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a b s t r a c t

In regular inference, a regular language is inferred from answers to a finite set of
membership queries, each of which asks whether the language contains a certain word.
One of the most well-known regular inference algorithms is the L∗ algorithm due to Dana
Angluin. However, there are almost no extensions of these algorithms to the setting of
timed systems. We extend Angluin’s algorithm for on-line learning of regular languages
to the setting of timed systems. Since timed automata can freely use an arbitrary number
of clocks, we restrict our attention to systems that can be described by deterministic
event-recording automata (DERAs). We present three algorithms, TL∗

sg , TL
∗

nsg and TL∗

s , for
inference of DERAs. In TL∗

sg and TL∗

nsg , we further restrict event-recording automata to be
event-deterministic in the sense that each state has at most one outgoing transition per
action; learning such an automaton becomes significantly more tractable. The algorithm
TL∗

nsg builds on TL∗

sg , by attempts to construct a smaller (in number of locations) automaton.
Finally, TL∗

s is a learning algorithm for a full class of deterministic event-recording
automata, which infers a so called simple DERA, which is similar in spirit to the region
graph.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Research during the last decades have developed powerful techniques for usingmodels of reactive systems in specification,
automated verification (e.g., [13]), test case generation (e.g., [16,30]), implementation (e.g., [22]), and validation of reactive
systems in telecommunication, embedded control, and related application areas. Typically, such models are assumed to be
developed a priori during the specification and design phases of system development.

In practice, however, often no formal specification is available, or becomes outdated as the system evolves over time. One
must then construct a model that describes the behavior of an existing system or implementation. In software verification,
techniques are being developed for generating abstract models of software modules by static analysis of source code (e.g.,
[12,25]). However, peripheral hardware components, library modules, or third-party software systems do not allow static
analysis. In practice, such systemsmust be analyzed by observing their external behavior. In fact, techniques for constructing
models by analysis of externally observable behavior (black-box techniques) can be used in many situations.

• To create models of hardware components, library modules, that are part of a larger system which, e.g., is to be formally
verified or analyzed.

• For regression testing, a model of an earlier version of an implemented system can be used to create a good test suite
and test oracle for testing subsequent versions. This has been demonstrated, e.g., by Hungar et al. [21,24]).
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• Black-box techniques, such as adaptive model checking [19], have been developed to check correctness properties, even
when source code or formal models are not available.

• Tools that analyze the source code statically depend heavily on the implementation language used. Black-box techniques
are easier to adapt to modules written in different languages.

The construction ofmodels from observations of system behavior can be seen as a learning problem. For finite-state reactive
systems, it means to construct a (deterministic) finite automaton from the answers to a finite set ofmembership queries, each
of which asks whether a certain word is accepted by the automaton or not. There are several techniques (e.g., [4,18,27,29,5])
which use essentially the same basic principles; they differ in how membership queries may be chosen and in exactly how
an automaton is constructed from the answers. The techniques guarantee that a correct automaton will be constructed if
‘‘enough’’ information is obtained. In order to check this, Angluin and others also allow equivalence queries that ask whether
a hypothesized automaton accepts the correct language; such a query is answered either by yes or by a counterexample on
which the hypothesis and the correct language disagree. Techniques for learning finite automata have been successfully
used for regression testing [21] and model checking [19] of finite-state systems for which no model or source code is
available.

In this paper, we extend the techniques for automata learning developed by Angluin and others to the setting of timed
systems. One longer-term goal is to develop techniques for creating abstract timedmodels of hardware components, device
drivers, etc. for analysis of timed reactive systems; there are many other analogous applications. It is not an easy challenge,
and we will therefore in this first work make some idealizing assumptions. We assume that a learning algorithm observes
a system by checking whether certain actions can be performed at certain moments in time, and that the learner is able to
control and record precisely the timing of the occurrence of each action. We consider systems that can be described by a
timed automaton [1], i.e., a finite automaton equipped with clocks that constrain the possible absolute times of occurrences
of actions. There are some properties of timed automata that make the design of learning algorithms difficult: the set of
clocks is not known a priori, and they cannot in general be determinized [1]. We therefore restrict consideration to a class
of event-recording automata [2]. These are timed automata that, for every action a, use a clock that records the time of
the last occurrence of a. Event-recording automata can be determinized, and are sufficiently expressive to model many
interesting timed systems; for instance, they are as powerful as timed transition systems [23,2], another popular model for
timed systems.

Although event-recording automata overcome some obstacles of timed automata, they still suffer from problems. One
problem is that it is not clear how to generalize Nerode’s right congruence, another is that in general they do not have
canonical forms. Therefore we work with classes of event-recording automata which have canonical forms and can be
understood as finite automata over a symbolic alphabet.

We present three algorithms, TL∗
sg , TL

∗
nsg and TL∗

s , for learning deterministic event-recording automata.
In algorithms TL∗

sg and TL∗
nsg , we further restrict event-recording automata to be event-deterministic in the sense that

each state has at most one outgoing transition per action (i.e., the automaton obtained by removing the clock constraints is
deterministic). Under this restriction, timing constraints for the occurrence of an action depend only on the past sequence
of actions, and not on their relative timing; learning such an automaton becomes significantly more tractable, and allows us
to adapt the learning algorithm of Angluin to the timed setting.

TL∗
sg learns a so-called sharply guarded event-deterministic event-recording automaton.We show that every deterministic

event-recording automaton can be transformed into a unique sharply guarded one with at most double exponentially more
locations. We show that if the size of the untimed alphabet is fixed, then the number of membership queries of TL∗

sg is a
polynomial in the size of the biggest constant appearing in guards, in the number n of locations of the sharply guarded event-
deterministic event-recording automaton, in the size of the timed alphabet and in the length of the longest counterexample.
The number of equivalence queries is at most n.

The algorithm TL∗
nsg addresses the problem of learning a smaller, not necessarily sharply guarded version of an event-

deterministic event-recording automaton. It achieves this goal by unifying the queried information when it is ‘‘similar’’
which results in merging states in the constructed automaton. The number of needed queries exceeds those of TL∗

sg in the
worst case; however, in practice it can be expected that it behaves better than TL∗

sg .
TL∗

s is a learning algorithm for the full class of deterministic event-recording automata. While we reuse the prosperous
scheme developed in TL∗

sg , the details are different. Wework out a characterization in terms of a (symbolic) regular language
for the language of DERAs. Furthermore, we show that each symbolic word can be identified by a single timed word. Thus,
one query in Angluin’s algorithm relates to a single timed query. TL∗

s learns a so-called simple deterministic event-recording
automaton.We show that every deterministic event-recording automaton can be transformed into a unique simple onewith
at most single exponentially more locations. Our transformation is based on ideas used to derive so-called region graphs. We
show that the number of membership queries of TL∗

s is a polynomial in the size of the biggest constant appearing in guards,
in the number n of locations of the simple deterministic event-recording automaton, in the size of the untimed alphabet and
in the length of the longest counterexample. The number of equivalence queries is at most n.

Related work. In another work [17,20], two of the authors of this paper have developed a completely different algorithm for
learning deterministic event-recording automata. The algorithmdiffers from TL∗

s in that the constructed automaton need not
be a simple one. The transformation of an event-recording automaton to a corresponding simple automaton often increases
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its size significantly; a reason for this increase is that each transition is divided up into many ‘‘smaller’’ transitions, at least
one transition for each possible integer value of the clocks of the automaton. The algorithm presented in [17,20] attempts
to avoid this division of transitions by constructing an automaton, whose guards are ‘‘similar’’ to the guards of the event-
recording automaton that is being learned. The main problems are then to synthesize ‘‘natural’’ guards on transitions, and
to construct locations (control states). To address these problems, the algorithm does not re-use the structure of the L∗

algorithm; instead of the observation table used in L∗, it uses a new data structure, called a timed decision tree, to organize
results of queries. Its theoretical worst-case complexity is significantly higher than that of TL∗

s .
The only other work on learning of timed systems we are aware is by Verwer et al. [34], who present an algorithm for

learning of timed automatawith one clockwhich is reset at every transition. Their setting differs fromours in that the learner
does not choose thewords to be used inmembership queries, but is given a sample of accepted and unaccepted timedwords
from which an automaton is to be constructed. The algorithm constructs a prefix tree from the sample of timed words and
then tries to merge nodes of this tree pairwise to form an automaton. If the resulting automaton does not agree with the
sample then the last merge is undone and a new merge is attempted. The algorithm does not construct timed automata in
a systematic way, and it is hard to generalize the algorithm to timed automata with more than one clock.

Previous work on learning of infinite-state systems include the work by Berg et al. [8], who consider Mealy machines
extended with state variables that can assume values from a potentially unbounded domain. These values can be passed
as parameters in input and output messages, and can be used in tests for equality between state variables and/or message
parameters. Their technique first uses the L∗ algorithm to generate a finite-state Mealy machine for the case that the values
are taken from a finite data domain. This finite-state Mealy machine is then transformed into a symbolic form, representing
the desired infinite-state Mealy machine.

A problem related to automata learning (or regular inference) is that of conformance testing, where one is given an
automaton specification of the intended behavior of an implementation, and would like to derive a test suite which checks
that an implementation conforms to such a specification. In previous work [7], we showed that if a set of input words
form a conformance test suite for a finite state machine, then that state machine can be inferred from this set of input
words using automata learning techniques. Conversely, if a finite state machine is uniquely inferred from a set of input
words which are supplied in membership queries, then this set of input words forms a conformance test suite for the state
machine. Springintveld et al. [32] introduces an algorithm which generates a conformance test suite for timed automata.
The algorithm constructs grid automata, which only contain states in which every clock value is from the set of integer
multiples of 2−n for some sufficiently large natural number n. Then the Vasilevskii–Chow algorithm [11,33] for generating
conformance test suites for finite state machines, is applied to the grid automaton to generate a conformance test suite for
the timed automaton.

Several papers are concerned with finding a definition of timed languages which is suitable as a basis for learning.
There are several works that define determinizable classes of timed automata (e.g., [2,31]) and right-congruences of timed
languages (e.g., [28,26,35]), motivated by testing and verification.

Structure of the paper. The paper is structured as follows. After preliminaries in the next section, we define deterministic
event-recording automata (DERAs) in Section 3. In Section 4 we describe the L∗ algorithm for learning DFAs. In Sections 5
and 7, we present the algorithms TL∗

sg and, respectively, TL∗
nsg for learning event-deterministic DERAs (EDERAs). In Section 6

we describe the algorithm TL∗
s suitable for learning general DERAs. Section 8 presents conclusions and directions for future

research.

2. Preliminaries

We write R≥0 for the set of nonnegative real numbers, and N for the set of natural numbers. Let Σ be a finite alphabet
of size |Σ |. A timed word over Σ is a finite sequence wt = (a1, t1)(a2, t2) . . . (an, tn) of symbols ai ∈ Σ that are paired with
nonnegative real numbers ti such that the sequence t1t2 . . . tn of time-stamps is nondecreasing. Each time-stamp ti denotes
the time of occurrence of the symbol ai, measured from some common ‘‘initial moment’’. We use λ to denote the empty
word. A timed language over Σ is a set of timed words over Σ .

An event-recording automaton contains for every symbol a ∈ Σ a clock xa, called the event-recording clockof a. Intuitively,
xa records the time elapsed since the last occurrence of the symbol a. Wewrite CΣ for the set {xa | a ∈ Σ} of event-recording
clocks.

A clock valuation γ is a mapping from CΣ to R≥0. For a ∈ Σ , we define γ [xa → 0] to be the clock valuation γ ′ such that
γ ′(xa) = 0 and γ ′(xb) = γ (xb) for all b ≠ a, b ∈ Σ . For t ∈ R≥0, we define γ + t to be the clock valuation γ ′ such that
γ ′(xa) = γ (xa) + t for all a ∈ Σ .

Throughout the paper, we will use an alternative, equivalent representation of timed words, namely clocked words. A
clocked word wc is a sequence wc = (a1, γ1)(a2, γ2) . . . (an, γn) of symbols ai ∈ Σ that are paired with clock valuations,
which for all a ∈ Σ satisfies

• γ1(xa) = γ1(xb) for all a, b ∈ Σ , and
• γi(xa) = γi−1(xa) + γi(xai−1) whenever 1 < i ≤ n and a ≠ ai−1. The quantity γi(xai−1) is the time elapsed between the

occurrence of ai−1 and ai, and so can be arbitrary.



4 O. Grinchtein et al. / Theoretical Computer Science ( ) –

xb

ϕ

xa

xb

γ

xa

(a) ϕ = 1 ≤ xa − xb ≤ 7 ∧ xa > 4 ∧ xb > 1 (b) [γ ]3, γ (xa) = 2.6, γ (xb) = 1.5

Fig. 1. Clock constraint and region.
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Fig. 2. Illustration of Proposition 1.

Each timed word wt = (a1, t1)(a2, t2) . . . (an, tn) can be naturally transformed into a clocked word CW (wt) = (a1, γ1)
(a2, γ2) . . . (an, γn) where for each iwith 1 ≤ i ≤ n,

• γi(xa) = ti if aj ≠ a for 1 ≤ j < i,
• γi(xa) = ti − tj if there is a j with 1 ≤ j < i such that aj = a, and furthermore ak ≠ a for j < k < i (i.e., aj is the most

recent occurrence of a).

A clock constraint is a conjunction of atomic constraints of the form xa ∼ n, called a clock bound, or xa − xb ∼ n, called a
difference bound, for xa, xb ∈ CΣ , ∼ ∈ {<, ≤, ≥ >}, and n ∈ N. A clock constraint is called non-strict if only ∼ ∈ {≤, ≥} is
used, and, similarly, it is called strict if only∼ ∈ {<, >} is used. For example, ϕ = xa−xb ≥ 1∧xa−xb ≤ 7∧xa > 4∧xb > 1
is a clock constraint, which is neither strict nor non-strict. We identify an empty conjunction with true.

We use γ |H ϕ to denote that the clock valuation γ satisfies the clock constraint ϕ, defined in the usual manner. A
clock constraint ϕ identifies a |Σ |-dimensional polyhedron [[ϕ]] ⊆ (R≥0)|Σ | viz. the vectors of real numbers satisfying the
constraint. In Fig. 1(a), a clock constraint and the 2-dimensional polyhedron it identifies are shown.

For each clock constraint ϕ there are in general several other clock constraints that are equivalent to ϕ in the sense that
they identify the same polyhedron. If ϕ is satisfiable, there is among these a unique canonical clock constraint, denoted by
Can(ϕ), obtained by closing ϕ under all consequences of pairs of conjuncts in ϕ, i.e.,

• from two difference bounds, such as xa − xb ≤ 2 and xb − xc < 3, we derive a new difference bound, viz. xa − xc < 5, and
• from a difference bound and a clock bound, such as xa − xb ≤ 2 and xa ≥ 3, we derive a new clock bound, viz. xb ≥ 1,
• from an upper and a lower clock bound, such as xa ≤ 3 and xb > 2, we derive a new difference bound, viz. xa − xb < 1,

until saturation, and thereafter keeping the tightest bounds for each clock and each clock difference. If the canonical form
contains inconsistent constraints, or requires some clock to be negative, then the clock constraint is unsatisfiable. The
canonical form for an unsatisfiable clock constraint is defined to be false [14].

Clock constraints satisfy an important closure property:

Proposition 1. For a clock constraint ϕ and two clock valuations γ , γ ′, if γ |H ϕ and γ ′
|H ϕ, then min(γ , γ ′) |H ϕ and

max(γ , γ ′) |H ϕ, where min(γ , γ ′) is defined by min(γ , γ ′)(xa) = min(γ (xa), γ ′(xa)) for all a ∈ Σ , and analogously for
max(γ , γ ′) (see Fig. 2).

Proof. That min(γ , γ ′) satisfies a clock bound of form xa ∼ n follows from the fact that min(γ , γ ′)(xa) is either γ (xa) or
γ ′(xa), and that both γ and γ ′ satisfy xa ∼ n. To see that min(γ , γ ′) satisfies a difference bound of form xa − xb ≥ n, assume
that min(γ , γ ′)(xa) is γ (xa). Then

min(γ , γ ′)(xa) − min(γ , γ ′)(xb) = γ (xa) − min(γ , γ ′)(xb) ≥ γ (xa) − γ (xb),
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(a) g = 4 ≤ xa ≤ 8 ∧ 1 ≤ xb ≤ 3g ′
= 1 ≤ xa ≤ 2 ∧ xb ≥ 1 (b) g = 2 < xa < 3 ∧ 1 < xb < 2

Fig. 3. Guard and simple guard.

and by assumption γ (xa) − γ (xb) ≥ n. The proof is analogous for difference bounds of form xa − xb ≤ n and for strict
difference bounds. �

A clock guard is a conjunction of atomic constraints of the form xa ∼ n, for xa ∈ CΣ , ∼ ∈ {<, ≤, ≥, >}, and n ∈ N, i.e.,
comparison between clocks is not permitted. A clock guard is called non-strict if only ∼ ∈ {≤, ≥} is used and strict if only
∼ ∈ {<, >} is used. For example, xa ≥ 4 ∧ xa ≤ 8 ∧ xb ≥ 1 ∧ xb ≤ 3 is a clock guard, which is non-strict.

The set of clock guards is denoted by GΣ . A clock guard g identifies a |Σ |-dimensional hypercube [[g]] ⊆ (R≥0)|Σ |. In
Fig. 3(a), two different clock guards g and g ′ and two 2-dimensional hypercubes — rectangles — they identify are shown:
the bounded one for g and the partially unbounded one for g ′. We use equalities in clock constraints and clock guards in
the natural way, e.g., xa = n denotes xa ≥ n ∧ xa ≤ n. In timed automata, guards are restricted to being clock guards: one
reason is that this is sufficient for many applications, another is allowing them to be general clock constraints would make
analysis algorithms more complicated (see e.g., [10]).

A guarded word is a sequence wg = (a1, g1)(a2, g2) . . . (an, gn) of symbols ai ∈ Σ that are paired with clock guards. For a
clocked word wc = (a1, γ1)(a2, γ2) . . . (an, γn) we use wc |H wg to denote that γi |H gi for 1 ≤ i ≤ n. For a timed word wt
we usewt |H wg to denote that CW (wt) |H wg . A guardedwordwg = (a1, g1)(a2, g2) . . . (an, gn) is called a guard refinement
of a1a2 . . . an, and a1a2 . . . an is called the word underlyingwg . The wordw underlying a timedwordwt is defined in a similar
manner. A guarded word wg = (a1, g1)(a2, g2) . . . (an, gn) is non-strict if gi is non-strict for all 1 ≤ i ≤ n.

A clock constraint or a clock guard is K-bounded if it contains no constant larger than K . A K -bounded simple clock guard
is a clock guardwhose conjuncts are only of the form xa = n, n′ < xa ∧xa < n′

+1 or xa > K , for 0 ≤ n ≤ K , 0 ≤ n′
≤ K −1,

xa ∈ CΣ . In Fig. 3(b), an example of a simple clock guard is shown. A K-bounded simple guarded word wg is a sequence
wg = (a1, g1)(a2, g2) . . . (an, gn) of symbols ai ∈ Σ that are paired with K -bounded simple clock guards.

The extracted guard from a clock constraint ϕ, denoted guard(ϕ) is the conjunction of all clock bounds (i.e., conjuncts of
form xa ∼ n) in Can(ϕ). In simple words, guard(ϕ) identifies the smallest hypercube surrounding the polyhedron identified
by ϕ. If ϕ is unsatisfiable, guard(ϕ) is defined as false. This intuition immediately leads to the following proposition.

Proposition 2. Let ϕ be a clock constraint and g be a clock guard. Then [[ϕ ∧ g]] = [[ϕ]] implies [[guard(ϕ)]] ⊆ [[g]]. �

For the developments to come, we define several operations on clock constraints ϕ.

• We define the reset of a clock xa in ϕ, denoted by ϕ[xa → 0], as Can(ϕ′), where ϕ′ is obtained from Can(ϕ) by removing
all conjuncts involving xa, and adding the conjunct xa ≤ 0.

• We define the time elapsing of ϕ, denoted by ϕ↑ , as Can(ϕ′), where ϕ′ is obtained from Can(ϕ) by removing all upper
bounds on clocks [15].

It is a standard result that these operations mirror the corresponding operations on clock valuations, in the sense that

• γ ′
|H ϕ[xa → 0] iff γ ′

= γ [xa → 0] for some γ with γ |H ϕ, and
• γ ′

|Hϕ↑ iff γ ′
= γ + t for some γ with γ |H ϕ and t ∈ R≥0.

Following [15], we introduce the K<-approximation ⟨⟨ϕ⟩⟩
<
K of the clock constraint ϕ as the constraint ϕ′ obtained from

Can(ϕ) by

• removing all constraints of the form xa ∼ n and xa − xb ∼ n, whenever ∼ ∈ {<, ≤} and n > K , and
• replacing all constraints of the form xa ∼ n and xa − xb ∼ n by xa > K and xa − xb > K , respectively, whenever

∼ ∈ {>, ≥} and n > K .

Note that the K<-approximation of a canonical clock constraint is in general not canonical.
We introduce the K≤-approximation ⟨⟨g ⟩⟩

≤

K of the clock guard g as the clock guard obtained by

• removing all constraints of form xa ≤ n and xa < n, whenever n > K , and
• replacing all constraints of form xa ≥ n and xa > n by xa ≥ K , whenever n ≥ K .
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xb

xa

Fig. 4. wg = (a, true)(b, 2 ≤ xa ≤ 4)(b, 1 ≤ xb ≤ 3).

For a constraint ϕ and guarded word wg , we introduce the strongest postcondition of wg with respect to ϕ, denoted by
sp(ϕ, wg). Postcondition computation is central in symbolic verification techniques for timed automata [6,9], and can be
done inductively as follows:

• sp(ϕ, λ) = ϕ,
• sp(ϕ, wg(a, g)) = ((sp(ϕ, wg) ∧ g)[xa → 0])↑ .

We often omit the first argument in the postcondition, implicitly assuming it to be the initial constraintϕ0 =


a,b∈Σ xa = xb
(or true if Σ has only one symbol), i.e., sp(wg) = sp(ϕ0, wg). Intuitively, sp(wg) is the constraint on clock valuations that
is induced by wg on any following occurrence of a clock valuation, i.e., γ |H sp(wg) if and only if there is a clocked word
wc(a, γ ) such that wc |H wg . We remark that the polyhedron identified by the strongest postcondition is a convex set [15],
and that sp(wg) is non-strict if wg is non-strict.

In Fig. 4, an example of the strongest postcondition for the guarded word wg = (a, true)(b, 2 ≤ xa ≤ 4)(b, 1 ≤ xb ≤ 3)
is shown. Intuitively, taking a resets clock xa. The two subsequent b-actions can only be taken between 2+ 1 and 4+ 3 time
units later and do not reset xa. As b is the last action taken in the word, there is no constraint on xb.

For a guarded word wg , we also introduce the K<-approximated postcondition sp<
K (wg), defined by

• sp<
K (λ) =


a,b∈Σ xa = xb

• sp<
K (wg(a, g)) = ⟨⟨sp(sp<

K (wg), (a, g))⟩⟩<K .

Given a natural number K , we define the region equivalence ∼K on the set of clock valuations by γ ∼K γ ′ if

• for all xa ∈ CΣ , either
. γ (xa) and γ ′(xa) are both greater than K , or
. ⌊γ (xa)⌋ = ⌊γ ′(xa)⌋ and fract(γ (xa)) = 0 iff fract(γ ′(xa)) = 0,

and
• for all xa, xb ∈ CΣ with γ (xa) ≤ K and γ (xb) ≤ K ,

fract(γ (xa)) ≤ fract(γ (xb)) iff fract(γ ′(xa)) ≤ fract(γ ′(xb)).

A region is an equivalence class of clock valuations induced by∼K .We denote by [γ ]K the region of γ . In Fig. 1(b), an example
of a region is depicted.

A clock constraint identifies the union of a set of regions, therefore region equivalence induces a natural equivalence on
clock constraints. For two clock constraints ϕ and ϕ′, define ϕ ≈K ϕ′, if for each clock valuation γ with γ � ϕ there is a clock
valuation γ ′ with γ ′ � ϕ′ such that γ ∼K γ ′, and vice versa.

An important property of region equivalence is that it is preserved by reset and time elapsing operations. If γ ∼K γ ′

then γ [xa → 0] ∼K γ ′
[xa → 0], and for each t ∈ R≥0 there is a t ′ ∈ R≥0 such that γ + t ∼K γ ′

+ t ′ [36]. If we
combine this fact with the fact that the reset and time elapsing operations on constraints mirror the same operations on
clock valuations, we infer that the relation ≈K on clock constraints is preserved by reset and time elapsing. Thus, if ϕ ≈K ϕ′

then ϕ[xa → 0] ≈K ϕ′
[xa → 0], and ϕ↑ ≈Kϕ′

↑ . The relation ≈K is also preserved by approximation, i.e., ϕ ≈K ⟨⟨ϕ ⟩⟩
<
K . A

corollary of these facts is the following lemma.

Lemma 3. Let wg be a guarded word. Then

sp<
K (wg) ≈K sp(wg).

Proof. By induction on the length of wg . For the base case, where wg is empty, the proof is immediate. For the inductive
step, assume that sp<

K (wg) ≈K sp(wg) and consider the guarded word wg(a, g). By definition, sp<
K (wg(a, g)) =

⟨⟨ sp(sp<
K (wg), (a, g)) ⟩⟩

<
K . From sp<

K (wg) ≈K sp(wg) we infer, using that ≈K is preserved by reset, time elapsing, and
conjunction with clock guards, that sp(sp<

K (wg), (a, g)) ≈K sp(wg(a, g)). Since ≈K is preserved by approximation, we infer
that ⟨⟨sp(sp<

K (wg), (a, g))⟩⟩<K ≈K sp(sp<
K (wg), (a, g)) ≈K sp(wg(a, g)), i.e., that sp<

K (wg(a, g)) ≈K sp(wg(a, g)). �
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For every satisfiable non-strict clock guard g , we define its K-smallest corner, denoted by scK (g), as the set of clock
valuations γ that satisfy γ (xa) = n for all xa such that the lower bound for xa in g is of the form n ≤ xa with n < K ,
and that satisfies γ (xa) ≥ K whenever the lower bound for xa in g is of the form n ≤ xa with n ≥ K . Similarly, we define
the biggest corner of g , denoted bcK (g) as the set of valuations γ that are maximal in the dimensions where [[g]] has an
upper bound and exceeds K in the others. In Fig. 3(a), for example, if K = 8, the biggest corner of guard g contains the only
valuation γ with γ (xa) = 8 and γ (xb) = 3, while for g ′ if K = 2, the biggest corner contains all valuations γ with γ (xa) = 2
and γ (xb) > 2.

3. Event-recording automata

In this section, we introduce event-recording automata, which are the subject of the learning algorithms in this paper.
We also introduce the further restricted class of event-deterministic event-recording automata, which the algorithms TL∗

sg
and TL∗

nsg are designed to learn. In the treatment, we will repeatedly make use of standard deterministic finite automata.
A deterministic finite automaton (DFA) A = (Γ ,Q , q0, δ,Q f ) over the alphabet Γ consists of a finite set of states Q , and

initial state q0, a partial transition function δ : Q × Γ → Q , and a set of final states Q f
⊆ Q . A run of A over the word

w = a1a2 . . . an is a finite sequence

q0
a1
→ q1

a2
→ · · ·

an
−→ qn

of states qi ∈ Q such that q0 is the initial state and δ(qi−1, ai) is defined for 1 ≤ i ≤ n, with δ(qi−1, ai) = qi. In this case, we
write δ(q0, w) = qn, thereby extending the definition of δ to words in the natural way. The run is called accepting if qn ∈ Q f .
The language L(A) comprises all words a1a2 . . . an over which an accepting run exists.

We are now ready to introduce the class of automata models whose objects we want to learn: deterministic event-
recording automata.

Definition 4. An event-recording automaton (ERA) D = (Σ, L, l0, δ, Lf ) consists of a finite input alphabet Σ , a finite set L of
locations, an initial location l0 ∈ L, a set Lf of accepting locations, and a transition function δ : L × Σ × GΣ → 2L, which
is a partial function with finite support that for each location, input symbol and guard potentially prescribes a set of target
locations. An ERA is deterministic iff

• δ(l, a, g) is a singleton set whenever it is defined, and
• whenever δ(l, a, g1) and δ(l, a, g2) are both defined then [[g1]] ∩ [[g2]] = ∅. �

Thus, for a deterministic ERA, a location l might have two different a successors, which, however, have nonoverlapping
guards. Due to the first restriction, we will consider δ to be of type δ : L×Σ ×GΣ → L, i.e., to map each triple in its domain
to a single location rather than a set. An ERA is K-bounded if the guard g is K -bounded whenever δ(l, a, g) is defined.

In this paper, we only consider deterministic ERAs, or DERAs for short, which is no significant restriction in terms of
expressiveness as every ERA can be transformed into a DERA accepting the same language. For details, see [2].

In order to define the language accepted by a DERA, we first understand it as a DFA, which accepts guarded words.
Given a DERAD = (Σ, L, l0, δ, Lf ), we define dfa(D) to be the DFAAD = (Γ , L, l0, δ′, Lf , ) over the alphabetΓ = Σ ×GΣ

where δ′
: L × Γ → L is defined by δ′(l, (a, g)) = δ(l, a, g) if and only if δ(l, a, g) is defined, otherwise δ′(l, (a, g)) is

undefined. Note that D and dfa(D) have the same number of locations/states. Further, note that this mapping from DERAs
over Σ to DFAs over Σ × GΣ is injective, meaning that for each DFA A over Σ × GΣ , there is a unique (up to isomorphism)
ERA over Σ , denoted era(A), such that dfa(era(A)) is isomorphic to A.

The languageL(D) accepted by a DERA D is defined to be the set of timedwordswt such thatwt |H wg for some guarded
word wg ∈ L(dfa(D)). We call two DERAs D1 and D2 equivalent iff L(D1) = L(D2), and denote this by D1 ≡t D2, or just
D1 ≡ D2.

We introduce a restricted class of deterministic ERAs, which the algorithms TL∗

sg and TL∗

nsg are designed to learn. The
restriction is that each state has at most one outgoing transition per action. This means that timing constraints for the
occurrence of an action depend only on the past sequence of actions, and not on their relative timing.

Definition 5. An ERA (Σ, L, l0, δ, Lf ) is called event-deterministic (EDERA), if

• only non-strict guards are used,
• for every l ∈ L and a ∈ Σ there is at most one g ∈ GΣ such that δ(l, a, g) is defined, and
• every location is accepting. �

In case of an EDERA, its transition function δ : L × Σ × GΣ → L can be understood as two functions; η : L × Σ → GΣ ,
which for a location and an input symbol prescribes a guard, and ϱ : L × Σ → L, which for a location and an input symbol
prescribes a target location. Thus, we also use D = (Σ, L, l0, ϱ, η) to denote an EDERA, where Lf is omitted since Lf = L.

From the above definitions, we see that the language of an EDERAD can be characterized by a prefix-closed set of guarded
words (a1, g1)(a2, g2) . . . (an, gn) in L(dfa(D)) such that each a1a2 . . . an is a word underlying at most one wg ∈ L(dfa(D)).
Thus, we can loosely say that D imposes on each untimed word a1a2 . . . an the timing constraints represented by the guards
g1g2 . . . gn.



8 O. Grinchtein et al. / Theoretical Computer Science ( ) –

Fig. 5. An event-recording automaton.

Example 6. The event-recording automaton shown in Fig. 5 over the alphabet {a, b, c} uses three event-recording clocks,
xa, xb, and xc . It is event deterministic, as all guards are non-strict and no location has two outgoing edges labelled with the
same action. Location 0 is the initial location of the automaton. The clock constraint xb ≥ 3 that is associated with the edge
from location 1 to 4 ensures that the action c can only be taken at least three time units after taking the transition from 0 to
1. This also implies that the time difference between the first b and the subsequent a is greater than or equal to 3. �

4. The L∗ algorithm for learning DFAs

In this section, we shortly review the L∗ algorithm, due to Angluin [4] for learning a regular (untimed) language,
L(A) ⊆ Γ ∗, accepted by a minimal deterministic finite automaton (DFA) A = (Γ ,Q , q0, δ,Q f ). In this algorithm a so-
called Learner , who initially knows nothing about A, is trying to learn L(A) by asking queries to a Teacher , who knows A.
There are two kinds of queries:

• A membership query consists in asking whether a string w ∈ Γ ∗ is in L(A).
• An equivalence query consists in asking whether a hypothesized DFA H is correct, i.e., whether L(H) = L(A). The

Teacher will answer yes if H is correct, or else supply a counterexample w, which is a word either in L(A) \ L(H) or in
L(H) \ L(A).

The Learner maintains a prefix-closed set U ⊆ Γ ∗ of prefixes, which are candidates for identifying states, and a suffix-
closed set V ⊆ Γ ∗ of suffixes, which are used to distinguish such states. The sets U and V are increased when needed during
the algorithm. The Learner makes membership queries for all words in (U ∪ UΓ )V , and organizes the results into a table T
which maps each u ∈ (U ∪ UΓ ) to a mapping T (u) : V → {+, −}. The interpretation of T is that for u ∈ (U ∪ UΓ ) and
v ∈ V we have T (u)(v) = + if uv ∈ L(A) and T (u)(v) = − if uv ∉ L(A). In [4], each function T (u) is called a row. Thus
two rows, T (u) and T (u′), are equal, denoted T (u) = T (u′), if T (u)(v) = T (u′)(v) for all v ∈ V . Table T is

• closed, if for each u ∈ U and a ∈ Γ there is a u′
∈ U such that T (ua) = T (u′), and

• consistent, if, for each u, u′
∈ U , T (u) = T (u′) implies T (ua) = T (u′a).

If T is not closed, we find u′
∈ UΓ such that T (u) ≠ T (u′) for all u ∈ U . Then we move u′ to U and ask membership queries

for every u′av where a ∈ Γ and v ∈ V . If T is not consistent, we find u, u′
∈ U , a ∈ Γ and v ∈ V such that T (u) = T (u′)

and T (ua)(v) ≠ T (u′a)(v). Then we add av to V and ask membership queries for every uav where u ∈ U ∪ UΓ . Checks
whether T is closed and consistent can be done in any ordering. When T is closed and consistent the Learner constructs a
hypothesized DFA H = (Γ , L, l0, δ, Lf ), where

• L = {T (u) | u ∈ U} is the set of distinct rows,
• l0 is the row T (λ),
• δ is defined by δ(T (u), a) = T (ua), and
• Lf = {T (u) | u ∈ U and T (u)(λ) = +} is the set of rows which are accepting without adding a suffix,

and submits H in an equivalence query. If the answer is yes, the learning procedure is completed. Otherwise the returned
counterexample w is processed by adding every prefix of w (including w) to U , and subsequent membership queries are
performed in order to make the table closed and consistent, after which a new hypothesized DFA is constructed, etc.

The L∗ algorithm constructs A after asking O(kn2m) membership queries and at most n equivalence queries, where n is
the number of states in A, k is the size of the alphabet andm is the length of the longest counterexample [4]. The rough idea
is that for each entry in the table T a query is needed, and O(knm) is the number of rows, n is the number of columns.

A description of the L∗ algorithm is given as Algorithms 1 and 2, using Java-style pseudocode. Since membership queries
and equivalence queries can be implemented in different ways and also differ in timed and untimed settings, we introduce
the interface Teacher which contains two functions that are responsible for membership and equivalence queries (see
Algorithm 1). Angluin’s algorithm is given as function Learner of class L∗ (see lines 10–21 in Algorithm 2). The function
Learner first constructs an initial table by calling the function initialize and then constructs hypothesized automata until the
answer to an equivalence query is yes. Since eachhypothesized automatonhas to be constructed froma closed and consistent
table, function Learner checks these properties by calling functions isClosed and isConsistent . If the table is not consistent,
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the function add_column is called, which adds a distinguishing suffix to V . If the table is not closed, the functionmove_row is
called which moves the corresponding row ua to U . When a hypothesized automaton is constructed, an equivalence query
is performed and if a counterexample is obtained the function process_counterexample is called.

Algorithm 1 Interface of Teacher

1 interface Teacher{
2 Function membership_query(u)
3 Function equivalence_query(H)
4 }

Algorithm 2 Pseudo code for Angluin’s Learning Algorithm

1 class L∗{
2
3 Teacher teacher
4 Alphabet Γ

5
6 Constructor L∗(t ,Σ)
7 teacher = t
8 Γ = Σ

9
10 Function Learner()
11 initialize (U, V , T )
12 repeat
13 while not(isClosed((U, V , T )) or not(isConsistent((U, V , T ))
14 if not(isConsistent((U, V , T )) then add_column()
15 if not(isClosed((U, V , T )) then move_row()
16 Construct hypothesized automaton H
17 teacher .equivalence_query(H)
18 if the answer to equivalence query is a counterexample u then
19 process_counterexample(u)
20 until the answer to equivalence query is ’yes’ to the hypothesis H
21 return H .
22
23 Function initialize(U, V , T )
24 U := {λ}, V := {λ}

25 T (λ)(λ)=teacher .membership_query(λ)
26 for every a ∈ Γ

27 T (a)(λ)=teacher .membership_query(a)
28
29 Function isClosed()
30 if for each u ∈ U and a ∈ Γ there is u′

∈ U with T (ua) = T (u′)
31 return true
32 else
33 return false
34
35 Function isConsistent()
36 if for each a ∈ Γ and u, u′

∈ U such that T (u) = T (u′) we have T (ua) = T (u′a)
37 return true
38 else
39 return false
40
41 Function add_column()
42 Find a ∈ Γ , v ∈ V and u, u′

∈ U such that T (u) = T (u′) and T (ua)(v) ≠ T (u′a)(v)
43 Add av to V
44 for every u ∈ U ∪ UΓ

45 T (u)(av)=teacher .membership_query(uav)
46
47 Function move_row()
48 Find u ∈ U , a ∈ Γ such that T (ua) ≠ T (u′) for all u′

∈ U
49 Move ua to U
50 for every a′

∈ Γ and v ∈ V
51 T (uaa′)(v)=teacher .membership_query(uaa′v)
52
53 Function process_counterexample(u)
54 Add every prefix u′ of u to U
55 for every a ∈ Γ , v ∈ V and prefix u′ of u
56 T (u′)(v)=teacher .membership_query(u′v)
57 T (u′a)(v)=teacher .membership_query(u′av)
58 }
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(a) An automaton A (b) An automaton H

Fig. 6. An automaton to be learned and a hypothesized automaton.

T1 λ

λ +
a -
b +

(a) Table T1

T2 λ

λ +
a -
b +
aa -
ab -

(b) Table T2

T3 λ

λ +
a -
ab -
aba +
b +
aa -
abb -
abaa -
abab +

(c) Table T3

T4 λ a
λ + -
a - -
ab - +
aba + -
b + -
aa - -
abb - +
abaa - -
abab + -

(d) Table T4
Fig. 7. Observation tables.

Let us consider an example of the L∗ algorithm. LetA be the DFA shown in Fig. 6(a). Initially, the Learner asksmembership
queries for λ, a and b. The initial observation table T1 is shown in Fig. 7(a), where U = V = {λ}. This observation table is
consistent, but not closed, since T (a) ≠ T (λ). The Learner moves the prefix a to U and then asks membership queries for aa
and ab to construct the observation table T2 shown in Fig. 7(b). This observation table is closed and consistent. The Learner
constructs the hypothesized automatonH shown in Fig. 6(b) and asks an equivalence query to the Teacher . Assume that the
Teacher replies with the counterexample aba, which is in L(A) but not accepted by H . To process the counterexample aba,
the Learner adds ab and aba to U and asks membership queries for abb, abaa and abab to construct the observation table
T3 shown in Fig. 7(c). This observation table is not consistent since T (a) = T (ab) but T (aa) ≠ T (aba). Then the Learner
adds a to E and asks membership queries for ba, aaa, abba, abaaa and ababa to construct the observation table T4 shown in
Fig. 7(d) . This observation table is closed and consistent. The Learner constructs the automaton shown in Fig. 6(a) and asks
an equivalence query to the Teacher . The Teacher replies yes and L∗ terminates.

As we will see later, the general scheme of this algorithm stays the same in our algorithms for learning timed languages.
However, the initialization of the table, queries, closedness and consistency checks become different.

5. Learning event-deterministic ERAs

In this section, we present the algorithm TL∗

sg for learning EDERAs, obtained by adapting the L∗ algorithm. A central idea
in the L∗ algorithm is to let each state be identified by the words that reach it from the initial state (such words are called
access strings in [5]). States are congruent if, according to the queries submitted so far, the same continuations of their access
strings are accepted. This idea is naturally based on the properties of Nerode’s right congruence (given a language L, two
words u, v ∈ Σ∗ are equivalent if for all w ∈ Σ∗ we have uw ∈ L iff vw ∈ L) which implies that there is a unique minimal
DFA accepting L. In other words, for DFAs, every state can be characterized by the set of words accepted by the DFA when
considering this state as an initial state, and every string leads to a state in a unique way.

For timed languages, it is not obvious how to generalizeNerode’s right congruence.1 In general there is no uniqueminimal
DERAwhich is equivalent to a given DERA. As an example, consider Fig. 5, assuming for a moment that the c-transition from
location 7 to 5 is missing. Then the language of the automaton does not change when changing the transition from 1 into
4 to 1 into 5, although the language accepted from 4 is different from the one from 5. Furthermore, if we do not modify
the automaton in Fig. 5 we can reach location 4 by two guarded words: (b, true)(c, xb ≥ 3) as well as (a, true)(b, true).
Although they lead to the same location, they admit different continuations of event-clockwords: action a can be performed
with xb = 2 after (a, true)(b, true) but not after (b, true)(c, xb ≥ 3). The complication is that each guarded word imposes a
postcondition, which constrains the values of clocks that are possible at the occurrence of future actions.

Our approach to overcoming the problem that DERAs have no canonical form is to define a subclass of EDERAs which
do have a canonical form, and which furthermore can be understood as a DFA over Σ × GΣ where GΣ is the set of clock

1 See [28] for a study on right-congruences on timed languages.



O. Grinchtein et al. / Theoretical Computer Science ( ) – 11

xb

xa

Fig. 8. An illustration of Definition 7.

guards. We can then use Angluin’s algorithm to learn this DFA, and thereafter interpret the result as an EDERA. In the next
section, we define this canonical form, called sharply guarded EDERA, and prove that any EDERA can be transformed to this
canonical form.We can therefore use Angluin’s algorithm to learn a DFA overΣ×GΣ . A problem is thatmembership queries
will ask whether a guarded word is accepted by the DFA, whereas the EDERA to be learned answers only queries for timed
words. We therefore extend the Learner in Angluin’s algorithm by an Assistant , whose role is to answer amembership query
for a guarded word, posed by the Learner , by asking several membership queries for timed words to the (timed) Teacher .
We describe the operation of the Assistant in Section 5.2. Thereafter, in Section 5.3 we present the complete algorithm for
learning EDERAs.

5.1. Sharply guarded EDERAs

Motivated by the previous discussion, in this section we define a class of EDERAs that admit a natural definition of right
congruences.

Definition 7. A K -bounded EDERA D is sharply guarded if for all guarded words wg(a, g) ∈ L(dfa(D)), we have that
sp<

K (wg) ∧ g is satisfiable and

g =


{g ′

∈ GΣ | [[sp<
K (wg) ∧ g]] = [[sp<

K (wg) ∧ g ′
]]}

≤
K

. �

Note that the conjunction is taken over all clock guards g ′, i.e., also those that are notK -bounded. Fig. 8 illustrates Definition 7
by a postcondition sp(ug) = xa−xb ≥ 2∧xa−xb ≤ 8 togetherwith a ‘‘sharp’’ guard g1 = xa ≥ 4∧xa ≤ 12∧xb ≥ 2∧xb ≤ 4
and a ‘‘non-sharp’’ guard g2 = xa ≥ 3 ∧ xa ≤ 15 ∧ xb ≥ 2 ∧ xb ≤ 4. EDERA D such that ug(a, g2) ∈ L(dfa(D)) and K = 15
is not sharply guarded, since [[sp<

K (ug) ∧ g2]] = [[sp<
K (ug) ∧ g1]], where [[g1]] ⊂ [[g2]]. As shown in Fig. 8, there is no guard

g ′ such that [[g ′
]] ⊂ [[g1]] and [[sp(ug) ∧ g ′

]] = [[sp(ug) ∧ g2]]. Intuitively, an EDERA D is sharply guarded if the outgoing
transitions from a location have guards which cannot be strengthened without changing the timing conditions under which
the next symbol a will be accepted. Thus the upper and lower bounds on clock values in a clock valuation γ constraining
the occurrence of a do not depend implicitly on the postcondition of the previous sequence of transitions taken by D. Thus
we avoid the complications induced by postconditions described in the beginning of this section.

The following lemma gives a simpler characterization of being sharply guarded. Moreover, it shows that the use of
approximation in Definition 7 does not affect the definition, but gives an a priori bound on the size of sharply guarded
automata that accept a given timed language.

Lemma 8. Let g be a non-strict K-bounded clock guard, and let ϕ be a K-bounded clock constraint. Then the following clock
guards are equal:

(a) ⟨⟨


{g ′
∈ GΣ | [[ϕ ∧ g]] = [[ϕ ∧ g ′

]]}⟩⟩
≤

K ,
(b) ⟨⟨


{g ′

∈ GΣ | [[ϕ ∧ g]] ⊆ [[g ′
]]}⟩⟩

≤

K ,
(c) ⟨⟨guard(ϕ ∧ g)⟩⟩≤K .

In the following, we will mostly use characterization (c) when reasoning about sharply guarded EDERAs.

Proof. We first prove that (a) and (b) are equal. We observe that [[ϕ ∧ g]] ⊆ [[g ′
]] implies [[ϕ ∧ g]] ⊆ [[ϕ ∧ g ′

]], and that
[[ϕ ∧ g]] = [[ϕ ∧ g ′

]] implies [[ϕ ∧ g]] ⊆ [[g ′
]]. It therefore suffices to prove that we get the same result when using

[[ϕ ∧ g]] ⊆ [[ϕ ∧ g ′
]] as when using [[ϕ ∧ g]] = [[ϕ ∧ g ′

]] as the condition on g ′ in the large conjunction. This follows by
observing that for each guard g ′ such that [[ϕ ∧ g]] ⊆ [[ϕ ∧ g ′

]], there is a guard g ′′ such that [[ϕ ∧ g]] = [[ϕ ∧ g ′′
]], namely

g ′′
= g ∧ g ′, and that the conjunction of these g ′′ is the same as the conjunction of all g ′.
We then prove that (b) and (c) are equal. Since [[ϕ ∧ g]] ⊆ [[Can(ϕ ∧ g)]] ⊆ [[guard(Can(ϕ ∧ g))]] we infer [[ϕ ∧ g]] ⊆

[[guard(Can(ϕ ∧ g))]], from which it follows that (b) is included in (c). Conversely, for any guard g ′ we have that [[ϕ ∧ g]] ⊆

[[g ′
]] implies that [[guard(Can(ϕ ∧ g))]] ⊆ [[g ′

]], from which the opposite inclusion follows. �

Let us introduce the notation tightguardK (ϕ, g) for ⟨⟨ guard(ϕ ∧ g) ⟩⟩
≤

K . Let us establish some basic facts about
tightguardK (ϕ, g).
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Proposition 9. Let g be a non-strict K-bounded clock guard, and let ϕ be a K-bounded clock constraint. Then
(1) [[ϕ ∧ g]] = [[ϕ ∧ guard(ϕ ∧ g)]],
(2) tightguardK (ϕ, g) = tightguardK (ϕ, tightguardK (ϕ, g)).

Proof. Let ϕ and g be as in the statement of the proposition.
(1) follows from [[guard(ϕ ∧ g)]] ⊆ [[g]] and [[ϕ ∧ g]] ⊆ [[guard(ϕ ∧ g)]].
(2) By the definition of tightguardK (ϕ, g), and using form (b) and form (c) of Lemma 8, it suffices to prove

{g ′
∈ GΣ | [[ϕ ∧ g]] ⊆ [[g ′

]]}
≤
K =


{g ′

∈ GΣ | [[ϕ ∧ ⟨⟨guard(ϕ ∧ g)⟩⟩≤K ]] ⊆ [[g ′
]]}

≤
K .

This follows by noting that the expression on the left-hand side of ⊆ is the same in both expressions, by property (1),
since g is non-strict and K -bounded. �

The following lemma shows that sharply guarded EDERA can also be defined in terms of sp(wg), or any other clock
constraint ϕ such that ϕ ≈K sp<

K (wg). The reason to define sharply guarded EDERA in terms of sp<
K (wg) is that in order

to bound the size of sharply guarded EDERA, we need to use K<-approximations of postconditions in the construction of a
sharply guarded EDERA in Lemma 12.

Lemma 10. Let g be a non-strict K-bounded clock guard. Let ϕ and ϕ′ be clock constraints such that ϕ ≈K ϕ′. Then

tightguardK (ϕ, g) = tightguardK (ϕ′, g).

Proof. A K -bounded clock guard is a union of a set of regions. Therefore, if g is a K -bounded clock guard, ϕ ≈K ϕ′ implies
ϕ ∧ g ≈K ϕ′

∧ g , which implies Can(ϕ ∧ g) ≈K Can(ϕ′
∧ g), which implies

⟨⟨guard(ϕ ∧ g)⟩⟩≤K = ⟨⟨guard(ϕ′
∧ g)⟩⟩≤K ,

from which the lemma follows by the definition of tightguardK (ϕ, g). �

By Definition 7, an EDERA is sharply guarded if the outgoing transitions from a location have guards which cannot be
strengthened without changing the timing conditions under which the next symbol will be accepted. The following lemma
shows that these guards can be characterized in terms of biggest and smallest corners.

Lemma 11. If wg(a, g) ∈ L(dfa(D)), where D is a K-bounded sharply guarded EDERA, then
(a) there is a timed word wt ∈ L(D) such that CW (wt) = wc(a, γ ), wc(a, γ ) |H wg(a, g) and γ ∈ bcK (g).
(b) there is a timed word wt ∈ L(D) such that CW (wt) = wc(a, γ ), wc(a, γ ) |H wg(a, g) and γ ∈ scK (g).

Proof. We first prove (a). Since D is a sharply guarded EDERA, we have that sp<
K (wg) ∧ g is satisfiable, hence sp(wg) ∧ g

is satisfiable (since sp(wg) ≈K sp<
K (wg) by Lemma 3 and g is K -bounded). The basic property of postconditions, that

γ |H sp(wg) if and only if there is a clocked word wc(a, γ ) such that wc |H wg , implies that we must prove that there
is a clock valuation γ such that γ |H sp(wg) and γ ∈ bcK (g). Let a be any action in Σ . If xa ≤ n is a conjunct in g for n ≤ K ,
then by the definition of sharply guarded, using form (c) in Lemma 8, and the fact that sp(wg) is non-strict, it follows that
there is a clock valuation γa such that γa |H sp(wg) and γa(xa) = n. Similarly, if there is no conjunct of form xa ≤ n in g for
n ≤ K , then there is a clock valuation γa such that γa |H sp(wg) and γa(xa) > K . Since this holds for any a, by Proposition 1
it follows that there is a clock valuation γ such that γ |H sp(wg) and γ ∈ bcK (g).

The proof of (b) is analogous: we can infer that whenever xa ≥ n is a conjunct in g for n < K , then there is a clock
valuation γa such that γa |H sp(wg) and γa(xa) = n. A slight difference occurs for the case where xa ≥ K is a conjunct in g:
here we use satisfiability of sp(wg)∧g to infer that there is a clock valuation γa such that γa |H sp(wg) and γa(xa) ≥ K . Since
this holds for any a, by Proposition 1 it follows that there is a clock valuation γ such that γ |H sp(wg) and γ ∈ scK (g). �

Every EDERA can be transformed into an equivalent EDERA that is sharply guarded using the zone-graph
construction [15].

Lemma 12. For every EDERA there is an equivalent EDERA that is sharply guarded.

Proof. Let the EDERA D = (Σ, L, l0, ϱ, η) be K -bounded. We define an equivalent sharply guarded EDERA D′
=

(Σ, L′, l′0, ϱ
′, η′) based on the so-called zone automaton for D. The set of locations of D′ comprises pairs (l, ϕ) where l ∈ L

and ϕ is a K -bounded clock constraint. The intention is that ϕ is the K<-approximated postcondition of any run from the
initial location to (l, ϕ). The initial location l′0 of D′ is (l0, sp(λ)). For any location l ∈ L and symbol a such that ϱ(l, a) is
defined and ϕ ∧ η(l, a) is satisfiable, let ϱ′((l, ϕ), a) be defined as (ϱ(l, a), ϕ′) where ϕ′

= ⟨⟨sp(ϕ, (a, η(l, a)))⟩⟩<K . We set
η′((l, ϕ), a) = tightguardK (ϕ, η(l, a)). By construction D′ is event-deterministic.

We first show by induction over w′
g that whenever (l, ϕ) = δ′(l′0, w

′
g), where δ′ is the transition function of dfa(D′)

extended to words, i.e., D′ has a run over w′
g to (l, ϕ), then ϕ = sp<

K (w′
g). The base case w′

g = λ is trivial. For the inductive
step, let w′

g(a, g) ∈ L(dfa(D′)), and let δ′(l′0, w
′
g) = (l, ϕ). By construction of D′, δ′(l′0, w

′
g(a, g)) = (ϱ(l, a), ϕ′) where

ϕ′
= ⟨⟨sp(ϕ, (a, η(l, a)))⟩⟩<K . We show that ϕ′

= ⟨⟨sp(ϕ, (a, η′((l, ϕ), a)))⟩⟩<K . Since η′((l, ϕ), a) = ⟨⟨guard(ϕ ∧ η(l, a))⟩⟩≤K ,
this follows from the equality

[[ϕ ∧ g]] = [[ϕ ∧ ⟨⟨guard(Can(ϕ ∧ g))⟩⟩≤K ]],

which follows from (1) in Lemma 9 and the fact that g is a K -bounded clock guard.
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Fig. 9. Sharply guarded automaton H ′ .

The property proved in the previous paragraph, together with the observation in property (2) of Lemma 9, that
η′((l, ϕ), a) = tightguardK (ϕ, η′((l, ϕ), a)), implies by characterization (c) in Lemma 8 that D′ is sharply guarded.

We then prove that D′ is equivalent to D by induction. For every timed word wt , we need to show that wt ∈ L(D) iff
wt ∈ L(D′). Due to the one-to-one correspondence between timed words and clocked words we present the proof in terms
of clocked words. For λ, we start in l0 in D and in (l0, sp(λ)) in D′. So λ is accepted by both automata.

From the second paragraph of this proof, it follows that whenever l = δ(l0, wg) is defined, then there is a guarded word
w′

g with the same underlying word as wg such that δ′(l′0, w
′
g) = (l, ϕ) and such that ϕ = sp<

K (wg) = sp<
K (w′

g). Also the
converse follows, i.e., thatwhenever (l, ϕ) = δ′(l′0, w

′
g) is defined, then there is a guardedwordwg with the same underlying

word as w′
g , such that δ(l0, wg) = l and such that ϕ = sp<

K (wg) = sp<
K (w′

g). In both cases, it also follows for any alphabet
symbol a that

[[sp<
K (wg) ∧ η(l, a)]] = [[sp<

K (wg) ∧ η′((l, ϕ), a)]].
To prove that L(D) ⊆ L(D′) we shall establish by induction over wg that whenever wc � wg where l = δ(l0, wg) is

defined, then there is a guarded word w′
g such that wc � w′

g and δ′(l′0, w
′
g) = (l, ϕ) where ϕ = sp<

K (wg) = sp<
K (w′

g). The
base case wg = λ is trivial. For the inductive step, let wc(a, γ ) � wg(a, g) where g = η(l, a). From the preceding paragraph,
it follows that wc(a, γ ) � w′

g(a, g
′) where g ′

= η′((l, ϕ), a). This concludes the inductive step.
The other inclusion L(D′) ⊆ L(D) follows in an analogous way. �

In Fig. 9 a sharply-guarded EDERA H ′ is shown, which is equivalent to the EDERA H shown in Fig. 11(b). The initial
location (0, ϕ0), where ϕ0 = sp(λ), of H ′ corresponds to the location 0 in Fig. 9.

From the location 0 in H there is one a-transition and one b-transition. Therefore we construct an a-transition from
the location (0, sp(λ)) to the location (0, ϕ1), where ϕ1 = ⟨⟨ sp(ϕ0, (a, xa = 2 ∧ xb = 2)) ⟩⟩<K = (xa + 2 = xb), and a
b-transition from location (0, ϕ0) to the location (0, ϕ2), where ϕ2 = ⟨⟨sp(ϕ0, (b, xa ≥ 1∧ xb ≥ 1))⟩⟩<K = xb +1 ≤ xa. Since
ϕ1 ∧ xa = 2 ∧ xb = 2 (i.e., xa + 2 = xb ∧ xa = 2 ∧ xb = 2) is not satisfiable, from the location (0, ϕ1) we can construct only
a b-transition, which leads to the location (0, ⟨⟨sp(ϕ1, (b, xa ≥ 1 ∧ xb ≥ 1))⟩⟩<K ), which happens to be (0, xb + 1 ≤ xa), i.e.,
(0, ϕ2) (location 2 in Fig. 9).

The guard for this transition is tightguardK (xa+2 = xb, xa ≥ 1∧xb ≥ 1) = xa ≥ 1∧xb ≥ 2. From location (0, ϕ2)we can
construct only a b-transition,which leads to the location (0, ϕ3), whereϕ3 = ⟨⟨sp(ϕ2, (b, xa ≥ 1∧xb ≥ 1))⟩⟩<K = xb+2 ≤ xa,
and has the guard tightguardK (ϕ2, xa ≥ 1∧ xb ≥ 1) = xa ≥ 2∧ xb ≥ 1. Again, from location (0, ϕ3) we can construct only a
b-transition, which leads to the location (0, ϕ4), where ϕ4 = ⟨⟨sp(ϕ3, (b, xa ≥ 1 ∧ xb ≥ 1))⟩⟩<K = xb + 2 < xa, and has the
guard tightguardK (ϕ3, xa ≥ 1 ∧ xb ≥ 1) = xa ≥ 2 ∧ xb ≥ 1. The construction of H ′ terminates after adding a loop to the
location (0, ϕ4).

The important property of sharply guarded EDERAs is that equivalence coincides with equivalence on the corresponding
DFAs.
Definition 13. We call two sharply guarded EDERAsD1 andD2 dfa-equivalent, denoted byD1 ≡dfa D2, iff dfa(D1) and dfa(D2)
accept the same language (in the sense of DFAs). �

Lemma 14. For two sharply guarded EDERAs D1 and D2, we have
D1 ≡t D2 iff D1 ≡dfa D2.

Proof. The direction from right to left follows immediately, since L(Di) is defined in terms of L(dfa(Di)). To prove the
other direction, assume that D1 ≢dfa D2. Then there is a shortest wg such that wg ∈ L(dfa(D1)) but wg ∉ L(dfa(D2)) (or
the other way around). By Lemma 11 this implies that there is a timed word wt such that wt ∈ L(D1) but wt ∉ L(D2), i.e.,
D1 ≢t D2. �

We can now prove the central property of sharply guarded EDERAs.
Theorem 1. For every EDERA there is a unique equivalent minimal sharply guarded EDERA (up to isomorphism).
Proof. By Lemma 12, each EDERA D can be transformed into an equivalent EDERA D′ that is sharply guarded. Let Amin be
the unique minimal DFA which is equivalent to dfa(D′) (up to isomorphism). Since (as was remarked after Definition 7)
whether or not a EDERA is sharply guarded depends only on L(dfa(D)), we have that Dmin = era(Amin) is sharply guarded.
By Lemma 14, Dmin is the unique minimal sharply guarded EDERA (up to isomorphism) such that Dmin ≡ D′, i.e., such that
Dmin ≡ D. �
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Fig. 10. An example for sp(ug ), ϕa , and ga .

(a) Table T (b) Automaton H

Fig. 11. Table T and non-sharply guarded automaton H .

5.2. Learning guarded words

Angluin’s algorithm is designed to query (untimed) words rather than timed words. Before we can present the final
learning algorithm for EDERAs, wemust describe how the Assistant answers amembership query for a guardedword, posed
by the Learner , by asking several membership queries for timed words to the (timed) Teacher .

To answer a membership query for a guarded word wg , the Assistant first extracts the untimed word w underlying
wg . It thereafter determines the unique guard refinement w′

g of w that is accepted by A (if one exists) by posing several
membership queries to the (timed) Teacher , in a way to be described below. Note that, as observed just before Example 6,
each untimed word w has at most one guard refinement accepted by A. Finally, the Assistant answers the query by yes iff
w′

g equals wg .
The guard refinement of w accepted by A will be determined inductively, by learning the guard under which an action a

is accepted, provided that a sequence u of actions has occurred so far. Letting u range over successively longer prefixes of w,
the Assistant can then learn the guard refinementw′

g ofw. Let u = a1a2 . . . an, and assume that for i = 1, . . . , n, the Assistant
has previously learned the guard gi under which ai is accepted, given that the sequence a1 . . . ai−1 has occurred so far. He
can then compute the strongest postcondition sp(ug), where ug = (a1, g1) . . . (an, gn). The Assistant must now determine
the strongest guard ga such that a is accepted after ug precisely when ϕa ≡ sp(ug)∧ga holds. Note that by Definition 5, there
is a unique strongest ga with this property. In the following, we assume that sp(ug) and ϕa are both in canonical form.

The guard ga is determined by inquiring whether a set of clock valuations γa satisfy ϕa. Without loss of generality, the
Assistant works only with integer valuations. For each γa that satisfies the postcondition sp(ug), he can make a membership
query for some clocked word wc(a, γa), where wc satisfies the guarded word ug , since such a guarded word wc(a, γa) exists
precisely when γa |H sp(ug). In other words, he can ask the (timed) Teacher for every integer point in the polyhedron
[[sp(ug)]] whether it is in [[ϕa]]. A typical situation for two clocks is depicted in Fig. 10.

Let us now describe how clock valuations γa are chosen in membership queries in order to learn the guard ga for a. As
mentioned before, we assume that the Assistant knows the maximal constant K that can appear in any guard. This means
that if a clock valuation γ with γ (xb) > K satisfies ga, then clock xb has no upper bound in ga. Thus, by Lemma 11, the guard
ga can be uniquely determined by two clock valuations, one in its biggest corner bcK (ga), and one in its smallest corner
scK (ga).

Let us consider how to find a clock valuation in bcK (ga). Suppose first that the Assistant knows some clock valuation
γa that satisfies ϕa. The Assistant will then repeatedly increase the clock values in γa until γa is in bcK (ga). This is done as
follows. At any point during this process, let Max be the set of clocks, initially empty, for which the Assistant knows that
they have reached a maximum, which is at most K , let AboveK be the set of clocks which have become more than K , and let
Unknown = CΣ \ (Max∪ AboveK) be the clocks for which a maximum value is still searched. At each iteration, the Assistant
finds the maximal k ∈ {1, . . . , K + 1} such that the valuation γa can be changed by increasing all clocks in Unknown by k,
keeping the clocks inMax unchanged, and finding suitable values for the clocks in AboveK such that γa still satisfies ϕa. This
can be done by a binary search using at most log K queries. The Assistant then lets γa be this new valuation. For all clocks xb
with γa(xb) ≥ K + 1, the Assistant concludes that xb has no upper bound in ϕa. These clocks are moved over from Unknown
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to AboveK . If γa(xb) ≤ K for some clocks xb ∈ Unknown then among these a clock (or several clocks) must be found that
cannot be increased, which will be moved over from Unknown toMax.

Let us examine how to find a clock xb in Unknown that cannot be increased, i.e., such that ϕa implies the constraint
xb ≤ γa(xb). The idea is to increase each clock in turn by 1 and see whether the result still satisfies ϕa. The particularity to
handle is that it may be possible to increase a clock xb only together with other clocks, since sp(ug) must be satisfied (e.g.,
in Fig. 10 we see that if xa is incremented in γa then xb must also be incremented to stay in sp(ug)). To define this in more

detail, let us regard sp(ug) and ga as fixed, and define for each integer valuation γa such that γa |H ϕa the relation
γa
E on the

set CΣ of clocks by

xb
γa
E xc if sp(ug) implies xb − xc ≤ γa(xb) − γa(xc)

(recall that we assume sp(ug) to be canonical). Thus, xb
γa
E xc means that in order to keep γa � sp(ug) while incrementing

γa(xb) by 1 we should also increment γa(xc) by 1. For a valuation γa, define depγa(xb) as {xc : xb
γa
E xc}. This means that in

order to keep γa � sp(ug) while incrementing γa(xb) by 1 we should also increment all clocks in depγa(xb) by 1.
Assume that γa |H ϕa. For a set C of clocks, define γa[C ⊕ k] as γa(xb) + k for xb ∈ C and γa(xb) otherwise. From the

definition of depγa , we infer thatγa[depγa(xb) ⊕ 1] |H sp(ug) for all xb inUnknown.We claim that for each clock xb inUnknown
for which γa[depγa(xb) ⊕ 1] |̸H ϕa, the clock constraint ϕa must contain the conjunct xb ≤ γa(xb). To see this, we first note
that γa(xb) ≤ K and γa[depγa(xb) ⊕ 1] |̸H ϕa together imply that there must be some xc in depγa(xb) such that ϕa contains
the conjunct xc ≤ γa(xc). We also note that xc ∈ depγa(xb)means that sp(ug) contains the conjunct xb−xc ≤ γa(xb)−γa(xc).
Hence, since ϕa is canonical, it contains the conjunct xb ≤ γa(xb).

To updateMax, we thus move toMax all clocks such that γa[depγa(xb) ⊕ 1] |̸H ϕa. As an optimization, we can sometimes
avoid to make one query for each clock in Unknown increased by 1 by first analysing the structure of the graph whose nodes

are the clocks in Unknown, and whose edges are defined by the relation
γa
E. It is then sufficient to make at most one query

for some clock in each strongly connected component of this graph, and use it as a query for each clock in the component.
After an iteration, another iteration is performed by finding a k to increase the clocks that remain in Unknown, and

thereafter finding out which of these have reached their upper bounds. When Unknown = ∅, a valuation in bcK (ga) has
been found and the algorithm terminates.

Thus, all in all, determining the upper bound of a guard ga needs at most |CΣ | binary searches, since in every loop at
least one clock is moved to Max. Each uses at most log K + |CΣ | membership queries. In an analogous way, we can find a
minimal clock valuation that satisfies ϕa. The guard ga is given by the K -approximation of the guard that has the minimal
clock valuation as smallest corner and the maximal clock valuation as biggest corner, which can easily be formulated given
these two points. Thus, the Assistant needs at most 2|CΣ |(log K + |CΣ |) membership queries to learn a guard ga, if initially
it knows a valuation which satisfies ϕa.

Suppose now that the Assistant does not know a clock valuation γa that satisfies ϕa. In principle, ϕa and therefore ga could
specify exactly one valuation, meaning that the Assistant essentially might have to ask membership queries for all


|Σ |+K

|Σ |


integer points that could be specified by ϕa. This is the number of non-increasing sequences of |Σ | = |CΣ | elements, where
each element has values among 0 to K , since sp(ug) defines at least an ordering on the clocks.

Thus, the Assistant can answer a query for a guarded word wg using at most |w|

|Σ |+K

|Σ |


(timed) membership queries.

5.3. Algorithm TL∗
sg

Let us now turn to the problem of learning a timed language L(D) accepted by an EDERA D. We can assume without
loss of generality that D is the unique minimal and sharply guarded EDERA that exists due to Theorem 1. Then D is uniquely
determined by its symbolic language of A = dfa(D), which is a regular (word) language. In this setting, we assume

• to know an upper bound K on the constants occurring in guards of D,
• to have a Teacher who is able to answer two kinds of queries:

. A membership query consists in asking whether a timed word wt over Σ is in L(D).

. An equivalence query consists in asking whether a hypothesized EDERA H is correct, i.e., whether L(H) = L(D). The
Teacher will answer yes if H is correct, or else supply a counterexample u, either in L(D) \ L(H) or in L(H) \ L(D).

Based on the observations in Section 5.1, our solution is to learnL(dfa(D)), which is a regular language and can therefore
be learned in principle using Angluin’s learning algorithm. However, Angluin’s algorithm is designed to query (untimed)
words rather than timed words. Let us therefore extend the Learner in Angluin’s algorithm by an Assistant , whose role is
to answer a membership query for a guarded word, posed by the Learner , by asking several membership queries for timed
words to the (timed) Teacher . This is described in Section 5.2. To complete the learning algorithm,wehave to explain how the
Assistant can answer equivalence queries to the Learner . Given a DFA H , the Assistant can ask the (timed) Teacher , whether
era(H) = D. If so, the Assistant replies yes to the Learner . If not, the Teacher presents a timedwordwt that is inL(D) but not
inL(era(H)) (or the otherway round). For thewordw underlyingwt , we can obtain its guard refinementwg as described in
the previous paragraph. Then wg is in L(dfa(D)) but not in L(H) (or the other way around). Thus, the Assistant can answer
the equivalence query by wg in this case.



16 O. Grinchtein et al. / Theoretical Computer Science ( ) –

(a) Automaton A (b) Automaton H1 (c) Automaton H2

Fig. 12. EDERAs.

At this point,we should remark that it can be the case that the hypothesized automatonH which the algorithmconstructs
is not sharply guarded. This can happen if the observation table does not contain for each prefix ug of the table and each
symbol a ∈ Σ at least one column labeled by a suffix of form (a, g) such that ug(a, g) is accepted. As an illustration, consider
the hypothesized automaton H in Fig. 11(b), constructed from the table T shown in Fig. 11(a). Let us assume that K = 4 is
given as an upper bound on constants in guards. The automaton H is non-sharply guarded, since after the guarded word
(a, xa = 2 ∧ xb = 2)(b, xa ≥ 1 ∧ xb ≥ 1) ∈ L(dfa(H)) the postcondition implies xb ≥ 3, which means that after this
guarded word, the guard on the following b-transition is not sharp. A so constructed non-sharply guarded automaton has
always less locations than a corresponding sharply guarded automaton constructed from the same information.

Algorithm 3 Pseudo code for Assistant of TL∗

sg

1 class TL∗sgAssistant implements Teacher{
2 Teacher timedteacher
3
4 Constructor TL∗sgAssistant(teacher)
5 timedteacher = teacher
6
7 Function equivalence_query(H)
8 timedteacher .equivalence_query(H)
9 if the answer to equivalence query is a counterexample wt

10 Extract the word w underlying wt
11 Learn guard refinement wg of w
12 return wg
13 else
14 return ’yes’
15
16 Function membership_query(wg )
17 Extract underlying w of wg
18 Learn guard refinement w′

g of w
19 if w′

g = wg then
20 return ’yes’
21 else
22 return ’no’
23 }

Algorithm 4 Pseudo code for TL∗

sg

1 class TL∗sg extends L∗{
2
3 Constructor TL∗sg (timedteacher ,Σ ,K )
4 Γ = TL∗sgAlphabet(Σ, K)

5 teacher = TL∗sgAssistant(timedteacher)
6 }

We call the algorithm outlined in the section TL∗
sg . More specifically, the algorithm for learning sharply guarded EDERA

is as Algorithm 2, but extended with the Assistant shown in Algorithm 3.

Example 15. Let us illustrate the algorithm by showing how to learn the language of the automatonA depicted in Fig. 12(a).
Initially, the algorithmasksmembership queries forλ. It additionally asksmembership queries to learn that (a, g) is accepted
iff g = xa ≤ 1 ∧ xb ≤ 1 and (b, g) is accepted iff g = xa = 0 ∧ xb = 0. To follow the algorithm, we should also add rejected
guarded words to the table: these are needed in order to find inconsistencies. In this example, we need to have only (a, xa ≤

1 ∧ xb ≥ 0) in the table, and in order to keep the table as small as possible we do not add other rejected guarded words.
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T1 λ

λ +
(a, xa ≤ 1, xb ≥ 0) -
(a, xa ≤ 1 ∧ xb ≤ 1) +
(b, xa = 0 ∧ xb = 0) +

(a) Table T1

T2 λ

λ +
(a, xa ≤ 1 ∧ xb ≤ 1) +

(a, xa ≤ 1 ∧ xb ≤ 1)(a, xa ≤ 1 ∧ xb ≥ 0) +
(a, xa ≤ 1 ∧ xb ≥ 0) -
(b, xa = 0 ∧ xb = 0) +

(a, xa ≤ 1 ∧ xb ≤ 1)(b, xa = 0 ∧ xb = 0) +
(a, xa ≤ 1 ∧ xb ≤ 1)(a, xa ≤ 1 ∧ xb ≥ 0)(a, xa ≤ 1 ∧ xb ≥ 0) +
(a, xa ≤ 1 ∧ xb ≤ 1)(a, xa ≤ 1 ∧ xb ≥ 0)(b, xa = 0 ∧ xb = 0) +

(b) Table T2
Fig. 13. Tables T1 and T2 .

T3 λ ug
λ + -

(a, xa ≤ 1 ∧ xb ≤ 1) + +
(a, xa ≤ 1 ∧ xb ≤ 1)(a, xa ≤ 1 ∧ xb ≥ 0) + +

(a, xa ≤ 1 ∧ xb ≥ 0) - -
(b, xa = 0 ∧ xb = 0) + -

(a, xa ≤ 1 ∧ xb ≤ 1)(b, xa = 0 ∧ xb = 0) + -
(a, xa ≤ 1 ∧ xb ≤ 1)(a, xa ≤ 1 ∧ xb ≥ 0)(a, xa ≤ 1 ∧ xb ≥ 0) + +
(a, xa ≤ 1 ∧ xb ≤ 1)(a, xa ≤ 1 ∧ xb ≥ 0)(b, xa = 0 ∧ xb = 0) + -

Fig. 14. Table T3 , ug = (a, xa ≤ 1 ∧ xb ≥ 0).

This yields the initial observation table T1 shown in Fig. 13(a). It is consistent and closed. Then the Learner constructs a
hypothesized DERA H1 shown in Fig. 12(b) and submits H1 in an equivalence query. Assume that the counterexample
(a, 1.0)(a, 1.5) is returned. It is accepted byAbut rejected byH1. The algorithmprocesses the counterexample andproduces
the observation table T2 given in Fig. 13(b), which is not consistent. Following Angluin’s algorithmwe construct a closed and
consistent table T3 shown in Fig. 14. The sharply guarded EDERA H2 visualized in Fig. 12(c) corresponds to the observation
table T3 and accepts the same language as A.

5.4. Complexity

In the L∗ algorithm the number of membership queries is bounded by O(kn2m), where n is the number of states, k is the
size of the alphabet, andm is the length of the longest counterexample.

In our setting, a singlemembership query for a guardedwordwg might give rise to |w|

|Σ |+K

|Σ |


membership queries to the

(timed) Teacher . The alphabet of the DFA dfa(D) is Σ × G. Thus, the query complexity of TL∗
sg for a sharply guarded EDERA

with n locations is

O

kn2ml


|Σ | + K

|Σ |


where l is the length of the longest guarded word queried and k is the size of alphabet Σ × G. The longest queried
word is bounded by O(m + n). If the Teacher always presents counterexamples of minimal length, then m is bounded by
O(n). The number of equivalence queries remains at most n. Note that, in general a (non-sharply guarded) EDERA D gives
rise to a sharply guarded EDERA with double exponentially more locations. Since the number of regions is bounded by
|Σ |!2|Σ |(2K + 2)|Σ |, the number of locations in a sharply guarded EDERA is bounded by n12|Σ |!2|Σ |(2K+2)|Σ |

, where n1 is the
number of locations in the EDERA. Thus, the query complexity of TL∗

sg for EDERA with n1 locations is

O

kn2

12
2|Σ |!2|Σ |(2K+2)|Σ |

ml


|Σ | + K
|Σ |


.

6. Learning of DERA

Let us now turn our attention to learn the full class of deterministic event recording automata. The scheme for developing
a learning algorithm is analogous to the scheme used for EDERAs in Section 5:we define a class of DERAs that admit a natural
definition of right congruences, so that a DERA D in this class uniquely determines a languageL(dfa(D)). We show that each
DERA can be transformed to this form. Then our solution is to learn L(dfa(D)) using an assistant, whose role is to answer
membership queries for guarded words by asking membership queries for timed words. In order to cope with the class of
all DERAs, we need to find a different unique representation, and to change the task of the assistant.

6.1. Simple DERAs

Definition 16. A K -bounded DERA D is simple if all its guards are simple and if whenever wg(a, g) is a prefix of some word
in L(dfa(D)), then sp<

K (wg) ∧ g is satisfiable. �
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We remark that whether or not a DERA is simple depends only on L(dfa(D)). A consequence of this definition is the
following.

Lemma 17. If wg ∈ L(dfa(D)), where D is a simple DERA, then there is a timed word wt ∈ L(D) such that wt |H wg .

Proof. The lemma follows by induction from the fact that sp<
K (w′

g) ∧ g ′ is satisfiable iff sp(w′
g) ∧ g ′ is satisfiable, whenever

w′
g is a guarded word and g ′ is a K -bounded simple guard. �

We prove an important property of simple guarded words.

Lemma 18. Let wg = (a1, g1) . . . (an, gn) be a K-bounded simple guarded word, and let wt = (a1, γ1) . . . (an, γn) and
w′

t = (a1, γ ′

1) . . . (an, γ ′
n) be two clocked words. If wt � wg and w′

t � wg then γi ∼K γ ′

i for 1 ≤ i ≤ n.

Proof. Since γi � gi and γ ′

i � gi, then for all 1 ≤ i ≤ n and xa ∈ CΣ such that γi(xa) ≤ K and γ ′

i (xa) ≤ K we have
⌊γi(xa)⌋ = ⌊γ ′

i (xa)⌋, and fract(γi(xa)) = 0 iff fract(γ ′

i (xa)) = 0. We prove by induction over i that for 1 ≤ i ≤ n we
have fract(γi(xaj)) − fract(γi(xak)) ≥ 0 iff fract(γ ′

i (xaj)) − fract(γ ′

i (xak)) ≥ 0 for all aj, ak ∈ Σ , whenever γi(xaj) ≤ K and
γi(xak) ≤ K . For i = 1, this follows from γ1(xaj) = γ1(xak) and γ ′

1(xaj) = γ ′

1(xak). Assume that γi ∼K γ ′

i , that γi+1(xaj) ≤ K ,
that γi+1(xak) ≤ K , and that fract(γi+1(xaj)) − fract(γi+1(xak)) ≥ 0. From γi ∼K γ ′

i , together with ⌊γi+1(xaj)⌋ = ⌊γ ′

i+1(xaj)⌋
and ⌊γi+1(xak)⌋ = ⌊γ ′

i+1(xak)⌋ we deduce fract(γ ′

i+1(xaj)) − fract (γ ′

i+1(xak)) ≥ 0. �

Every DERA can be transformed into an equivalent DERA that is simple using the region–graph construction [3].

Lemma 19. For every K-bounded DERA there is an equivalent K-bounded DERA that is simple.

Proof. Let the DERA D = (Σ, L, l0, Lf , δ) be K -bounded. We define an equivalent simple DERA D′
= (Σ, L′, l′0, L

f ′ , δ′) by
adapting the region graph construction for D.

The set of locations L′ of D′ comprises pairs (l, ϕ) where l ∈ L and ϕ is a K -bounded clock constraint. The intention
is that ϕ is the K<-approximated postcondition of any run from the initial location to (l, ϕ). The initial location l′0 of D′ is
(l0, sp(λ)). We also introduce the location le = (l0, true) in L′, where le ∉ Lf

′

. For every symbol a and K -bounded simple
guard g ′ for which there is a guard g such that δ(l, a, g) is defined and g ′ implies g , let δ′((l, ϕ), a, g ′) be defined as (l′, ϕ′)
where l′ = δ(l, a, g) and ϕ′

= ⟨⟨(ϕ ∧ g ′)[xa → 0]↑ ⟩⟩
<
K if ϕ′

≠ false, otherwise, δ′((l, ϕ), a, g ′) = le. The final states are
given by (l, ϕ) ∈ Lf

′

iff l ∈ Lf .
To prove that D′ is simple we need to show that if wg(a, g) is a prefix of some word in L(dfa(D′)), then sp<

K (wg) ∧ g is
satisfiable. Let (l, ϕ) be the location reached from l′0 on input of the guarded word wg . By construction of D′, it is the case
that ⟨⟨(ϕ ∧ g)[xa → 0]↑ ⟩⟩

<
K is satisfiable, since δ′((l, ϕ), a, g) is not le. Hence also sp<

K (wg) ∧ g is satisfiable.
We show that D′ is equivalent to D.
Let wt � wg and wg ∈ L(dfa(D)). We show that there is w′

g ∈ L(dfa(D′)) such that wt � w′
g . Let ug be any prefix wg

and let l = δ(l0, ug). We prove by induction on the length of ug that if ut is a prefix of wt with ut � ug , then there is a
simple guarded word u′

g such that ut � u′
g and such that δ′((l0, ϕ0), u′

g) = (l, ϕ) for some ϕ. For the base case, if ug = λ

then u′
g = λ and δ′((l0, ϕ0), u′

g) = (l0, ϕ0). For the inductive step, assume this property for ug , and let ug(a, g) be a prefix
of wg . Let l′ = δ(l0, ug(a, g)). Let ut(a, t) be the prefix of wt with ut(a, t) � ug(a, g), and let u′

g(a, g
′) be the unique simple

guarded word with ut(a, t) � u′
g(a, g

′). Then g ′ implies g , and by the construction of D′ we infer that ϕ ∧ g ′ is satisfiable,
and that δ′((l, ϕ), a, g ′) = (l′, ϕ′)where ϕ′

= ⟨⟨(ϕ ∧ g ′)[xa → 0]↑ ⟩⟩
<
K , with ϕ′

≠ false. This concludes the induction. From
wg ∈ L(dfa(D)) we infer δ(l0, wg) ∈ Lf . Let lf = δ(l0, wg). By the just proved property, there is a simple guarded word w′

g

such that wt � w′
g and such that δ′((l0, ϕ0), w

′
g) = (lf , ϕ) for some ϕ. By the construction of D′ we have (lf , ϕ) ∈ Lf

′

, hence
w′

g ∈ L(dfa(D′)).
Let wt � w′

g and w′
g ∈ L(dfa(D′)). We show that there is wg ∈ L(dfa(D)) such that wt � wg . Let u′

g be any prefix of w′
g ,

let (l, ϕ) = δ′((l0, ϕ0), u′
g), and let ut be the prefix of wt with ut � u′

g . We prove by induction on the length of u′
g that there

is a guarded word ug such that δ(l0, ug) = l and ut � ug . For the base case, if u′
g = λ then ug = λ and δ(l0, ug) = l0. For the

inductive step, assume this property for u′
g , and let u′

g(a, g
′) be a prefix ofw′

g . Let (l
′, ϕ′) = δ(l0, u′

g(a, g
′)). Let ut(a, t) be the

prefix of wt with ut(a, t) � u′
g(a, g

′). By the construction of D′ there is a g such that g ′ implies g and δ(l, a, g) = l′. Since g ′

implies g we infer ut(a, t) � ug(a, g). This concludes the induction. Fromw′
g ∈ L(dfa(D′))we infer δ′((l0, ϕ0), w

′
g) = (lf , ϕ)

for some lf ∈ Lf . By the just proved property, there is a guarded word wg such that wt � wg and such that δ(l0, wg) = lf .
Then wg ∈ L(dfa(D)). �

The important property of simple DERAs is that equivalence coincides with equivalence on the corresponding DFAs.

Definition 20. We call two simple DERAs D1 and D2 dfa-equivalent, denoted D1 ≡dfa D2, iff dfa(D1) and dfa(D2) accept the
same language (in the sense of DFAs).

Now, exactly as in Section 5, we get counterparts for Lemma 14 and Theorem 1.

Lemma 21. For two simple DERAs D1 and D2, we have

D1 ≡t D2 iff D1 ≡dfa D2.
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We can now prove the central property of simple DERAs.

Theorem 2. For every DERA there is a unique equivalent minimal simple DERA (up to isomorphism).

Proof. The proof is analogous to the proof of Theorem 1. �

6.2. Algorithm TL∗
s

Given a timed language that is accepted by a DERA D, we can assume without loss of generality that D is the unique
minimal and simple one that exists due to Theorem2. ThenD is uniquely determined by its symbolic language ofA = dfa(D),
which is a regular (word) language overΣ×Gs, whereGs is a set of simple clock guards. Thus, we can learnA using Angluin’s
algorithm and return era(A). However, L(A) is a language over simple guarded words, but the Teacher in the timed setting
is supposed to deal with timed words rather than guarded words. Moreover, it can be the case that the Teacher answers yes
to an equivalence query for a hypothesized automaton H and H is smaller than A.

Similar as in the previous section, we extend the Learner in Angluin’s algorithm by a Assistant , whose role is to answer a
membership query for a simple guarded word, posed by the Learner , by asking membership queries for timed words to the
(timed) Teacher . Furthermore, he also has to answer equivalence queries, consulting the timed Teacher .

For a simple guarded word wg = (a1, g1) . . . (an, gn) each simple guard g that extends wg together with an action a
defines exactly one region. Thus, if wg is accepted, it is enough to check a in a single point in this region defined by g and
the postcondition of wg . In other words, it suffices to check an arbitrary timed word wt |H wg to check whether wg is in the
symbolic language or not.

The number of successor regions that one region can have isO(|Σ |K). Then the complexity of the algorithm for the simple
DERA with n locations is O(|Σ |

2n2mK), where m is the length of the longest counterexample.

Algorithm 5 Pseudo code for Assistant of TL∗

s

1 class TL∗sAssistant implements Teacher{
2 Teacher timedteacher
3
4 Constructor TL∗s Assistant(teacher)
5 timedteacher = teacher
6
7 Function equivalence_query(H)
8 timedteacher .equivalence_query(H)
9 if the answer to equivalence query is a counterexample wt

10 Construct simple guarded word wg such that wt � wg .
11 return wg
12 else
13 return ’yes’
14
15 Function membership_query(wg )
16 if there is no wt such that wt � wg then
17 return ’no’
18 else
19 Choose wt such that wt � wg
20 timedteacher .membership_query(wt )
21 if answer to membership query is ’no’
22 return ’no’
23 else
24 return ’yes’
25 }

Algorithm 6 Pseudo code for TL∗

s

1 class TL∗s extends L∗{
2
3 Constructor TL∗s (timedteacher ,Σ ,K )
4 Γ = TL∗s Alphabet(Σ, K)
5 teacher = TL∗s Assistant(timedteacher)
6 }

Example 22. Let us illustrate the algorithm by showing how to learn the language of the automaton A depicted in Fig. 15.
Initially, the algorithm asks membership queries for λ, (a, xa = 0), (a, 0 < xa < 1), (a, xa = 1) and (a, xa > 1). This
yields the initial observation table T1 shown in Fig. 16(a). It is consistent but not closed, since row((a, xa = 0)) is distinct
from row(λ). Following Angluin’s algorithm, we can construct a closed and consistent table T2 shown in Fig. 16(b). Then
the Learner constructs a hypothesized DERA H1 shown in Fig. 17 and submits H1 in an equivalence query. Assume that the
counterexample (a, xa = 0)(a, xa = 0)(a, 0 < xa < 1) is returned. It is rejected by A but accepted by H1. The algorithm
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Fig. 15. Automaton A.

T1 λ

λ +
(a, xa = 0) -

(a, 0 < xa < 1) +
(a, xa = 1) +
(a, xa > 1) +

(a)

T2 λ

λ +
(a, xa = 0) -

(a, 0 < xa < 1) +
(a, xa = 1) +
(a, xa > 1) +

(a, xa = 0)(a, xa = 0) +
(a, xa = 0)(a, 0 < xa < 1) -

(a, xa = 0)(a, xa = 1) +
(a, xa = 0)(a, xa > 1) +

(b)
Fig. 16. Tables T1 and T2 .

Fig. 17. Automaton H1 .

T3 λ (a, xa > 1)
λ + +

(a, xa = 0) - +
(a, xa = 0)(a, xa = 0) + -

(a, xa = 0)(a, xa = 0)(a, 0 < xa < 1) - +
(a, 0 < xa < 1) + +

(a, xa = 1) + +
(a, xa > 1) + +

(a, xa = 0)(a, 0 < xa < 1) - +
(a, xa = 0)(a, xa = 1) + -
(a, xa = 0)(a, xa > 1) + -

(a, xa = 0)(a, xa = 0)(a, xa = 0) - +
(a, xa = 0)(a, xa = 0)(a, xa = 1) - +
(a, xa = 0)(a, xa = 0)(a, xa > 1) - +

(a, xa = 0)(a, xa = 0)(a, 0 < xa < 1)(a, xa = 0) + -
(a, xa = 0)(a, xa = 0)(a, 0 < xa < 1)(a, 0 < xa < 1) - +

(a, xa = 0)(a, xa = 0)(a, 0 < xa < 1)(a, xa = 1) + -
(a, xa = 0)(a, xa = 0)(a, 0 < xa < 1)(a, xa > 1) + -

Fig. 18. Table T3 .

processes the counterexample and finally produces the observation table T3 given in Fig. 18. The automaton H2 visualized
in Fig. 19 corresponds to the observation table T3 and accepts the same language as A.

7. Learning non-sharply guarded EDERAs

Learning a sharply guarded EDERA allows to transfer Angluin’s setting to the timedworld. However, in practice, onemight
be interested in a smaller non-sharply guarded EDERA rather than its sharply guarded version. In this section, we describe
how to learn a usually smaller, non-sharply guarded version. The idea is to identify states whose futures are ‘‘similar’’. While
in the worst-case, more membership queries are needed, we hope that the algorithm converges faster in practice.

Let us illustrate the main idea underlying this section: Fig. 22 shows an EDERA A2 constructed by the algorithm TL∗

sg ,
while Fig. 21(a) shows an EDERA A1, which accepts the same language as A2, but has less locations than A2. In terms of
TL∗

sg , locations 2 and 3 in A2 are different, since an a-transition from location 2 can be taken when xa = 1 and xb = 3, while
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Fig. 19. Automaton H2 .

from location 3 an a-transition cannot be taken when xa = 1 and xb = 3—reaching location 3 yields the postcondition
xb −xa = 3. However, we canmerge location 2, 3 and 4 if we add an a-transition from location 2 to location 2with the guard
xa = 1 ∧ xb ≤ 4. In this section we show how to find guards which allow merging of locations, which are non-mergeable
in terms of TL∗

sg . We develop our ideas in the setting of learning non-sharply guarded EDERAs, but a similar study could be
carried out to learn non-simple DERAs.

7.1. Learning based unification

Let us nowdefine a relationship on guardedwords, whichwill be used tomerge stateswhose futures are ‘‘similar’’, taking
the postcondition into account.

Let PG = {⟨ϕ1, (a1, g11) . . . (an, g1n)⟩, . . . , ⟨ϕk, (a1, gk1) . . . (an, gkn)⟩} be a set of k pairs of postconditions and guarded
wordswith the same sequences of actions.We say that the guardedword (a1, ĝ1) . . . (an, ĝn) unifies PG if for all j ∈ {1, . . . , k}
and i ∈ {1, . . . , n}

gji ∧ sp(ϕj, (a1, gj1) . . . (ai−1, gj(i−1))) ≡ ĝi ∧ sp(ϕj, (a1, ĝ1) . . . (ai−1, ĝi−1)).

Then, the set PG is called unifiable and (a1, ĝ1) . . . (an, ĝn) is called a unifier. Intuitively, the guarded words with associated
postconditions can be unified if there is a unifying, more liberal guarded word, which is equivalent to all guarded words in
the context of the respective postconditions. Then, given a set of guarded words with postconditions among {ϕ1, . . . , ϕk},
these guardedwords can be considered to yield the same state, provided that the set of future guarded actions together with
the respective postcondition is unifiable.

In the next example we show that if every pair in PG is unifiable it does not follow that PG is unifiable.

Example 23. Let
g1 = (xa ≥ 5 ∧ xa ≤ 7 ∧ xb ≥ 5 ∧ xb ≤ 7),
ϕ1 = (xa = xb),
g2 = (xa ≥ 7 ∧ xa ≤ 9 ∧ xb ≥ 3 ∧ xb ≤ 5),
ϕ2 = (xb = xa − 4),
g3 = (xa ≥ 9 ∧ xa ≤ 11 ∧ xb ≥ 1 ∧ xb ≤ 3),
ϕ3 = (xb = xa − 8),

see Fig. 20(a). Let PG = {(ϕ1, (a, g1)), (ϕ2, (a, g2)), (ϕ3, (a, g3))} and

g4 = (xa ≥ 5 ∧ xa ≤ 9 ∧ xb ≥ 3 ∧ xb ≤ 7),
g5 = (xa ≥ 7 ∧ xa ≤ 11 ∧ xb ≥ 1 ∧ xb ≤ 5),
g6 = (xa ≥ 5 ∧ xa ≤ 11 ∧ xb ≥ 1 ∧ xb ≤ 7).

Then (a, g4) is the strongest unifier for {(ϕ1, (a, g1)), (ϕ2, (a, g2))}, see Fig. 20(b), (a, g5) is the strongest unifier for
{(ϕ2, (a, g2)), (ϕ3, (a, g3))}, see Fig. 20(c) and (a, g6) is the strongest unifier for {(ϕ1, (a, g1)), (ϕ3, (a, g3))}, see Fig. 20(d).
Then the strongest possible unifier for PG should be g6, but ϕ2 ∧ g6 ≢ ϕ2 ∧ g2. Then PG is not unifiable. �

It is easy to check, whether PG is unifiable, using the property that the guards in PG are tight in the sense of Definition 7.
The basic idea in each step is to take the weakest upper and lower bounds for each variable. Assume the guard gji is given
by its upper and lower bounds:

gji =


a∈Σ

(xa ≤ c≤

a,ji ∧ xa ≥ c≥

a,ji).

For i = 1, . . . , n, define the candidate ĝi as

ĝi =


a


xa ≤ max

j
{c≤

a,ji}


∧


a


xa ≥ min

j
{c≥

a,ji}





22 O. Grinchtein et al. / Theoretical Computer Science ( ) –

xb

xb xb

xb

xa

xa xa

xa

a b

c d

Fig. 20. Not unifiable PG = {(ϕ1, (a, g1)), (ϕ2, (a, g2)), (ϕ3, (a, g3))}.

[xa = 1 4]>

>

xb

(a) Automaton A1 (b) Table T

Fig. 21. A DERA to be learned and an observation table.

Fig. 22. Automaton A2 .

and check whether the guarded word (a1, ĝ1) . . . (an, ĝn) obtained in this way is indeed a unifier. We represent false as the
constraint


a∈Σ xa ≤ 0 ∧ xa ≥ K + 1. It can be shown that if PG is unifiable, then this candidate is the strongest possible

unifier.
The learning algorithm using the idea of unified states works similar as the one for EDERAs. However, we employ a

slightly different observation table. Let Γ = Σ × GΣ . Rows of the table are guarded words of a prefix-closed set U ⊆ Γ ∗.
Column labels are untimed words from a set V ⊆ Σ∗. The entries of the table are sequences of guards describing under
which values the column label extends the row label. Thus, we define a timed observation table T : U ∪ UΓ → (V → G∗

Σ ),
where T (ug)(v) = g1 . . . gn implies |v| = n. We require the initial observation table to be defined over U = {λ} and V = Σ .

We define ug ∈ U∪UΓ and u′
g ∈ U∪UΓ to be v-unifiable if v = a1 . . . an ∈ V , T (ug)(v) = g1 . . . gn, T (u′

g)(v) = g ′

1 . . . g ′
n

and {(sp(ug), (a1, g1) . . . (an, gn)), (sp(u′
g), (a1, g

′

1) . . . (an, g ′
n))} is unifiable. We define ug ∈ U ∪ UΓ and u′

g ∈ U ∪ UΓ to
be unifiable if for every v ∈ V , ug and u′

g are v-unifiable.
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A timed observation table is closed if for every ug ∈ UΓ there is u′
g ∈ U such that ug and u′

g are unifiable. A timed
observation table is consistent if for all ug , u′

g ∈ U whenever ug and u′
g unifiable, and ug(a, g), u′

g(a, g
′) ∈ U ∪ UΓ then

ug(a, g) and u′
g(a, g

′) are unifiable.
Amerging of the timed observation table T consists of a partition Π of the guarded words U ∪UΓ , and an assignment of

a clock guard CG(π, a) to each block π ∈ Π and action a ∈ Σ , such that for each block π ∈ Π we have

• for each suffix v = a1 . . . an ∈ V , the set {⟨sp(ug), (a1, g1) . . . (an, gn)⟩ | ug ∈ π, T (ug)(v) = g1 . . . gn} is unifiable,
• if ug , u′

g ∈ π and ug(a, g), u′
g(a, g

′) ∈ U ∪ UΓ then ug(a, g),u′
g(a, g

′) ∈ π ′ for some block π ′ in Π , and
• (a, CG(π, a)) is the unifier for {(sp(ug), (a, g ′)) | ug ∈ π, T (ug)(a) = g ′

} for each a ∈ Σ .

Intuitively, a merging defines a grouping of rows into blocks, each of which can potentially be understood as a state in a
EDERA, together with a choice of clock guard for each action and block, which can be understood as a guard for the action
in the EDERA. For each table there are in general several possible mergings, but the number of mergings is bounded, since
the number of partitions is bounded, and since the number of possible unifiers GC(π, a) is also bounded.

A coarsest merging of the timed observation table T is a merging with a minimal number of blocks. From a closed and
consistent timed table we can get a lower bound on the number of blocks. It follows from Example 23 that in order to
construct a coarsest merging we need to check whether all rows in a block are unifiable.

Given a merging (Π,GC) of a closed and consistent timed observation table T , one can construct the EDERA H =

(Σ, L, l0, ϱ, η), where

• L = Π comprises the blocks of Π as locations,
• l0 = π ∈ Π with λ ∈ π is the initial location,
• ϱ(π, a) = π ′, if there are u ∈ π and g such that u ∈ U , u(a, g) ∈ π ′ and T (u)((a, g)) ≠ false, otherwise ϱ(π, a) is

undefined.
• η is defined by η(π, a) = GC(π, a).

7.2. Algorithm TL∗

nsg

The algorithm TL∗
nsg for learning (non-sharply guarded) EDERAs is as TL∗

sg , except that the new notions of closed and
consistent are used. If in Algorithm 2 the check for closeness and consistency compares two rows in a table on equality,
the algorithm TL∗

nsg checks whether two rows are unifiable. Since the entries of a timed observation table are sequences
of guards, we introduce the function learn_guard, which learns the guard refinement of some suffix of a word. One further
modification is that the hypothesis is constructed as described in the previous paragraph, using the computed merging. The
rest of the algorithm remains unchanged (see Algorithm 8).

Algorithm 7 Pseudo code for Assistant of TL∗

nsg

1 class TL∗nsgAssistant extends TL
∗
sgAssistant

2 Teacher timedteacher
3
4 Constructor TL∗nsgAssistant(teacher)
5 timedteacher = teacher
6
7 Function learn_guard(ug ,w)
8 Extract underlying u of ug
9 Learn guard refinement ug (a1, g1) . . . (an, gn) of uw

10 return g1 . . . gn

Lemma 24. Let A be a smallest EDERA equivalent to the system that is to be learned. Let |A| be the number of locations in A.
Then the algorithm TL∗

nsg terminates and constructs an EDERA A′ with |A| locations, which is equivalent to A.

Proof. We first prove that every coarsest merging constructed from a timed observation table has at most |A| blocks.
Assume that the algorithm TL∗

nsg constructs the timed observation table T : U ∪ UΓ → (V → G∗). Assume that u1
g , . . . , u

n
g

are all rows in U ∪ UΓ such that v1
g , . . . , v

n
g lead to the same location l in A and for each 1 ≤ i ≤ n, the word underlying

vi
g is equal to the word underlying ui

g . Since wt � ui
g iff wt � vi

g , we infer sp(vi
g) = sp(ui

g) for each 1 ≤ i ≤ n. Let
a1 . . . am ∈ V and T (ui

g)(a1 . . . am) = gi1 . . . gim for each 1 ≤ i ≤ n. Let v1
g (a1, g1) . . . (am, gm) lead to some location in A.

Since wt � vi
g(a1, g1) . . . (am, gm) iff wt � ui

g(a1, gi1) . . . (am, gim), we infer that for each 1 ≤ i ≤ n and 1 ≤ j ≤ m − 1 we
have sp(vi

g(a1, g1) . . . (aj, gj)) = sp(ui
g(a1, gi1) . . . (aj, gij)) and both

sp(vi
g) ∧ g1 ≡ sp(ui

g) ∧ g i
1, and

sp(vi
g(a1, g1) . . . (aj, gj)) ∧ gj+1 ≡ sp(ui

g(a1, gi1) . . . (aj, gij)) ∧ gi(j+1).



24 O. Grinchtein et al. / Theoretical Computer Science ( ) –

Algorithm 8 Pseudo code for TL∗

nsg

1 class TL∗nsg extends L∗{
2 Alphabet Σ

3
4 Constructor TL∗nsg (timedteacher ,Σ ,K )
5 Γ = TL∗nsgAlphabet(Σ, K)

6 this.Σ = Σ

7 teacher = TL∗nsgAssistant(timedteacher)
8
9 Function initialize((U, V , T ))

10 U := {λ}, V := Σ

11 for every a ∈ Σ

12 g=teacher .learn_guard(λ, a)
13 if g ≠ false
14 Add (a, g) to UΓ

15 for every ug ∈ U ∪ UΓ and a ∈ Σ

16 T (ug )(a)=teacher .learn_guard(ug , a)
17
18 Function isClosed((U, V , T ))
19 if for each ug ∈ UΓ there is u′

g ∈ U such that ug and u′
g are unifiable then

20 return true
21 else
22 return false
23
24 Function isConsistent((U, V , T ))
25 if for each a ∈ Σ and ug , u′

g ∈ U such that ug (a, g), u′
g (a, g

′) ∈ U ∪ UΓ , and
26 ug and u′

g are unifiable we have ug (a, g) and u′
g (a, g

′) are unifiable then
27 return true
28 else
29 return false
30
31 Function add_column()
32 Find a ∈ Σ , v ∈ V , ug , u′

g ∈ U and ug (a, g), u′
g (a, g

′) ∈ U ∪ UΓ such that
33 ug and u′

g are unifiable, but ug (a, g) and ug (a, g ′) are
34 notv-unifiable
35 Add av to V
36 for every ug ∈ U ∪ UΓ

37 T (ug )(av)=teacher .learn_guard(ug ,av)
38
39 Function move_row()
40 Find ug ∈ UΓ such that for all u′

g ∈ U , ug and u′
g are not unifiable

41 Move ug to U
42 for every a ∈ Σ

43 g = teacher .learn_guard(ug ,a)
44 if g ≠ false
45 Add ug (a, g) to UΓ

46 for every v ∈ V
47 T (ug (a, g))(v)=teacher .learn_guard(ug (a, g),v)
48
49 Function process_counterexample(u_g)
50 Add every prefix u′

g of ug to U .
51 for every v ∈ V and prefix u′

g of ug
52 T (u′

g )(v)=teacher .learn_guard(u′
g ,v)

53 for every a ∈ Σ and prefix u′
g of ug

54 g = teacher .learn_guard(u′
g ,a)

55 if g ≠ false
56 Add u′

g (a, g) to UΓ

57 for every v ∈ V
58 T (u′

g (a, g))(v)=teacher .learn_guard(u′
g (a, g),v)

59 }

Then the set {(sp(ui
g), (a1, gi1) . . . (am, gim))|1 ≤ i ≤ n} is unifiable. Let a′

1 . . . a′

k ∈ V . We can use the same argument to
show that for every a ∈ Σ , the set

{(sp(ui
g(a, g

′

i )), (a
′

1, g
′

i1) . . . (a′

k, g
′

ik))|1 ≤ i ≤ n, ui
g(a, g

′

i ) ∈ U ∪ UΓ }

is unifiable. Since a1 . . . an and a′

1 . . . a′

k were chosen arbitrarily, we can conclude that there is a merging Π of T such that
u1
g , . . . , u

n
g are in the same block. Thus a coarsest merging of T can contain at most |A| blocks.

It follows that there can be at most |A| rows in U such that no pair of them is unifiable. Then the number of calls to the
function move_row in Algorithm 8 is bounded, and hence a closed table can be constructed. If for every ug , u′

g ∈ U , ug and
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u′
g are not unifiable then the table is also consistent. Thus we need a bounded number of calls to the function add_column to

make the timed observation table consistent.
Since the number of blocks in a coarsest merging is bounded by |A|, and the number of automata of the same size is

bounded, then the algorithm TL∗

nsg terminates and constructs an automaton A′ with |A| locations. �

Roughly, TL∗
nsg can be understood as TL∗

sg plus merging. Therefore, in the worst case, more steps and therefore queries are
needed as in TL∗

sg . However, when a small non-sharply guarded EDERA represents a large sharply guarded EDERA, TL∗
nsg will

terminate using less queries. Therefore, a better performance can be expected in practice.
Example 25. Let us the algorithm TL∗

nsg on a small example. Let the automatonA1 shown in Fig. 21(a) be the EDERA to learn.
After a number of queries of the algorithm TL∗

nsg , we obtain the observation table T shown in Fig. 21(b), where the guarded
words u1 – u5 are defined by

u1 = λ
u2 = (a, xa = 1 ∧ xb = 1)
u3 = (a, xa = 1 ∧ xb = 1)(a, xa = 1 ∧ xb = 2)
u4 = (a, xa = 1 ∧ xb = 1)(a, xa = 1 ∧ xb = 2)(a, xa = 1 ∧ xb = 3)
u5 = u4(a, xa = 1 ∧ xb = 4).

It turns out that all rows of T are unifiable. Define PG by
PG = {⟨sp(u1), (a, xa = 1 ∧ xb = 1)⟩,

⟨sp(u2), (a, xa = 1 ∧ xb = 2)⟩,
⟨sp(u3), (a, xa = 1 ∧ xb = 3)⟩,
⟨sp(u4), (a, xa = 1 ∧ xb = 4)⟩,
⟨sp(u5), (a, false)⟩}

where false represents constraint xa ≤ 0 ∧ xa ≥ 5. It can be checked that the guarded word (a, xa = 1 ∧ xb ≤ 4) unifies PG.
We will use the merging of the observation table T as the partition which consists of exactly one block, and equipping the
action awith the guard xa = 1∧ xb ≤ 4. The automaton obtained from this mergings is the automaton A1 which consists of
exactly one state. In contrast, the algorithm TL∗

sg , which does not employ unification, would construct the sharply guarded
EDERA A2 shown in Fig. 22. The automaton A2 has 5 states, since table T has 5 different rows. �

8. Conclusion

In this paper, we presented techniques for learning timed systems that can be represented as event-recording automata.
By considering the restricted class of event-deterministic automata,we can uniquely represent an automaton by a regular

language of guarded words, and the learning algorithm can identify states by access strings that are untimed sequences of
actions. This allows us to adapt existing algorithms for learning regular languages to the timed setting. The main additional
work is to learn the guards under which individual actions will be accepted. The constructed automaton has the form of a
zone graph, which, in general, can be doubly exponentially larger than aminimal DERA representing the same language, but
for many practical systems the zone graph construction does not lead to a severe explosion, as exploited by tools for timed
automata verification [6,9]. The resulting algorithm is called TL∗

sg . The query complexity of TL∗
sg for a sharply guarded EDERA

with n locations is

O

kn2ml


|Σ | + K

|Σ |


where l is the length of the longest guarded word queried and k is the size of alphabet Σ × G. The query complexity of TL∗

sg
for EDERA with n locations is

O

kn222|Σ |!2|Σ |(2K+2)|Σ |

ml


|Σ | + K
|Σ |


.

We also introduced the algorithm TL∗
nsg also for learning event-deterministic automata, which simultaneously reduces

the size of the automaton learned so far, however, for the price of a larger worst-case complexity.
Without the restriction of event-determinism, the problem of learning guards is significantly less tractable. We present

the algorithm TL∗
s that learns general DERA. The drawback of the algorithm that it constructs a DERA in spirit of a region

graph. The query complexity of TL∗
s for the simple DERAwith n locations is O(|Σ |

2n2mK). In verification for timed automata,
it is a well-known fact, that despite theoretically lower worst-case complexity, algorithms based on region graphs perform
less efficiently than algorithms based on zone graphs.

Together with [17], this paper describes initial efforts on learning algorithms for timed systems. Future work has to show
the benefit of these algorithms in practical applications as well as to examine the most suitable application area for each
algorithm.
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