evert;, t;), we have to check whether Then for a pair (g, Tic1) with 5, | 71_3—1,
the transition is enabled, and if so, we have to Compl‘g?mb_step((qi,n,l),5, ¢) yields (gi+1,T;) with 7; |= L.
the corresponding new pai;+1,1;). To check whether the
transition is enabled and to compute the resulting symbolic Proof: We follow the procedureymb_step in a stepwise

state, we use the procedusenb step((g;,T'i—1),d,€), shown manner, where we first show that step 1) lead&jta; +9) =



18

I'’_,. Then step 2) yields &; which is an abstraction of;, (ao,to) ... (a;,t;) iS necessary to compute a prefix of a
i.e., v; = T, and consequently step 3) does not find argymbolic timed run.
inconsistency. Finally, we prove that step 4) must produce a
I'; such thaty; = T';. Remark 42 (Symbolic Timed Runs are not Previsionary)
Below, we use the fact that eithey;_1(y.) = L or To compute a prefiXqo,[_1)...(¢+1,T;) of a symbolic
Ji—1(ya) > 0 must hold for each event-predicting clogk timed run © = (qo,T'_1)(q1,I0)... for a prefix
as at least time units pass by until the next event occurs. & = (aq,to)...(as,t;) of an infinite timed word
1) Elapse Time: We havey;,_; = T;_i, and hence by w = (ao,t0)(a1,t1)..., no information beyondu is
Fact 28, ify;,_1 + 0 is indeed valid, thery,_; + ¢ | Nnecessary.
[;—1+6=T,_, must hold as well.
But#;_1 44 is valid since we have eithef,_(y,) = L
or ¥;—1(ya) > 4 for all y,—and henceforthy; 1 + ¢ |

Hence, symbolic timed runs are feasible as a tool for
(online) runtime verification where we are provided with an

I . holds incrementally expanded finite prefix of some system trace.
2) Rgslet : F'romthe preceding step, we know that , + But beyond its feasibility as a technique, it remains to prov
s |:f;%i.holds ’ ! that symbolic timed runs are semantically adequate as an
i—1 .

abstraction of all possible concrete behaviours.

Lemma 40 is the first step towards that goal, where we
constraint violation. show thatd(_each corl;crlfatet trani_mon Icart1hbe abftlracted into a
Then, by Fact 28, we obtain(7; i + 0)jys, = corresgczﬂ_ mgt1 ;sym Otlf ra?5| |?n. O|n e next lemma, we
next(w, g, 8)] = T*_, [ya, — undef], i.e.,7 |= Ti. expand this statement to entire timed runs.

(Fi—1+9)(ya,) = 0 must hold since; is the event being
currently processed. Thuymb_step does not report a

3) Process the Guard: Since the transitione = ) )
(gias, 1, gis1) is enabled, we know; |= v. From the Lemma 43 (Abstracting Timed Runs) Let A, =
preceding step, we also haye = I';, and thereforeyy (3@ Qo &2, ") be ‘an event-clock automaton and let
andT; must be consistent with; = T; A = T w = (a_o,to)(al,tl) --. € TX* be an infinite timed word
4) Resetz,,: 7; and~; differ only in the value forz,, ~With @ timed runé = (qo,70)(q1, 7). ..
which is reset to 0 inj; (see Equation (3)). From the 1hen there exists a symbolic timed ru® =

preceding step, we havg |= I’ and thus we obtain, by (90,T-1)(q1,To)... over w which is based upon the

Fact 28,7, — i[ta, = 0] = I"[za, = 0] = T same sequence of stat@s ¢ ... asé.
This concludes the proof, agmb_step returns(q; 11, ;) with . Moreover?; (= I'; holds for the sequencg_s, %, ... of
5 b= T, ' - b mcrgmental clock valuation functions as determinedubfor
Based uponsymb_step, and analogous to timed runs ofaII iz -1
an event-clock automatod.. = (%,Q,Qo, E,F), we Proof: The infinite timed wordy determines a unique se-
now define symbolic timed runs over a timed wotd = quenceyy,~, ... of clock valuation functions (Definition 21)

(ao,to)(a1,t1)--- € TX* as an infinite sequence of pairsas well as a unique sequenge;, 7o, . .. of incremental clock
© = (g0,I'-1)(q1,T0) ... For these symbolic timed runs, weyaluation functions (Definition 38).
have to define the initial SymbOIiC clock valuatidh_;. By To construct®, we first Setf‘Ll =T fo”owing Defini-
inspectingy—1, we find that we can use the initial symboligion 41 and obtain immediately_, = I'_;. Since there exists
clock valuatign as given by Definition 37 without modificatio gz timed rurg = (¢0,70)(q1,71) - . -, there exists for each> 0
le., we setl' ;, = Ip. Thus, we arrive at the following an enabled transitior; = (qi,a;,%,¢:+1) facilitating the
definition: transition from(g;, v:) t0 (¢i4+1,vi+1)- But then, the condition
to apply Lemma 40 is satisfied. ; = I'_; holds ande, is an
Definition 41 (Symbolic Timed Run) A symbolic timed run enabled transition. Consequently, Lemma 40 yields the pair
O of an event-clock automatad.. = (X, Q, Qo, E, F') over — —
an infinite timed wordw = (ao, to)(a1,t1)--- € TEX* is a (g1,T'0) = symb_step((go, 1), do, co)
sequence of pairgjo, I'-1)(q1, ') . .. such that the following with 5, |= T',. Then again, the condition to apply Lemma 40
conditions are met: is satisfied and we obtain the the required symbolic timed run
e ¢; € Q holds for alli > 0 and ¢y € Qo holds for the © = (go,T_1)(q1,T0) ... inductively. [
starting state. At this point, we are tempted to show the converse, i.e., that
« I'; € Uy is a symbolic clock valuation (Definition 36)each symbolic timed run gives rise a corresponding ordinary
for i > i andI'_; is the initial symbolic clock valuation timed run. However, this is not the case: If we take some

(I'_; =Ty and following Definition 37). transition with a guard)(y,) = [0,00), then it is required
o For all 0 < i and withdy = ¢ty and §; = t; — t;—1, that the event occurs eventually in the future (in fact, such
(¢i,Ti_1) i, (gi+1,T5) holds. a guard is equivalent té¢'a in standard LTL). But ifa never

occurs again, then this misbehaviour remains undetected by
Sincesymb_step does not receive any information beyondymb_step. On the other hand, at the concrete level of ordinary
the currently processed timed evefi;,¢;), no informa- timed runs, ifa never occurs again, we have(y,) = L and
tion on future events beyond the already observed prefhe transition with the guard(y,) = [0,00) is not enabled



BAUER et al. RUNTIME VERIFICATION FOR LTL AND TLTL 19

at the concrete level. Thus, not every symbolic timed run hase 7;_1(y4) ¢ T'i_1(ya) for a # a;: In the case ofi # aj,
a corresponding ordinary timed run—leading to the follagvin the constraints ony, are only affected by the elapsing

proposition: time leading to the following two cases:

- If T 1(ya) = [L, 1], thenT;(y,) = [ L, L] as well.
Proposition 44 There exists an event-clock automatdy. = Thus,¥;(y.) = L must hold resulting iny; _; (y.) =
(3,Q,Q0,E,F) and an infinite timed wordw = 1 such thaty;_1(ys) = L € [L, 1] = Ti_1(va)
(ao,to)(a1,t1)--- € TE* with a symbolic timed rur® = holds.
(g0,T-1)(q1,Tp) ... such that there e_xist_s no ordinary timed — If Ti_1(ya) = [I,7)], thenT;(ya) = [1=6,7 — 0)
run 6 = (go,70)(q1,71) ... overw which is based upon the holds and consequently(y,) must be chosen from
same sequence of stat@sq; ... as©. (i=6,7 — 6). But then we havey;_1(y.) € [I—6 +

Nevertheless, we can show that each symbolic transition 0, = 5+_5)] S ry= F_i*_l(_y“)' )
yields a corresponding concrete transition. To show this, wince the constraints for each individual clock are satisfie
need to resort to a backward simulation argument, leading¥§ know thaty;, |= I';_, _holds.

Lemma 45. Using this lemma, we finally prove in Theorem 46 Assume(q;, yi—1) (@:.8) (gi+1,7%:) does not holdThen the
that every finite prefix of a symbolic timed run has a corréransitione = (¢;,a;, %, q;+1) is not enabled atfg;,7¥;—1).
sponding finite prefix of a timed run: We choose a suitableollowing Equation (2), we have; = (-1 + 0)[ya; =
clock valuation function for the last pair of the symboliméd 7;(y,,)] (sincey,, = next(w, a;,i) = ¥;(ya,)). Sincey; ¥ ¥,
run and concretise the run with a backward simulation. Theme of the following two cases must arise:

we show in Theorem 46 how to expand this prefix of a timed , Yilza,) & h(xa,): Since v (za,) = Tio1(xa,) + 0, it

run into a suitable infinite timed run. follows thatT’;_; + 6 and¢ are inconsistent. But then,
symb_step reports in step 3) a constraint violation.
Lemma 45 (Concretising a Symbolic Transition) e 7i(c) ¢ (c) for an event-recoding or event-predicting
Let (g, Ti-1) (@:.9) (¢iv1,T;) via a transition clock ¢ # x,,: Sinced; = [z, = 0] we havey;(c) =
e = (qi,ai,,qiy1). Then for all 4, = T, and for ~i(c) and hencey;(c) ¢ 1(c), i.e., 3 K +. Because of
all step 3) insymb_step, I'; = ¢ holds and we therefore
Yie1 = (Vi — 0)[Ya; = 6][Ta, = Tiz1(z4,)] arrive aty; j# I'; which contradicts the lemma statement.
]

the following two conditions hold:

. %717|: Fi(;,(s) i _ N Theorem 46 (Symbolic Simulation)Let ~ « =
e (¢i;¥i-1) — (gi+1,%:) holds via the transitiore. (ao,to) ... (as,t;) € TX* be a finite timed word and
Olet o = (ait1,tit1)(@ita,tiy2) ... € TX® be an infinite

Proof: We show the first claim by contradiction an . )
continuation ofu.

thereupon prove the second claim using the first one. P .
Assumey,_; = T',_, does not holdThen one of the follow- The infinite timed worduo is accgpted by an event—(_:lock
ing four cases must arise—which we drive into a contrad1'\f:tid"1m0mat_onAec = (5,Q.Q0 B, F), ie,uo € L{Ac), iff
oS i there exists
individually: o o _ _
e i1(za,) & Ts_1(2a,): In the definition ofy,_, in the (@) @ finite symbolic timed ru® = (go,I'-1) ... (gi+1, 1)

lemma statement, we use,, = I';_1(z,,)] and hence overuw,
we always havey; 1 (z,,) € Ti_1(zq,)- (b) an infinite timed rund = (gi1,%i41)(git2,Vit2) - -
e 5io1(2a) ¢ i1 (z4) for a # a;: Sincea # a; holds, the __ Starting at(gi+1,7+1) and acceptings, and

(c) an incremental clock valuation functiofy € Vs with
¥i = I'y such thaty; 11 = (3 + 6)[Ya,,, = v] holds for
somesd € RZ0 and somey € T';.

constraints one,, are only affected by the elapsing time.

We distinguish two cases:

— If Ty_1(zq) = [L, 1], thenT;(z,) = [L, 1] as well
and hencey;(x,) = L must hold. But then we have Proof: Assumeus € L(A..) holds. Then there exists
Yi-1(zo) = L and therefore we findj;—1(z.) = an accepting timed rud’ = (go,70)(q1,71)... over uo.
Lell, 1]=Ti1(2a). Thus, by Lemma 43, there exists a symbolic timed &in=

= If Tio1(za) = [1,1], thenl'(zq) = [I+6,l+6] holds (g, T_;)(qy,T1)... overuo with 3, = T; for all i > 0 as
such thaty;(z,) = [ + ¢ must hold. Then we obtain well. We take the prefix® = (q0,T_1)...(gis1,T;) of ©
7i71(xa) = [ and arrive aﬁi*l(xa) =le [lvl] = and the suffixd = (Qi+157i+1)(Qi+27'7i+2) ... of & to meet
Lio1(za) conditions (a) and (b) of the lemma statement, respectively

e %i-1(ya,) ¢ Ti_1(ya,): Because of the check in step 2)Condition (c) is satisfied since Lemma 43 ensuresthét T;
of symb_step (see Figure 60 € (T;_1(ya,) + ) must holds and sincey; and ;1 are being determined mutually
hold since otherwisesymb_step would have reported a consistently byuo.
constraint violation. Hence we havec T';_;(y,,). On AssumeO, 0, and¥; exist as required in conditions (a) to
the other hand, the definition gf_; in the statement of (c). Then we construct an accepting infinite timed min=
the lemma resets,, to 6 and consequentlyy;—1(ya,) €  (go,70)(g1,71) ... overuo to showuo € L(A..). To do so,

Fi—l(yai)- we take the timed rud = (Qi+17'7i+1)(Qi+2a7i+2) ... over



20

o as suffix in’. It remains to construct the connected prefix

. . / T
(90,70) - - - (qi+1,%t1) of¢". s ) )= b[ o = @. alza < 1]
We havey; = T; and (¢;,Ti 1) —= (giy1,T;) and

hence we( c?r)] apply Lemma 45 to obtajp; such that rig 7. Event-clock automaton
— Q;,04 — . _ = .

(@i,%i-1) —" (gi+1,7%) with ;1 |= I';-1. By applying
Lemma 45 inductively, we obtaifyy,-1) ... (¢i+1,%:). Us- - o _
ing Equation (2), we finally obtaifyy,vo) - . . (¢i41,vit1), as as exemplified by the automaton shown in Figure 7. While the
required. m language accepted in sta2eis non-empty and, despite, state

Rereading the statement of Theorem 46 in abstract terrdds reachable, the automaton does not accept any word when
the theorem states that a finite prefixcan be continued starting in staté). The constraint when passing from statt
to an infinite worduo, iff u has a symbolic timed ru® 2 requires the clock, to evaluate to at leagt This, however,
which ends in a paifg;1,T;) which is non-empty, i.e., which prevents the self-loop in statefrom being enabled.
has a concretisatiofy, 1,7;) with a non-empty continuation ~ Thus, to implement the emptiness check, the event-clock

language. This is exactly the statement of Corollary 47weloautomaton itself is too coarse as an abstraction of the iefini
statespace spawned by the states of the automaton and the

Corollary 47 (Runtime Verification Criterion) Let » = clock valuation functions.
(ag,to) ... (a;t;) € TX* be a finite timed word and let The standard technique to determine the emptiness of an
Ace = (£,Q,Qo, E, F) be an event-clock automaton. event-clock automaton (and of timed automata in general) re

Then there exists an infinite continuatiene TX“ of ¢, lies on the translation of event-clock automata irggion au-
with uo € L(A..) iff there exists a finite symbolic timedtomata[48]. A region automaton is an ordinary (generalised)

run © = (go,_1)...(gi+1,T;) overu and an incremental Buchi automaton whose states are p&irgy|~,) whereq is
clock valuation functiony; € Vi with 5, = I; such that a state of the original event-clock automaton af., is a
L(Acc(qir1,%)) # 0. clock region A clock region[y]~,, = {7’ € Vs | ¥ ~r 7} is
an equivalence class of incremental clock valuation fomsti
Proof: Assumes with uo € L(A..) exists.Then we in Vs determined by theegion equivalences .

apply Theorem 46 to obtai® and~;. However, the region equivalence is juste possible choice

AssumeO and#; exist. Since the language accepted fronto implement the emptiness check. Every other equivalence
(gi+1,7%:) is non-empty, there must exist an infinite conrelation~ over Vs, meeting the following three conditions is
tinuation o € TX* with (¢i11,%) ——/, i.e., there ex- suitable for that purpose: (1) the relation has finite indgx,
its a sequenceéq;1,7%)(qit2, V1) ... acceptingo. Using it is a bisimulation, and (3) each incremental symbolic kloc
Equation (2), we obtain a corresponding timed rén= valuation (as they are used in symbolic timed runs) equals th
(@it1,741)(@iv2, 74 2) .-~ and apply Theorem 46 to find union of a set of equivalence classg$~. From these three
uo € L(Aee). B conditions, only the third one is specific to our approach.

In both, Theorem 46 and its Corollary 47, we need to find Below, we introduce the relevant definitions underlying
a suitable concrete and suitable incremental clock valnatithese three conditions. Then we formulate the emptinesskche
functiony; € Vs of some symbolic clock constraib; € ¥s;, as used in this paper and prove its correctness. Finally, for
i.e., 7 = I'; must hold andy; must give rise to some the sake of completeness, we recall the region equivalence
infinite and accepting continuation We note thatymb_step  for event-clock automata [30], as one possible choice for a
ensured’; € ¥y and thereforel’; has a non-coincident andsuitable equivalence relation.
a continuous solution (see Remark 26). To ensyre Vs, We start with the definition of the quotient Biichi automaton
we need to make sure thgf also satisfies these propertiesof an event-clock automaton according to an equivalence
Otherwise?; would prescribe a sequence of timed eventgglation on incremental clock valuation functions:
which is not a timed word, see Proposition 23.

Definition 48 (Quotient Automaton, following [30]) 7 For

E. Emptiness Check for Symbolic States an event-clock automatod.. = (%,Q,Qo,F,F) and
an equivalence relation~ on incremental clock valua-

Taking Corollary 47 as starting point, we discuss in th|I n functions. we define theuotient automatond =
section how to determine for a given event-clock automat ' 4 . . ea/~ =
,Q/~,Qou/~,F/~,F/~) as a generalised &chi automa-

Ace = (2,Q,Q0,E,F) and a corresponding paifg, I') ton with
whether there exists an incremental clock valuation famcti ) o _
5 € Vi with 5 = T such thatC(Ae.(q, 7)) # 0. i e Q/~ Pelng the set of states which is defined vith. =
Thus, we develop in this section a procederrety 4 (q.T) {(¢,[7]=) | ¢ € @ and ¥y € Vs },
which returnstrue iff for all 4 € Vs with 4 |=T" it holds that _ _ _
) = 0 The automata we define here as quotient automata are dendted w
E(AeC(Qv 7)) - ¥ ) ) ) region automataReg=(A) in [30]. More precisely, in [30], region automata
Looking at the scheme developed in the discrete-time seie not defined directly but in terms of labelled transitigristems. In the

ting we are now tempted to check for every statef the definition of these labelled transition systems, the awsthgse incremental
’ clock valuation functions—but without explicitly statinthe change from

event'(.:IOCk automaton, Whgther the _Ianguage accePte_d fremnary to incremental clock valuation functions. Neketess, the definition
stateq is empty. However, this would yield wrong conclusionsin [30] and our own definition yield the same automata.



BAUER et al. RUNTIME VERIFICATION FOR LTL AND TLTL 21

e o/~ as the set of initial states withQy/~ =
{(q,[7-1]~) | ¢ € Qo and7y_; € V5 being initial},
o E/~ which is the set of transitions, where we deflnﬁt U L(A(g,7))
ST

U L(Acc(g, 7)) for 4 = T) is determined with

= U

[¥]~ Ecovera (T')

((q,[F~), (¢, [¥]~), a) € E/~ iff there exist3 € [§]~ L(Aec/~(q; V=)

and /' € [¥']~ such that(q, 3) LN (¢',3) holds for . ~
somes € R=0, and with yielding a way to implement the procedueenpty 4 (q,1")

« F/~ as the set of accepting state sets (generalisé¥ich returns true iff for all ¥ e Vg with 3 = T,
Biichi acceptance, recall Definition 3 and the subsequeffAec(¢,7)) = 0 holds, as stated in the following corollary:
discussion), where we udé/~ = {F;/~ | F; € F} for

Fi/~ = {(¢.[7l~) | ¢ € F; and5 € Vi ). Corollary 51 (Emptiness Check for Symbolic Runs)Let

Aee = (3,Q,Qo, E, F) be an event-clock automaton and let

Note that the automata.,/~ is an ordinary (generalised)the relationa be a time-abstract b|S|muIa_t|on fod... _
Biichi automaton and hence, we can check the emptiness of én for a stateg € @ and a symbolic clock valuation
the language accepted from a particular statéy]~) € Q/~ L € s, we haveempty 4 (¢, 1) = true iff
of\;\é}eq/z in the same way as in the discrete_z-time.c.ase .[38]. U L(Ace/ (g, [7]=)) = 0

e thus need to show that such a check is sufficient in our
setting. For this purpose, the employed equivalence oglati
needs to satisfy the key property of being a time-abstrdt@!ds.-
bisimulation:

[¥]~ Ecoverx (T')

This leads to the following procedure for the emptiness
check for the event-clock automatet.. = (2, Q, Qo, E, F)
upon the equivalence relation:

o Precomputation: Generate the quotient automaton

A../~ and determine for each state, [y|~) of Acc/~

Definition 49 (Time-Abstract Bisimulation, following [50])
An equivalence relatior: is a time-abstract bisimulatiofor

an aUtomatOnAGC = (Ean QOanF)' Iﬁ: (qvﬁ/l) a7—61> (qlvﬁ/]/.)

for two statesq,q’ € @, two incremental clock valuations
1,7, € V&, an eventa € ¥, and a delays; € RZ° implies
that for every equivalent incremental clock valuatn= 71,
there exists another incremental clock valuati@n~ 7; and

a delayd, € R>° such that(q, 72) “% (¢',74) holds.

If an equivalence relatior: is a time-abstract bisimulation
with finite index for an automatod.. = (%,Q,Qo, E, F)
which accepts the timed languagéA..) C TX*, then the
corresponding quotient automatody../~ accepts the corre-
sponding untimed languaget(£(A..)) [30], [50]. Hence,

whether £(Ac./~(q, [7]~)) is empty or not. Store the
result in a look-up tablel’ with T'[q, [7]~] = true if
L(Acc/~(q, [¥]~)) = 0 and false otherwise.

o Emptiness Check:To answer the emptiness check for a

pair (¢,T"), compute

empty, (¢,T) = J\

[¥]~ Ecovern (T')

Tlg, [7)=] -

Then the language accepted frgmI’) by A.. is empty,

iff empty 4 _(¢,T) returnstrue.
It remains to recall the region equivalensg; which is a

given a pair(¢,7), we can check whether the languagéme-abstract bisimulation with finite index and to show how

L(Ac(q,7)) accepted byd.. continuing from(q, ¥) is empty
or not by performing the emptiness check oh./~ for
the state(q, [7]~), i.e., by checkingl(Ae../~(q, [¥]~)) = 0,
whereA../~(q, [¥]~) is the automaton identical td../~ ex-
cept for the set of initial states which is changed (g, [7]~ )}

~

to computecover., . (I') for ~p.

Below, we use the following abbreviation for the fractional

period of time to pass by until a clock value changes its
integral part: For all event-recoding clockg € Cx, we set

V(xa)) = [V(2a)]

— 3(z,) (the time until ¥(z,) reaches

set(¥(ya)) = V(¥a) —
(Ya)])-

Definition 52 (Region Equivalence [51], [48])Let K be the
biggest constant occurring in some constraint of an event-
clock automaton4.. = (¥,Q,Qo, E, F). Then we define
the region equivalenceelation =~ on incremental clock

Next, we describe a way to perform the emptiness che&lu"’ltlc.ms'm_/Z for{lec,_ such thatyy, 72 EVs are_(_aquwalen.t,
for a pair(g,I') as it occurs in symbolic timed runs. To do soSymbolicallyy, ~r 72, iff all the following conditions hold:
we compute a (minimal) sebver~ (') of equivalence classes * (2greement on undefined)

forall z € Cx, 71(2) = L iff 32(2) = L

such that !
« (agreement on integral part)
(e |7ET}= for all z € Cx, if 31(2) < K or 32(z) < K, then
[71(2)] = [72(2)]
o (agreement on fraction’s order)
For all 21, 2z € Cx, with Y1 (2’1) < K and ’72(2’2) <K

Theorem 50 (Emptiness Check with Bisimulation [48])

Let A.. = (£,Q,Q0, E,F) be an event-clock automaton
and let the relation~ be a time-abstract bisimulation
for A... Then, for a stateq € @ and an incremental
clock valuation functiony € Vi, L(Ac(q, 7)) = 0 iff

L(Aee/~(a,[7]=)) = 0.

5
[7(z4,)]) and for all event-predicting clockg, € Cyx, we

g |7(ya)] (the time until¥(y,) reaches
17 (¥a)

U [k

[7]~ Ecover~ (T)

holds. Then, the untimed language accepted ftoni) (i.e.,



22

procedure monitor 4. (a,d) procedure monitor,(a,d)
begin begin
{oommemees ST oot } 1O ST }
{ step 1: initialisation (first call only) } { step 1: synbolic step }
if first _time then - Ty 1= monitor 4¢ (a,0) ;
P = {(q7F) | g € Qo AT is initial } ; T—p 1= monitor 4-¢(a,9) ;
{ o L G St S GRREEEEEEEEEEEEEE }
{ step 2: synbolic step } { step 2: conpute verdict }
P = {(¢,T)| (¢T)eP if r, = L then return L ;
Ne=(qa,,q)€EE if r~, = L then return T ;
A (¢, T") = symb_step((¢,T'),6,¢) } ; retun ? { note: r, = r-, = ?}
P o= P end

---------------------------------------- } . .
{ step 3: enptiness check } Fig. 9. Procedurenonitory(a, §)

if /\(q,f‘)EP empty 4 (¢,T) then
return L _
else We symbolically execute the event-clock automatdf.

return ? and check the emptiness for each reached pair consisting of
end a state and a symbolic clock valuation. In Figure 8, we show

the procedurenonitor 4__(a, d) used to process a timed word
Fig. 8. Procedurenonitor 4., (a, ) w = (ag,to)(ar,t1)... event-wise. After reading an event
(a;, t;) (given as an event = a; and a delayy = ¢; — t;—1
for i > 0 andd = 0 for ¢ = 0), monitor4_,(a,d) returns
0 iff (Y2(21)) =0 L if the prefixu = (ao, o). .. (ai,t;) cannot be continued
(71 (22)) iff (F2(21)) < (F2(22))- infinitely with a ¢ € TX“ such that the underlying event-

- (M(21))

- (M=) <
To constructcover., , (I'), we use an equivalent descriptioan)(.:k automa;onélec would acceptio. Note thatr” is & glop al
: - : . variable keeping track of the currently reached set of sylimbo
of the regions[7]~, given as a set of constraints assemblecf‘ates

. . S
according to the following rules [48]: . . ) .
g 9 [48] In the implementation ofmonitor4,,, we combine the

. ][:or e\;]ery clocke € Cx choose exactly one constrainteg s of Sections IV-D and IV-Emonitor4,. executes in
rom the set parallel all symbolic timed runs which match the observed

choice(c) = prefix and checks for the existence of possible continuatien

{3e)=v|v=1,0,1,...,K} type (1) according to the runtime verification criterion, as statad i
U {v-1<9(c)<v]v=1,...,K} type (2) Corollary 47 taken from Section IV-D. The runtime verifica-
U {3(e) > K} type (3) tion criterion involves an emptiness check for symboliceti

. and for each pair of clocks # ¢ € Cs, which are both "UNS, which is in turn implemented according to Corollary 51

restricted by a type (2) constraint, choose additionally offdken from Section IV-E. _ .
constraint of the form Similar as in the discrete-time setting, given a propertye
_ run two versions of this monitor procedure in parallel, ngme
(7(e)) = (3(c)) with € {<,=,>} . type (4) one fory and another one fofy. Then we combine the results

Hence, to computeover~, (I'), we have to find all con- of these two evaluations following directly the semanti¢s o
' A JLTLs to obtain the final verdict.

straint sets which obey these two rules and which are co ) ’ ,
In Figure 9, we show the monitor procedunenitor,(a, §)

sistent with . First, we note thaf® does not impose any X L
constraint between the values of two distinct clocks arf@’ @ TLTLs-property . monitor,(a,d) also reads a finite

therefore " does not restrict the choice of type (4) constrain®€fix event-wise in terms of an eveatand a delay) and
in cover~,(I'). Consequently, to computeover,(T'), we returns eitherl, T, or 7, as determined by the semantics of
R . ’ ~XR 1

determine for each clock the subsethoicer(c) C choice(c) TLTLs.
of constraints which are consistent with Then,coverx, . (T')
consists exactly of those regioffg.,,, which are determined G, Platform Adaption

by constraints chosen from the resricted deticer.(). In this section we discuss two practical issues arising in

'I_'hls_concludes our algorlthm to compuémp_tyAec (g,T) a0 implementation of the scheme laid out in the preceding
which is based upon the equivalence given in Corollary . . .

i : sections, namely theepresentation of time valueand the
and which uses the scheme described above for computweq : . o :
cover~(T) _ ection of dea_ldllne expirationshe problem of reprgsentmg

A time values arises as we use real values for time values
) throughout the construction whereas we cannot represailst re
F. A Monitor Procedure for TLT4. with infinite precision. The problem of deadline expiration
We are now ready to present a monitor procedure for cheaetection originates in the fact that our monitoring praged

ing TLTL properties according to the three-valued semantids only reacting to incoming events, i.e., if an event is duey,



BAUER et al. RUNTIME VERIFICATION FOR LTL AND TLTL 23

this is not detected until another event is processed. Belew V. CONCLUSIONS

discuss both issues. : . e
In this paper, we presented a runtime verification approach

Representing Time ValuesiVe based our constructionfor properties expressed either in lineartime temporalclog
on timed words involving non-negative real numbers as tin(g-n_) or timed lineartime temporal logic (TLTL), suitablef
stamps. But in any practical case, the occurring time stampnitoring discrete-time and real-time systems, respelgti
will be rational numbers, mostly expressed as counters withgefore introducing our technical approach, we discussed th
respect to a fixed denominator determined by some clock figgationship of runtime verification with model checkingdan
quency. The correctness of our approachin such a settiieg retesting in depth, thereby identifying its distinguishiregfures.
on the following two properties of our monitor construction | contrast to LTL (TLTL), runtime verification deals with
finite runs, thus asking for an LTL semantics on finite traces.

monitor construction manipulates time values only ifve proposed a three-valued semantics: In our understanding

terms of additions, subtractions, comparisons, and assi@f runtime verification, we consider a finite trace as an
ments of integers. Since any rational- or integer-basg?fremema"y observed finite prefix of an unknown infinite

time representation is closed under these operations, [fF€ causing correctness properties to evaluate tor éitie

system-wide used type for time values is sufficient fd@IS€Or inconclusive _ _ _
monitor-internal use as well. For LTL3, a conceptually simple monitor generation pro-
« Monitor generation is precision independeffhe gen- Cedure is given, which isoptimal in two respects: First,
erated monitor itself remains unaffected by the requirdd® Size of the generated deterministic monitomigimal
precision for processing time stamps—only the type f&nd, secor_ld, the monitor |dent|f_|es_, a continuously monitore
representing time stamps must be chosen appropriately'ic€ as either satisfying or falsifying a propedy early as
the region equivalence is used for the emptiness che@@Ssible Subsequently, we related our approach with existing
then the precomputed tablE[g, [7]~] following Corol- techmques. Thgrgby, we identified thr@nitorable properties
lary 51 remains unaffected as well. asstrictly containing safety and co-safety properties.
For the real-time logic TLTL, we started with an analogous
Summarised, to adapt our approach for a given system,définition of a three-valued semantics. The resulting nonit
is only necessary to use the system’s type for time valugsnstruction, however, is technically much more involved.
throughout the generated monitor. Automata for TLTL employ so-calledvent recordingand
Detection of Deadline Expirations:Our construction €event predictinglocks. Since in runtime verification the future
ensures that if a finite prefix cannot be continued into anof a trace is not known, such predicting clocks are difficalt t
infinite word uo satisfying some TLTL-property, then the handle. Introducingymbolicclock valuations, we were able
monitor monitor,, will detect this fact immediately, i.e., far to mimic the general approach as taken in the discrete-time
of minimal length. However, in case of timed words, the lackase for constructing real-time monitors.
of events is an input in itself. For example, if an evenis In this paper, we laid out the foundation for discrete-time
required by, to occur within4 seconds, then a quiescence o&nd real-time monitoring of LTL and respectively TLTL prop-
6 seconds is meaningful with respect to our propertywhich erties. It remains to put these foundations into practicel, a
cannot be satisfied anymore. Bubnitor,, will only detect the as our long term goal, into common practice. For the diserete
expired deadline, once the next event is being processedtie case, we have already implemented a prototype showing

monitor,,. There are three principal choices for dealing witthe feasibility of our approach, while an implementation fo
this issue: the real-time case remains to be done as part of future work.

o Monitor computations are precision independeftur

« No further precautionln some cases, the behaviour as
provided bymonitor,, is sufficient and hence no further REFERENCES

provjsions are nece;sary. . [1] A. Bauer, M. Leucker, and C. Schallhart, “Monitoring ogal-time
« Statically scheduled interruptH.it is enough to detect an properties,” inProceedings of the 26th Conference on Foundations of

expired deadline within a certain period of time, then one ~ Software Technology and Theoretical Computer Science TES] ser.
. . . Lecture Notes in Computer Science, S. Arun-Kumar and N. Gadg.,
can use an mterrupt to send a speC|aI evenﬁdxmtorg, vol. 4337. Springer-Verlag, Dec. 2006.
at a fixed rate, which is only used for checking deadling2] E. M. Clarke, O. Grumberg, and D. A. Peledodel Checking Cam-
violations. bridge, Massachusetts: The MIT Press, 1999.
. . . [3] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. &tener,
° Dynam'ca_”y scheduled mterruptﬂlternauvgly, we can Eds., Model-based Testing of Reactive Systes®s. Lecture Notes in
compute insymb_step the very next deadline to occur Computer Science. Springer, 2005, vol. 3472.

in monitoring ") and —p. Then one can dynamically set [4] A. Pnueli, “The temporal logic of programs,” ifroceedings of the 18th
IEEE Symposium on the Foundations of Computer Science (FOLS

a timeout |ntgrrupt for this minimal pe”Od of time and Providence, Rhode Island: IEEE Computer Society Press,32eiNov.
send an special event toonitor.,. 2 1977, pp. 46-57.
[5] K. Havelund and G. Rosu, “Monitoring Java Programs witival
In any case, it is a simple matter to implement the desired PathExplorer,Electr. Notes Theor. Comp. Sciol. 55, no. 2, 2001.

detection of deadline expirations for the timed monitovegi  [6] D- Giannakopoulou and K. Havelund, “Runtime analysis lofear
temporal logic specifications,” RIACS/USRA, Tech. Rep.211.2001.

that the corresponding interrupt types are provided by thﬁ'] ——, “Automata-based verification of temporal propestien running
target platform. programs.” inASE IEEE Computer Society, 2001, pp. 412-416.



24

(8]

El

[20]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
(28]

[29]

K. Havelund and G. Rosu, “Synthesizing Monitors for Saf€roper-
ties,” in Tools and Algorithms for Construction and Analysis of Syste
2002, pp. 342-356.

——, “Efficient monitoring of safety propertiesJourn. Softw. Tools for [31]
Tech. Transf.2004.

V. Stolz and E. Bodden, “Temporal Assertions using A$pé in

[30]

Proceedings of the 5th International Workshop on Runtimdfisation  [32]
(RV'05), ser. Electr. Notes Theor. Comput. Sci., vol. 144, no. 4.e&és,

2006, pp. 109-124.

B. D'Angelo, S. Sankaranarayanan, C. Sanchez, W. iiulni, (33]

B. Finkbeiner, H. B. Sipma, S. Mehrotra, and Z. Manna, “LOLA:
runtime monitoring of synchronous systems,TIME. |IEEE Computer
Society, 2005, pp. 166-174.

C. Prisacariu and G. Schneider, “A formal language f@ectonic
contracts,” in9th IFIP International Conference on Formal Methods
for Open Object-Based Distributed Systems (FMOODS'8&). LNCS,
vol. 4468. Paphos, Cyprus: Springer, June 2007, pp. 174-189

A. Bauer, M. Leucker, and C. Schallhart, “Model-baseadtime analysis
of reactive distributed systems,” iroceedings of the 2006 Australian
Software Engineering Conference (ASWEQEEE Computer Society,
Apr. 2006, pp. 243-252.

A. P. Sistla and E. M. Clarke, “Complexity of proposit@ temporal
logics,” Journal of the ACMvol. 32, pp. 733-749, 1985. [37]
N. Markey, “Past is for free: On the complexity of veiifig linear
temporal properties with past,” iRroceedings of the 9th International [38]
Workshop on Expressiveness in Concurrency (EXPRESSER)
Electronic Notes in Theoretical Computer Science, U. Nastmand

P. Panagaden, Eds., vol. 68, no. 2. Brno, Czech Republi@viels
Science Publishers, Aug. 2002, pp. 87-104. [Online]. /Add: [39]
http://www.Isv.ens-cachan.fr/Publis/PAPERS/PDF/Nkpess2002.pdf
H. W. Kamp, “Tense logic and the theory of linear ordePh.D.
dissertation, University of California, Los Angeles, 1968

T. Berg, B. Jonsson, M. Leucker, and M. Saksena, “Irtsigh[41]
to Angluin’s learning,” in Proceedings of the International
Workshop on Software Verification and Validation (SVV 2003)
ser. Electronic Notes in Theoretical Computer Science, vdl8,

[34]

[35]

(36]

[40]

Dec. 2003, pp. 3-18. [Online]. Available: http://www.sueedirect.  [42]
com/sciencedb=MImgé&_imagekey=B75H1-4FFN49V-18-1&di=
13109& user=616147&orig=browseé&coverDate=02%2F01% [43]
2F2005&.sk=998819999&view=c&wchp=dGLbVIz-zSkzV&md5=
1cd6alfcf1599d96b97a2e45a181cOe5&ie=/sdarticle.pdf [44]

D. Peled, M. Vardi, and M. Yannakakis, “Black box cheuy’ in
Proc. FORTE/PSTV Kluwer, 1999, pp. 225-240. [Online]. Available:
http://www.cs.rice.edufvardi/papers/pstv99.ps.gz

A. Pretschner and M. Leucker, “Model-based testing - lassary,”
in Model-Based Testing of Reactive Systewer. Lecture Notes in
Computer Science, M. Broy, B. Jonsson, J.-P. Katoen, M. keyand
A. Pretschner, Eds., vol. 3472. Springer, 2004, pp. 607-609 [46]
Z. Manna and A. PnueliTemporal Verification of Reactive Systems:
Safety New York: Springer, 1995.

C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. Mclsaand D. V.
Campenhout, “Reasoning with temporal logic on truncatethgiain

CAV, ser. Lecture Notes in Computer Science, W. A. H. Jr. antf7]
F. Somenzi, Eds., vol. 2725. Springer, 2003, pp. 27-39.

O. Kupferman and M. Y. Vardi, “Model checking of safetyoperties.”
Formal Methods in System Desjgvol. 19, no. 3, pp. 291-314, 2001.
M. d’Amorim and G. Rosu, “Efficient monitoring of omedanguages.” 48]
in CAV, ser. Lecture Notes in Computer Science, K. Etessami and S. ﬁgl
Rajamani, Eds., vol. 3576. Springer, 2005, pp. 364-378.

A. Pnueli and A. Zaks, “PSL model checking and run-tinegification

via testers.” inFM, ser. Lecture Notes in Computer Science, J. Misratso]
T. Nipkow, and E. Sekerinski, Eds., vol. 4085. Springer, @00p.
573-586.

M. Geilen, “On the construction of monitors for tempbl@gic proper-
ties.” Electr. Notes Theor. Comput. Scovol. 55, no. 2, 2001.

M. Chechik, B. Devereux, and A. Gurfinkel, “Model-ché@u infinite
state-space systems with fine-grained abstractions uping ;1 SPIN
ser. Lecture Notes in Computer Science, M. B. Dwyer, Ed., 2067.
Springer, 2001, pp. 16-36.

A. Gruler, M. Leucker, and K. Scheidemann, “Modellingdaverifying
software product lines,” TU Munchen, Tech. Rep., 2007, gpear.
J.-F. Raskin, “Logics, automata and classical theofte deciding real-
time,” Ph.D. dissertation, Namur, Belgium, 1999.

D. D'Souza, “A logical characterisation of event cloektomata,”Int.
Journ. Found. Comp. Sgivol. 14, no. 4, pp. 625-639, Aug. 2003.

[45]

[51]

R. Alur, L. Fix, and T. A. Henzinger, “Event-clock auteta: a deter-
minizable class of timed automatal’heor. Comp. Sgci.vol. 211, no.
1-2, pp. 253-273, 1999

J. Hakansson, B. Jonsson, and O. Lundqvist, “Gemayatinline test
oracles from temporal logic specificationggurn. Softw. Tools for Tech.
Transf, vol. 4, no. 4, pp. 456-471, 2003.

S. Tripakis, “Fault diagnosis for timed automata.” FTRTFT, ser.
Lecture Notes in Computer Science, W. Damm and E.-R. Oldetdg.,
vol. 2469. Springer, 2002, pp. 205-224.

P. Bouyer, F. Chevalier, and D. D’Souza, “Fault diageassing timed
automata.” infFoSSaCsser. Lecture Notes in Computer Science, V. Sas-
sone, Ed., vol. 3441. Springer, 2005, pp. 219-233.

O. Maler and D. Nickovic, “Monitoring temporal prop&s$ of contin-
uous signals.” iINFORMATS/FTRTFTser. Lecture Notes in Computer
Science, Y. Lakhnech and S. Yovine, Eds., vol. 3253. Sprjrizf@04,
pp. 152-166.

M. Y. Vardi and P. Wolper, “An automata-theoretic apgpch to automatic
program verification,” inSymposium on Logic in Computer Science
(LICS’86).  Washington, D.C., USA: IEEE Computer Society Press,
June 1986, pp. 332-345.

M. Y. Vardi, An Automata-Theoretic Approach to Linear Temporal Logic
ser. Lecture Notes in Computer Science. New York, NY, USAirger,
1996, vol. 1043, pp. 238-266.

R. Tarjan, “Depth-first search and linear graph aldgons,” SIAM
Journal on Computingvol. 1, no. 2, pp. 146-160, 1972.

S. Schwoon and J. Esparza, “A note on on-the-fly verificatalgo-
rithms,” in Proceedings of the 11th International Conference on Tools
and Algorithms for the Construction and Analysis of SystE&CAS)
2005, pp. 174-190.

J. Hopcroft, “An n log n algorithm for minimizing statéa a finite
automaton,"Theory of Machines and Computatjgop. 189-196, 1971.
O. Kupferman and M. Y. Vardi, “Model checking of safetyoperties,”
Form. Methods Syst. Descol. 19, no. 3, pp. 291-314, 2001.

G. Rosu and S. Bensalem, “Allen linear (interval) temgbologic -
translation to LTL and monitor synthesis,” @AV, ser. Lecture Notes in
Computer Science, T. Ball and R. B. Jones, Eds., vol. 4144rin&y,
2006, pp. 263-277

A. Aho, R. Sethi, and J. UllmarCompilers: Principles and Techniques
and Tools Addison-Wesley, 1986.

B. Stroustrup,The C++ Programming Languagespecial ed. Boston,
MA, USA: Addison-Wesley, 2000.

S. DewhurstC++ Gotchas: Avoiding Common Problems in Coding and
Design Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2002.

C. Fritz, “Constructing Buchi automata from linearntporal logic
using simulation relations for alternating biichi autoadiain CIAA, ser.
Lecture Notes in Computer Science, O. H. Ibarra and Z. Dang,,E
vol. 2759. Springer, 2003, pp. 35-48.

A. Bauer, M. Leucker, and C. Schallhart, “The good, tteelband the
ugly—but how ugly is ugly?” inProceedings of the 7th International
Workshop on Runtime Verification (RV'Q8gr. Lecture Notes in Com-
puter Science, vol. 4839. Vancouver, Canada: SpringdayeDec.
2007, pp. 126-138

O. Lichtenstein and A. Pnueli, “Checking that finite tetaoncurrent
programs satisfy their linear specification,”moceedings of the Twelfth
Annual ACM Symposium on Principles of Programming Langsiage
New York: ACM, Jan. 1985, pp. 97-107.

R. Alur and D. L. Dill, “A theory of timed automata.Theor. Comput.
Sci, vol. 126, no. 2, pp. 183-235, 1994.

J.-F. Raskin and P.-Y. Schobbens, “The logic of evericlkd—
decidability, complexity and expressivenessdurn. of Autom. Lang.
and Comh.vol. 4, no. 3, pp. 247-286, 1999.

S. Tripakis and S. Yovine, “Analysis of timed systemsngstime-
abstracting bisimulations.Formal Methods in System Desjgvol. 18,
no. 1, pp. 25-68, 2001.

R. Alur, C. Courcoubetis, and D. L. Dill, “Model-checlg in dense real-
time,” Information and Computatigrvol. 104, no. 1, pp. 2-34, 1993.



