2019 International Symposium on Theoretical Aspects of Software Engineering (TASE)

Non-intrusive MC/DC Measurement
based on Traces

Faustin Ahishakiye, Svetlana Jaksi¢, Volker Stolz
Department of Computing, Mathematics and Physics
Western Norway University of Applied Sciences
Bergen, Norway
firstname.lastname @hvl.no

Abstract—We present a novel, non-intrusive approach to
MC/DC coverage measurement using modern processor-based
tracing facilities. QOur approach does not require recompilation
or instrumentation of the software under test.

Instead, we use the Intel Processor Trace (Intel PT) facility
present on modern Intel CPUs. Our tooling consists of the fol-
lowing parts: a frontend that detects so-called decisions (Boolean
expressions) that are used in conditionals in C source code,
a mapping from conditional jumps in the object code back
to those decisions, and an analysis that computes satisfaction
of the MC/DC coverage relation on those decisions from an
execution trace. This analysis takes as input a stream of in-
struction addresses decoded from Intel PT trace data, which was
recorded while running the software under test. We describe our
architecture and discuss limitations and future work.

Keywords-Code coverage, MC/DC, Software testing, Software
verification

I. INTRODUCTION AND MOTIVATION

In order to prevent disastrous events, certification standards,
for example the DO-178C [1] in the domain of avionic
software systems, are used by certification authorities, like
the Federal Aviation Administration (FAA) and the European
Aviation Safety Agency (EASA), to approve safety-critical
software and ensure that the software used in the systems
follows certain software engineering standards. DO-178C re-
quires that structural coverage analysis is performed during the
verification process mainly as a completion criterion for the
testing effort and to identify design faults as well as finding
dead code.

Software with the highest safety level (Level A) in avionics
systems is required to show modified condition decision cov-
erage (MC/DC) [2]. Unlike weaker coverage criteria, MC/DC
is sensitive to the complexity of decisions, because every
condition in each decision has to show its independent effect
on the decision’s outcome.

Usually MC/DC is measured by instrumenting the source
code (see III) in order to observe information about taken
paths, executed statements and evaluated conditions. Instru-
mentation is intrusive (it may change characteristics like
memory consumption, affect the cache and scheduling) and it

This work was supported in part by the European Horizon 2020 project
COEMS under number 732016 and the BMBF project ARAMiS II with
funding ID 01 IS 16025.

978-1-7281-3342-3/19/$31.00 ©2019 IEEE
DOI 10.1109/TASE.2019.00019

86

Felix D. Lange, Malte Schmitz, Daniel Thoma
Institute for Software Engineering
and Programming Languages
University of Liibeck
Liibeck, Germany
lastname @isp.uni-luebeck.de

is necessary for certification purposes to show that the behavior
of the code does not change after the coverage is measured and
the instrumentation is removed. Alternatively it is possible to
leave the instrumentation in the release code but that consumes
resources which are especially valuable in embedded systems,
which are widely used in the domain of safety-critical systems.
We present an approach how MC/DC can be measured non-
intrusively by analyzing program traces. Our novel approach
is based on the idea that every condition in the source code is
translated into a conditional jump on the object code level. We
first record the trace of an executing program and then analyze
it offline [3]. Program traces contain information about taken
jumps during the execution and make it possible to reconstruct
the evaluation of each condition without instrumentation.
The rest of this paper is organized as follows: Section II
introduces coverage criteria of safety-critical software. An
overview of state-of-the-art solutions is given in Section III.
Section IV describes Intel Processor Tracing (Intel PT) and
trace reconstruction. Section V explains the idea and the
implementation of our tool. Section VI presents the experiment
setup. Finally, we provide related work (Section VII) and
concluding remarks and future work in Section VIIL

II. MC/DC IN CONTEXT OF SAFETY-CRITICALLY
SOFTWARE

Depending on the software safety-level, which is assessed
by examining the effects of a failure in the system, different
coverage criteria have to be fulfilled during software verifica-
tion:

Software level C (major effect) requires statement coverage
and software level B (hazardous effect) requires decision
coverage [4]. Statement coverage is a relatively weak criterion,
because it only requires that every statement has been executed
but it is insensitive to control flow. Decision coverage is a fairly
stronger criterion because it makes sure that every possible
outcome of each decision (e.g. the Boolean expression in an if-
then-else) has been executed at least once, and therefore there
is no unexpected behavior caused by an unexpected outcome
of a decision.

Software Level A (catastrophic effect) requires modified
condition/decision coverage (MC/DC). The coverage criterion
has been chosen as the coverage criterion for the highest

safety level software because it is sensitive to the complexity
of the structure of each decision [2] — a decision is made
up of one or more conditions. Compared to even stronger
criteria like multiple condition coverage (MCC), that requires
every possible combination of all conditions which leads to
an exponential growth of the minimum numbers of test cases,
MC/DC may be satisfied with only n + 1 test cases for a
decision with n conditions. The following definition has been
provided in the DO-178C [4]:

Definition 1 (Modified condition/decision coverage):

o Every point of entry and exit in the program has been
invoked at least once,

« every condition in a decision in the program has taken

all possible outcomes at least once,

every decision in the program has taken all possible

outcomes at least once, and

each condition in a decision has shown to independently

affect that decision’s outcome by: (1) varying just that

condition while holding fixed all other possible condi-

tions, or (2) varying just that condition while holding

fixed all other possible conditions that could affect the

outcome.

Additionally, the terms Condition and Decision are defined as:

Definition 2 (Condition): A Boolean expression containing
no Boolean operators except for the unary operator (NOT).

Definition 3 (Decision): A Boolean expression composed
of conditions and zero or more Boolean operators. If a condi-
tion appears more than once in a decision, each occurrence is
a distinct condition.

For example, in Figure 1a the if-statement contains a decision
a<5| | (b==5&&c>5). This decision is composed of three
conditions a<5, b==5 and c¢>5.

By showing the independent effect of each condition,
MC/DC assures that condition’s defined purpose. The most
challenging and most discussed part in the definition of
MC/DC is showing this independent effect: item (2) in the
definition has been introduced in the DO-178C to clarify that
the so called Masked MC/DC is allowed [1], [5]. Masked
MC/DC means that it is sufficient to show the independent
effect of a condition by holding fixed only those conditions
that could influence the outcome. This is important for pro-
gramming languages that use short-circuit evaluation, because
certain executions of decisions are not distinguishable, if the
outcome of the decision is determined before every condition
has been evaluated.

III. STATE-OF-THE-ART

Today there is a number of testing tools for measuring
coverage developed for both industrial use and academic
purpose. For instance, a survey conducted in [6] described and
compared 17 tools primarily focusing on, but not restricted to,
coverage measurement. These tools are focusing on weaker
coverage criteria for C, C++ and Java programs. Most of
them are used only for code coverage, but some, such as

87

Agitar, Dynamic, JCover, Jtest and Semantic Designs, provide
debugging assistance as well.

Currently, there are not so many testing tools which focus on
MC/DC measurement. VectorCAST/MCDC [7] is a well es-
tablished tool for measuring MC/DC coverage for C/C++. The
tool supports both unique cause and masking MC/DC analysis.
Beside reporting and documenting the results, the tool supports
automatic test case generation to quicken the development
of a full set of MC/DC test cases. Parasoft C++test [8] is
a C/C++ testing tool that is capable of measuring MC/DC.
MC/DC is evaluated by calculating the ratio of the number of
conditions with independence effect and the total number of
conditions in all decisions. Testwell CTC++ tool [9] measures
line, statement, function, decision, multiple condition, MC/DC
and condition coverage for C, C++, Java, and C# on target and
on host. The generated report is showing coverage percentage.
CodeCover [10] is an open-source, white-box testing tool
developed at the University of Stuttgart. It implements the
Ludewig term coverage and they claim that it is similar to
MC/DC (subsumes MC/DC).

RapiCover [11] analyzes code coverage including MC/DC
on-host and on-target. They visualize coverage by folder, file,
function and test case, and filter results to highlight missing
coverage. All these tools measure MC/DC intrusively by
instrumenting the source code..

In [12], SmartUnit tool which supports statement, branch,
boundary value and MC/DC coverage is described. They aim
at the unit coverage-based testing and automatically generating
MC/DC coverage test cases in industry environment. The
percentage of MC/DC coverage is calculated as the ratio of
covered conditions and the total conditions in the source code.
The commercial Lauterbach tool [13] (see Sec. VII) uses a
dedicated hardware-interface to transfer tracing data from the
system-under-test into the developer’s machine for analysis.
They support a variety of trace sources, among others also
Intel PT, and use it to measure MC/DC in a similar manner
as we describe below.

Another alternative, non-intrusive approach is running the
system-under-test within an emulator. The QEMU emulator
has been used to this end within the Adacore community
[14], and in the RTEMS operating system [15]. Through the
emulator it is easy to observe the execution of a program on
the object code level, very much like through Intel PT that we
will present below. The obvious threat to validity is of course
how closely the emulator setup can reflect the real system,
especially when considering certification.

In the following we propose a novel approach how to
measure MC/DC without instrumentation and a tool that
implements this approach on a live system without the need
for additional hardware.

IV. TRACE-BASED APPROACH

The main idea of our trace-based approach is that each con-
dition in the source code is translated into a single conditional
jump in the object code. If we can accurately trace execution,
we will be able to reconstruct the evaluation of conditions

along the execution paths. On modern Intel processors, through
the IntelPT framework, we are able to unobtrusively record
the execution traces of applications. Through operating system
support, tracing can be easily enabled for a single application.
We first describe the general mode of operation of IntelPT,
and continue then with our analysis of the recorded traces.

A. Intel Processor Tracing (Intel PT)

Program tracing is an important mechanism for developers
in the context of gathering useful information for debugging,
monitoring and performance analysis of a program executions.

Intel Processor Tracing (Intel PT) is an extension of the
Intel Architecture that traces program execution with low
overhead [16]. It can be used by modern Intel CPUs such
as Intel Broadwell (5th generation) CPU or better. Intel PT
was introduced to provide an accurate and detailed trace
with triggering and filtering capabilities [17]. Intel PT works
by capturing information about software execution on each
hardware thread using dedicated hardware facilities so that
after execution completes software can do processing of the
captured trace data and reconstruct the exact program flow.

Intel PT uses an extremely compact format that makes it
possible to overcome the small bandwidth and limited buffer
space by basically only storing information about taken and
not taken branches, indirect branches, function returns and
interrupts. Based on these the complete program execution
flow can be reconstructed. With Intel PT, it is easy to extract
and report a much deeper view on loop behavior, from entry
and exit down to specific back-edges and loop trip-counts.
The traces contain instructions executed by the processor,
but there are no data values. For example, for the C-level
instruction x y + =z, as the trace essentially only consists
of instruction pointers, we can only reconstruct the assembly
instructions for loading the values, summation and storing the
result in memory, and maybe even map them onto the source-
code, but we have no information about the actual values of
x,y and z or their location in memory during execution.

IntelPT has some drawbacks related to trace file size and
speed since the trace bandwidth can exceed 10 Gbits/s. That
means that the program trace data and the decoded trace be-
come huge, fast. Recording program executions of more than
a few milliseconds requires large and fast writable storage, so
that information can be stored quickly enough for offline- or
parallel processing, without losing events due to full buffers.

B. Trace Analysis

By analyzing program traces it is possible to see if the
jumps corresponding to conditionals in the source code have
been taken during the execution and to reconstruct how the
conditions have been evaluated. If the statement following the
conditional jump in the trace equals the target of this jump,
the jump has been taken.

Which conditional jumps occur in the object code depends
on the condition in the source code. Because the compiler
sometimes uses the negation of the operator, there are two
assembly instruction possible for each relational operator.

NN R W=

88

Nr. A B Cc AV (BAC)
1 false false ? false
2 false true false false
3 false true true true
4 true ? ? true

TABLE I: Short-circuit evaluation for AV (B A C)

if (a<5 ||
return 1;

}

(b==5 && c>5)) {

(a) C code with decision containing three conditions.

400494: cmpl $0x5, -0x8 ($rbp)
400498: jl1 4004b2
40049e: cmpl $0x5, -0xc ($rbp)
4004a2: jne 4004be
4004a8: cmpl $0x5,-0x10 (%$rbp)
4004ac: jle 4004be
4004b2: movl $0x1, -0x4 ($rbp)

(b) Object code with three conditional jumps.

Fig. 1: C code and corresponding Object code compiled with
clang version 5.0 on default parameters.

From tracing execution in the object code, we can then
reconstruct the outcome of an entire decision by analyzing
the trace. If the decision statement is followed by the instruc-
tions corresponding to the then-branch, the decision has been
evaluated as True, otherwise False. Figures la and 1b show
a decision as part of a C program with three conditions, and
the corresponding assembly code (with compiler optimizations
disabled). The comparisons (<, > and ==) are translated by
the compiler into small sequences of assembly instructions.
Typically these consist of a compare operator (cmpl) and a
conditional jump (71, Jjne). This structure makes it possible
to map a conditional jump to each condition.

C. Short Circuit Evaluation

In C (as in most modern programming languages) short-
circuit evaluation is used to evaluate Boolean expressions. That
means that the expression is evaluated from left to right and if
the left-hand operand of a conjunction is false or, respectively,
if the left-hand operand of a disjunction is true, the right-hand
operand is not further evaluated. As mentioned in Section II,
Masked MC/DC is accepted by the DO-178C. Because short-
circuit evaluation skips exactly those conditions that cannot
influence the outcome of a decision, it is possible to measure
Masked MC/DC based on traces.

D. Condition Reconstruction

The decoded program trace contains information about each
executed instruction and therefore whether each jump has been
taken or not. This makes it possible to look at each execution
of a decision and to note which jumps have been taken. A
table can be generated where each row contains one evaluation
of a decision and each column contains the assignment of
each condition during that evaluation. The last column shows

Relational Possible Condition Value
Operator: Conditional Jumps: of Detected Jump:
x86-64 ARM
no operator jne bne True
je beq False
== je beq True
jne bne False
< jl blt True
jge bge False
<= jle ble True
jg bgt False
> jg bgt True
jle ble False
>= jge bge True
jl blt False

TABLE II: Multiple interpretations of jumps in the x86-64 and
ARM instructions sets compiled with clang version 5.0

the outcome of the decision during the execution. The table
has n rows and m + 1 columns for a decision that has
been executed n times and has m conditions. Table I shows
the table for the decision A V (B A C') with some example
observations/outcomes that satisfy MC/DC (see explanation
below).

Because of short-circuit evaluation not all conditions are
generally evaluated during one execution and can therefore
not be reconstructed by analyzing the trace. In the table these
entries are filled as “?”.

Depending on the relational operator in the condition (<,
<=, ==, etc.) two different possible conditional jumps can be
generated by the compiler because conditions can be translated
to their negation (it is up to the compiler to choose “‘jump-
if-equal” or “jump-if-not-equal”). If a condition is translated
as its negation, this has implications for the reconstruction of
the assignments by analyzing the trace as a taken jump shows
that the condition has been evaluated as false. The possible
combinations for the Intel x86-64 instruction set and its ARM
counterpart are shown in Table II, which have to be taken into
account when the reconstruction is performed. We call the
addresses of instructions relevant to our analysis watch-points
(i.e., conditional jumps and their targets).

E. MC/DC Measurement

After we have recorded all reconstructed condition values
in a table per decision, MC/DC can be measured as follows.
All rows with a different outcome are compared. If they
contain a different entry for exactly one condition, these two
assignments show the independent effect for this condition.
Two entries for a condition are considered different if one
contains a true and another one contains false. If one of them
contains the unknown reconstruction “?”, the independent
effect of this condition cannot be shown based on these cases.

For the example in Table I with short-circuit evaluation,
the independent effect of condition A can only be shown
by ignoring the other two conditions, because they cannot
influence the outcome, if A is true. So executions number
1 and 4 show the independent effect of condition A. The

89

Compressed
Trace Data

Reconstruct
Program Trace

Processor

Trace

Data Storage

Trace

Reconstruction of Condition | im0
Assignment

Watchpoints,
Relational Operators,
Jump Instructions

Binary

pa C-Compiler
Object Code,
Debug iymbo\s

Coverage Evaluation

|

MC/DC

|

Static Analysis

o<

Fig. 2: Overview of the implementation.

independent effect of B can only be shown, if A is false and
therefore B is actually evaluated. The outcome of the decision
and value of B changes in this example in executions number
1 and 3. Likewise, the independent effect of condition C' can
be shown with executions number 2 and 3, because the value
of condition C' and the outcome are changing.

This corresponds as Masked MC/DC and hence complies
with the definition of MC/DC in the DO-178C.

We define the measured coverage as the ratio of all decisions
satisfying MC/DC and the number of all decisions in the
source code.

V. IMPLEMENTATION

An overview of the implementation is provided in Figure 2.
The source code is analyzed by our tool in order to detect deci-
sions and their conditions. Additionally, we extract information
about their corresponding conditional jumps from the object
code. With this information and the program trace provided by
Intel PT it is possible to reconstruct the condition assignments
and measure MC/DC.

A. Decision Detection with LLVM

In the first step, decisions in the source code have to be
found. In order to find decisions in the source code we use the
Abstract Syntax Tree (AST) representation provided by LLVM.
With LibTooling and the AST-matcher [18] we have built a tool
that detects all if-, for- and while-statements in the source
code and we gather corresponding information such as line
and column numbers and then-statements. We focus on finding
traditional branch points (if-, while-, for-statements), but we
are aware that certification authorities require other structures,
for example assignments containing Boolean expressions, to
be covered as well [19].

B. Mapping with Debug Symbols

After the decisions and their conditions in the source code
have been detected, debug-symbols are used to map the
conditions to conditional jumps in the object code.

The direct mapping is possible by utilizing debug symbols
provided by the compiler. We use clang 5.0 because this
compiler provides rich debug symbols containing line and
column information with the compiler option ~g -XClang

—dwarf-column-info. Combined with the detected deci-
sions from the LLVM-tool we then can detect all conditional
jumps that are needed for measuring MC/DC based on traces.

Because the outcome of the decision during the execution
has to be reconstructed as well, it is necessary to find the then-
statement which is the statement executed in case of a decision
being evaluated as true. This statement is also mapped using
debug-symbols to its corresponding instruction in the object
code.

The result are the decisions, conditions and then-statements
in the source code and their translation in the object code.

C. Program Trace Generation

We use Intel Processor Trace (Intel PT) to generate a trace
of the execution of a program. The technology is widely
available, which makes it suitable for this proof-of-concept
tool. With perf' the Linux-kernel provides an easy-to-use
implementation of the recording and reconstruction of Intel
PT traces. The reconstructed traces become quiet large even
for short execution times. To reduce the size, we filter the trace
against the watch-points and only store those parts of the trace
that are relevant for measuring MC/DC.

Cheaus By pyre— Trace Birary wth irteiF1

P Trace bim
[T

ot Gt Wshante MEDE

)

] | e | T

- -

-

Fig. 3: Screenshot of the GUL

D. Graphical User Interface

The tool chain of detecting all decisions, mapping condi-
tions to conditional jumps, running and tracing the program
and measuring MC/DC based on the trace can be used via a
graphical user interface (GUI, see Figure 3) or through the
command line as described in Section VI. Via the GUI, we
show the detected decisions and the measured coverage in the
source code, allowing the user to directly see which conditions
are not covered. This should help developers in finding new
test cases that cover the missing combinations.

A typical workflow with our tool is the following:

1) Choose Binary opens a file dialog and the binary can be

selected.

2) Add Source File opens a file dialog and source files can

be added for which MC/DC should be measured.

3) The source files are listed and can be viewed by clicking

on them.

4) Detect Decisions detects the decisions in the selected

source code and maps the conditions to their correspond-
ing conditional jumps.

Uhttps://perf.wiki.kernel.org

90

System
under Test

Decisions/conditions
detection

Fig. 4: MC/DC measurement experiment setup.

5)

Trace Binary with Intel PT calls Linux’ perf and saves
the trace in the file chosen in Choose Trace File.
Evaluate MC/DC analyzes the recorded trace and mea-
sures MC/DC of the detected decisions. The result is
shown directly in the source code.

Show Assignments opens a new window containing an
overview of all detected decisions, conditions and their
reconstructed values.

6)

7

The tool is available for academic evaluation purposes®. On
the website you can find an example application and a trace
recorded with Intel PT, which can be analyzed with the tool.

VI. EXPERIMENTAL SETUP

Our experimental setup for MC/DC coverage measurement
consists of two examples as C code, together with their unit
tests. The function in the first unit has four decisions (if-
statements), containing in total eleven conditions. The second
unit contains one decision (also an if-statement) with three
conditions. The entire test suite contains 16 test cases. Our
tooling allows us to execute the entire test suite and measure
coverage, or to just run and measure a single test case. The test
suite contains twelve test cases for the first unit where MC/DC
coverage is achieved with eleven test cases. Note that this is
not directly related to the number of n+1 test cases before, as
the decisions in subsequent if-statements are not independent.
The second unit has four test cases, and all four test cases need
to be executed to achieve MC/DC coverage. In addition to the
use of our tool via GUI as described in Section V, in this
section we set up our experiment for MC/DC measurement
via the command line on a Linux OS. After the compilation
of the program under test, we conduct the experiment in the
following steps as shown in Figure 4:

First, we conduct a static analysis in order to find out which
conditions in the source code correspond to which conditional
jumps in the object code. The static analysis results in a JSON
file with all information related to decisions and conditions and
their location (line and column), as well as their mapping to
the object code. That is, conditions are mapped to addresses
and conditional jumps in the object code. This mapping is

Zhttps://www.coems.eu/mc-dc/

necessary because MC/DC is a criterion that is defined on
the source code level and there are no equivalent metrics
defined on the object code level. In other words, we ignore
conditional jumps in the object code that do not directly come
from conditionals in the source code. With this information,
it is possible to reconstruct the assignment of the conditions
during an execution by analyzing the performed jumps and
inferring if a condition has been evaluated as true or false. If
the program address following a jump instruction in the trace
equals the target address that is recorded in the conditional
jump instruction, that jump has been performed, otherwise it
has not. We use this information to reconstruct the assignment
of the condition.

Secondly, we created a wrapper that allows to easily run
one particular test from the command line. For each particular
test, we record and decode the trace using Intel PT, and
we incrementally evaluate the trace with respect to previous
results, measure MC/DC and query the MC/DC results. We
track the percentage of MC/DC coverage that is achieved
through the incremental runs. The tool iterates randomly
through the test cases, selecting one at a time and it stops once
100% MC/DC coverage is achieved, otherwise it continues
picking other test cases, i.e., we run a test case at most once.

Finally, the tool reports the MC/DC result with the set of
test cases that have been executed. From the recorded data,
it is easy to plot curves as to which test case contributes to
decision or condition coverage. Note that we are not replacing
the unit tests, but rather see this as a way to minimize testing
overhead: in practice, one would suggest a run of all unit
tests without measuring MC/DC, and having occasional runs
with tracing enabled that verify that a known set of test cases
achieves a predetermined threshold of MC/DC coverage.

VII. RELATED WORK

The interesting discussion on the applicability of MC/DC
to software testing for safety-critical systems have been intro-
duced by Chilenski in [2]. Different comparisons for code cov-
erage metrics have been investigated in the context of structure
based metrics [20], data-flow metrics [21], decision coverage
and MC/DC [22], comparison of multiple condition coverage
(MCC) and MC/DC with short-circuit evaluation [23]. MC/DC
and object branch coverage (OBC) criteria were compared in
[24] and [25]. Even though aforementioned research gives the
foundation, none provides a deep MC/DC analysis based on
the trace of the program-under-test.

A non-intrusive online monitoring for multi-core systems
based on the embedded trace of the system under test is
proposed in [26]. Online reconstruction and analysis of de-
bug trace data are based on FPGA and TeSSLa [27]. This
combination could be used to implement coverage-calculation
on the FPGA, instead of doing it on the host or offline, as in
our setting here.

Lauterbach offers the t32cast command line tool for
MC/DC measurement based on a real-time trace recording,
which can analyze the C/C++ source code [13]. The user must
ensure that the selected compiler translates each condition

91

in the source code into a conditional jump at the object
code level, e.g. by disabling optimizations. In contrast to our
approach, which uses features present in most modern Intel
processors, the trace data are transferred through a dedicated
hardware-connection to a monitor.

VIII. CONCLUSION

We present a tool that shows the feasibility of measuring
MC/DC without instrumentation based on program traces. The
tool is able to detect decisions and conditions in C source code
and to find their corresponding conditional jumps in the object
code. MC/DC can be measured by reconstructing condition
assignments based on Intel PT traces.

The advantage of our approach is that there is no need for
intrusive software instrumentation. Traditionally, the coverage
of the instrumented code is measured, and the instrumentation
has to be removed before release, but with our approach it is
possible to measure coverage directly on the release code by
only using debug symbols that are not altering the behavior
of the code and therefore are not considered intrusive.

Our approach of measuring MC/DC based on traces com-
plies with the position of CAST-17, that provides certifica-
tion authorities’ concerns and position regarding the analysis
of structural coverage at the object code level [28]. With
the mapping between conditions and conditional jumps we
provide traceability between source and object code and the
reconstruction of condition assignments on the source code
level, we can provide the same level of assurance as measuring
directly on source code level via software instrumentation.

However there are some limitations. It is necessary to
disable optimizations during the compilation because even
on low optimization levels conditions are usually not directly
translated into conditional jumps but into conditional moves,
jump tables or indirect branches [29]. Because regular pro-
gram traces contain no information how these instructions are
evaluated, they cannot be used to reconstruct the evaluation
of conditions. This limitation is less severe in the domain of
avionic, because other requirements, for example source code
to object code traceability in DO-178C, make it already hard
for developers to use high optimization levels [30]. Also it is
necessary to have a modern compiler like clang version > 5.0
because the DWARF debug symbols need to have column and
line information.

Another problem of our approach is that the trace data
becomes excessively large for longer executions. Here, we
used an offline tracing approach [3], where available storage
effectively limits the size of traces. In future work, we want to
apply this approach to online trace reconstruction which would
enable us to observe much longer execution times because only
the very events that are used for coverage measurement are
reconstructed. We also want to support other architectures and
instead of Intel PT, use tracing technologies such as ARM
CoreSight and NEXUS for PowerPC since these processor
architectures are widely used in avionics and automotive
industry, which would benefit the most from this new approach
of MC/DC measurement.

[1]

2

[3]

[4]

[5

—

[6

—

[7

—

[8

[l

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

F. Pothon, “DO-178C/ED-12C versus DO-178B/ED-12B: Changes and
Improvements,” AdaCore, Tech. Rep., 2012, available at https://www.
adacore.com/books/do-178c¢-vs-do-178b.

J.J. Chilenski and S. P. Miller, “Applicability of modified condition/deci-
sion coverage to software testing,” Software Engineering Journal, vol. 9,
no. 5, pp. 193-200, 1994.

F. D. Lange, “Modified Condition/Decision Coverage based on jumps,”
2018, master’s thesis, available at http://www.isp.uni-luebeck.de/thesis/
modified-conditiondecision-coverage-based-jumps.

L. Rierson, Developing Safety-Critical Software: A Practical Guide for
Aviation Software and DO-178C Compliance. CRC Press, 2013.
Certification Authorities Software Team (CAST), “Rationale for Ac-
cepting Masking MC/DC in Certification Projects,” Technical Report:
Position Paper CAST-6, 2001.

Q. Yang, J. J. Li, and D. Weiss, “A Survey of Coverage Based Testing
Tools,” in Proc. of the 2006 Intl. Workshop on Automation of Software
Test, ser. AST *06. New York, NY, USA: ACM, 2006, pp. 99-103.
Vector Software, “Vectorcast/mecdc,” available at https://www.vectorcast.
com/software-testing- products/embedded-mcdc-unit-testing.

A. Trujillo and A. Stuchlik, “Reviewing coverage information,” Parasoft
C++test documentation, available at https://docs.parasoft.com/display/
CPPDESKE1033/Reviewing+Coverage+Information.

Testwell, “Testwell CTC++: Test Coverage Analyzer for C/C++,” avail-
able at http://www.testwell.fi/ctcdesc.html.

CodeCover, “CodeCover: an open-source glass-box testing tool,” avail-
able at http://codecover.org/.

Rapita Systems, “RapiCover: Low-overhead coverage analysis for
critical software,” available at https://www.rapitasystems.com/products/
rapicover.

C. Zhang, Y. Yan, H. Zhou, Y. Yao, K. Wu, T. Su, W. Miao, and
G. Pu, “Smartunit: Empirical evaluations for automated unit testing of
embedded software in industry,” in Proceedings of the 40th International
Conference on Software Engineering: Software Engineering in Practice,
ser. ICSE-SEIP "18. New York, NY, USA: ACM, 2018, pp. 296-305.
[Online]. Available: http://doi.acm.org/10.1145/3183519.3183554
Lauterbach, “Trace-based MCDC Coverage,” 2018, available at https:
/Iwww.lauterbach.com/new2018_cov_mcdec.pdf.

M. Bordin, C. Comar, T. Gingold, J. Guitton, O. Hainque, and
T. Quinot, “Object and source coverage for critical applications
with the COUVERTURE open analysis framework,” in Proc. of
Embedded Real Time Software and Systems Conference (ERTS), 2010.
[Online]. Available: http://www.open-do.org/wp-content/uploads/2010/
06/couverture_ertss2010.pdf

H. Felbinger, J. Sherrill, G. Bloom, and F. Wotawa, “Test suite
coverage measurement and reporting for testing an operating system
without instrumentation,” in 17th Real-Time Linux Workshop, 10 2015.
[Online]. Available: https://gedare.github.io/pdf/FelShe15A.pdf

A. Kleen, “Cheat sheet for Intel Processor Trace with Linux perf and
gdb,” April 2017, available at http://halobates.de/blog/p/410.

J. Thalheim, P. Bhatotia, and C. Fetzer, “INSPECTOR: Data Provenance
Using Intel Processor Trace (PT),” in 2016 IEEE 36th Intl. Conf. on
Distributed Computing Systems (ICDCS), June 2016, pp. 25-34.

The Clang Team, “Matching the Clang AST,” Clang documentation,
available at https://clang.llvm.org/docs/LibASTMatchers.html.
Certification Authorities Software Team (CAST), “What is a “Decision”
in Application of Modified Condition/Decision Coverage (MC/DC) and
Decision Coverage (DC)?” Technical Report: Position Paper CAST-10,
2002.

S. C. Ntafos, “A comparison of some structural testing strategies,” IEEE
Transaction on Software Engineering, vol. 14, no. 6, pp. 868-874, 1988.
L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil, “A
Comparison of Data Flow Path Selection Criteria,” in Proc. of the Sth
Intl. Conf. on Software Engineering, ser. ICSE °85. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1985, pp. 244-251.

K. Kapoor and J. Bowen, “Experimental evaluation of the variation in
effectiveness for DC, FPC and MC/DC test criteria,” in 2003 Inter-
national Symposium on Empirical Software Engineering, 2003. ISESE
2003. Proceedings., Sept 2003, pp. 185-194.

S. Kandl and S. Chandrashekar, “Reasonability of MC/DC for safety-
relevant software implemented in programming languages with short-
circuit evaluation,” Computing, vol. 97, no. 30, pp. 261-279, Mar 2015.

92

[24]

[25]

[26]

[27]

[28]

[29]

[30]

C. Comar, J. Guitton, O. Hainque, and T. Quinot, “Formalization and
Comparison of MCDC and Object Branch Coverage Criteria,” in Proc.
of Embedded Real Time Software and Systems Conference (ERTS), 2012.
T. Byun, V. Sharma, S. Rayadurgam, S. McCamant, and M. Heimdahl,
“Toward rigorous object-code coverage criteria,” Technical Report, Uni-
versity of Minnesota, MN, USA, Tech. Rep., 2017.

N. Decker, P. Gottschling, C. Hochberger, M. Leucker, T. Scheffel,
M. Schmitz, and A. Weiss, “Rapidly Adjustable Non-intrusive Online
Monitoring for Multi-core Systems,” in Formal Methods: Foundations
and Applications, S. Cavalheiro and J. Fiadeiro, Eds. Springer, 2017,
pp. 179-196.

N. Decker, B. Dreyer, P. Gottschling, C. Hochberger, A. Lange,
M. Leucker, T. Scheffel, S. Wegener, and A. Weiss, “Online analysis
of debug trace data for embedded systems,” in Design, Automation Test
in Europe Conference Exhibition (DATE), March 2018, pp. 851-856.
Certification Authorities Software Team (CAST), “Structural Coverage
of Object Code,” Technical Report: Position Paper CAST-17, 2003.
Free Software Foundation, “Options That Control Optimization,” GCC
documentation, available at https://gcc.gnu.org/onlinedocs/gce-5.4.0/
gee/Optimize-Options.html.

Certification Authorities Software Team (CAST), “Guidelines for ap-
proving source code to object code traceability, position paper 12,”
Certification Authorities Software Team, Tech. Rep., 2003.

