
From the Institute for Software Engineering
and Programming Languages
of the University of Lübeck

Director: Prof. Dr. Martin Leucker

Synchronous Stream Runtime
Verification with Uncertainties and

Assumptions

Dissertation
for Fulfillment of

Requirements
for the Doctoral Degree

of the University of Lübeck

from the Department of Computer Sciences and Technical Engineering

Submitted by

Hannes Kallwies
from Bayreuth

Lübeck 2024

First referee: Prof. Dr. Martin Leucker

Second referee: Prof. Bernd Finkbeiner, PhD

Date of oral examination: August 23, 2024

Approved for printing. Lübeck, September 6, 2024

Synchronous Stream Runtime
Verification with Uncertainties and

Assumptions

A Generic Abstraction-based Theory for
Synchronous Monitoring

Hannes Kallwies

Acknowledgments
After the successful defense of this dissertation and during the preparation of the
final version, I have the opportunity to add this chapter with a few grateful words to
all the people who were directly or indirectly involved in the process of this thesis.

First of all, I would like to thank my supervisor Martin Leucker. For five years, he
has guided me on my way from being a novice in research to this doctoral thesis.
With his broad experience, he advised me on which topics to work on and which
directions to take in my research. He was always available and highly motivated for
fruitful discussions about this thesis and the papers we wrote together, even though
he was busy running an institute. It’s no exaggeration to say that this thesis would
not have been successful without his efforts.

I further wish to thank my second referee, Bernd Finkbeiner, for agreeing without
hesitation to review this thesis and to travel to Lübeck for the colloquium. I would
also like to thank Till Tantau for chairing the examination committee and ensuring
that everything went smoothly during the examination.

Special thanks are also due at this point to César Sánchez, who co-authored all four
papers on which this thesis is based, and who shared with me all his great intuition
in research and helped me to write down ideas in a nice and understandable way. I
also thank you, César, for the opportunity to visit you and your institute in Spain for
three months. Looking back, it was one of the periods of my Ph.D. I look back with
deepest joy. I loved the time in Madrid and all the great people from the IMDEA
Software team that I met there.

Not only in Spain, however, but also here at my institute in Germany, I have had the
opportunity to meet people with enchanting skills that I lack myself and from whom
I have learned so much. Thanks for supervising my bachelor and master thesis.
Thanks for writing papers and developing tools together, and thanks for chatting in
the office or explaining to me LATEX and functional programming “features” I never
dreamed existed (in my nightmares). And – of course – first and foremost thanks
for making the tool from chapter 6 of this thesis run on a doctor hat – to anticipate
the bitcoin price with a LOLA specification ;). (Dear future readers of this text, I’d
be so curious if bitcoin is actually still known when you read this text...).

vii

Acknowledgments

No less, I want to send a special thanks to all the amazing people I got to know
and spent my free time with throughout the last years. Thank you so much! For
proofreading this thesis, for meeting me at the café to accompany me while writing,
for playing theater with me or just going out for a drink to distract me and give me
a life besides writing this thesis, and for so much more.

Last but far from least, I would like to express my gratitude to my parents, who have
always supported and encouraged me on my way through school and university, and
given me wise counsel at life’s crossroads. Without your help, I would probably not
be writing this last sentence of the acknowledgments chapter in a doctoral thesis
right now.

viii

Abstract

Runtime verification (RV) is a technique from the field of formal methods that aims
at monitoring system executions for verification purposes. In particular, a so-called
monitor is used, which evaluates a run of the system under scrutiny either at runtime
(online monitoring) or afterwards (offline monitoring).

The monitors used for this purpose are usually not programmed in a conventional
way, but rather synthesized from a specification of the property to be monitored.
A particular challenge, however, is that the specification languages used, do not di-
rectly provide a strategy to evaluate the specification, e.g. if the described properties
depend on future events in the system. To produce optimal results, an online mon-
itor would then require a strategy to consider all possible extensions of the current
system execution. Also, the capabilities of a monitor often go beyond a simple eval-
uation of a given property over a fully observable system execution. For example,
there may be so-called uncertainties, i.e. points in the execution where the monitor
does not have access to exact data values, e.g. because sensors have failed or pro-
vide inaccurate measurements. There may also be additional knowledge about the
monitored system or its environment, called assumptions. Taking these into account
during monitoring can often lead to more accurate monitoring results.

This thesis studies monitoring of synchronous properties, in the presence of uncer-
tainties and assumptions. Synchronous properties are those that assign a property
value to each monitor input, but not to the points in time between these inputs. In
the thesis, the following aspects are addressed:

First, a definition of synchronous properties is worked out, together with a notion
of sound and perfect monitoring in various versions. Besides, it is shown how the
stream runtime verification language LOLA can be used as a general formalism for
synchronous properties.

Building on this, a general framework for efficient online monitoring of LOLA specifi-
cations in the presence of uncertainties and assumptions and a concrete instantiation
based on symbolic reasoning is presented. In particular, the thesis discusses how the
framework can be used to show when perfect monitoring of certain LOLA fragments

ix

Abstract

is possible and how to construct such monitors. The theory presented is essentially
based on foundations from the field of abstract interpretation.

Finally, three case studies and an implementation of the symbolic monitoring tech-
nique are used to demonstrate concrete application scenarios of the presented method.
In addition, the potentials as well as shortcomings and possible extensions of the
approach are discussed.

x

Zusammenfassung

Runtime Verification (RV) ist eine Technik aus dem Bereich der formalen Metho-
den, welche darauf abzielt, die Ausführung von Systemen zu Verifikationszwecken zu
überwachen. Konkret wird dabei ein sogenannter Monitor eingesetzt, der entweder
zur Laufzeit (Online-Monitoring) oder auch danach (Offline-Monitoring) den Lauf
eines zu überwachenden Systems auswertet.

Die hierfür verwendeten Monitore werden in der Regel nicht auf herkömmliche Weise
programmiert, sondern aus einer Spezifikation der zu überwachenden Eigenschaften
synthetisiert. Eine besondere Herausforderung besteht hierbei darin, dass die ver-
wendeten Spezifikationssprachen oft keine direkte Strategie mit sich bringen die
Spezifikationen auszuwerten, z.B. wenn die dort beschriebenen Eigenschaften von
zukünftigen Ereignissen im System abhängen. Um optimale Ausgaben generieren zu
können, müsste ein Online-Monitor dann alle möglichen Fortsetzungen der aktuel-
len Systemausführung berücksichtigen. Auch gehen die Fähigkeiten eines Monitors
oft über die bloße Auswertung einer Eigenschaft über einem vollständig einsichtigen
Systemlauf hinaus. So kann es z.B. sogenannte Uncertainties geben, d.h. Stellen im
Systemlauf, an denen dem Monitor keine exakten Datenwerte zur Verfügung stehen,
etwa weil Sensoren ausgefallen sind oder ungenaue Werte liefern. Darüber hinaus
können zusätzliche Informationen über das überwachte System oder seine Umgebung
vorliegen, die als Assumptions bezeichnet werden. Deren Berücksichtigung während
des Monitorings kann oft zu präziseren Ausgaben des Monitors führen.

Diese Arbeit untersucht das Monitoring von synchronen Eigenschaften unter Berück-
sichtigung von Uncertainties und Assumptions. Synchrone Eigenschaften sind solche,
die jeder Monitor Eingabe einen Eigenschaftswert zuweisen, nicht aber den Zeitpunk-
ten zwischen diesen Eingaben. In der Arbeit werden folgende Aspekte behandelt:

Zunächst werden synchrone Eigenschaften und der Begriff des korrekten und per-
fekten Monitorings in verschiedenen Ausprägungen definiert. Daneben wird auch
gezeigt, wie die Strom Runtime Verification Sprache LOLA als allgemeiner Forma-
lismus für synchrone Eigenschaften dienen kann.

xi

Zusammenfassung

Darauf aufbauend wird dann ein allgemeines Framework für das effiziente Online-
Monitoring von LOLA-Spezifikationen bei Vorliegen von Uncertainties und Assump-
tions zusammen mit einer konkreten Instanziierung auf Basis von symbolischem
Schließen vorgestellt. Dabei behandelt diese Arbeit im Speziellen, wie das Frame-
work benutzt werden kann, um zu zeigen wann ein perfektes Monitoring bestimmter
LOLA-Fragmente möglich ist und wie solche Monitore konstruiert werden können.
Die eingeführte Theorie basiert dabei im Wesentlichen auf Grundlagen aus dem Feld
Abstract Interpretation.

Abschließend werden konkrete Anwendungsfälle für die vorgestellte Methodik an-
hand von drei Fallstudien und einer Implementierung des symbolischen Ansatzes
aufgezeigt. Dabei werden sowohl Potentiale als auch Probleme des Ansatzes identi-
fiziert und mögliche Erweiterungen diskutiert.

xii

Contents
1. Introduction 1

1.1. Formal methods . 2
1.2. Runtime verification . 3

1.2.1. Stream runtime verification 5
1.2.2. Monitoring . 6

1.3. Contributions of this work . 8
1.4. Related work . 10
1.5. Thesis structure . 12

2. Preliminaries 15
2.1. Basic concepts . 15

2.1.1. Traces . 15
2.1.2. Streams . 16
2.1.3. Timed streams . 17
2.1.4. Ordered sets and lattices . 20
2.1.5. Algebras . 21

2.2. Runtime verification . 24
2.2.1. Linear temporal logic . 27
2.2.2. Monitor constructions . 31
2.2.3. Metric (interval) and signal temporal logic 41
2.2.4. Monitoring under uncertainty and assumptions 44

2.3. Stream runtime verification . 50
2.3.1. LOLA . 52
2.3.2. TeSSLa . 63
2.3.3. Striver . 64

2.4. Fixed point computation and abstract interpretation 65
2.4.1. Recursive computations as fixed point equations 68
2.4.2. Abstract fixed point computation 70
2.4.3. Usage of abstractions in runtime verification 74

3. A generalized monitoring theory 77
3.1. Monitoring . 77

xiii

Contents

3.2. Initial monitoring . 78
3.3. Pointwise monitoring . 80

3.3.1. Motivation . 80
3.3.2. Pointwise properties and their monitoring 82
3.3.3. Extensions . 88

3.4. Connection to stream runtime verification 91
3.4.1. LOLA specifications as pointwise properties 91
3.4.2. Embedding of pointwise properties in LOLA 92
3.4.3. LOLA monitoring . 99
3.4.4. Other SRV languages . 104

3.5. Summary . 105

4. A LOLA monitoring framework 107
4.1. Basic notations . 108
4.2. LOLA semantics revisited . 108

4.2.1. Monitoring semantics for LOLA 109
4.3. Recurrent LOLA monitoring . 114

4.3.1. Monitoring reductions in LOLA 114
4.3.2. Prerequisites for monitor construction 116

4.4. An abstraction-based recurrent LOLA monitoring framework 120
4.4.1. Concrete recurrent LOLA monitoring 120
4.4.2. Abstract recurrent LOLA monitoring 130
4.4.3. Abstract recurrent LOLA monitoring algorithm 138

4.5. Summary . 141

5. Symbolic LOLA monitoring 143
5.1. Symbolic constraints . 143

5.1.1. Encoding of streams and events 144
5.1.2. Symbolic configuration abstraction 146
5.1.3. Symbolic transformer abstraction 148

5.2. Constraint rewriting . 149
5.2.1. The boolean fragment . 152
5.2.2. The linear algebra fragment 153
5.2.3. The linear arithmetic fragment 157

5.3. Symbolic monitoring . 164
5.3.1. Symbolic transformer semantics 164
5.3.2. Symbolic transformer application 169
5.3.3. Symbolic monitoring algorithm 170
5.3.4. Overall example . 172
5.3.5. Remarks . 177

5.4. Summary . 179

6. Application and evaluation 181
6.1. Implementation . 181

xiv

Contents

6.2. Evaluation . 183
6.2.1. Case studies and evaluation results 184

6.3. Discussion . 196

7. Conclusion and future work 199
7.1. Summary . 199
7.2. Future work . 200

A. Basic notations 203

B. Measurement tables 207

Bibliography 211

Index 227

xv

1
Introduction

Especially since the emergence of personal computers in the second half of the 1970s,
computing machinery has found its way into almost every area of modern life. Be-
yond the private sphere, computers are used in everyday office life, in industry, and
embedded in a wide variety of devices where they help to make processes much
faster and more efficient. It’s no exaggeration to say that it’s hard to imagine living
without them these days.

In addition to the enormous productivity gains, their widespread use is fraught with
dangers too, especially in the case of a deviation between the desired and the actual
behavior, often due to software bugs. In safety-critical applications (e.g. airplanes
or nuclear power plants), even minor errors can have disastrous consequences, as
for example in the crash of NASA’s mars climate orbiter, where the use of different
units of measurement throughout the code base led to its destruction [Mis99]. On
the other hand, software bugs can also be easily exploited by attackers, posing
a substantial threat to individual companies, industries or even states. With the
increasing complexity of software in recent years, this problem has grown. Especially
when machine learning techniques are used, as is increasingly the case in software
applications, the behavior of the software is usually no longer fully predictable by
its developers.

For these reasons, the area of secure and reliable software development is gaining
more and more attention in both academia and industry. A fundamental part of
this field is the development of tools, e.g. programming languages, that avoid the
creation of erroneous code up front, and the study of how the software development
process can be shaped to enable the creation of quality-assured software. Finally,
a further integral component are formal techniques that can be used to check or
even prove that the functionality of software conforms to its specification. This
dissertation finds itself located in this subarea, called formal methods.

1

1. Introduction

1.1. Formal methods

Formal methods are described as “mathematically and logically based framework[s]
for specifying, developing, and verifying systems” [BNK16]. Thereby specification
names a formal description of the system behavior and verification the process of
examining whether a system (called system under scrutiny (SUS)) adheres to its
specification [IEE98, LS09, BNK16]. As such the term is to be distinguished from
validation, which deals with the question if the system satisfies the requirements of
the user [Ins13, IEE98].

Prominent manifestations of formal methods are theorem proving, static analysis,
model checking and runtime verification. The first three of these techniques aim
at the irrefutable proof that a system behaves correctly. Theorem proving [Lov78,
BC04] does so by providing tools to write (partially automated) computer-verifiable
proofs that a program is correct. Static analysis [RY20] names a family of code anal-
ysis techniques to infer properties about its behavior. Model checking [CGK+18]
finally relies on techniques to check automatically that a formal representation
(model) of the SUS satisfies the specification on all possible executions.

Besides concrete algorithms all of the mentioned approaches rely on a formal spec-
ification of the desired system behavior. Therefore several logics and specification
languages have been developed over time, starting from simple logics like linear
temporal logic (LTL) [Pnu77]. In general these specification languages are formal
languages that precisely describe properties of the system. However, in difference to
programming languages, they tend to have a more declarative character, describing
the system behavior or parts of it, rather than indicating the particular computation
steps. Furthermore they often involve a temporal dimension that enables them to
relate the current program state with past and future ones.

While theorem proving is complex and increases the effort of software development
tremendously, static analysis and model checking suffer from the problem that in gen-
eral (even simple) semantic properties of Turing-complete programming languages
cannot be automatically decided (see [Ric53]).

Usually not considered a formal method, but also used for program verification, is
testing. Testing consists of executing the SUS on a predefined set of inputs and
checking the behavior against a set of (usually manually) prepared outputs. As such
testing is perfectly feasible, yet can never provide the proof that a system is correct
for inputs which have not been tested (see [Dij72]).

Runtime verification (RV) [LS09], often classified as partial or lightweight verifica-
tion technique, finds itself located between full verification approaches (like model
checking or static analysis) and conventional testing [LS09] and can be considered
a compromise between both. In difference to the other formal methods, runtime
verification does not consider every possible execution of a system but only a single

2

1.2. Runtime verification

run, for which it checks satisfaction of the specification. The major part of this
thesis deals with the topic runtime verification.

1.2. Runtime verification

Ô
Executable

(SUS)

D
Source
code

A
Obeservation
configuration

Ó
Observation
mechanism

A
Specification

.
Monitor

User/developer

User

Trace VerdictInputs

Figure 1.1.: General runtime verification architecture (figure based on [KLS+22b]).

In the standard RV setting [LS09, BFFR18, FKRT21, KLS+22b], visualized in fig-
ure 1.1, a so-called monitor is generated automatically from a correctness property,
formalized in a specification, and supervises whether the current run of the system
under scrutiny (SUS) fulfills this property.

To this end, the monitor receives a sequence of information about the SUS (so-called
observations, often states, i.e. mappings of the variables to their current values or
notifications about relevant events in the system like function calls or variable as-
signments), called trace. This trace is usually produced by an observation/instru-
mentation mechanism, which tracks the execution of the SUS and yields the relevant
inputs for the monitor. There is a variety of such observation tools. They differ in
aspects like intrusiveness, i.e. whether the observer manipulates the (timing) be-
havior of the observed system – e.g. by directly instrumenting the binary’s (source)
code – or performs non-influencing observation. In addition to software observers,
there are also fully non-intrusive hardware tracing tools, which extract the obser-
vations of the SUS for example directly from the tracing interface of the SUS’s
CPU (e.g. [ADFdB13, DGH+17, CHS+18]). In general, the SUS is not limited to a
pure computing system, but may also include sensors and actuators. In the case of
monitoring such cyber-physical systems (CPS), the input trace usually also includes
sensor readings and other measurements from the environment.

The correctness property itself is formalized in a specification by means of a dedi-
cated formalism (e.g. a logic like LTL). The instructions on which outputs shall be
generated by the observer tooling are given through an observation configuration.

3

1. Introduction

However, some specification formalisms also allow an embedding of this configura-
tion directly in the specification language (e.g. [KLS+22b]).

One generally distinguishes between online and offline runtime verification, depend-
ing on whether the monitor is executed during the observed system’s runtime or
works on pre-recorded traces.

In the traditional setting the monitor produces verdicts during receiving the SUS’s
observations, which indicate to which degree the correctness property is satisfied by
the current run. In the simplest case these verdicts are a value from the boolean
domain, i.e. true or false, depending on whether the specified behavior is violated or
not. However in more advanced settings also other domains, like numbers between
0 and 1, expressing a measure to which degree the property is satisfied or similar
are thinkable [LS09].

The ongoing research in the field runtime verification mainly focuses on the spec-
ification formalisms and their properties, like conciseness and expressiveness, and
algorithms for the efficient synthesis of monitors from specifications. However also
related topics, like trace generation or runtime reflection [LS09] (i.e. the combination
of verification and automated failure mitigation), are investigated. An overview of
relevant topics in RV can be found in [SSA+19, FKRT21].

More recently, extensions to RV have been considered that depart from the tradi-
tional idea of monitoring a correctness property over the entire trace and casting
a verdict. Instead, monitors are used to perform more complex computations on
the received observations, such as determining statistical values or providing debug
information about faulty locations. A prominent approach in this direction is stream
runtime verification (SRV), where the monitored property is described as a stream
transformation.

A notable feature of these SRV languages and several other recent RV approaches is
that they assign a value to each position of the input trace. Traditional formalisms
instead tend to assign a single value, often a truth value, to the whole trace, e.g. to
indicate whether the trace is satisfied by the property as a whole, or not. While for
the latter monitoring is (especially in the case of online monitoring) concerned with
producing outputs, that enclose this single property value as good as possible, the
previously named formalisms necessitate different monitoring techniques being able
to answer for different trace locations. For online monitoring, a common approach
is to cast the value for a given trace position once all the inputs on which the value
depends are available. This is not necessarily for the current position up to which the
monitor has received inputs, because the specification may relate a property value
at a particular position to past and future input values. As a result, this monitoring
approach can lead to a situation where outputs can only be cast when the full input
trace is available. A specification could for example define the property value at
trace position t as the sum of all future input values from t to the trace end. In

4

1.2. Runtime verification

this case the monitor would have to receive all inputs (i.e. the full trace) in order to
provide the values for the specific trace positions.

1.2.1. Stream runtime verification

As mentioned, the fundamental concept of stream runtime verification is to consider
the monitoring process as stream transformation from input streams, which originate
from the observed system, and bear information about events that occur inside of
it, to output streams. The output streams contain the results of the monitoring,
i.e. verdicts about the correctness or any other quantitative information about the
monitored system. Streams in this context are (possibly timed) sequences of data
events, whose type is - from a theoretical point of view - usually not restricted to
specific domains. The monitor can ultimately be considered as an execution engine
of the stream-based specification.

Stream runtime verification languages usually define three different kinds of streams
in their specifications. Input streams, whose data is passed from outside to the moni-
tor. Intermediate streams (sometimes also called defined streams) which are defined
as the application of certain stream operators on input or intermediate streams.
These streams are computed internally by the monitor and usually represent interim
results of the computation. Finally some of the intermediate streams are marked as
output streams. The events on these streams are cast as monitor outputs.

Stream runtime verification was pioneered by the language LOLA [DSS+05]. LOLA
belongs to the family of synchronous stream runtime verification languages (see
[GDS20]). In this setting, the set of instants, i.e. points in time at which events can
occur on input and output streams, is discrete. Thus there is a fixed “grid” where
each stream of the specification has an event, but not in between. In the case of
LOLA, the instant domain is simply the set of natural numbers between 0 and a
maximal timestamp tmax.

input vel: R≥0

err := err [-1|false] ∨ (vel[now] ≥ 5)

output err

3 4 7 2

ff ff tt tt

vel

err

Figure 1.2.: Example LOLA specification and visualization.

A very simple LOLA specification together with a visualization can be found in
figure 1.2. The specification defines an input stream vel (for velocity) that receives
inputs of type R≥0, which could for example come from the speed sensor of an
autonomous system. Output stream err of boolean type indicates whether vel was
greater or equal 5 now or at any instant in the past. This is done with help of the

5

1. Introduction

LOLA offset operator err[-1|false]. Because of the -1 offset it takes the value of
stream err one instant before with false as default value at instant 0, when there
is no previous instant (similar to the negative offset operator, LOLA also supports
offset operators with positive offset, which refer to future events). Altogether the
definition of err effects the corresponding stream to bear a true event, if the current
event of vel exceeds or equals 5 or err’s previous event was true. Right to the
specification there is a visualization of an input stream for the specification and its
corresponding output stream err. A full introduction to syntax and semantics of
LOLA will follow in section 2.3.1 of this thesis.

Another SRV paradigm is that of asynchronous stream runtime verification [GDS20]
as followed by the SRV language TeSSLa [CHL+18]. In difference to the synchronous
setting the instant domain might be dense, i.e. non-discrete, e.g. the set of all reals.
Additionally the streams in this setting may have events only at a subset of instants
and a specification can have output events at instants where there are no input
events.

The main focus of this thesis will be on the monitoring of synchronous, particularly
LOLA specifications. However also adjustments to the asynchronous setting will
briefly be discussed but details left for future work.

1.2.2. Monitoring

In runtime verification a monitor is said to be synthesized from a specification. For
most RV approaches this synthesis goes beyond a pure execution of the specification
and requires non-trivial constructions.

On the one hand this is because runtime verification formalisms focus on a convenient
description of complex temporal (correctness) properties rather than providing the
single steps the monitor should perform. This is e.g. reflected in the capability of
lots of RV formalisms to refer to events that will occur in the future. An online
monitor construction for such formalisms in turn requires a strategy to evaluate
them without the future being actually available. To do so, monitors usually need a
technique to efficiently consider all future continuations of the received trace, which
is often done by exploration of the monitoring state space during the synthesis. The
ability of monitoring approaches to consider all possible future trace continuations
and to cast most precise verdicts as soon as possible is called anticipation [BLS10].

On the other hand monitors should adhere to certain execution guarantees. Espe-
cially in online monitoring the complexity of each monitoring step should be con-
stant. This often requires sophisticated strategies to extract and store the gist of
the received trace so far, as memorizing the whole trace would directly lead to non-
constant resource demands. However, whether a constant-resource monitoring is
possible at all is of course also a matter of the utilized formalism and the concrete
property.

6

1.2. Runtime verification

Finally, runtime verification approaches often also go beyond pure trace checking or
evaluation. Two extensions of the basic setting, which will play a significant role in
this thesis, are monitoring under uncertainty and assumptions.

Uncertainties (in the inputs) denote the situation that not all events of the input
trace or input streams are fully accessible. Either the value or existence of some
input events is completely unknown or imprecise, i.e. a set of concrete values is
possible. The presence of uncertainties generally makes monitoring harder, because
the monitor has to consider more potential system states and handle them in parallel.
However uncertainties play an important role in runtime verification as oftentimes
not all parts of the supervised system are observable, though they play a role in the
monitored property. Likewise monitor inputs resulting from cyber-physical systems
often rely on sensor readings with a measurement error and thus inherently contain
uncertainty.

Assumptions can be considered as the natural counterpart of uncertainty. An as-
sumption describes a piece of additional knowledge about the observed system or
the environment in which system and monitor run [HS20]. Assumptions restrict the
set of actually possible input traces or streams that can be passed to the monitor.
They can thus be used in the monitoring process to rule out uncertain input readings
or future continuations of the trace, thereby providing an opportunity for runtime
verification that may lead to more accurate monitoring results.

Although the user of course has to provide the concrete assumptions in the runtime
verification process, the handling of uncertainties and assumptions is usually a mon-
itoring feature and should not require the user to adjust the specification, as from
a logical point of view the monitored (correctness) property does not change with
the presence of uncertainties and assumptions. As a consequence the capability of
a monitor to deal with assumptions and uncertainties usually requires an enhanced
monitor synthesis strategy, but is mostly transparent for the user of the monitor.

input vel: R≥0

diff := vel[now] - vel [-1|0]
err := err [-1|false] ∨ (vel[now] ≥ 5)

output err

Assumption :
|diff[now] - diff [-1|0]| ≤ 1

1 2 [4,5] . . .

1 1 2 [1,3] [0,4]

ff ff ff tt tt

vel

diff

err

Figure 1.3.: Example of anticipatory LOLA monitoring under uncertainties and as-
sumptions.

The interplay of monitoring with uncertainties and assumptions is illustrated in
the following example (specification and visualization can be found in figure 1.3):
Imagine an anticipatory LOLA monitor for the specification from figure 1.2 with an

7

1. Introduction

additional stream diff that computes the speed difference between the current and
previous instant. Now take the additional assumption: The value of diff can vary
by at most 1 from the value one step ago. In other words: the absolute value of the
the velocity’s second derivation is bounded by 1.

Imagine the monitor in the example has received an event with value 1, followed by
an event with value 2 on the input stream. As third event it received the uncertain
input reading [4, 5], i.e. the actual value is somewhere in the interval between 4 and
5. The rest of the input stream is not available yet.

An anticipatory monitor is already able to determine all events on output stream err
without having to receive further inputs. This is because of the following reasoning:
The difference between the first two vel events (i.e. the value of diff at the second
instant) is 1. Thus by assumption, the third event of stream diff, i.e. the difference
between the second and third event on stream vel, can only be between 0 and 2.
This implies, however, that the only possible value of stream vel at the third instant
is 4. A higher value would cause the difference to be more than 2 and thus break
the assumption. The value of stream err is thus false at this instant. As further
consequence, the difference between second and third event of stream vel (i.e. the
value of diff at the third instant) can be determined as 2. This in turn causes the
value of diff at the subsequent, fourth instant to be between 1 and 3 due to the
assumption, and thus the value of the next velocity reading (which has not yet been
received) must be between 5 and 8. With this information the anticipatory monitor
can finally conclude that err at the fourth instant is true and by definition also at
all following positions.

1.3. Contributions of this work

This thesis studies general runtime verification of synchronous properties. This in-
cludes the anticipatory monitoring of arbitrary synchronous formalisms under pres-
ence of uncertainty and assumptions.

The work is based on a formal classification of synchronous properties and their
monitoring. In this respect, the thesis is not restricted to correctness properties as
used in traditional runtime verification, but allows for arbitrary value domains. Two
types of properties are distinguished, initial properties as used in traditional runtime
verification, where a single value is assigned to a complete input trace, and pointwise
properties, which provide a value for each trace location. The pointwise properties
can be seen as a generalization of the initial properties. The SRV language LOLA
is also shown to be a general formalism for finite synchronous pointwise properties.
Thus, the work bridges the gap between traditional runtime verification formalisms,
like LTL, and more advanced approaches, such as stream runtime verification.

8

1.3. Contributions of this work

Based on the concept of pointwise properties, several novel monitoring approaches
(and conditions for their perfectness under uncertainty and assumptions) are defined.
This covers in particular recurrent monitoring, where the monitor always yields
outputs about the property valuation at the current instant and k-offset recurrent
monitoring where the outputs are delayed or preponed by a fixed offset. Finally so-
called random access recurrent monitoring is proposed, where the monitor operates
as a “question answering machine” being able to cast outputs for arbitrary trace
locations within a query domain.

The second part of the thesis then covers an approach to recurrent LOLA monitoring
in the presence of uncertainty and assumptions. Specifically, a general framework
based on abstract interpretation [CC77, Cou21] is introduced, which allows the
creation of a sound or perfect monitor if an adequate abstraction for the stream
values is available. In addition, a concrete instantiation of this general framework,
based on symbolic representation of monitoring states combined with SMT solving,
is presented and its perfectness for some specific LOLA fragments is investigated.
The proposed recurrent LOLA monitoring approach is further shown to be able to
solve the initial and random access recurrent monitoring problem for several relevant
query domains.

Finally, a prototypical implementation of the aforementioned symbolic approach and
the opportunities and limitations of a practical application are discussed on the basis
of three case studies.

Overall, the main contribution of this work consists in the introduction of a gen-
eral, abstract framework that provides a theory on how synchronous formalisms can
perfectly or soundly be monitored in the presence of uncertainties and assumptions,
and in the development of a symbolic monitoring approach as a powerful realization
of this framework.

The content of this thesis is mainly based on the following four publications:

1. [KLSS22] Hannes Kallwies, Martin Leucker, César Sánchez, and Torben Schef-
fel. Anticipatory recurrent monitoring with uncertainty and assumptions. In
Thao Dang and Volker Stolz, editors, Runtime Verification - 22nd Interna-
tional Conference, RV 2022, Tbilisi, Georgia, September 28-30, 2022, Pro-
ceedings, volume 13498 of Lecture Notes in Computer Science, pages 181–199.
Springer, 2022

where the concept of anticipatory recurrent monitoring, i.e. monitoring of
pointwise synchronous properties together with reasoning about the future
is introduced.

2. [KLS22a] Hannes Kallwies, Martin Leucker, and César Sánchez. Symbolic
runtime verification for monitoring under uncertainties and assumptions. In
Ahmed Bouajjani, Lukás Hoĺık, and Zhilin Wu, editors, Automated Technology
for Verification and Analysis - 20th International Symposium, ATVA 2022,

9

1. Introduction

Virtual Event, October 25-28, 2022, Proceedings, volume 13505 of Lecture
Notes in Computer Science, pages 117–134. Springer, 2022

where symbolic runtime verification for LOLA, but restricted to past specifi-
cations, is studied.

3. [KLS23] Hannes Kallwies, Martin Leucker, and César Sánchez. General antic-
ipatory monitoring for temporal logics on finite traces. In Panagiotis Katsaros
and Laura Nenzi, editors, Runtime Verification - 23rd International Confer-
ence, RV 2023, Thessaloniki, Greece, October 3-6, 2023, Proceedings, volume
14245 of Lecture Notes in Computer Science, pages 106–125. Springer, 2023

where an anticipatory monitoring algorithm for boolean LOLA and several
finite logics over atomic propositions is developed and implemented.

4. [HKLS24] Raik Hipler, Hannes Kallwies, Martin Leucker, and César Sánchez.
General anticipatory runtime verification. In Arie Gurfinkel and Vijay Ganesh,
editors, Computer Aided Verification - 36th International Conference, CAV
2024, Montreal, QC, Canada, July 24-27, 2024, Proceedings, Part II, volume
14682 of Lecture Notes in Computer Science, pages 133–155. Springer, 2024

where a general anticipatory monitoring approach for LOLA is presented.

1.4. Related work

The use of temporal logics to reason about the correctness of computer programs
was first studied by Amir Pnueli in his 1977 work [Pnu77], where linear temporal
logic (LTL) was employed to describe the correct temporal behavior of the system.
Pnueli’s approach was later adapted to model checking and from 2000 on the field
of runtime verification emerged. Besides the development of tools and ecosystems
for runtime verification the research in this area extended the basic approach of
checking whether a run adheres to an LTL formula into various directions.

On the one hand (not restricted to runtime verification, but in general in the area of
formal methods) several new logics, often extensions of standard LTL (see [MP91])
have been developed. In [LPZ85, GV13] adaptions of LTL’s semantics to finite traces
have been studied. In [LS07, SL10] LTL was extended with special operators to check
if substrings of the trace match a regular expression, to gain higher expressiveness. A
similar approach was followed by De Giacomo and Vardi in [Var11, GV13] where LTL
has also been enriched with regular expressions. In 1990 Koymans investigated the
extension of LTL with time by adding time bounds to the operators to give temporal
restrictions when they have to hold [Koy90]. The resulting metric temporal logic
(MTL) was adjusted to metric interval temporal logic (MITL) [AFH91] which has
later been extended to signal temporal logic (STL) [MN04]. STL is able to express
properties of real-valued streams (signals) and is therefore often used for monitoring

10

1.4. Related work

of cyber-physical systems. With LOLA [DSS+05] the paradigm of stream runtime
verification was introduced which was subsequently adopted and further developed
by numerous other formalisms: Lola 2.0 [FFST16], RTLola [FFS+19, FFST17],
Striver [GS18], TeSSLa [LSS+18, CHL+18] and Copilot [PGMN10]. Stream run-
time verification languages are closely related to synchronous dataflow program-
ming languages, whose most prominent representatives are Lustre [CPHP87], Es-
terel [BG92] and SIGNAL [GL87] and to the field of functional reactive program-
ming [EH97]. Other well-known advanced formalisms for runtime verification in-
clude QTL [HPU17], mission-time LTL [RRS14], Eagle [GH05], RuleR [BRH10],
MFOTL [BHKZ11], and many more. Besides more expressive formalisms, another
direction in the development of RV languages is to make them more natural language
like and thus easier to use. Corresponding approaches are e.g. the LTL extension
SALT [BLS06b] or FRETish [GPMS20].

On the other hand research in runtime verification also focuses on approaches for
monitoring. For online monitoring, this mainly covers strategies how to cast precise
verdicts for trace prefixes that do not directly reveal if a monitored property is ulti-
mately satisfied or not. For future LTL, monitoring semantics and belonging monitor
constructions have been introduced which assign values from a truth domain to a
trace prefix, e.g. LTL3 [BLS06a] or LTL4 [Leu11]. As quality characteristic, [BLS10]
defined the concepts of impartiality and anticipation. While these approaches are
all based on the initial semantics of future LTL, an online monitoring strategy for
past LTL w.r.t. its pointed semantics was presented in [HR02].

The presence of uncertainty in the input trace which is passed to the monitor,
has also been studied in several fashions. In general, one can distinguish between
approaches that consider (learned) probability distributions when inputs are noisy
or unknown (e.g. [SBS+11]), and those that assume a set of possible values without
further information about their likelihood (e.g. [LSS+19]). A common approach for
the latter one is to compute in an abstract domain which is capable of representing
sets of potential concrete values. This idea was first applied to runtime verification
in [LSS+19]. Another foundational work on uncertainty in runtime verification is
[KHF19, KHF21], where Kauffman et al. provide a theoretical consideration of the
circumstances under which a property is ignorant of inaccuracies or gaps in the
input trace. A detailed overview of the general topic of runtime verification under
uncertainty can be found in [THK23].

The incorporation of knowledge about the system during the monitoring process
and the resulting relation to model checking was first discussed in [Leu12]. The idea
was studied for LTL under the term “assumption” in [CTT19] and later in [CTT21]
for an extension of LTL with linear arithmetic. In [HS20] theoretical foundations of
monitoring under assumptions are laid.

In recent times also the usage of symbolic approaches in monitoring has come to
the focus of research, e.g. [WAH19, CTT19]. The techniques used in [CTT21]
and [FMPW23] also belong to this family and are the closest ones to the symbolic

11

1. Introduction

monitoring strategies presented in this thesis, as they allow for anticipatory mon-
itoring of advanced (linear arithmetic) properties. They use symbolic constraints
to describe the current monitoring state and solve the monitoring problem – in the
case of [CTT21] also under presence of uncertainties and assumptions – by sym-
bolic reasoning. This thesis however differs from them in that they both restrict
to the monitoring of correctness and not general properties. Likewise the approach
for anticipation varies quite heavily. While [CTT21] uses bounded model checking
from the current position and [FMPW23] performs a (precomputed) emptiness per
state check of the current monitor state by exploring the whole space state (and
is thus only guaranteed to terminate in case of a finite one), the strategy followed
in this thesis is to symbolically unroll the specification from backward. In case of
undecidability or intractability of anticipatory monitoring, the symbolic technique
from this thesis falls back to an over-approximation, ending up with a sound but
imperfect monitor (defined later). Furthermore, this work suggests a general antici-
patory monitoring theory with uncertainty and assumptions and is not restricted to
a symbolic implementation.

The basis for the general monitoring strategy in this thesis is the concept of abstrac-
tion, which is a fundamental approach in the area of static analysis as well. Several
theoretical findings are based on abstract interpretation [CC77, CC92, Cou21], pre-
sented by Patrick and Radhia Cousot in 1977, which in its most general form serves
as a framework for construction of sound fixed point approximations.

The idea of symbolic computation has also been explored in program verification.
Most notably in symbolic execution [Kin76], a method introduced in 1976 by J.C.
King as a debugging technique for computer programs. It is also a common approach
to use symbolic descriptions of program states in static analysis, for example studied
in [CH78] by Cousot and Halbwachs in 1978.

1.5. Thesis structure

In the second chapter of this thesis basic formalisms and concepts from the areas
runtime verification and fixed point computation are introduced.

Chapter 3 then presents a general monitoring theory. It provides formal definitions
for initial and synchronous pointwise properties and presents online monitoring ap-
proaches for them, namely initial, recurrent, k-offset and random access recurrent
monitoring. Further it discusses the notion of sound and perfect monitoring under
uncertainty and assumptions with respect to these monitoring techniques. Finally it
is shown that LOLA is a general formalism for synchronous properties and transla-
tions from LTL, M(I)TL and STL to LOLA are provided. Furthermore the standard
LOLA monitoring algorithm is classified in terms of the previously defined monitor-
ing theory.

12

1.5. Thesis structure

Anticipatory online monitoring of arbitrary LOLA specification under uncertainty
and assumptions is studied in chapter 4. Therefore a general semantics for perfect
online LOLA monitoring is introduced. Subsequently the chapter studies recurrent
monitoring under uncertainties and assumptions:It is shown how several problems of
practical relevance, including random access monitoring for certain query domains,
can be reduced to recurrent monitoring. Thereafter, a generic abstraction-based
recurrent monitoring theory is presented.

In chapter 5 an instantiation of this generic framework using symbolic constraints is
outlined. To this end, the encoding of stream events and their relation in symbolic
constraint sets – also in the presence of uncertainty – is addressed. Furthermore,
rewriting strategies for these sets into a more concise form for different classes of
constraints are discussed, which form the basis for resource-efficient monitoring.
Finally, a symbolic monitoring approach and results on the perfect and efficient
monitorability of certain LOLA fragments are presented.

Chapter 6 covers an evaluation of a prototypical implementation of the symbolic,
anticipatory LOLA monitoring approach from the previous chapter. Therefor the
strengths and weaknesses of the approach are examined on the basis of three practical
case studies.

In chapter 7 the results of the overall work are summed up and discussed again.
Additionally, directions for future research are identified.

13

2
Preliminaries

In advance of the main contribution of the thesis, this chapter contains the theo-
retical foundations that will be used in the following chapters. It starts with the
introduction of basic concepts used throughout the work, continues with a general
overview of (stream) runtime verification, provides syntax and semantics of various
popular formalisms and presents common monitoring constructions. Furthermore,
it prepares the necessary technical details in the areas of fixed point computation
and abstract interpretation.

2.1. Basic concepts

We start with basic definitions of traces and (timed) streams, ordered sets and
lattices as well as algebras, which will play an important role in the remainder of
the work.

2.1.1. Traces

As outlined in the previous chapter, runtime verification (RV) is concerned with
monitoring of system runs. Therefore, we will start with a formal introduction to
different concepts of these runs.

The most basic notion is to consider a run as a (finite or infinite) sequence of
system observations. These observations are elements from a possibly infinite data
domain.

Definition 2.1 (Data domain).
A data domain is a set of data values. A finite data domain is called alphabet.

15

2. Preliminaries

We call a recorded sequence of values from a data domain trace. In the case of a
finite data domain also word.

Definition 2.2 (Finite and infinite trace).
Let Σ be a data domain.

A finite sequence w = ⟨a0, a1, . . . , an⟩ with ai ∈ Σ is called a finite trace over
Σ. An infinite sequence w = ⟨a0, a1, . . . ⟩ with ai ∈ Σ is called an infinite trace
over Σ.

A finite trace over a finite alphabet Σ is called a word. An infinite trace over
a finite alphabet Σ is called an ω-word.

The expression Σ∗ denotes the set of finite traces over Σ, Σn the set of traces
of length n ∈ N over Σ, Σω the set of infinite traces over Σ and Σ∞ = Σ∗ ∪Σω.

We will use |w| to denote the length of a finite trace w ∈ Σ∗, for w ∈ Σω we have
|w| =∞. We write w(i) to refer to w’s element (a.k.a. letter) at position i ∈ N, with
0 ≤ i < |w|. Additionally we use w(i) = ⟨w(0), w(1), . . . , w(i)⟩ ∈ Σ∗ for w’s prefix up
to letter i. For w = ⟨a1, a2, a3, . . . ⟩ ∈ Σ∞ we also use the notation w = a1a2a3
With ϵ = ⟨⟩ ∈ Σ∗ we denote the empty trace.

2.1.2. Streams

A significant part of this thesis deals with stream runtime verification. This special
form of runtime verification conceives the inputs and outputs of the monitor as
so-called streams.

The most basic form of streams are synchronous event streams without time infor-
mation.

Definition 2.3 (Synchronous event stream; based on [DSS+05]).
A synchronous (event) stream over data domain D is a total function s : T→ D
where T ⊆ N is either a finite (T = {0, 1, . . . , tmax}) or an infinite (T = N)
instant domain.

STD is used to denote the set of all synchronous event streams over data domain
D and instant domain T.

A synchronous event stream is called finite if and only if T is finite, else infinite.

Unless otherwise stated, we assume throughout this thesis that the time domain of
the streams, including tmax in the case of finite streams, is known. Note, however,

16

2.1. Basic concepts

that this is not always necessarily the case in standard online monitoring scenarios,
where a monitor continuously receives data events, but does not know about the
total number that will eventually be read. If T is clear from the context, we will
also use SD to denote STD.

Note also that synchronous streams are essentially equivalent to traces of fixed length
tmax + 1 or infinite traces, respectively. For this reason we can identify the two
concepts and use synchronous event streams and traces of corresponding lengths
interchangeably.

2.1.3. Timed streams

An extension to the concept of streams as defined above is obtained by allowing T to
be an arbitrary time domain and not restricted to a contiguous subset of N. For time
domains we require a unique smallest element and an order on the timestamps.

Definition 2.4 (Time domain; based on [Koy90]).
A time domain is a totally and strictly ordered structure (T, <, 0) with a small-
est element 0. An element of T is called timestamp.

A time domain (T, <, 0) is called finite if and only if there is a tmax ∈ T such
that

∀t ∈ T. t ≤ tmax.

Further, a time domain (T, <, 0) is called non-discrete if and only if

∃t ∈ T\{0}. ∀t′ ∈ T. t′ < t→ ∃t′′ ∈ T. t′ < t′′ < t

otherwise discrete.

It is considered dense if and only if

∀t, t′ ∈ T. t′ < t→ ∃t′′ ∈ T. t′ < t′′ < t.

When · < · and 0 are clear from the context we just use T to denote the time domain.
Discrete time domains can be iterated according to their order. Non-discrete time
domains are exactly those where you can have an infinite ordered sequence of in-
creasing timestamps with a bound. If there are infinitely many timestamps between
all pairs of timestamps the domain is said to be dense. A dense time domain is by
definition always non-discrete.

Formalisms over timed streams usually require some kind of distance measure be-
tween the elements of the time domain. In this thesis we restrict ourselves to the

17

2. Preliminaries

special case of an R≥0 distance measure. In general, however, arbitrary other mea-
sure domains are conceivable, as long as they satisfy certain criteria that guarantee
a sound computation on them (see [Koy90]).

Definition 2.5 (R≥0 time distance measure; based on [Koy90]).
A structure (T, <, 0,⊖) is called time domain with R≥0 distance measure if
(T, <, 0) is a time domain and ⊖ : T×T→ R≥0 is a distance measure between
two timestamps s.t.

– t⊖ t′ = 0⇔ t = t′,
– t⊖ t′ = t′ ⊖ t,
– t < t′ < t′′ ⇒ (t′′ ⊖ t) = (t′ ⊖ t) + (t′′ ⊖ t′).

Common time domains are

– the discrete, infinite time domain (N, <, 0, | · − · |),
– the discrete, finite time domain (N ∩ [0, tmax], <, 0, | · − · |) for tmax ∈ N
– the dense, infinite time domain (R≥0, <, 0, | · − · |) and
– the dense, finite time domain (R ∩ [0, tmax], <, 0, | · − · |) for tmax ∈ R≥0.

where the distance measure is chosen as the absolute difference between two times-
tamps.

When clear from the context we use N, Ntmax , R≥0, R≥0,tmax respectively to denote
these time domains.

Based on the notion of a time domain, we define timed streams as extension of
synchronous event streams. The concept of timed streams is equivalent to that
of metric models, as used in metric temporal logic (MTL) [Koy90]. Therefore we
identify both concepts in this thesis.

Definition 2.6 (Timed stream; based on [Koy90, MN04]).
Let (T, <, 0) be a time domain. A timed stream (or metric model) over data
domain D and time domain T is a total function s : T→ D.

STD is used to denote the set of all timed streams over data domain D and time
domain T.

We call a timed stream finite, infinite, non-discrete, discrete, and dense if and only
if its time domain is. Timed streams over dense time domains are also referred to
as signals (see [MN04]). As before, we can drop the T and just write SD if it is clear
from the context.

Note that synchronous event streams (definition 2.3) are a special case of timed
streams with T = N ∩ [0, tmax] or T = N resp., which justifies the same notation STD
for both. However, unlike synchronous event streams, timed streams can generally

18

2.1. Basic concepts

not be represented by traces, since there may be an infinite number of timestamps
between any two timestamps of the time domain. Yet, for discrete time domains
such a representation is still possible. In this case a stream s ∈ STD is encoded by the
trace w = ⟨ (s(t1), s(t2), s(t3) . . . ⟩ ∈ D∞ or w = ⟨ ((t1, s(t1)), (t2, s(t2)), (t3, s(t3))
. . . ⟩ ∈ (T×D)∞ (called timed trace) where ti is the ith smallest timestamp in T1.

Formalisms that support timed streams with non-discrete time domain (such as
MTL [Koy90], MITL [AFH91], STL [MN04] or TeSSLa [CHL+18]) however face the
problem of how to handle time domains and corresponding streams with a non-
denumerable number of timestamps on discrete computing machinery. A common
approach is to compute on timed traces that contain values for only a subset of
timestamps, which are then interpreted as a timed stream, i.e. w = ⟨ (t0 , s(t0)), (t1,
s(t1)), (t2 , s(t2)) . . . ⟩ ∈ (T × D)∞ with t0 = 0 and ∀i.ti < ti+1. There are several
strategies for interpreting a timed trace w = ⟨ (t0, s(t0)), (t1, s(t1)), (t2, s(t2)) . . . ⟩
∈ (T× D)∞ as a timed stream over T, e.g.

• as piece-wise constant timed stream: The timestamps for which no value is
known are assumed to have the value of the last known timestamp. Thus w
corresponds to stream s ∈ STD with s(t) = d s.t. w contains (t′, d) for any t′ ≤ t,
but not (t′′, d′) for any other d′ ̸= d and t′ < t′′ < t.

• as timed stream with unknowns: The data domain D is extended by a special
symbol ? (meaning no information available about the value) which is assigned
to all timestamps not contained in w. Thus w corresponds to stream s ∈ STD
with s(t) = d if (t, d) is contained in w and s(t) = ? if (t, d) is not contained
for any d ∈ D.

• as timed stream with gaps: The data domain D is extended by a special symbol
† (meaning no value at this timestamp) which is assigned to all timestamps
not contained in w. Thus w corresponds to stream s ∈ STD with s(t) = d if
(t, d) is contained in w and s(t) = † if (t, d) is not contained for any d ∈ D.

The latter two interpretations are technically equivalent but differ in the semantic
meaning of the ? and † events.

When using the encoding above for streams over non-discrete time domains, the
events in the trace may accumulate before a particular timestamp. That is, the
trace contains letters for an infinite number of timestamps that are smaller than a
specific t ∈ T, e.g.

w = (0, a), (0.9, b), (0.99, a), (0.999, b), (0.9999, a) . . .

for t = 1 ∈ T = R. If this is the case, the timed trace will only encode the stream
up to this position t, and no information for t and the timestamps after is revealed.

1The two given encodings are equivalent. Which one to use is a design choice, especially for
non-regular time domains it might be preferable to include the current timestamp in the trace.

19

2. Preliminaries

In particular, when computing such a trace, the system gets “stuck” at timestamp
t and does not go beyond it. The described phenomenon is commonly known as
zenoness or zeno behavior [ZJLS00], named after Zeno of Elea and is an obstacle
when computing with timed streams over non-discrete time domains.

2.1.4. Ordered sets and lattices

Ordered sets with special properties are another key concept used in several places
in this thesis, e.g. for the representation of the monitor’s output verdicts. Therefore,
some basic definitions from order theory are introduced below.

Definition 2.7 (Bounds, directed sets, meets and joins; based on [DP90]).
Let (S,⊑) be a non-empty partially ordered set.

For S′ ⊆ S, an element e ∈ S is called an upper bound of S′ if s ⊑ e for all
s ∈ S′ and a lower bound of S′ if e ⊑ s for all s ∈ S′. A non-empty subset
S′ ⊆ S is called upward-directed if every finite F ⊆ S′ has an upper bound in
S′ and downward-directed if every finite F ⊆ S′ has a lower bound in S′.

An upper bound j ∈ S of S′ ⊆ S is called least upper bound or join or supremum
of S′ (denoted ⊔SS′) if and only if for all upper bounds u of S′ , j ⊑ u holds. A
lower bound m ∈ S of S′ ⊆ S is called greatest lower bound or meet or infimum
of S′ (denoted ⊓SS′) if and only if for all lower bounds l of S′ , l ⊑ m holds.

Note that for S′ = ∅ any element b ∈ S is an upper and lower bound. For a
partially ordered set (S,⊑) we use the notation a ⊏ b for a, b ∈ S (or an analogous
representation for other relation symbols) to denote that a ⊑ b holds but not b ⊑ a,
i.e. that a is strictly smaller than b. If the base set is clear from the context we
denote ⊔ and ⊓ without superscript to refer to the corresponding meets and joins.
For the meet or join of two elements we also use the infix notation, i.e. a ⊔S b or
a ⊓S b. For partially ordered sets (S,⊑) where ⊑ is clear from the context we just
write S to denote the ordered set.

Based on the upper definitions we now introduce the concept of a (complete, semi-)
lattice, which is an ordered set, where all pairs or subsets have meets and joins:

Definition 2.8 (Lattices; based on [DP90]).
Let (S,⊑) be a non-empty partially ordered set.

(S,⊑) is a join semi-lattice if for all a, b ∈ S, a ⊔S b exists and a complete join
semi-lattice if for all S′ ⊆ S, ⊔SS′ exists.

(S,⊑) is a meet semi-lattice if for all a, b ∈ S, a⊓S b exists and a complete meet
semi-lattice if for all S′ ⊆ S, ⊓SS′ exists.

20

2.1. Basic concepts

If (S,⊑) is a meet and join semi-lattice it is called a lattice and a complete
lattice if it is a complete meet and join semi-lattice.

A complete lattice S always contains a greatest and least element which we denote
with ⊤S and ⊥S in the following.

2.1.5. Algebras

This last part of the basic concepts section contains fundamental definitions related
to algebras, which will play an important role in chapter 5 of this work. We begin
with a definition of signatures.

Definition 2.9 (Signature; based on [EM85]).
A signature is a pair S = (S,O) consisting of

– a set S of sorts (also called types) and
– a set O = {Ks | s ∈ S} ∪ {OPw,s | s ∈ S, w ∈ S+} of constant and

operation symbols

s.t. Ks contains all constant symbols of sort s and OPw,s all operation symbols
of signature w → s and all sets are pairwise disjoint.

The interpretation of a signature S = (S,O) is given by an algebra which assigns
concrete domains, values and operations to the elements in S and O.

Definition 2.10 (Algebra; based on [EM85]).
Let S = (S,O) be a signature.

An algebra of S (also called S-algebra or S-structure) is a pair A = (S,O)
consisting of

– a family S = (Ss)s∈S of domains or base sets for all sorts in S,
– a family O = (Oo)o∈O of constants and operations for all symbols in O,

s.t. Oo has the sort or function signature of o.

Throughout this thesis we assume that the signature is implicitly given along with an
algebra. Therefore we sometimes also use the symbol for the algebra in place of the
signature. Furthermore, we require for all utilized algebras in this thesis that they
contain the boolean domain B = {true, false} with the corresponding constants
true and false, the operation ∧ for conjunction and that each domain comes with
the operator · = · for checking the equality of two elements.

Over a given signature and variable identifiers, expressions can be built.

21

2. Preliminaries

Definition 2.11 (Expression; based on [EM85]).
Let S = (S,O) be a signature and V = (Vs)s∈S a family of disjoint variable
identifiers. Let further Ks be the set of constant symbols of sort s ∈ S and
OPw,s the set of operation symbols of signature w → s in O.

The set of expressions (also called terms) over S and V of sort s (EsS,V) is the
smallest set s.t.

– Vs ⊆ EsS,V and Ks ⊆ EsS,V
– f(t1, . . . , tn) ∈ EsS,V with f ∈ OP(s1,...,sn),s, ti ∈ Esi

S,V for all i ∈ {1, . . . , n}.

With ES,V = (EsS,V)s∈S the family of expressions over the signature is denoted.

Given an algebra corresponding to the signature and an assignment of the variables,
such expressions can be evaluated.

Definition 2.12 ((Extended) assignment; based on [EM85]).
Let A = (S,O) be an algebra of signature S = (S,O) and V = (Vs)s∈S a family
of disjoint variable identifiers.

An assignment (of V over A) is a function val : V → S that assigns to every
v ∈ Vs a value of the corresponding sort from Ss.

The extended assignment (also called evaluation) of an expression e ∈ ES,V
under assignment val, [e]val, is recursively defined as

– [v]val = val(v)
– [c]val = Oc

– [f(e1, . . . , en)]val = Of ([e1]val, . . . , [en]val)

for v ∈ V, c, f ∈ O and e1, . . . , en ∈ ES,V.

Note: If an algebra contains the sort B and operations ¬ and ∧, then its expressions
of sort B form a quantifier-free fragment of first-order logic. Allowing the usage of
an existential quantifier (∃) would consequently lift the S-algebra to first-order logic
over signature S.

We now introduce some additional notations for expressions of type boolean.

For e ∈ EB
S,V and a given S-algebra A = (S,O) we write val |= e (val models e) if

and only if [e]val = true and define the set of models of e as

JeK = {val ∈ (V→ S) | val |= e}.

Let R = {r1, . . . , rn} ⊆ V be a subset of variables. The set of models of e restricted
to R is given as

JeKR = {(v1, . . . , vn) | val ∈ JeK,∀i ∈ {1, . . . , n}. val(ri) = vi}.

22

2.1. Basic concepts

For e1, e2 ∈ EB
S,V we write

e1 |= e2 iff Je1K ⊆ Je2K,
e1 ≡ e2 iff Je1K = Je2K,

e1 |=R e2 iff Je1KR ⊆ Je2KR,
e1 ≡R e2 iff Je1KR = Je2KR.

Thus, e1 |= e2 (e1 ≡ e2) holds if e1 has a subset of the models of (the same models
as) e2. I.e. e1 |= e2 indicates that e1 semantically implies e2; e1 ≡ e2 means that
e1 and e2 are semantically equivalent. The relation e1 |=R e2 (e1 ≡R e2) holds if e1
has a subset of the models of (the same models as) e2, but only variables in R are
considered.

We call a set of boolean expressions over some signature S, C ⊆ EB
S,V, a constraint

set and γ = ∧
c∈C c its term representation. We use the relations |=, ≡, |=R, ≡R for

a pair of constraint sets, if and only if they hold for their term representations.

In the subsequent chapters we will pay special attention to the following algebras:

• Boolean algebra

– Domains: B

– Constants: true, false

– Operators: =,∧,¬

– Syntactic sugar: ∨,→,↔

• Linear algebra

– Domains: B,R

– Constants: true, false, all r ∈ R

– Operators: =, ∧, +, r· for all r ∈ R

• Linear real arithmetic

– Domains: B,R

– Constants: true, false, all r ∈ R

– Operators: =, ∧, ¬, <, +, r· for all r ∈ R

– Syntactic sugar: ∨,→,↔,≥,≤, >

23

2. Preliminaries

The constants and operations have the common semantics for domains R and B.
Note that linear algebra and linear real arithmetic do not contain binary multi-
plication operators but only unary ones for each constant. This way it is not
possible to build non-linear expressions in these algebras, i.e. such where a vari-
able is multiplied with a variable. The syntactic sugar operators are defined as
usual: α ∨ β := ¬(¬α ∧ ¬β), α → β := ¬α ∨ β, α ↔ β := (α → β) ∧ (β → α),
α ≥ β := ¬(α < β), α ≤ β := (α < β) ∨ (α = β), α > β := ¬(α ≤ β).

2.2. Runtime verification

Based on the formalisms introduced in the previous section, we will now discuss
some fundamental aspects of runtime verification.

At its core, runtime verification (RV) deals with the synthesis of a monitor from a
formally specified property, which evaluates this property on a run of the supervised
system. Thereby the run is usually given as a finite or infinite trace, stream or signal
which is fed to the monitor.

One generally distinguishes between offline runtime verification, where the monitor
receives the whole recorded run at once (e.g. from a log file) and subsequently deter-
mines the monitoring outputs, and online runtime verification, where the monitor
receives the run incrementally, e.g. letter by letter or event by event, and simulta-
neously yields outputs. In this thesis we focus on the latter one.

Traditional RV deals with solving the word problem [LS09]: The runs are finite or in-
finite words over letters from a finite alphabet (usually sets of atomic propositions).
The property being checked is a correctness property, i.e. one that is either satisfied
for the run, or not, but assigns no quantitative measure to it. For a correctness prop-
erty φ in some specification language and w ∈ Σ∗ or w ∈ Σω, depending on whether
the semantics of the formalism is defined on finite (e.g. RegEx, FLTL [Leu11]) or
infinite (e.g. LTL [Pnu77]) words, we write w |= φ if and only if φ is satisfied for w
and w ̸|= φ if not. A correctness property φ defines the language Lφ = {w | w |= φ}
of traces satisfied by φ.

In this traditional, most basic setting an online monitor Mφ, generated from the
specification φ, yields a sequence of verdicts. They indicate whether for the whole
run w, w ∈ Lφ holds or not, depending on the prefix of w received so far. For
this purpose the verdict domain V has to contain at least two conclusive (aka final)
verdicts, ⊤ ∈ V indicating satisfaction of the property φ for w (i.e. w ∈ Lφ) and
⊥ ∈ V indicating violation of φ (i.e. w ̸∈ Lφ). Besides that, the domain may also
contain further non-conclusive verdicts, which indicate that w ∈ Lφ cannot yet
be finally decided with the received prefix of w [LS09]. For a clear order of these
verdicts, it is usually required that V is a lattice with greatest element ⊤ and least
element ⊥ [LS09]. In this setting, a monitor Mφ is characterized by its output

24

2.2. Runtime verification

function Mφ : Σ∗ → V which assigns a verdict from domain V to every received
prefix of w. Thus, for a run w ∈ Σ∞, Mφ receives the input letter by letter and
produces the verdict sequence Mφ(w(1)),Mφ(w(2)),

Four common verdict domains are depicted as Hasse diagrams in figure 2.1 [Leu11].
A dashed line between a lower element a and a higher element b symbolizes a ⊑ b.
A solid line additionally enforces that there is no c ̸∈ {a, b} s.t. a⊑ c⊑ b. The most
simple domain B2 only contains the mandatory elements, ⊤ and ⊥. The domain B3
additionally contains the “don’t know” verdict ?. In B4 the ? is further subdivided
into ⊤p and ⊥p which mean presumably true or false. P finally is the domain of real
numbers between 0 and 1 with their standard ordering, representing percentages of
fulfillment and violation of the correctness property. In this domain ⊤ is an alias
for 100% = 1 and ⊥ for 0% = 0.

⊤

⊥
(a) B2

⊤

?

⊥
(b) B3

⊤

⊤p

⊥p

⊥
(c) B4

⊤ = 1

0.9

0.1

⊥ = 0
(d) P = ([0, 1],≤)

Figure 2.1.: Hasse diagrams of common verdict domains used in runtime verification.

Concerning the quality of an RV monitor, there are three characteristics usually
considered desirable:

• Impartiality [LS09]: Whether a correctness property is satisfied or unsatisfied
by the current run can be conclusively decided when the full trace is available.
However, as long as only a prefix of the run is received by the monitor, the
property may be inconclusive, i.e. the satisfaction depends on the future con-
tinuation of the trace. Consider for example the property “Atomic proposition
p does not hold in the trace”. It is unsatisfied if the monitor has already re-
ceived an input where p did hold. It is satisfied if the end of the trace is reached
and no input where p holds has been received. Otherwise it is inconclusive.
Impartiality means a monitor may not be in favour of one of the final verdicts
⊤ or ⊥, as long as it is not inevitable that the property is satisfied or breached.
Hence as long as the observed property is not known to be (un-)satisfied for
the full trace, an impartial monitor may not yield the verdicts ⊤ or ⊥, but only
other verdicts from the lattice like ⊤p (presumably true) or ? (unknown) or a
percentage based on the usual behavior of the system. Note that in general a
monitor with verdict domain B2 cannot be impartial, as it is forced to cast a
final verdict in every step [Leu11].

25

2. Preliminaries

• Anticipation [LS09]: Besides impartiality it is also desirable for an RV monitor
to cast a final verdict as soon as possible. This means that if for all contin-
uations of the currently received prefix the observed property is satisfied or
unsatisfied, the monitor should directly cast the final verdict ⊤ or ⊥. An RV
monitor that meets this requirement is called anticipatory. The property is de-
sirable because otherwise the monitor could continuously yield an inconclusive
verdict even though a conclusive one would be possible.

• Trace-length-independence [BKV13]: This property requires the monitor’s
memory and runtime bounds to be independent of the length of the received
trace. This means the computation time and memory per received input may
not increase with the number of received observations. The property is neces-
sary as monitors are intended to potentially run forever if they observe perma-
nently running systems, like servers. If the need for resources grew with the
runtime of the monitor it would eventually run out of resources and crash or get
unresponsive. As a consequence a monitor must be able to condense the trace
that has been received so far to a finite essence to be trace-length-independent.

A formal definition of these criteria can be found in definition 2.13. Therefore, for a
given monitor M over input domain Σ, we use MM : N→ N to denote the maximal
memory requirement of the monitor, s.t. MM (n) is the maximal amount of memory
needed for output generation of M(w) for any monitor input w ∈ Σn. Further we
use TM : N → N for the maximal runtime requirement: With TM we denote the
maximal number of computation steps between receiving the last letter of w and
generating the output M(w) for any w ∈ Σn.

Definition 2.13 (Monitor characteristics; based on [LS09, BLS10, BKV13]).
Let M be a monitor with the characterizing function M : Σ∗ → V and ⊤,⊥ ∈ V
the two final verdicts in V. Let Lφ ⊆ Ω with Ω ∈ {Σ∗,Σω,Σ∞} be the language
for which M shall decide language containment.

M is called

– impartial if for any w ∈ Σ∗

(M(w) = ⊤ ⇒ ∀wv ∈ Ω. wv ∈ Lφ) and (M(w) = ⊥ ⇒ ∀wv ∈ Ω. wv ̸∈ Lφ)

– anticipatory if for any w ∈ Σ∗

(∀wv ∈ Ω. wv ∈ Lφ ⇒M(w) = ⊤) and (∀wv ∈ Ω. wv ̸∈ Lφ ⇒M(w) = ⊥)

– trace-length-independent if TM ∈ O(1) and MM ∈ O(1).

Note that the notion of impartiality and anticipation from definition 2.13 is only
applicable if the monitor answers a boolean language containment problem and the
output domain contains final verdicts ⊤ and ⊥. However, advanced approaches in

26

2.2. Runtime verification

runtime verification, like stream runtime verification, are able to monitor proper-
ties different from language containment, especially non-boolean properties, e.g. for
calculating some numerical metrics on the system run. Further the output domains
of such monitors do not necessarily have lattice structure. Thus, these monitoring
approaches cannot simply be classified as impartial or anticipatory in terms of the
upper definition. In chapter 3 of this thesis we will discuss a generalization of the
criteria from definition 2.13 for general RV approaches.

In the remainder of this section the most popular RV formalism, linear temporal
logic, and its extensions metric (interval) and signal temporal logic will be introduced
formally. Additionally some corresponding monitor constructions will be presented.
The subsequent section then deals with the field of stream runtime verification, its
concepts, languages and monitoring algorithms.

2.2.1. Linear temporal logic

Conditioned by the historical impact of model checking, where linear temporal logic
(LTL) plays a major role, it has also established as one of the first and best-studied
RV formalisms.

LTL belongs to the family of temporal logics, which originate in the field of phi-
losophy and have increasingly been studied there from the 1950s on [Øhr19, ØH07,
Pri58]. Amir Pnueli was the first who suggested the use of such logics to specify
correctness properties for computer programs. Based on the tense logic fragment
Kb [RU71], he outlined in his 1977 work [Pnu77] how reasoning about these tem-
poral properties can be used for program verification and proposed this technique
as a unified approach for this purpose. The variant used there only contained two
time-related operators called “globally” and “finally”, and was later extended by
further ones to the linear temporal logic used today [MP79, GPSS80]. While LTL
was originally defined with future operators only, there are also variants where past
operators are considered part of LTL [LPZ85, MP92]. Definition 2.14 defines the
syntax of the full (past and future) version of linear temporal logic used in this the-
sis. Later in definition 2.17, syntactic sub-fragments of this full LTL are specified,
which will also play a role throughout the rest of this work.

Definition 2.14 (LTL syntax; based on [LPZ85, MP92]).
The set of linear temporal logic (LTL) formulas over a finite set of atomic
propositions AP, ltlAP , is given by the following grammar:

φ ::= true | p | ¬φ | φ ∧ φ | Xφ | φ U φ | Pφ | φ S φ

where p ∈ AP is an atomic proposition.

27

2. Preliminaries

Thus, LTL is an extension of standard propositional logic by the operators X (next),
U (until), P (previously) and S (since). In cases where it is clear from the context
we skip the AP in the index and just write ltl for the set of all LTL formulas. LTL
is interpreted over structures (finite or infinite words) of sets of atomic propositions.
In the following let Σ = 2AP . We define two versions of LTL semantics. The first one
(definition 2.15), called pointed semantics, assigns a truth value to an LTL formula
and a pointed word, i.e. a word and a given position. The second one (definition 2.16)
is the more common and original LTL semantics. It is called initial semantics and
its definition is based on the pointed semantics. It assigns a truth value to an LTL
formula and a given word without a dedicated position.

Definition 2.15 (Pointed LTL semantics; based on[MP92, LPZ85, KLSS22]).
Let φ ∈ ltl be an LTL formula, w ∈ Σ∞ a (possibly infinite) word and t ∈ N
a position. The model relation (w, t) |= φ, which indicates that φ is satisfied
at position t in w, is inductively defined as follows:

For t ≥ |w|:

(w, t) ̸|= φ

For t < |w|:

(w, t) |= true

(w, t) |= p iff p ∈ w(t)
(w, t) |= ¬φ iff (w, t) ̸|= φ

(w, t) |= φ1 ∧ φ2 iff (w, t) |= φ1 and (w, t) |= φ2

(w, t) |= Xφ iff (w, t+ 1) |= φ

(w, t) |= φ1 U φ2 iff for some t′ ≥ t : (w, t′) |= φ2 and
for all t ≤ t′′ < t′ : (w, t′′) |= φ1

(w, t) |= Pφ iff t > 0 and (w, t− 1) |= φ
(w, t) |= φ1 S φ2 iff for some 0 ≤ t′ ≤ t : (w, t′) |= φ2 and

for all t′ < t′′ ≤ t : (w, t′′) |= φ1

No property is satisfied at positions which are beyond the length of w. The predicate
formulas (those consisting solely of true, atomic propositions, ¬, ∧) are evaluated
exclusively over the letter at position t, which is interpreted as the set of atomic
propositions holding at this position. The next operator X demands that a property
holds at the next position in the word. It is not satisfied at the end of the trace,
where no next position exists. Likewise P (previous) requires a property to hold
at the previous position. If there is no previous position because the formula is
evaluated at position 0 it is not satisfied. φ1 U φ2 is satisfied if and only if φ2 holds
for some letter in the future or at the current position and φ1 holds for all letters

28

2.2. Runtime verification

from position t up to there. φ1Sφ2 on the other hand requires φ2 to hold somewhere
in the past including the current position t, and φ1 at every position from there up
to position t.

The second semantics, the initial LTL semantics, can directly be derived from the
pointed semantics.

Definition 2.16 (Initial LTL semantics; based on [MP92, KLSS22]).
Let φ ∈ ltl be an LTL formula and w ∈ Σ∞ a (possibly infinite) word. The
initial semantics of φ, is given as:

w |= φ iff (w, 0) |= φ

Hence, in the initial semantics, an LTL formula is always evaluated for the first
position in the word, i.e. from the beginning on.

Note that in literature the LTL semantics are usually restricted to either infinite
structures (i.e. Σω words) or finite ones (i.e. Σ∗ words, often referred to as finite
LTL). Our semantics from definition 2.15 and definition 2.16 is capable of both, yet
throughout the thesis we will sometimes also consider only finite or infinite words,
which will then be clarified accordingly. For a formula φ ∈ ltl we use

L∗
φ = {w ∈ Σ∗ | w |= φ},Lωφ = {w ∈ Σω | w |= φ} and L∞

φ = {w ∈ Σ∞ | w |= φ}.

Further, the attentive reader may already have noticed that some of the traditional
LTL operators, like globally (G) or finally (F), were not contained in the LTL syntax
definition (definition 2.14). This is because their semantics can be expressed with
use of the other operators and they can hence be considered syntactic sugar. For
convenience, following additional operators and symbols will be allowed:

false := ¬true

φ1 ∨ φ2 := ¬(¬φ1 ∧ ¬φ2)
φ1 → φ2 := ¬φ1 ∨ φ2

φ1 ↔ φ2 := (φ1 → φ2) ∧ (φ2 → φ1)
Fφ := true U φ
Gφ := ¬F(¬φ)
Oφ := true S φ
Hφ := ¬O(¬φ)

φ1 R φ2 := ¬((¬φ1) U (¬φ2))
X̃φ := Xφ ∨ ¬Xtrue

P̃φ := Pφ ∨ ¬Ptrue

29

2. Preliminaries

Besides false and the common logical operators, there are seven additional tem-
poral operators introduced: F (finally), G (globally), O (once), H (historically), R
(release), X̃ (weak next) and P̃ (weak previous). Due to the semantics of U , which
requires the right hand side to hold somewhere in the trace, Fφ ensures that φ holds
at some future position or now. The formula Gφ on the other hand is satisfied, if the
inner formula φ holds at every future position and the current one. The operators
once and historically build the past counterparts to finally and globally. While Oφ
evaluates to true if φ held at any position in the past or now, Hφ requires that
φ held at all positions in the past, including the current one. The formula φ R ψ
requires ψ to hold from the current position until φ is satisfied or forever. Finally,
the operators X̃φ and P̃φ evaluate to true when either the sub-formula is satisfied
at the next/previous position, or if they are evaluated at the end/beginning of the
trace. For infinite traces these operators are equivalent to the usual (strong) next
and previous operators.

Throughout this thesis we will not always use the full LTL syntax, as given by
definition 2.14. We will also investigate the following fragments which are restricted,
in the sense that they can only reference future, past or past and a constant number
of future positions, determined by the number of nested X in the formula.

Definition 2.17 (Linear temporal logic fragments; based on [KLSS22]).
The following syntactic fragments of ltl are defined:

– Future LTL: ltlfAP is the subset of ltlAP that solely consists of LTL
formulas without the operators P and S.

– Past LTL: ltlpAP is the subset of ltlAP that solely consists of LTL for-
mulas without the operators X and U .

– Past LTL with bounded future: ltlbfAP is the subset of ltlAP that solely
consists of LTL formulas without the operator U .

Indeed for initial semantics and on infinite words, the future LTL fragment was
shown to be as expressive as full LTL. I.e. every full LTL formula can be rewritten
into a future LTL formula that is modeled by the same ω-words [GPSS80]. The
size of these rewritten formulas however was proven to have an exponentially higher
bound in general [Mar03]. Note that the finding about the same expressiveness also
implies past LTL and past LTL with bounded future as subsets of full LTL to be
expressible in future LTL. However this equivalence only holds for the initial LTL
semantics, where the expressiveness of the past fragments is highly limited anyway.
This is because from the the first position in the word there is no past to reason
about. For pointed semantics, though, full LTL is clearly more expressive than
past LTL, past LTL with bounded future, or future LTL, because in full LTL the
value at a specific location can be influenced by letters from arbitrary previous and
subsequent locations, which is not possible in the other fragments. Past LTL with
bounded future in turn is also more expressive than past LTL in terms of the pointed
semantics.

30

2.2. Runtime verification

2.2.2. Monitor constructions

Due to its popularity as an RV formalism, several monitor constructions have been
developed for linear temporal logic. The different techniques for monitor synthesis
mainly differ in the LTL fragment which they support as well as in the verdict domain
they use. In this section two popular constructions will be presented, as they will
play a role in the following chapters. The first is called LTL3 construction [BLS06a]
and allows the synthesis of monitors for future LTL casting verdicts from the three-
valued truth domain B3 (see figure 2.1). The second one is the standard approach
for monitoring past LTL as presented in [HR02], where the resulting monitor yields
verdicts from the B2 domain (see figure 2.1).

In both cases the monitor constructions yield a Moore machine [M+56], i.e. a finite-
state machine casting an output with each received piece of input, dependent on the
current state of the machine. A formal definition of such a Moore machine is given
in definition 2.18.

Definition 2.18 (Moore machine; based on [M+56, HU79]).
A Moore machine M = (Q,Σ,Γ, δ, γ, qI) is a 6-tuple consisting of

– a finite, non-empty set of states Q,
– a finite, non-empty input alphabet Σ,
– a finite, non-empty output alphabet Γ,
– a deterministic transition function δ : Q× Σ→ Q,
– an output function γ : Q→ Γ,
– an initial state qI ∈ Q.

A sequence of states q0, q1, . . . , qn with qi ∈ Q is called the run ofM for w ∈ Σ∗

with n = |w|, if and only if

– q0 = qI and
– qi+1 = δ(qi, w(i)) for all i ∈ {0, . . . , n− 1}

The corresponding sequence γ(q0), γ(q1), . . . , γ(qn) is called output of M.

Another popular machine model for monitors are Mealy machines [Mea55]. They
differ from Moore machines in that the outputs are associated with transitions rather
than states. However both models are equivalent and can easily be transformed into
each other [HU79]. Yet, for the following constructions we will exclusively make use
of Moore machines.

LTL3 construction

The LTL3 monitor construction is fundamentally based on the translation of an LTL
formula into a corresponding non-deterministic Büchi automaton [Büc90]. Büchi

31

2. Preliminaries

automata belong to the family of ω-automata as they describe languages (sets) of
ω-words (i.e. infinite words). A nondeterministic Büchi automaton and its corre-
sponding language are defined as follows.

Definition 2.19 (Nondeterministic Büchi automaton; based on [Büc90, HL11]).
A nondeterministic Büchi automaton (NBA) A = (Q,Σ, qI , δ, F) is a 5-tuple
consisting of

– a finite, non-empty set of states Q,
– a finite, non-empty input alphabet Σ,
– an initial state qI ∈ Q,
– a transition function δ : Q× Σ→ 2Q,
– a set of accepting states F ⊆ Q.

An infinite sequence of states ρ = q0, q1, . . . with qi ∈ Q is called a run of A
for w ∈ Σω, if and only if

– q0 = qI and
– qi+1 ∈ δ(qi, w(i)) for all i ∈ N

Let Inf(ρ) ⊆ Q be the set of states which are contained infinitely many often
in ρ. NBA A accepts w ∈ Σω if and only if there is a run ρ for w such that
Inf(ρ) ∩ F ̸= ∅.

The language of A is given as LA = {w ∈ Σω | A accepts w}.

As known from other types of automata, there is also an alternating version of Büchi
automata. While an NBA changes non-deterministically from the current state to
the next one depending on the received input letter, an alternating Büchi automata
(ABA) proceeds to a positive boolean combination (i.e. a propositional logic formula
with conjunction, disjunction true and false but without negation) of successor
states. Consequently a run of an ABA is not an infinite state sequence, but an
infinitely deep tree, labeled with states, where the children of a node satisfy the
corresponding positive boolean formula from the automaton’s transition function.
For states Q we formally describe such a labeled tree as triple (V,E, l), where (V,E)
is a tree with infinitely many nodes and l : V → Q is a total function assigning
a state from Q to every tree node. Further we denote the set of positive boolean
formulas over states Q as B+(Q). For ψ ∈ B+(Q) and S ⊆ Q we write S |= ψ if
and only if ψ evaluates to true with all atomic propositions in S set to true and
all others to false. Definition 2.20 gives a formal definition of alternating Büchi
automata and their acceptance criterion.

Definition 2.20 (Alternating Büchi automaton; based on [MH84, HL11]).
An alternating Büchi automaton (ABA) A = (Q,Σ, qI , δ, F) is a 5-tuple con-
sisting of

32

2.2. Runtime verification

– a finite, non-empty set of states Q,
– a finite, non-empty input alphabet Σ,
– an initial state qI ∈ Q,
– a transition function δ : Q× Σ→ B+(Q),
– a set of accepting states F ⊆ Q.

A Q-labeled infinite tree T = (V,E, l) with root r ∈ V is called a run of A for
w ∈ Σω, if and only if

– l(r) = qI and
– {l(v′) | (v, v′) ∈ E} |= δ(l(v), w(i)) for all v ∈ V with a distance of i ∈ N

from r.

Let ρ be an infinite path in T . Inf(ρ) ⊆ Q denotes the set of states which are
contained infinitely many often in ρ’s labels. ABA A accepts w ∈ Σω if and
only if there is a run T for w, such that Inf(ρ) ∩ F ̸= ∅ for every infinite path
in T , starting from T ’s root.

The language of A is given as LA = {w ∈ Σω | A accepts w}.

An example of a nondeterministic and an alternating Büchi automaton and a cor-
responding run for w = abacb . . . over Σ = {a, b, c} can be found in figure 2.2.
Accepting states are marked with a double circle around the state name. Transi-
tions are depicted by arrows leading from one state to another. In the case of ABAs
the positive boolean combination of successor states is expressed by combinations
of ∧ and ∨ operators inside square boxes. Alternatively the transitions may also
lead to the positive boolean formulas true and false. The ABA from figure 2.2 for
example contains the transition δ(q0, a) = q0 ∧ q1 and δ(q1, c) = true.

The two automata from figure 2.2 have exactly the same language, namely

L = {w ∈ Σω | ∀i. (w(i) = a)→ ∃j > i. (w(j) = c)}.

Hence, they accept every infinite word where each a is proceeded by a c at a later
position. Therefore the NBA remains in its initial and accepting state q0 until it
reads an a. Then it changes to non-accepting state q1. It remains in this state q1
as long as letter c is not received. Consequently, if every a is proceeded by a c,
the NBA always returns to accepting state q0, hence for the corresponding run ρ,
q0 ∈ Inf(ρ) holds and the automaton accepts. If on the other hand there is an a
without a c at a later position, the automaton remains forever in state q1 from the
last a without subsequent c on, and hence does not accept the word.

The ABA in contrast changes from initial and accepting state q0 to q0∧ q1 whenever
it reads the input letter a in state q0. Further, it remains in non-accepting state
q1 until letter c is received; after that it requires no change to another state, as
the corresponding positive boolean formula true is satisfied by the empty set of

33

2. Preliminaries

q0start q1

b,c

a

a,b

c

(a) Example NBA

q0start q1 q1 q1 q0 q0
a b a c b . . .

(b) Example NBA run

q0start ∧ q1

true

b,c

a

a,b

c

(c) Example ABA

q0start q1

q0

q1

q0 q1

q1

q0 q0 q0

a

a

b

b

a

a

a

c b . . .

(d) Example ABA run

Figure 2.2.: Example of NBA and ABA with corresponding runs for input word
w = abacb

successor states. Overall, if every a in the input trace is followed by a c, the run
of the ABA contains only one infinite path starting from the root, which is the one
labeled exclusively with q0. All other paths are finite since they end at the positions
where the c appears. Such a run is accepting. Contrary, if there is an a with no c
after, the run tree contains another infinite path with a finite number of q0 states in
the beginning and then continues with an infinite sequence of q1 states. Therefore
such a run is non-accepting.

Indeed it is not a coincidence that for this language there is a corresponding alter-
nating and nondeterministic Büchi automaton. In fact both automata types have
the same expressiveness. While it is easy to see that an NBA can be transformed
into an ABA by simply replacing the set of successor states in the transition function
by a disjunction of those states, the converse is not so obvious. In 1983, Miyano and
Hayashi presented a construction that transforms arbitrary alternating Büchi au-
tomata into equivalent nondeterministic ones [MH84] with a worst-case exponential
blow-up of the state space. The idea behind this construction is that the NBA sim-
ulates the stages of the ABA’s run tree and checks that on every branch infinitely
many accepting states are traversed. The exponential bound of the NBA’s state
space was later also shown to be tight [BKR10].

The cause why Büchi automata play a role in LTL monitor construction, as well as in
LTL model checking, is due to the fact, that for any future LTL formula φ an ABA
can be constructed which accepts exactly the language Lωφ (i.e. the set of infinite
traces satisfying φ in terms of the initial semantics, see definition 2.16). However
the opposite does not hold. There are ABAs with corresponding languages that
cannot be expressed in LTL, i.e. alternating Büchi automata are more expressive
than LTL [Wol81].

34

2.2. Runtime verification

The translation scheme from LTL to Büchi automata, presented in the following
(see [Var95]), is restricted to future LTL. However [GPSS80] showed that full LTL
has the same expressiveness as future LTL w.r.t. the initial semantics. Hence a full
LTL formula can be rewritten into an equivalent future LTL formula (i.e. one with
the same models). The rewriting, though, causes an exponential blow-up of the for-
mula’s length. In [GO03] also a translation of full LTL to alternating two-way Büchi
automata, which can in turn be translated to alternating and thus nondeterministic
Büchi automata can be found.

For the following we assume the future LTL formula to be in negation normal form
(NNF). This normal form restricts the operators and constants to true, false,
∧, ∨, ¬, U , R, X and only allows atoms to be negated, no other sub-formulas.
One can easily see that every future LTL formula can be transformed to NNF by
exchanging →, ↔, G, F with the permitted operators according to the common
rules and then moving all negations inwards with help of the following equivalence
transformations:

– ¬¬φ ≡ φ, ¬true ≡ false and ¬false ≡ true

– ¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ and ¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ

– ¬(φR ψ) ≡ (¬φ) U (¬ψ) and ¬(φ U ψ) ≡ (¬φ)R (¬ψ)

– ¬X (φ) ≡ X (¬φ)

By repeated application of these rules a formula is received containing ¬ operators
exclusively in front of the atomic propositions.

The basic idea behind the translation from future LTL to an ABA is the following:
The states of the ABA express the sub-formulas of the original NNF LTL formula
φ that still have to be satisfied from the current position on. Consequently the
initial state of the automaton is φ itself. The transition function for input letter
l ∈ Σ = 2AP obeys to the following scheme:

– δ(true, l) = true and δ(false, l) = false

– δ(α ∧ β, l) = δ(α, l) ∧ δ(β, l) and δ(α ∨ β, l) = δ(α, l) ∨ δ(β, l)

– δ(a, l) =
{

true if a ∈ l
false else

and δ(¬a, l) =
{

false if a ∈ l
true else

for a ∈ AP

– δ(X (α), l) = α

– δ(α U β, l) = δ(β, l) ∨ (δ(α, l) ∧ δ(X (α U β), l))

– δ(αR β, l) = δ(β, l) ∧ (δ(α, l) ∨ δ(X (αR β), l))

35

2. Preliminaries

The transition for the until and release operator are based on the equivalences αUβ =
β ∨ (α ∧ X (α U β)) and α R β = β ∧ (α ∨ X (α R β)). Note that δ applied to
sub-expressions of φ again only produces positive boolean combinations of sub-
expressions from φ, i.e. states of the ABA. Yet it remains open how the accepting
states of the ABA are determined. Without accepting states the ABA does not pay
heed to the fact that αRβ is satisfied if β but not α holds forever on. Consequently
we add all states of form αRβ to the set of accepting states. For other (sub-)formulas
the acceptance of the automaton is already correct.

The size of the ABA’s state space, generated by the described construction, is equiv-
alent to the number of sub-formulas of the initial formula φ without ∧ and ∨ on the
outermost level (as these operators are handled as positive boolean state combina-
tions by the ABA internally) plus one for the state φ itself. As a consequence the
automaton’s state space is linear in terms of the LTL formula’s length.

As an example take the LTL formula φ = Fp ∧ G¬q over alphabet Σ = 2AP = {∅,
{p}, {q}, {p, q}}. A transformation to NNF yields:

φ ≡ Fp ∧ G¬q ≡ Fp ∧ ¬Fq ≡ (true U p) ∧ ¬(true U q)
≡ (true U p) ∧ (falseR¬q)

The ABA for φ resulting from the previously described construction is depicted in
figure 2.3.

φstart ∧

true U p

falseR¬q

false

true

false

∅

{q},
{p, q}

{p}

{p}, {p, q}

{q}, ∅

{q}, {p, q}

{p}, ∅

Figure 2.3.: ABA constructed from LTL formula φ = Fp ∧ G¬q.

The automaton already contains some basic simplifications of the transition func-
tion’s positive boolean formulas. For example the transition from state falseR¬q
with letter {q} or {p, q} would lead to false∧ (false∨ (falseR¬q)). However this
formula cannot be satisfied by any set of successor states and hence the automaton
directly contains the transition to false.

It is quite easy to convince oneself about the correctness of the automaton in fig-
ure 2.3. If in the initial state a letter with q is received, the automaton transitions

36

2.2. Runtime verification

to false, as G¬q ≡ (falseR¬q) is eventually violated. If letter {p} is received the
Fp ≡ (true U p) sub-formula is already satisfied by this letter and the automaton
proceeds to state (falseR ¬q) to check if this part of φ is satisfied by the rest of
the trace. Otherwise the automaton changes to a conjunction of both sub-formulas.
State (falseR¬q) leads to acceptance if there is no q for the rest of the trace, state
(true U p) if there is a p somewhere in the remaining trace.

The translation presented here shows quite intuitively how future LTL formulas can
be translated to ABAs (and thus NBAs). Yet due to the practical relevance of this
translation in runtime verification as well as in model checking, several other methods
with partially better performance on practical examples have been proposed over
time [Wol00, SB00, GO01, GL02].

We have now seen how LTL formulas can be translated to Büchi automata, which
accept their language with respect to infinite words. However such Büchi automata
are not suited for monitoring purposes. This is because in monitoring we aim at
producing a sequence of verdicts for finite prefixes of a (potentially) infinite trace.
Büchi automata however decide on infinite words. To overcome this discrepancy,
in [BLS06a] Bauer et al. presented the so-called LTL3 monitor construction, which
– based on the Büchi automaton translation – yields a Moore machine that casts
verdicts from the B3 = {⊤,⊥, ?} domain (see figure 2.1). The Moore machine con-
structed this way behaves as a trace-length-independent, anticipatory and impartial
(future) LTL monitor according to the initial LTL semantics on infinite words (see
definitions 2.13 and 2.16).

The idea behind the construction (depicted in figure 2.4) is to generate a nondeter-
ministic Büchi automatonAφ from the LTL formula φ and another oneA¬φ from the
negation of the formula and simplify them as far as possible. After that, so-called
empty states are identified in both automata (denoted as Fφ,F¬φ in figure 2.4).
Empty states are those, from which the Büchi automaton cannot accept anymore,
because they have no connection to a cycle with accepting states. They can be iden-
tified by a simple graph analysis (see [CVWY90]). After this, two nondeterministic
finite automata Âφ and Â¬φ are generated from Aφ and A¬φ by preserving state
space, initial state and transition function and making all non-empty states accept-
ing and the others non-accepting. The two NFAs are then determinized to receive
Ãφ and Ã¬φ. Finally the Moore machine Āφ is built from the product automaton
of the two deterministic finite automata Ãφ and Ã¬φ. All states of Āφ that corre-
spond to a non-accepting state of Ã¬φ cast the output ⊤ (as there is no possibility
to satisfy ¬φ, i.e. to violate φ anymore). Likewise all states that correspond to a
non-accepting state of Ãφ are linked to the output ⊥. All other states (those corre-
sponding to accepting states in Ãφ and Ã¬φ) yield the verdict ?. Note that states
in the Moore machine which consist of non-accepting states in Ãφ and Ã¬φ are not
reachable, as the prefixes leading to them could neither be extended to satisfy φ nor
¬φ. However this is not possible as Lωφ and Lω¬φ partition Σω.

37

2. Preliminaries

Input Formula NBA
Emptiness
per State NFA DFA Moore

Machine

φ

φ

¬φ

Aφ

A¬φ

Fφ

F¬φ

Âφ

Â¬φ

Ãφ

Ã¬φ
Āφ

Figure 2.4.: Scheme of the LTL3 monitor construction (figure from [BLS06a]).

A monitor resulting from the construction is impartial, anticipatory and trace-
length-independent. The trace-length-independence follows from the finite number
of states in the NBAs and consequently in the monitor. Since a state in the NBAs
is marked as empty if and only if there is no more chance for the received prefix to
lead to acceptance, the monitor switches to final verdict ⊤ or ⊥ as soon as possible,
but not earlier. This implies impartiality and anticipation.

An example of the LTL3 monitor construction for the LTL formula φ = Fp ∧ G¬q
can be found in figure 2.5. As φ can ultimately be violated but not satisfied by some
prefix due to the G¬q part, the resulting monitor may cast the verdict ? (orange
states) and ⊥ (red states) but never ⊤. Also note that it is a coincidence that the
two NBAs for φ and ¬φ are equal except for the opposite set of accepting states.
The cause for this is the special form of φ, but in general the NBA for a formula
and its negation may be of totally different shape.

In [DLS08] the idea of this construction is generalized and shown to produce an
anticipatory and impartial monitor for every logic for which a finite automaton
construction with emptiness check exists. In this context, an emptiness check is
defined as a function assigning to every state whether acceptance is still possible
from there or not. The work also presents the application to some LTL extensions
which fulfill this property. It should be noted at this point that the generalized LTL3
construction there could in principle also be used for LTL monitoring over finite
words. This only requires a translation of LTL for finite traces into corresponding
finite automata instead of Büchi automata.

In [DLT14] Decker et al. present a further result that generalizes this kind of monitor
construction. They assume an arbitrary temporal logic over atomic propositions
and a corresponding monitor construction. Based on this, they show that for the
extension of the logic, where the atomic propositions in formulas are replaced by
first-order logical expressions, one is still able to construct a monitor. However, the
resulting monitor is in general not anticipatory, even if the monitor construction of
the underlying temporal logic is.

38

2.2. Runtime verification

q0start

q2

q1 r0start

r2

r1

q0,r0start

q2,r2

q1,r1

∅

{p}

{q}, {p, q}

∅, {p}

{q}, {p, q}

∅, {p},
{q}, {p, q}

∅

{p}

{q}, {p, q}

∅, {p}

{q}, {p, q}

∅, {p},
{q}, {p, q}

∅

{p}

{q}, {p, q}

∅, {p}

{q}, {p, q}

∅, {p},
{q}, {p, q}

Figure 2.5.: Simplified NBAs for φ = Fp∧G¬q (up left) and its negation (up right)
with empty states marked gray and resulting LTL3 monitor (below).
Orange for ?, red for ⊥ output.

Past LTL monitor construction

In 2002 Havelund and Roşu investigated the monitoring of the past-only fragment
of LTL (past LTL) [HR02]. As mentioned earlier, it makes little sense to evaluate
this fragment in terms of the initial semantics (definition 2.16), as one could only
refer to the first position of the word due to the lack of future operators. Thus they
developed a monitoring approach based on the pointed semantics (definition 2.15),
which in construction and properties differs quite heavily from initial monitors, like
the LTL3 monitor from the previous section.

After desugaring, a past LTL formula may only contain the temporal operators P
and S (note that in [HR02] a slightly different set of equivalent operators is used).
The current value of Pφ can be determined by evaluation of φ in the previous step

39

2. Preliminaries

and memorizing the result (at the beginning of the trace it is simply false). For
φ S ψ note the following equivalence:

φ S ψ ≡ ψ ∨ (φ ∧ P(φ S ψ))

Hence the current value of φ S ψ can be determined by the evaluation of φ and ψ
and the value of P(φSψ), i.e. the previous value of φSψ. Altogether the value of all
past operators can be computed based on the current input and the previous values
of their sub-expressions including themselves. The monitoring algorithm presented
in [HR02], formalized in an imperative language, makes use of this observation.
It keeps an array data structure internally which assigns a truth value to all sub-
expressions of the formula φ to be monitored. If for example φ = P((¬p) S p) the
array would contain entries for the sub-formulas p, ¬p, (¬p) S p, and P((¬p) S p).
Whenever a new input letter is received, the old array is backuped, i.e. copied in
the memory. The new values of the sub-formulas are then successively determined
from inside to outside based on the current input letter and – as described above –
on the previous values from the old array. When the new array is fully determined
the old one can be discarded and the output ⊤ or ⊥ can be cast, according to the
valuation of φ in the array.

As the state-space of this algorithm is finite (two boolean arrays of fixed size) it
can likewise be understood as a Moore machine [KLSS22]: The states are boolean
tuples assigning truth values to all sub-formulas plus one initial state where the
automaton resides before receiving the first input letter. The transition function
then results directly from the application of the procedure described above on a
state with respect to a concrete input letter. The Moore machine finally outputs the
verdict ⊤ in all states where the vector entry for the full formula is true, and ⊥ in
the other ones. The thus constructed monitor for the example formula P((¬p) S p)
and input alphabet Σ = 2{p,q} is depicted in figure 2.6. The state names indicate
the current valuation for the formulas p, ¬p, (¬p)S p, and P((¬p)S p) in this order.
Number 1 stands for true, 0 for false. The grey states are those where the Moore
machine casts the verdict ⊤, white states where ⊥ is yielded as output.

Since the monitor has a finite state-space it may clearly be considered trace-length-
independent. However, it is unclear whether the monitor is also impartial or antici-
patory. This is because these terms, in their traditional definition (definition 2.13),
do only apply to a setting where a monitor continuously tries to solve the same prob-
lem (if w ∈ Lφ holds for the full run w) and continuously receives more information.
Here, however, a different question, namely if the formula is satisfied at the current
position (pointed semantics), is conclusively decided in every step.

In this thesis we will further elaborate on this matter and discuss an extension
of the traditional notions of impartiality and anticipation towards pointed seman-
tics. Based on this, a monitoring technique for arbitrary properties on synchronous
streams will be presented, which unifies the ideas of monitoring pointed semantics,
as in the past LTL monitoring approach, and casting impartial and anticipatory

40

2.2. Runtime verification

Initstart

1010

0100

0111

1011

{p},
{p, q}

∅, {q}

∅, {q}

{p},
{p, q}

∅, {q}

{p},
{p, q}

{p},
{p, q}

∅, {q}

∅, {q}

{p},
{p, q}

Figure 2.6.: Monitor resulting from past LTL construction for φ = P((¬p) S p).
The state names indicate the current valuation of p, ¬p, (¬p) S p, and
P((¬p) S p) in this order (1 means satisfied, 0 not). Gray states yield
output ⊤, white states ⊥.

verdicts from a lattice domain, as done by the LTL3 monitor. These contents can
be found in chapter 3 and chapter 4.

2.2.3. Metric (interval) and signal temporal logic

The semantics of LTL was given over finite or infinite words. Metric, metric interval
and signal temporal logic, which will be introduced in this section, extend this con-
cept with the presence of time and continuous input data values, and are interpreted
over timed streams (aka metric models) and signals.

We start with the syntax and semantics of metric temporal logic [Koy90], which
also builds the basis for the other two mentioned formalisms. Metric temporal logic
(in the version commonly used today) uses the same operators as linear temporal
logic but attaches time intervals to the since and until operator. To align with our
definition of time distance measure (definition 2.5), we restrict to the special case of
real intervals. In general, the intervals can be from any domain with an associated
distance measure in the time domain (see [Koy90]).

Definition 2.21 (Metric temporal logic; based on [Koy90, OW06]).
The set of metric temporal logic (MTL) formulas over a finite set of atomic
propositions AP, mtlAP is given by the following grammar:

φ ::= true | p | ¬φ | φ ∧ φ | φ UI φ | φ SI φ

where p ∈ AP is an atomic proposition and I ∈ IR≥0 a possibly infinite interval.

41

2. Preliminaries

The interval in the subscript of the until and since operator is intended to give a
time range in which the second sub-formula has to be fulfilled. As for LTL we skip
the AP and just write mtl if it is clear from the context. We do the same also for
the other logics introduced in this section.

As before we first introduce a pointed MTL semantics over timed streams (aka
metric models, see definition 2.6). Let again Σ = 2AP .

Definition 2.22 (Pointed MTL semantics; based on [Koy90, OW06]).
Let φ ∈ mtlAP be an MTL formula, w ∈ STΣ a timed stream over time domain
(T, <, 0,⊖) with R≥0 distance measure and t ∈ T a position in the timed
stream. The model relation (w, t) |=mtl φ, which indicates that φ is satisfied
at position t in w, is inductively defined as follows:

(w, t) |=mtl true

(w, t) |=mtl p iff p ∈ w(t)
(w, t) |=mtl ¬φ iff (w, t) ̸|=mtl φ

(w, t) |=mtl φ1 ∧ φ2 iff (w, t) |=mtl φ1 and (w, t) |=mtl φ2

(w, t) |=mtl φ1 UI φ2 iff for some t′ ∈ t+ I : (w, t′) |=mtl φ2 and
for all t ≤ t′′ < t′ : (w, t′′) |=mtl φ1

(w, t) |=mtl φ1 SI φ2 iff for some t′ ∈ t− I : (w, t′) |=mtl φ2 and
for all t′ < t′′ ≤ t : (w, t′′) |=mtl φ1

where for t ∈ T and interval I ∈ IR≥0 , t + I = {t′ ∈ T | t′ ≥ t ∧ (t′ ⊖ t) ∈ I},
t− I = {t′ ∈ T | t′ ≤ t ∧ (t⊖ t′) ∈ I}.

Analogous to LTL, the common, initial MTL semantics can be derived in the fol-
lowing way:

Definition 2.23 (Initial MTL semantics; based on [OW06]).
Let φ ∈ mtlAP be an MTL formula and w ∈ STΣ a timed stream over time
domain (T, <, 0,⊖) with R≥0 distance measure. The initial semantics of φ, is
given as

w |=mtl φ iff (w, 0) |=mtl φ.

These semantics apply to finite and infinite time domains. Likewise discrete, non-
discrete and dense time domains are covered. Further note that the LTL operators S
and U can be expressed in MTL by choosing [0,+∞[as interval for the corresponding
MTL operators.

42

2.2. Runtime verification

A drawback of MTL however is, that the satisfiability of a specific formula is unde-
cidable if non-discrete time domains are allowed [AFH91, AH91, OW06]. In [AFH91]
a fragment of MTL, so-called metric interval temporal logic (MITL), is introduced,
which differs from MTL in that it is restricted to rational intervals and does not
allow singular ones, i.e. those with the lower bound being identical to the upper
bound. In this fragment the satisfiability problem is decidable [AFH91].

Definition 2.24 (Metric interval temporal logic; based on [AFH91]).
The set of metric interval temporal logic (MITL) formulas over a finite set of
atomic propositions AP, mitlAP , is the subset of mtlAP formulas, where all
intervals attached to a since or until operator are from IQ≥0 and non-singular
(i.e. not of form [a, a] for some a ∈ Q≥0).

To MITL the MTL semantics apply.

Signal temporal logic (STL) [MN04] finally extends the idea of MITL to real-valued
signals. The signals considered there have m ∈ N+ real-valued channels, i.e. their
data domain is Rm. STL allows predicates in MITL formulas which depict values
from the m-channel signal to boolean values.

Definition 2.25 (Signal temporal logic; based on [MN04]).
The set of signal temporal logic (STL) formulas, stlU , over a finite set of
predicates U = {µ1, . . . , µn} with µi : Rm → B, is equal to mitlU .

In the original definition from [MN04] the intervals in STL formulas are also re-
stricted to be bounded and inclusive, which we do not require in our definition.
Further the time domain of the signals is fixed as the set of reals between 0 and
tmax ∈ Q+. In this thesis the definition is extended to arbitrary signals over data
domain Rm. The semantics of STL is based on the MITL semantics. The predicates
are evaluated on the signal values, and the other operators are identical to MITL.

Definition 2.26 (Pointed STL semantics; based on [MN04]).
Let φ ∈ stlU be an STL formula over U = {µ1, . . . , µn} with µi : Rm → B. Let
further s ∈ STRm be a signal over time domain (T, <, 0,⊖) with R≥0 distance
measure.

The relation (s, t) |=stl φ, which indicates that φ is satisfied at position t in s,
is defined as

(s, t) |=stl φ iff (µ ◦ s, t) |=mtl φ

where µ : Rm → 2U with µ(v) = {µi | µi(v) = true} is the transformation
function from a signal value to a set of atomic propositions.

43

2. Preliminaries

The initial semantics is given in the usual way:

Definition 2.27 (Initial STL semantics; based on [MN04]).
Let φ ∈ stlU be an STL formula over U = {µ1, . . . , µn} with µi : Rm → B. Let
further s ∈ STRm be a signal over time domain (T, <, 0,⊖) with R≥0 distance
measure.

The initial STL semantics of φ is given as

s |=stl φ iff (s, 0) |=stl φ.

In this thesis we will use the syntactic sugar constants and operators false,∨,→,↔
as defined for LTL also for MTL, MITL and STL. Further we introduce an interval
version of finally, globally, once and historically:

FIφ := true UI φ
GIφ := ¬FI(¬φ)
OIφ := true SI φ
HIφ := ¬OI(¬φ)

Having defined timed extensions of LTL, it is natural to ask for monitoring algo-
rithms and automaton constructions for these logics. Several approaches to this
have been presented in the literature. We will not discuss them in detail, as they
will not play a significant role in the remainder of this thesis, but two prominent
ones are outlined in the following.

An automaton construction for the initial MITL semantics is described in [MNP06].
By adding a component that transforms the input signal into a boolean signal like
µ in definition 2.26, this approach should also be extendable to STL. The idea of
the algorithm is to translate the MITL operators to timed signal transducers – a
variant of Büchi automata with timed transitions and output generation – and to
build compositions of them.

In [MN04] the authors present an offline monitoring algorithm for STL and MITL,
restricted to a finite notion of piece-wise constant signals. The algorithm is mainly
based on the idea of applying the formula’s MITL operators to the finite input
signals by compositionally merging and shifting them. Thereby one receives a timed
boolean stream representing the truth value of the whole STL formula over time.

2.2.4. Monitoring under uncertainty and assumptions

We will now discuss two further relevant topics in runtime verification in this section,
uncertainty and assumptions. We define these concepts in terms of traces, which

44

2.2. Runtime verification

makes them also applicable to synchronous event streams and timed streams over
discrete time domains, by encoding them as traces. The definitions can further be
applied to signals (i.e. streams over dense time domain) at the cost of approximating
them as traces as described in section 2.1.3.

Uncertainty

The term uncertainty describes the circumstance that some parts of the trace, that
the monitor receives as input, are imprecise, i.e. some letters are either partially or
completely unknown. In principle, one can consider an uncertain trace received by
the monitor as the subset of Σ∗ that contains all possible traces with respect to the
uncertainty (c.f. [CTT19]).

Definition 2.28 (Uncertain trace).
An uncertain trace over a data domain Σ is a set of finite traces U ⊆ Σ∗.

A trace w ∈ Σ∗ is called a concrete trace of U if and only if w ∈ U .

An uncertain trace U ⊆ Σ∗ is an extension of an uncertain trace V ⊆ Σ∗,
denoted V ⪯ U , if and only if

∀u ∈ U.∃v ∈ V, e ∈ Σ∗. u = v ◦ e.

A monitor handling uncertainty can be understood as one which is receiving a se-
quence of uncertain traces, where each one is an extension of the previous one. Based
on the considerations about the quality of a monitor in definition 2.13 we define a
sound and perfect uncertain monitor in definition 2.29.

Definition 2.29 (Sound and perfect uncertain monitor; based on [KLSS22]).
Let M be a monitor receiving a sequence U1 ⪯ U2 ⪯ · · · ∈ (2Σ∗)∗ of extending
uncertain traces over Σ and subsequently yielding verdicts v1, v2, · · · ∈ V over
verdict domain V ⊇ {⊤,⊥}.

For a language Lφ ⊆ Ω with Ω ∈ {Σ∗,Σn,Σω,Σ∞}, M is called

• Sound uncertain monitor for Lφ, if and only if for any input sequence
U1 ⪯ U2 ⪯ · · · ⪯ Un

∀i ∈ N+. vi = ⊤ ⇒ ∀w ∈ Ui, wv ∈ Ω. wv ∈ Lφ and
∀i ∈ N+. vi = ⊥ ⇒ ∀w ∈ Ui, wv ∈ Ω. wv ̸∈ Lφ

45

2. Preliminaries

• Perfect uncertain monitor for Lφ, if and only if for any input sequence
U1 ⪯ U2 ⪯ · · · ⪯ Un

∀i ∈ N+. vi = ⊤ ⇔ ∀w ∈ Ui, wv ∈ Ω. wv ∈ Lφ and
∀i ∈ N+. vi = ⊥ ⇔ ∀w ∈ Ui, wv ∈ Ω. wv ̸∈ Lφ

Thus a monitor is sound, if it casts the final verdicts ⊤ and ⊥ only if all possible
continuations of the concrete traces are in the language Lφ. Further it is perfect
if it also casts the final verdicts whenever possible. Note that this definition has
strong parallels with the notions of impartiality and anticipation from definition 2.13.
Indeed soundness corresponds to impartiality and perfectness to impartiality and
anticipation.

It remains open how the sequence of uncertain traces, i.e. a sequence of sets of traces,
can be passed to the monitor which usually receives a sequence of letters. In this
thesis we bridge this gap by introducing an uncertain data domain Γ. Over this
domain, an input trace is formed that encodes the uncertain input and is passed to
the monitor letter by letter. Additionally we require an interpretation function that
maps inputs over Γ to the corresponding uncertain traces.

Definition 2.30 (Uncertainty encoding).
Let Σ, Γ be data domains, where Σ contains certain and Γ uncertain data
values.

A function ν : Γ∗ → 2Σ∗ is called uncertainty encoding if and only if

∀w,w′ ∈ Γ∗. w ⊏ w′ ⇒ ν(w) ≺ ν(w′)

Hence, we require the encoding to map a strict continuation w′ of an encoded trace
w to a strict continuation of the represented uncertain trace. This guarantees that
the monitor receives a consistent and growing amount of information about the
uncertain input with each letter of Γ.

A most basic idea for the uncertainty encoding is to encode the possibilities for
every letter individually, i.e. Γ = 2Σ. We call this letter-wise or timestamp/instant-
immanent uncertainty. However, not all uncertain inputs can be uniquely encoded
this way. Consider for example the following uncertain trace over Σ = {a, b, c}:

{a, b, c}, {aa, ab, bb, bc, cc}, {aaa, aab, abb, abc, bbb, bbc, bcc, ccc}, . . .

I.e. the exact input letters are fully unknown, but a is only followed by a or b, b by
b or c and c by c. In this case the possible extension letters are always dependent
on the previous letter and thus there is no letter-wise encoding.

46

2.2. Runtime verification

In [KPD22] Kushwaha et al. present a more general method for abstracting un-
certain traces. They represent sets of Σ-sequences (here called chunks) by letters
of the uncertain data domain. Therefore they make use of a so-called loss model,
which defines the relation between uncertain letters and the certain chunks they
can represent. In their work, the loss model is meant as theoretical construct to
model a partial trace, where information was lost compared to a certain trace. In
this thesis, we take up the idea and define the chunk uncertainty model, which is
basically equivalent to theirs, but relaxes some specific conditions that we do not
require.

Definition 2.31 (Chunk uncertainty model; based on [KPD22]).
Let Σ, Γ be data domains, where Σ contains certain and Γ uncertain data
values.

A relation R ⊆ Σ∗ × Γ is called chunk uncertainty model.

Given a chunk uncertainty model, a corresponding uncertainty encoding is defined
in definition 2.32.

Definition 2.32 (Chunk uncertainty encoding; based on [KPD22]).
Let R ⊆ Σ∗ × Γ be a chunk uncertainty model and w = w1w2 . . . wn ∈ Γ∗ a
trace over the uncertain data domain. The corresponding uncertainty encoding
ν : Γ∗ → 2Σ∗ is defined as

ν(w) =
{
{ϵ} if w = ϵ

{u | u = v ◦ v′ ∧R(v, w1) ∧ v′ ∈ ν(w2 . . . wn)} else

An example of a chunk uncertainty model (inspired by the one from [KPD22]) for
Σ = {p, q} and Γ = Σ ∪ {1, 2, . . . , n}, could be

R(a, b)⇔ (a = b ∧ a ∈ Σ) ∨ (|a| ≤ b ∧ b ∈ {1, . . . , n})

I.e. a number k in the input trace indicates a missing segment of length 0 to k in
the concrete trace. Thus, for the input p2q, the corresponding uncertain trace is

ν(p2q) = {pq, ppq, pqq, pppq, ppqq, pqpq, pqqq}.

The presented notion of abstracted traces and uncertainty models is able to ex-
press most uncertainty patterns, especially potential duplication and potential loss
of events, noisy or fully unknown values and local value combinations. The model
though is not able to express relations between uncertain events which are arbitrar-
ily far from each other, e.g. the first letter is a, b or c, but it cannot be c if there is a
further c somewhere in the trace. Thereby, however, an incremental reception of an

47

2. Preliminaries

uncertain run is enabled. Consequently the presented uncertainty encoding can be
seen as a general way to deal with uncertain inputs in runtime verification. In chap-
ter 3 of this thesis we will build our monitoring theory on this kind of uncertainty
encoding. For the monitoring algorithm which is presented in chapter 4, however,
we will restrict it to letter-wise uncertainty again.

The traditional monitoring approach for uncertainty is to use power set construc-
tions to express possible states in which the certain monitor can be and to combine
the corresponding verdicts in a suitable way [KPD22, KLSS22]. The monitoring
algorithm in chapter 4 is also based on this idea.

Another conceivable aspect in the context of uncertain input traces is the assignment
of probabilities to the specific trace variations (e.g. a specific letter in the trace is with
70% probability an a, otherwise a b). This information could then be considered
in probabilistic monitoring approaches, e.g. [SBS+11]. In this thesis however we
will not consider this kind of uncertainty but focus on uncertainty without specific
probabilities, as introduced above.

Assumptions

A specification φ in traditional runtime verification defines a language Lφ ⊆ Ω with
Ω ∈ {Σ∗,Σn,Σω,Σ∞} of traces that fulfill some property. Yet oftentimes the set of
actually possible runs of the system is not Ω but a subset A ⊆ Ω, as some traces in
Ω may never be taken by the system in reality (see [Leu12]). We call such a subset,
restricting the possible system runs, an assumption.

Definition 2.33 (Assumption; based on [HS20]).
An assumption A ⊆ Ω with Ω ∈ {Σ∗,Σn,Σω,Σ∞} is a set of potential runs of
a system.

A run w ∈ Ω meets an assumption if w ∈ A.

Formally an assumption is a language and may thus be given in different ways, e.g.
grammars, automata, Kripke structures or transition systems.

In the presence of assumptions, the monitoring process can be adjusted to consider
only input extensions that match the assumption. For this purpose, we restrict the
containment operator ∈ in the following way:

Definition 2.34 (Containment provided assumption).
Let A ⊆ Ω with Ω ∈ {Σ∗,Σn,Σω,Σ∞} be an assumption and φ a correctness
property with corresponding language Lφ ⊆ Ω.

48

2.2. Runtime verification

A trace w ∈ Ω is contained in Lφ provided A (w ∈A Lφ) if and only if

w ∈ A ⇒ w ∈ Lφ.

and it is not contained in Lφ provided A (w ̸∈A Lφ) if and only if

w ∈ A ⇒ w ̸∈ Lφ.

This definition allows us to adjust the notion of impartial and anticipatory moni-
toring (definition 2.13) as well as sound and perfect monitoring under uncertainty
(definition 2.29) in the presence of assumptions. Therefore we simply have to re-
place wv ∈ Lφ and wv ̸∈ Lφ in the corresponding definitions by wv ∈A Lφ and
wv ̸∈A Lφ. Effectively this obligates sound and perfect monitors to cast final ver-
dicts if the corresponding property holds or is violated for all input extensions that
match the assumption.

If A is not the trivial assumption (i.e. A ̸= Ω), monitoring under assumptions
has several favorable implications on the monitoring process, that go beyond plain
parallel monitoring of the the assumption and the property (see [Leu12, CTT19,
HS20, KLSS22]):

• Early Conclusion: When a monitor receives an input, it may be capable of
giving a final verdict earlier if an assumption is present, as the set of input
extensions to be considered is restricted by A.

• Extended Monitorability: If a monitor can reach a state, where it is not
possible to cast a final ever again, because for the received prefix there is always
an extension which leads to a trace in Lφ and one that leads to a trace not
in Lφ, then the corresponding property is considered as non-monitorable (see
[PZ06]). The existence of assumptions may make such a property monitorable,
as certain extensions of prefixes don’t have to be considered anymore, because
they are outside of the assumption.

• Uncertainty removal: When monitoring under uncertainty, an assumption may
restrict the number of possible concrete runs, as some of them can actually not
be extended to a trace which is compatible with the assumption. Consequently
the monitor may be able to produce more precise verdicts.

Monitoring under assumptions is in general closely related to the field of model
checking (c.f. [Leu12]). Consider an assumption A that is an exact model of the
underlying system. Deciding whether ⊤ is the verdict of an anticipatory, impartial
monitor for φ in the initial state is equal to model checking the property φ for the
system. This already leads to the insight that anticipatory runtime verification under
particular assumptions is in general undecidable due to Rice’s theorem [Ric53].

Of course, if assumptions are present, it is also thinkable to check that the input trace
handed to the monitor is coherent with the assumptions at all. In general this can

49

2. Preliminaries

be done quite straight-forwardly, as long as the assumption allows for anticipatory
and impartial monitoring. If the monitor has received trace w and for all wv ∈ Ω,
wv ̸∈ A, then w is an impossible input. However, reasoning with assumptions
makes little sense if it is conceivable that traces are obtained that actually violate
the assumption. For this reason, we will not consider this case in the rest of this
thesis.

2.3. Stream runtime verification

A major part of this thesis deals with stream runtime verification (SRV), which
is considered as a generalization of the classical RV approaches (see [BS14]). In
SRV special stream-based specification languages are used to describe the monitored
properties of the system under scrutiny. The three most popular SRV languages are
LOLA [DSS+05], including its extensions LOLA 2.0 [FFST16] and RTLola [FFST17,
FFS+19], TeSSLa [CHL+18, KLS+22b] and Striver [GS18], which will be presented
in the remainder of this section.

The central insight underlying SRV is that runtime verification can generally be
understood as a stream transformation process. A monitor receives a sequence
of observed values from the monitored system (i.e. streams of observed values) and
transforms them into a stream of monitoring outputs, e.g. verdicts from some verdict
domain. The approach of SRV is the direct description of the monitored property
as a stream transformation function and the subsequent generation of a monitor
out of it. In this general setting however, the operations and data types used for
the stream transformation are not restricted in any way, which makes SRV a very
powerful monitoring approach. Likewise the input events can have data of any
type attached (e.g. variable or parameter values), and the monitor is not limited
to issue verdicts from a truth domain but can cast output values from any domain
to provide information about relevant system properties. For illustration of the
approach, consider the following scenario.

Imagine a self-driving robot system. The RV monitor observes the robot’s speed
at a regular basis, additionally it receives the information whether the system is
currently passing through critical terrain. Now the property to be observed is, that
the speed of the robot never exceeds the threshold 10, if it is inside a critical section.
The desired monitor output is 0, if everything is ok, otherwise the speed amount
that the robot moves to fast.

From an SRV perspective such a monitor receives two input streams, speed of type
real and crit of type boolean. These streams are transformed into an output stream
again of type real. In SRV languages one describes such a stream transformation
with the use of so-called intermediate streams. An intermediate stream results from
the application of a basic stream operator on input or intermediate streams. Finally
some of the intermediate streams which are formed this way are marked as output.

50

2.3. Stream runtime verification

In the example from above one could e.g. specify an intermediate stream which holds
the difference of speed’s current value to 10. Then one could define an additional
intermediate stream, marked as output, which calculates the final result via an if
expression, which evaluates to the value of diff if it is greater than 0 and crit is
true and otherwise to 0. An illustration of this stream transformation can be found
in figure 2.7.

7 8 15 13 12

ff tt tt tt ff

-3 -2 5 3 2

0 0 5 3 0

speed

crit

diff :=
speed - 10

out :=
if (diff > 0 && crit) diff else 0

Figure 2.7.: Example of a stream transformation as used in stream runtime verifica-
tion. The gray arrows mark the data flow among the individual stream
events.

As the evaluation of stream operations is driven by the event flow between the
streams, stream runtime verification languages follow the dataflow paradigm and
thus show similarities to other languages of this family, especially Lustre [CPHP87]
or SIGNAL [GL87], and functional reactive programming frameworks, see [EH97,
Mag16]. However there are some aspects which usually cannot be found in these
languages:

Traditional dataflow languages are programming languages, intended for a direct,
causal description of a program behavior. SRV languages on the other hand have a
more descriptive character, as is typical for specification languages [DSS+05]. These
languages are intended for the specification of a (correctness) property, rather than
the monitor execution. This difference is particularly noticeable in the fact that
traditional dataflow languages are based on an immanently synchronous execution
model, while in SRV there are typically language constructs with asynchronous or
time-related character available (see [DSS+05, Sch24]):

• The languages often support a future operator, which allows to reference a
stream event in the future. Such a feature may of course make the definite
computation of an event depending on future events impossible until the future
values are known. However from a specification rather than a programming
standpoint it makes sense to have a future operator included, as some proper-
ties can be formulated more intuitively with such references.

51

2. Preliminaries

• Likewise SRV languages often contain specific operators which allow the gen-
eration of output events deposed from the arrival time of input events (e.g.
TeSSLa’s delay operator or Striver’s ticking expressions) or operators to cal-
culate on events with asynchronous arrival (signal semantics, see [CHL+18]).

• Finally in SRV, the languages often also support features to handle a separation
between system time and the monitor time [LSS+18], e.g. explicit timestamps
attached to the events. Traditional dataflow languages usually do not require
this distinction as for them only a unique execution time exists.

To handle theses features, evaluation algorithms for SRV languages often follow
advanced, non-linear strategies.

2.3.1. LOLA

This section gives a formal introduction to the syntax and semantics of the pioneering
SRV language LOLA (named after the 1998 movie “Run Lola Run”2). Subsequently
a short outline of the related languages TeSSLa and Striver will be given, which,
however, will play a subordinate role in the remainder of this work.

Syntax & semantics

From a formal perspective a LOLA specification is an equation system, where ex-
pressions, which define streams, are bound to stream identifiers. LOLA exclusively
deals with finite, synchronous event streams (see definition 2.3), i.e. those without
explicit timestamps attached to the events. We assume the instant domain of these
streams to be globally fixed as T = {0, 1, . . . , tmax}. Furthermore, in this thesis we
do not consider the very special case where tmax = 0, i.e. the streams are only of
length 1.

The data type of streams is not restricted in any way, i.e. they may carry any
value, e.g. booleans, numbers or more complex data structures like sets or maps. A
LOLA specification however has to be type correct. Every stream is restricted to
carry events from a specific data domain. If a stream may only bear events from
data domain D, we say this stream is of sort (or type) D. For input streams, it is
assumed that the type is fixed and known, while the type of intermediate streams,
which are defined in the specification, is given implicitly by the type of the defining
expression.

The syntax of typed LOLA expressions is defined in the following.

2Personal communication with César Sánchez, May 2023

52

2.3. Stream runtime verification

Definition 2.35 (LOLA stream expressions; based on [DSS+05, KLS22a]).
The set of LOLA stream expressions of sort (or type) D over a set of stream
identifiers S, ExpSD, is defined as

ExpSD ::= c | s[o|c] | f(ExpSD1 , ...,ExpSDn
) | ite(ExpSB,ExpSD,ExpSD)

where c ∈ D is a constant symbol of sort D, s ∈ S is a stream identifier of sort
D, o ∈ Z is an offset, f is a function symbol of sort D1 × · · · × Dn → D and
B = {true, false} is the boolean type.

ExpS denotes the set of stream expressions over S of any sort.

A constant symbol describes the stream with this constant value at every position.
The offset expression s[o|c] denotes a stream which at position t carries the value of
stream s at position t + o, if t + o ∈ T, otherwise the constant default value c. In
LOLA the offset expression is also used for accessing the current value of a stream,
i.e. with offset o = 0. In this case, however, the default value c is not relevant, as
a position outside of the instant domain T is never accessed. Consequently s[now]
may be used as shorthand for s[0, d] with any constant d of correct type. Further,
the expression f(s0, . . . , sn) is the stream whose events result from application of
the function f on s1 to sn’s current events. The term ite finally is the application
of the special function symbol ite used for if-then-else expressions.

Based on definition 2.35, the syntax of a LOLA specification is defined as follows:

Definition 2.36 (LOLA syntax; based on [DSS+05, KLS22a]).
A LOLA specification φ = (I, S,O,E) is a 4-tuple consisting of

– a finite set of input stream identifiers I,
– a finite set of intermediate stream identifiers S, s.t. S ∩ I = ∅,
– a finite set of output stream identifiers O ⊆ S,
– a mapping E : S → ExpS∪I , which assigns to every intermediate identi-

fier s ∈ S a stream expression E(s) over input and intermediate stream
identifiers.

The original LOLA definition from [DSS+05] also introduces a special trigger key-
word, which can be applied to an intermediate stream of type B. The semantics of
this keyword is, that whenever the stream to which it is applied carries the value
true, the monitor raises a notification. However such a keyword can be omitted in
a theoretical consideration as trivially the affected stream can be marked as output
and the generated monitor can be extended by a special alert layer implementing
the desired behavior.

Throughout this thesis we will frequently require the specification to be in a flat-
tened format. This means that it must contain only −1,0 and +1 offsets. In general,

53

2. Preliminaries

any LOLA specification can be translated into such a flattened format by splitting
higher and lower offsets into a chain of subsequently applied +1 or −1 offset oper-
ations on newly introduced helper streams. A definition s = x[-3|0] could e.g. be
transformed into s = s’[-1|0], s’ = s’’[-1|0], s’’ = x[-1|0] where s’, s’’
are fresh stream identifiers.

The algebra of all data domains and function symbols in a LOLA specification is
called induced algebra of the specification. As every algebra in this thesis we also
require it to include the boolean sort B with constants and the ∧ operator.

Definition 2.37 (Induced algebra of LOLA specification).
Let φ = (I, S,O,E) be a LOLA specification. The induced algebra of φ, Aφ, is
the algebra consisting of

– the sort B,
– the sorts of all input and intermediate streams,
– all elements of the included sorts as constants,
– all functions used in φ,
– the operator ∧ in its usual definition,
– the equality operator = for all sorts.

As example for a LOLA specification consider the one in figure 2.8. The form of
representation used there is quite intuitive and resembles the specification format
used in existing LOLA implementations. On top of the specification all input streams
are declared by the input keyword and the corresponding type information. In
the latter part all intermediate streams are defined by equations with the stream
identifier on the left hand side and LOLA stream expressions on the right hand side.
For the application of common mathematical and logical functions (+, >,∧, . . .) infix
notation is used. In the last line the stream out is finally marked as output stream
with help of the output keyword. This proposed way of writing LOLA specifications
will also be utilized throughout the rest of this thesis.

1 input speed: R
2 input crit: B
3
4 speed_avg := (speed [-1|0] + speed[now] + speed [+1|0]) / 3
5 diff := speed_avg [now] - 10
6 out := ite(diff[now] > 0 ∧ crit[now], diff[now], 0)
7
8 output out

Figure 2.8.: Example specification formalized in LOLA

The scenario specified in the example is an extension of the self-driving robot exam-
ple discussed above (see figure 2.7). In difference to the property described there,

54

2.3. Stream runtime verification

the specification from figure 2.8 first computes the average over three values from
the input stream speed (the current, the last and next one) and keeps the result in
the intermediate stream speed avg. As in the mentioned example, the specification
then computes a stream diff by subtracting the high speed (10) from the current
value of speed avg. Finally stream out is defined to take over this value, if it is
positive and the robot is currently in a critical section (indicated by the current
event of input stream crit), otherwise it is zero. The induced algebra of the speci-
fication contains the sorts real (R) and bool (B) with their values as constants and
the operations ∧, =, +, −, /, >, ite.

Next we will introduce the formal semantics of a LOLA specification. Therefore we
start with defining the semantics of a LOLA expression and what a solution of a
LOLA specification is.

Definition 2.38 (LOLA semantics; based on [DSS+05]).
Let φ = (I = {s1, . . . , sn}, S = {sn+1, . . . , sn+m}, O = {si1 , . . . , sil}, E) with all
sij ∈ S be a LOLA specification.

Given a tuple of streams Π = (π1, . . . , πn+m) ∈ SD1×· · ·×SDn+m corresponding
to stream identifiers s1, . . . , sn+m over instant domain T, the semantics of a
LOLA expression w.r.t. φ, J·KΠ,φ : ExpS∪I

D → SD, is iteratively defined as:

• JcKΠ,φ(t) = c

• Jsi[o|c]KΠ,φ(t) =
{
πi(t+ o) if t+ o ∈ T
c otherwise

• Jf(e1, ..., en)KΠ,φ(t) = f(Je1KΠ,φ(t), . . . , JenKΠ,φ(t))

• Jite(e1, e2, e3)KΠ,φ(t) =
{

Je2KΠ,φ(t) if Je1KΠ,φ(t) = true
Je3KΠ,φ(t) if Je1KΠ,φ(t) = false

A tuple of streams Π = (π1, . . . , πn+m) ∈ SD1 × · · · × SDn+m is called solution
of φ for input streams Σ = (σ1, . . . , σn) ∈ SD1 × · · · × SDn if and only if

Π = (σ1, . . . , σn, JE(sn+1)KΠ,φ, . . . , JE(sn+m)KΠ,φ)

The semantics of φ for input Σ ∈ SD1 × · · · × SDn is defined as

JφK : SD1 × · · · × SDn → SDi1
× · · · × SDil

JφK(Σ) = (πi1 , . . . , πil)

if and only if for φ and Σ there is a unique solution Π = (π1, . . . , πn+m) and
otherwise undefined.

55

2. Preliminaries

The semantics of the individual expressions are defined quite straightforwardly. Con-
stants evaluate to the stream with the constant at each position, offsets take the cor-
responding value from the given tuple of all input and intermediate streams, or the
default value if a position outside the instant domain would be accessed. The func-
tion application and if expressions are applied to the values of their sub-expressions.
A solution of a specification, for a tuple of input streams, is defined in a recursive
manner. It is each tuple of streams Π consisting of the input streams concatenated
with the semantics of the defining expressions of all intermediate streams w.r.t. Π
itself. Finally, the semantics of a LOLA specification, given a tuple of concrete input
streams, consists of the output streams in the solution Π, if it exists and is unique.

Per se, the above definition does not guarantee that there is a solution of a LOLA
specification (e.g. if a real stream is defined as x := x[now] + 1), nor that there are
not multiple solutions (e.g. if a stream definition x := x[now] is contained). In fact,
a LOLA specification has a unique solution if no stream event at any given instant
is dependent on itself. I.e. there is no cycle in the recursive evaluation [DSS+05].
In this work we only consider so-called well-formed LOLA specifications, which are
defined on basis of the specification’s dependency graph.

Definition 2.39 (LOLA dependency graph; based on [DSS+05]).
Let φ = (I, S,O,E) be a LOLA specification.

The corresponding dependency graph is a directed, weighted graph Gφ = (V,D)
with nodes V = I∪S and weighted edges D ⊆ V ×V ×N, s.t. (u, v, o) ∈ D if and
only if v ∈ S and the definition of stream v (E(v)) contains the sub-expression
u[o|c] for any constant c.

The dependency graph contains the information which streams depend on which.
The edge weight indicates the time offset between an influenced event and its influ-
encing event. Clearly, if there is a cycle with an edge sum of zero the value of an
event may depend on itself. In this case the LOLA specification is said not to be
well-formed.

Definition 2.40 (LOLA well-formedness; based on [DSS+05]).
A LOLA specification φ is well-formed, if and only if the corresponding depen-
dency graph has no cycle with edge sum zero.

Well-formed LOLA specifications were shown to have a unique solution [DSS+05].

LOLA monitoring

Now we want to discuss how to monitor a LOLA specification. Here the original
monitoring algorithm from [DSS+05] is shown (with slight modifications in presen-
tation), commonly referred to as universal monitoring algorithm. The key idea is

56

2.3. Stream runtime verification

that the monitor internally maintains a set A of active equations (i.e. boolean ex-
pressions) that describe the values of particular stream events. These expressions
are over the induced algebra Aφ and the set of so-called instant variables which
represent a single event of an input or intermediate stream:

Definition 2.41 (LOLA instant variables and expressions; based on [DSS+05,
KLS22a]).
Let φ = (I, S,O,E) be a LOLA specification.

The set of instant variables of φ is given as

Vφ = {st | s ∈ S ∪ I, t ∈ T}

where each st is of the same sort as stream s.

The set of instant expressions from φ of type D is defined as ED
φ := ED

Aφ,Vφ .

The basic concept is that during monitoring the expressions in A ⊆ EB
φ are continu-

ously refined with the given input readings and evaluated. The algorithm (depicted
in figure 2.9) follows the subsequently listed steps:

1. Events from the input streams are received. Here it is assumed that the events
appear in the correct order and synchronously. I.e. all input events at a certain
instant have to arrive before further events from later instants are received.
If input stream s at instant t has the value v, the equation

st = v

is added to the set of active equations A.

2. When all input events at a certain instant are received, the equations from the
specification are instantiated for this instant (denoted as Et) and added to A
(function Compute). Therefore the offsets and left hand side stream identifiers
in the equations are replaced by instant variables of the corresponding stream
events or default values. E.g. for instant 0 the equation

speed avg := (speed[-1|0] + speed[now] + speed[+1|0]) / 3

from the specification in figure 2.8 would be instantiated to

speed avg0 = (0 + speed0 + speed1)/3.

3. Subsequently all equations in A are evaluated as far as possible: Whenever
an equation of form sk = v is contained in A where v is a constant value,
the corresponding output for this instant is generated if s is an output stream
(function Output) and all further occurrences of sk in equations from A are

57

2. Preliminaries

replaced by v. Function applications (incl. ite expressions) are resolved as far
as possible. This partial evaluation is repeated until no further simplifications
can be performed.

4. Finally all equation of form sk = v with a constant value v are removed from
A, if there is no s[o|c] expression in φ with o < k − t in φ with t being the
current instant (function Prune). This removal is possible, because if there is
an equation sk = v in A, all occurrences of sk were already replaced by v in
step 3 and in future equations sk cannot occur anymore as there is no offset
expression with a sufficiently high negative offset in φ.

5. If the end of the trace is not yet reached (i.e. t ≤ tmax), the procedure is
repeated for the next instant from step 1 on.

We will now take a look at the resources required by this monitoring algorithm.
Consider a fixed specification φ. For the following considerations we make some
assumptions: First, we require the data domains used in φ to be storable in constant
size, e.g. a single register. We also assume the evaluation time of the function symbols
used there to be constant. These assumptions are necessary and common for resource
estimation of monitoring algorithms. Without it (e.g. when complex data structures
like sets or maps are involved in the specification) no resource bounds could be found,
as runtime and memory consumption of the algorithm can always be dominated by
the storage of and the evaluation time of function symbols on large input values.

Secondly we consider the maximal timestamp tmax ∈ T to be part of the monitor
input (e.g. as first letter or by a special letter indicating the trace end) without
explicitly denoting it. A monitor is thus trace-length-independent (definition 2.13)
if its resource demand per instant is constant for any T. Considering T to be given
globally or to be part of the specification would make little sense, as in this case
every monitor would be trace-length-independent because the actual monitoring
would only have to be performed for a finite set of instances and thus automatically
be bounded by a constant.

With these assumptions, which we will also uphold throughout the rest of this thesis,
it is easy to see, that the monitoring time per instant (runtime of one execution of
the while body) is polynomial in terms of the number of equations in A (note, that
length of these equations is bounded by a constant, as they are generated from φ).
With an advanced simplification strategy the runtime can further be reduced to be
linear in the size of A. The memory consumption, is also linear in |A|.

A consequence of this complexity analysis is that the monitoring algorithm is not
trace-length-independent as the set of active equations A, may grow with the moni-
toring time. This is caused by the positive offset expressions (future offsets) allowed
in LOLA. With them, it is possible that every newly instantiated expression contains
future offsets to intermediate streams, and thus no expression can be simplified to
a value and be removed from A. However, this trace-length-dependence is not due

58

2.3. Stream runtime verification

1 t← 0;
2 A← ∅;
3 while t ≤ tmax do
4 foreach i ∈ I do
5 Read input value v for stream i at instant t;
6 A← A ∪ {it = v};
7 A← Compute(t, A);
8 Output(A);
9 A← Prune(t, A);

10 t← t+ 1 ;
11 Function Compute(t, A) is
12 A← A ∪ Et;
13 Simplify all equations in A;
14 while new (sk = v) ∈ A do
15 Replace all other sk in A by v;
16 Simplify modified equations in A;
17 return A;
18 Function Output(A) is
19 foreach s ∈ O ∧ (sk = v) ∈ A do
20 if sk is not yet printed then
21 Output sk = v;

22 Function Prune(t, A) is
23 foreach (sk = v) ∈ A do
24 if no s[o, c] in φ with o < (k − t) then
25 A← A\{sk = v};

26 return A;

Figure 2.9.: Monitoring algorithm for LOLA specification φ = (I, S,O,E). Et de-
notes the instantiated equations from E for instant t, v a constant value.

to a non-optimal evaluation algorithm. Under the premise that the monitor should
report the exact value of each output stream event, LOLA specifications are gen-
erally not monitorable with trace-length-independent resources [DSS+05]. Consider
e.g. the specification in figure 2.10.

In this specification there are two boolean input streams, x and y. Two further
streams are defined on basis of these inputs:

• Stream z is true whenever x is true now or at any position in the future.

• Stream v is true at all instants where also y and z are true.

59

2. Preliminaries

1 input x: B
2 input y: B
3
4 z := z[+1| false] ∨ x[now]
5 v := y[now] ∧ z[now]
6
7 output v

Figure 2.10.: Example of a LOLA specification not monitorable with trace-length-
independent resources if the value of all output events shall be cast.

One can easily see, that an evaluation of this specification requires the monitor to
store all positions at which stream y was true until the first event with value true
occurs on stream x. This is because at the moment when the first true event is
present on stream x, but not earlier, all previous events on stream z are also known
to be true, and likewise the events of v at instants when y was also true. Obviously,
any monitoring strategy for this LOLA specification which yields the values of all
output events, must store exactly these positions, the number of which can grow
linearly with the trace length.

As pointed out before it is often desirable for RV tasks, that the resources demanded
by the monitor are bounded by a constant. Thus [DSS+05] identifies a so-called
efficiently monitorable LOLA fragment, for which trace-length-independent monitors
can be synthesized:

Definition 2.42 (Efficiently monitorable LOLA fragments; based on [DSS+05,
Gor22]).
A LOLA specification φ is called efficiently monitorable if and only if there are
no cycles with a positive edge sum in its dependency graph.

Further φ is called very efficiently monitorable if it does not contain positive
offset expressions.

A monitor following the evaluation strategy from above is trace-length-independent
for efficiently (and thus also very efficiently) monitorable LOLA specifications. Re-
call that an edge from a stream identifier x to y labeled with number k in the
dependency graph means that the value of an event on stream y may depend on an
event of stream x, k instants in the future. Clearly, a path in the dependency graph
expresses a (mediate) dependency between events on two not necessarily directly
connected streams and the sum of the path’s edge weights indicates the temporal
relation. Thus, a positive cycle connotes that the events of a certain stream de-
pend on later events of the same stream, which in turn depend on later events of
the stream themselves. Hence, such a chain of dependencies may never be resolved
unless the end of the stream is reached. On the other hand, if the dependency

60

2.3. Stream runtime verification

graph does not contain such positive cycles, there is a constant c, such that all
paths in the dependency graph have an edge sum lower than c. Consequently, every
equation can be evaluated at the latest c instants after being added to A. Addi-
tionally, a fully evaluated equation is removed at most d instants after being added,
where −d is the (constant) lowest negative offset accessing its corresponding stream.
Thus, for specification φ = (S, I,O,E) the number of equations in A is limited by
(|S| + |I|) · max{c, d} = const. The maximal size of an equation is determined by
the corresponding stream definition in the specification and thus also constant. The
very efficiently monitorable fragment simplifies the monitoring process even more.
All equations can be evaluated directly at the instant they are added because they
depend only on the values of current and previous stream events. As a result, it
is not necessary to store the complete equations, but only the values of the instant
variables.

Further LOLA fragments

In the later sections of this thesis, we will also examine additional LOLA fragments
which are restricted with respect to the supported types, function symbols, and
shape of stream definitions, rather than the dependency graph. Specifically, we deal
with the following fragments, for which we will show special properties with respect
to their trace-length-independent monitoring:

Definition 2.43 (LOLA fragments; based on [KLS22a]).
The following syntactic fragments of LOLA are defined:

• Boolean fragment (LolaB) is the LOLA fragment, where the data domain
of all streams is the boolean domain B = {true, false} and the available
functions are ¬,∧,∨,→,↔.

• Linear algebra fragment (LolaLA) is the LOLA fragment, where the data
domain of all streams are real numbers R and every stream definition
has the form c0 + c1 · s0[o1|d1] + · · · + cn · sn[on|dn] where ci, di ∈ R are
constants.

• Linear real arithmetic fragment (LolaLRA) is the LOLA fragment, where
the data domain of all streams is B or R. Every stream definition is
either contained in the linear algebra fragment or in the boolean fragment
extended by the functions <, >, ≤, ≥ and = for reals.

These fragments are of course combinable with the efficient monitorability property
from above and consequently also an efficiently monitorable boolean fragment etc.
exists. Observe that the induced algebras of specifications over these fragments
correspond to (subsets of) the algebras introduced in section 2.1.5.

61

2. Preliminaries

LOLA 2.0 and RTLola

As the first and pioneering formalism in the field of stream runtime verification,
traditional LOLA [DSS+05] as presented in the previous section was basis for two
strongly related languages or dialects, Lola 2.0 [FFST16] and RTLola [FFS+19,
FFST17], which shall briefly be discussed in this section.

Lola 2.0 extends the traditional LOLA syntax by a notion of parameterized streams,
so-called stream template expressions. Compared to normal streams they bring two
additional features:

• The stream templates represent a dynamic, potentially infinite number of ho-
mogeneous instance streams, which are parameterized in the values of another
stream. A stream template could for example define an infinite set of streams
where each one counts the number of occurrences of a specific value in another
stream.

• The event rate of each instance stream spawned by a template expression is
determined by a specific boolean stream. If this boolean stream carries the
value true the template stream has an event, at other instants it has not.
Hence template expressions allow for asynchronous streams in the sense that
not all streams have events at all instants.

However, from a formal perspective these features provided by Lola 2.0 do not
increase the expressiveness of LOLA [Sch22]. Since the data types of LOLA are
not restricted, a stream of type map can be used to represent all streams generated
by a template expression. Therefore the map can store the current value for each
stream with the template parameter as key. Always when the computation of an
instance stream is triggered, the corresponding value in the map can be updated
(see [Sch22]).

Clearly the resulting monitor would not be trace-length-independent in terms of its
memory requirement anymore, because the map could grow arbitrarily large and
consequently not be stored in a single memory cell (as demanded before). Yet this
is a general problem. Lola 2.0 can principally not be monitored in a trace-length-
independent manner as long as there is no bound on the number of invoked instance
streams and future references are allowed [FFST16]. Otherwise, if there is a bound
on the number of instance streams, all possible instance streams can also directly
be defined in a LOLA specification (though this is less comfortable of course).

RTLola, short for real-time Lola, is based on Lola 2.0 and extends it with real-
time features [FFS+19, FFST17]. To do so it first and foremost attaches real-
valued timestamps from a global clock to events, thus operates on timed streams
(definition 2.6). This way input streams may have arbitrary and various event
rates. Streams can either be computed in an event-driven manner (i.e. whenever
other streams they depend on have an event) or on a regular basis (denoted by

62

2.3. Stream runtime verification

a frequency annotation at the stream definition) [FFS+19]. Additionally RTLola
provides a special syntax for offsets referring to events a certain amount of time in
the past and for aggregating a bunch of events in a past-only sliding window of a
fixed time duration. Note that such a sliding window may contain arbitrarily many
events (depending on the event rate of the aggregated stream). Finally, as extension
of Lola 2.0, RTLola also supports the concept of template streams as described
above.

From a theoretical point of view these features can also be mimicked by a tradi-
tional LOLA specification [Sch22]. The timestamps assigned to the events can be
expressed by a global time stream which carries the current wall-clock time. The
stream is externally filled with events for all timestamps, where either an input event
appears or where the computation of an output stream is triggered by a frequency
annotation. Also the aggregations and timed offsets can be implemented in standard
LOLA by the use of map data structures where the values and timestamps within
the corresponding time window are maintained. This map can then be used for
aggregation or to retrieve a stream event some time in the past.

The implementation of RTLola, StreamLAB [FFS+19], also contains some additional
useful features, especially a powerful type system which ensures runtime and memory
of the monitor to be bounded (i.e. it enforces trace-length-independence). Therefore
it prevents the user from writing specifications where the number of events in a
sliding window is unlimited. The StreamLAB implementation is further also capable
of providing a worst-case estimation of the monitor’s storage requirements to enable
a safe execution on systems with restricted memory and computation capabilities.

In this thesis we will not further consider the languages Lola 2.0 and RTLola. Since
both can be mimicked by traditional LOLA specifications, the monitoring algorithm
presented in chapter 4 is in principle also suitable for them, but might suffer from
performance issues. The question of how to directly and efficiently adapt the moni-
toring algorithm to Lola 2.0 and RTLola is left for future work.

2.3.2. TeSSLa

TeSSLa, short for temporal stream-based specification language, may be considered
as an extension of LOLA towards asynchronicity. TeSSLa was in its basic form intro-
duced by Leucker et al. in [LSS+18], and revised to its current version in [CHL+18].
The corresponding tool chain implementation based on the language is available as
open source project and described in [KLS+22b]. Again, as TeSSLa will not be used
directly in the rest of this thesis, only a brief overview of the TeSSLa features will
be given.

In difference to LOLA, TeSSLa is based on infinite timed streams (see definition 2.6),
i.e. every event of the stream has a timestamp from a (possibly non-discrete) time
domain T, e.g. R, attached.

63

2. Preliminaries

Note that previously it was argued in section 2.1.3 that timed streams over non-
discrete time domain (e.g. signals), can be approximated by (T × D) sequences
(i.e. timed traces or discrete streams), which TeSSLa makes use of. TeSSLa by
default interprets a received input sequence as timed stream with gaps. In fact the
standard TeSSLa implementation [KLS+22b] also contains special syntactic sugar
(signal lift [CHL+18]) to interpret discrete (input) streams as piece-wise constant
signals. This way TeSSLa can also be used for specification and computation on
piece-wise constant signals.

As in the case of LOLA, a TeSSLa specification transforms a set of typed input
streams to a set of typed output streams. Therefore it is given as an equation
system, where each output stream has a defining expression of five core operators
assigned.

In TeSSLa, the defined output streams can have events (i.e. letters in the represent-
ing timed trace) at an irregular selection of timestamps that differs from those of the
input streams (by use of the so-called delay operator). In this sense, it differs from
LOLA, where the specification only allows output events to be synchronous with in-
put events, and is thus considered more expressive than LOLA in this respect [Sch22]
and is counted as an asynchronous stream runtime verification language [GS21b].
Besides, the stream and semantics definitions of TeSSLa also allow asynchronous
evaluation in the sense that not all input streams need to be known up to the same
timestamp (see [LSS+18, Sch24]).

However, with TeSSLa’s ability to spawn events with fresh timestamps comes the
possibility of zeno behavior [CHL+18]. This describes the circumstance that in
TeSSLa one can specify an output stream with infinitely many events, which accu-
mulate before a specific timestamp. Obviously, such a stream is not fully computable
in practice and a corresponding monitor would never advance over the corresponding
timestamp.

Unlike LOLA, TeSSLa is not able to refer to future events, but a corresponding
extension is discussed in [Sch22]. In general every computable, (according to the
prefix order of timed streams) continuous and future-independent stream transfor-
mation can be expressed in TeSSLa [CHL+18]. TeSSLa can be evaluated with an
algorithm similar to (past-only) LOLA in a trace-length-independent manner (due
to the missing future references) if only constant-sized data types are utilized.

2.3.3. Striver

Striver [GS18, GS21b], presented in 2018 by Gorostiaga et al. is an asynchronous
SRV language comparable to TeSSLa, but with the support of future references.
Additionally, provided non-zeno inputs, Striver also guarantees non-zeno output
behavior by defining a maximal rate on which output streams may have events,
when there are no input events. Thus, Striver can be seen as an extension of LOLA

64

2.4. Fixed point computation and abstract interpretation

for timed streams (comparable to RTLola). In fact Striver can, like LOLA 2.0 and
RTLola, also be simulated in LOLA [GDS20]. Like the other SRV languages besides
LOLA, Striver will only be dealt with marginally in the remainder of this work.

2.4. Fixed point computation and abstract interpretation

In this final section of the preliminaries chapter, the basics of fixed point computa-
tion and the field of abstract interpretation will be introduced. Fixed points play a
fundamental role in the formal consideration of recursively defined problems. As the-
oretical framework for stream monitoring they will also be utilized in the remainder
of this thesis.

Given a function with identical domain and co-domain f : A → A, a fixed point is
defined as an element of A which f maps to itself.

Definition 2.44 (Fixed point; based on [DP90]).
Let f : A→ A be a function over domain A.

The set of f ’s fixed points fix(f) is defined as

fix(f) = {a ∈ A | f(a) = a}.

An element a ∈ fix(f) is called fixed point of function f .

Depending on f , fix(f) can consist of a single fixed point, be empty or any other
subset of f ’s domain. If f ’s domain A is a partially ordered set, it may (but does
not have to) be the case, that a unique least or greatest fixed point exists.

Definition 2.45 (Least and greatest fixed point; based on [DP90]).
Let f : A→ A be a function over partially ordered set (A,⊑).

The fixed point µ(f) ∈ fix(f) is called least fixed point of f if and only if

∀a ∈ fix(f). µ(f) ⊑ a.

The fixed point ν(f) ∈ fix(f) is called greatest fixed point of f if and only if

∀a ∈ fix(f). a ⊑ ν(f).

Least and greatest fixed points play a role as uniquely identifiable fixed points when
fix(f) contains multiple elements. Several fixed point theorems can be found in
literature on existence and computation of extreme (i.e. least and greatest) fixed
points. In this thesis we will use the fixed point theorems of Knaster and Tarski

65

2. Preliminaries

and the one of Kleene. They are applicable if domain A is a complete lattice (see
definition 2.8) and f is monotonic:

Definition 2.46 (Monotonic function; based on [DP90]).
Let f : A→ B be a function over partial orders (A,⊑A), (B,⊑B).

Function f is called monotonic if and only if

∀a, b ∈ A. a ⊑A b⇒ f(a) ⊑B f(b).

The fixed point theorem of Knaster and Tarski states that if f : A → A is a
monotonic function over a lattice domain then its fixed points also form a complete
lattice.

Theorem 2.47 (Fixed point theorem of Knaster and Tarski; based on [Tar55]).
Let f : A→ A be a monotonic function over complete lattice (A,⊑).

The ordered set (fix(f),⊑) is a complete lattice.

If (fix(f),⊑) is a complete lattice, this implies that f has a (unique) least and
greatest fixed point.

Next we consider Kleene’s fixed point theorem. Therefor f is required to be contin-
uous (sometimes also referred to as Scott-continuous).

Definition 2.48 (Continuity; based on [DP90, Cou21]).
Let f : A→ B be a function over complete lattices (A,⊑A), (B,⊑B).

Function f is called upper continuous if and only if for every upward-directed
subset D ⊆ A

f

(⊔A
D

)
=
⊔B
{f(d) | d ∈ D}

and lower continuous if and only if for every downward-directed subset D ⊆ A

f

(lA
D

)
=

lB
{f(d) | d ∈ D} .

Observe that any upper or lower continuous function is monotonic. If a function is
upper and lower continuous we call it continuous.

Kleene’s fixed point theorem gives us a useful characterization of minimal and max-
imal fixed points of a continuous function.

66

2.4. Fixed point computation and abstract interpretation

Theorem 2.49 (Fixed point theorem of Kleene; based on [DP90, Cou21]).
Let f : A→ A be a continuous3 function over complete lattice (A,⊑).

The least and greatest fixed points of f are given as

µ(f) =
⊔
n≥0

fn(⊥A) and ν(f) =
l

n≥0
fn(⊤A).

Recall that ⊥A denotes the least and ⊤A the greatest element in A.

Considering the so-called ascending Kleene chain

s0 = ⊥A ⊑ s1 = f(⊥A) ⊑ s2 = f2(⊥A) ⊑ . . .

it follows directly from theorem 2.49 that if for any i ∈ N, si = si+1 then si = µ(f)
and the analogous for the greatest fixed point. This means the least (greatest)
fixed point can be computed, starting with the least (greatest) element of A and
iteratively applying the fixed point function. However note that the existence of such
an i where the chain stabilizes is not guaranteed and thus the Kleene chain might
be infinite, i.e. the iterative computation will not terminate. We call the resulting
chain of function applications fixed point iteration.

Definition 2.50 (Fixed point iteration).
Let (A,⊑) be a complete lattice and f : A→ A a continuous function.

The sequences (f i(⊥A))i∈N and (f i(⊤A))i∈N are called lower and upper fixed
point iteration of f . A fixed point iteration (si)i∈N is called finite if for some
j ∈ N sj = sj+1.

As mentioned, for a lower fixed point iteration (si)i∈N of a continuous function f ,
⊔i∈Nsi = µ(f) and ⊓i∈Nsi = ν(f) for an upper one. If the iteration is finite, µ(f)
and ν(f) are equal to the element stabilizing the iteration.

The requirement of Kleene’s fixed point theorem that function f is continuous is
relatively strong. Yet, if the limit of a fixed point iteration is a fixed point, then it is
still the least or greatest fixed point even if the function is just monotonic and not
continuous. This relaxed version of Kleene’s fixed point theorem is formulated in
theorem 2.51. We will later use this theorem instead of theorem 2.49, as due to the
restriction to finite stream lengths, our fixed point computations will be guaranteed
to be finite.

3If one is only interested in the least fixed point it is sufficient that the function is upper continuous;
for the greatest fixed point f must be lower continuous.

67

2. Preliminaries

Theorem 2.51 (Relaxed fixed point theorem; based on [DP90]).
Let f : A→ A be a monotonic function over complete lattice (A,⊑).

If ⊔
n≥0

fn(⊥A) ∈ fix(f) then µ(f) = ⊔
n≥0

fn(⊥A) and

if
d

n≥0
fn(⊤A) ∈ fix(f) then ν(f) =

d

n≥0
fn(⊤A).

2.4.1. Recursive computations as fixed point equations

Fixed point equations can be considered as canonical description of recursively de-
fined problems and structures. The fixed points are consequently solutions to these
problems and fixed point theorems may yield algorithmic procedures for their com-
putation or approximation. In this subsection two typical examples of problems
which are characterized via fixed point equations are presented.

One of the canonical examples is the Fibonacci sequence (a similar example for the
factorial function can be found in [DP90]). This is a sequence where the first element
is 0, the second one is 1 and all other elements are the sum of their two predecessors.
We can phrase this condition as fixed point equation Ffib : Nω → Nω:

Ffib(s)(n) =

0 if n = 0
1 if n = 1
s(n− 1) + s(n− 2) else

Note that any fixed point of Ffib (i.e. some s ∈ Nω s.t. Ffib(s) = s) is a valid Fibonacci
sequence. In fact Ffib only has a unique fixed point, s = 0, 1, 1, 2, 3, 5, 8,

Note that in a similar way, an SRV specification (see section 2.3) can also be un-
derstood as a fixed point equation on the involved streams, which are essentially
equivalent to (potentially) recursively defined sequences. A fixed point-based se-
mantics for the SRV language LOLA will be presented in chapter 4.

Another typical use case of fixed point equations is the definition of program seman-
tics, especially for their formal analysis e.g. in the field of static analysis. Consider
the following imperative algorithm for computation of the greatest common divider
(Euclidean algorithm4) where a, b are integer variables:

4Version from https://en.wikipedia.org/w/index.php?title=Euclidean_algorithm&oldid=
1192334861, based on [Knu97]

68

https://en.wikipedia.org/w/index.php?title=Euclidean_algorithm&oldid=1192334861
https://en.wikipedia.org/w/index.php?title=Euclidean_algorithm&oldid=1192334861

2.4. Fixed point computation and abstract interpretation

1 a = userInput ; //no negative input allowed
2 b = userInput ; //no negative input allowed
3
4 while a ̸= b do
5 if a > b then
6 a = a − b;
7 else
8 b = b − a;
9 fi;

10 od;
11
12 Output a;

If one wants to reason about possible values of variables at certain code locations, e.g.
to proof that the value of a at line 12 cannot be negative, one is usually interested
in a static (also called collecting) semantics of the program [CC77, CC92]. The
static semantics of a program can be a map assigning to every program location the
set of possible variable valuations before execution of the statement at this location
(see [CC77]). In the case of the example above such a semantics is an element
S ∈ Sem := (L→ 2Z⊥×Z⊥) where Z⊥ = Z∪{⊥} extends the integers with element ⊥
to indicate that the corresponding variable is not yet set and L = {1, 2, 4, 5, 6, 8, 12}
is the set of program locations (we use the line numbers where a statement starts).
A semantics with S(4) = {(⊥, 2), (⊥, 3)} would for example indicate that before the
execution of line 4, variable a is not set and b is either 2 or 3.

For an imperative program like the one above, the possible valuations at each lo-
cation can be obtained by application of all possible predecessor operations (under
consideration of their conditions in case of if and while) on the valuations at their
location. E.g. the possible valuations at line 4 are those resulting from the assign-
ment in line 2 and the subtractions in line 6 and 8. The static semantics can be
derived from the fixed point equation sem : Sem → Sem which encodes the source
code of the program:

sem(S)(1) = {(⊥,⊥)}
sem(S)(2) = {(z, y) | z ∈ N, (x, y) ∈ S(1)}
sem(S)(4) = {(x, z) | z ∈ N, (x, y) ∈ S(2)} ∪ {(x− y, y) | (x, y) ∈ S(6)} ∪

{(x, y − x) | (x, y) ∈ S(8)}
sem(S)(5) = {(x, y) | (x, y) ∈ S(4) ∧ x ̸= y}
sem(S)(6) = {(x, y) | (x, y) ∈ S(5) ∧ x > y}
sem(S)(8) = {(x, y) | (x, y) ∈ S(5) ∧ x ≤ y}
sem(S)(12) = {(x, y) | (x, y) ∈ S(4) ∧ x = y}

69

2. Preliminaries

For this concrete example, sem has the following fixed point S:

S(1) = {(⊥,⊥)}
S(2) = {(x,⊥) | x ∈ N}
S(4) = {(x, y) | x, y ∈ N}
S(5) = {(x, y) | x, y ∈ N ∧ x ̸= y}
S(6) = {(x, y) | x, y ∈ N ∧ x > y}
S(8) = {(x, y) | x, y ∈ N ∧ x < y}
S(12) = {(x, x) | x ∈ N}

However, this is not the only fixed point of sem. In fact, one could allow that either
a or b is from Z instead of N in the valuations of all locations inside the loop. The
additional valuations would then condition themselves through the loop and thus
also lead to a fixed point. However, for these assignments no valuations outside
of the loop exist that would cause them to occur during real program execution.
Thus, for the static semantics we are always interested in the least fixed point w.r.t.
the order ⊑ where S ⊑ S′ ⇔ ∀l ∈ L : S(l) ⊆ S′(l), i.e. the one which contains no
superfluous valuations. The fixed point given above is the least fixed point of sem.

2.4.2. Abstract fixed point computation

A standard approach in computer science for finding least an greatest fixed point is
to compute the corresponding Kleene chain until the desired fixed point is reached.
As mentioned before this is not always possible, as for some functions the Kleene
chain is infinite (e.g. in the Fibonacci example above).

An alternative approach, when fixed point computation does not terminate or is too
costly, is to to apply the principle of abstraction, i.e. to perform the computation
inside another domain that is easier to handle because some information is abstracted
away.

As an example consider again the static semantics of the Euclidean algorithm from
above, where the solution of the fixed point equation was an element of Sem := (L→
2Z⊥×Z⊥), assigning a set of possible variable valuations to each program location.
On the one hand the representation of elements from S in memory is complicated.
On the other hand, the Kleene chain of the static semantics is not necessarily finite
for all programs and the solution cannot be computed iteratively then.

An alternative abstract domain would be Sem♯ := (L → IZ × IZ) where every
program variable at each location gets an interval of possible values assigned. It is
easy to see that this domain is easier to represent in memory and to calculate on:
All operations only have to be performed on the interval’s borders. However, this
ease of use comes at the expense of accuracy: In this domain, it would no longer
be possible to conclude that all values of a and b in line 12 are positive as it is the
case in the original domain . This is because the relation a > b or b > a before

70

2.4. Fixed point computation and abstract interpretation

execution of lines 6,8 respectively cannot be represented in this abstract domain
and thus the resulting interval for a or b after the execution would be] −∞,+∞[.
In other examples, however, the use of this interval domain might be sufficient to
infer certain program properties. The art of fixed point abstraction is thus to find a
suitable abstract domain that is precise enough for the desired purpose and easy to
compute with.

Key entities of abstraction are the concretization and abstraction function, trans-
lating between the involved concrete and abstract domains and the abstract fixed
point equation. If certain conditions on them are met, it is guaranteed that the
abstract fixed point is an approximation of the concrete one and the abstraction is
precise enough to decide certain properties on. In 1977, Patrick and Radhia Cousot
presented a formal framework called abstract interpretation [CC77] which enables
the construction of sound or perfect fixed point approximations over abstract do-
mains. The approach is mainly used for the static analysis of programs, but due
to its generality it is not limited to this. The monitoring algorithm which will be
discussed in chapter 4 is also based on the idea of abstract specification computation
and utilizes concepts from abstract interpretation.

While abstract interpretation can be defined as a very general framework (see
[CC92]), we rely in this thesis on the traditional Galois connection framework [CC77,
CC92], which generally imposes too strict requirements on the involved operations
and domains, but is suitable for our purposes.

Abstract interpretation is a well studied subject in literature. As such, a lot of
useful abstract domains for certain purposes have already been investigated and im-
plemented. Prominent ones are e.g. interval domains [CC77, Cou21], linear restraint
sets (convex polyhedra) [CH78] and octagons [Min01, Cou21]. While the first only
provides information about each program variable individually, the latter ones are
also able to represent their relation.

Abstract interpretation framework

In the following let (C,⊑C) and (A,⊑A) be two complete lattices called the concrete
and abstract domain. Let further α : C → A be the abstraction and γ : A → C
the concretization function translating between both domains and f : C → C,
f ♯ : A→ A the fixed point equations in the concrete and abstract.

In order to prove the soundness (i.e. over-approximation) or perfection of the abstract
fixed point computation w.r.t. the concrete one, we have to make some assumptions
about the translation functions.

In the Galois connection framework we require α, γ to form a Galois connection.

71

2. Preliminaries

Definition 2.52 (Galois connection; based on [Ore44, Cou21]).
Let (C,⊑C) and (A,⊑A) be two partially ordered sets.

A pair of functions α : C → A, γ : A→ C is called Galois connection (denoted
C −−−→←−−−α

γ
A), if and only if for all a ∈ A and c ∈ C

α(c) ⊑A a⇔ c ⊑C γ(a)

A Galois connection ensures monotonicity among two partially ordered sets: If an
element a from domain A is greater than or equal to the picture of an element
c ∈ C in A, then the picture of a in C is also greater than or equal to c. This
means that translating an element c ∈ C to domain A, increasing it and translating
it back to domain C leads to an element greater than or equal to c. This implies
that c ⊑C γ(α(c)) for any c ∈ C, i.e. the direct translation to the abstract domain
and back may not lead to a smaller element in the concrete domain. Likewise
α(γ(a)) ⊑A a holds for any a ∈ A in a Galois connection.

In abstract interpretation it is a common approach to form an abstract domain as
Cartesian product of several abstract domains. This can either be done to abstract
several components of a fixed point computation or to perform several abstract
computations in parallel. An abstract domain which is crafted this way inherits
some of the properties from the sub-domains, as shown in lemma 2.53.

Lemma 2.53 (Cartesian abstract domains; based on [Cou21]).
Let (A1,⊑1), . . . , (An,⊑n) be complete lattices which are connected to complete
lattices (C1,⪯1), . . . , (Cn,⪯n) by the Galois connections Ci −−−→←−−−αi

γi
Ai for all

i ∈ {1, . . . , n}.

The domains A = A1 × · · · × An and C = C1 × · · · × Cn are complete lattices
with orders ⊑A∈ A×A and ⪯C∈ C × C, s.t.

(a1, . . . , an) ⊑A (a′
1, . . . , a

′
n) ⇔ ∀i ∈ {1, . . . , n}. ai ⊑i a′

i

(c1, . . . , cn) ⪯C (c′
1, . . . , c

′
n) ⇔ ∀i ∈ {1, . . . , n}. ci ⪯i c′

i

The translation functions α : C → A and γ : A→ C, s.t.

α((c1, . . . , cn)) = (α1(c1), . . . , αn(cn))
γ((a1, . . . , an)) = (γ1(a1), . . . , γn(an))

form a Galois connection which connects A and C.

When it comes to abstract fixed point computation, we require – besides consistency
of the translation functions – also the fixed point equations f and f ♯ to be related.

72

2.4. Fixed point computation and abstract interpretation

Since we (usually) want to over-approximate µ(f) or ν(f), we demand that for any
abstract element a ∈ A, f ♯(a) translated back to the concrete domain does not
under-approximate the result of f applied to γ(a). This property is visualized on
the left side of figure 2.11.

A:

C: γ(a) f(γ(a))

a f ♯(a)

γ(f ♯(a))⊑
f

f ♯

γ
γ

IZ:

2Z: {1, 2, 3} {2, 4, 6}

[1, 3] [2, 6]

{2, 3, 4, 5, 6}⊆dbl

dbl♯

γ
γ

Figure 2.11.: General scheme of abstraction (left) and concrete example (right).

Formally we define this relation in definition 2.54.

Definition 2.54 (Abstraction; based on [CC77]).
Let (C,⊑C) and (A,⊑A) be complete lattices.

For a pair of abstraction and concretization functions α : C → A, γ : A → C,
that form a Galois connection C −−−→←−−−α

γ
A, a monotonic function f ♯ : A → A is

called (sound) abstraction of monotonic function f : C → C if and only if

∀a ∈ A. f(γ(a)) ⊑C γ(f ♯(a))

An example of a sound abstraction is illustrated on the right side of figure 2.11:
Imagine the abstraction of a single program variable of type integer at a specific
program location (the example can easily be generalized for more variables and
locations) and an operation dbl which doubles the value. In the example let the
concrete domain be the power set domain reflecting all possible values of the variable.
The abstract domain is chosen to be the interval domain, where a set of values
is abstracted by the interval between its infimum and supremum. Note that the
domains and corresponding translations form a Galois connection.

Consider the abstract element [1, 3] which corresponds to the concrete set {1, 2, 3}.
The operation dbl, operating in the power set domain, multiplies all possible values
in the set with two. An abstract double function for intervals would instead multiply
the boundaries of the interval with two and obtain [2, 6]. The concretization of this
interval however, {2, 3, 4, 5, 6}, would be an over-approximation of the actual value
{2, 4, 6} which results from the application of dbl, i.e. the abstraction would introduce
the non possible variable values 3 and 5.

The literature on abstract interpretation provides a large number of theorems how
the least and greatest fixed points in the abstract and concrete domain are related
under which circumstances (see [Cou21]). Later in this thesis however we will aim at

73

2. Preliminaries

over-approximation of the least fixed point, thus we concentrate on the results about
perfect and over-approximative abstraction of the least fixed point in theorem 2.55.

Theorem 2.55 (Fixed point abstractions; based on [CC77, Cou21]).
Let (C,⊑C), (A,⊑A) be complete lattices connected by a Galois connection
C −−−→←−−−α

γ
A. Let further f : C → C be a monotonic function and f ♯ : A→ A an

abstraction of f .

It holds that

• α(µ(f)) ⊑A µ(f ♯),

• α(µ(f)) = µ(f ♯) if for all c ∈ C, α(f(c)) = f ♯(α(c)).

Consequently computing the fixed point of f ♯ yields us an over-approximation or
even the prefect representation of µ(f) in the abstract lattice. We call the second
case a perfect abstraction.

If f ♯ is upper continuous we additionally can compute µ(f ♯) with a fixed point it-
eration. However µ(f ♯) is like µ(f) not guaranteed to be computable in finitely
many steps. Yet it can be the case if the abstract domain is chosen wisely. For
example domains without infinite ascending chains (called ascending chain condi-
tion [Cou21]) would guarantee a finite lower fixed point iteration for f ♯ (even if f ♯
is not continuous).

For the common case of over-approximation of least fixed points, abstract interpre-
tation delivers two strategies called widening and narrowing to accelerate the fixed
point computation [CC77, Cou21]. Widening aims at shorter fixed point iterations
by extrapolating from the changes of the previous iterations until computation sur-
passes the least fixed point. Narrowing, which is often applied after the widening,
tries to approach the least fixed point again from above without stepping over it.

2.4.3. Usage of abstractions in runtime verification

Abstract interpretation is a widely used technique in static analysis, yet, due to its
generality not limited to this area. In [LSS+19] it is used in runtime verification
to handle uncertainties on the input streams. Due to the close connection to the
topic of this thesis, this section provides a brief overview of the core idea behind the
approach.

Specifically, [LSS+19] presents an abstraction-based technique for handling uncertain
inputs in the stream runtime verification language TeSSLa. The semantics of a
TeSSLa specification φ is defined as the stream transformation given by the fixed
point equation

JφK : SD1 × · · · × SDk
→ SD′

1
× · · · × SD′

n

JφK(s1, . . . , sk) = µ(Je1, . . . , enKs1,...,sk
).

74

2.4. Fixed point computation and abstract interpretation

There, s1, . . . , sk are the specification’s input streams of types SD1 , . . . ,SDk
and

e1,. . . ,en denote the defining expressions of φ’s intermediate streams of types SD′
1
,

. . . , SD′
n

with the corresponding recursive semantics J·Ks1,...,sk
: SD′

1
× . . . × SD′

n
→

SD′
1
× . . . × SD′

n
for fixed input streams s1, . . . , sk [CHL+18].

The idea used in the mentioned approach is to introduce a notion of abstract streams
which may contain gaps (i.e. time intervals where the stream is fully unknown) and
uncertain events. Further a Galois connection for the translation between sets of
concrete and an abstract stream is defined. Based on this, perfect abstractions of all
TeSSLa operators are given. By principles of abstract interpretation, this allows the
computation of the specification’s output in the abstract, i.e. uncertain, domain.

Contrary to traditional abstract interpretation, the approach from [LSS+19] re-
nounces to apply widening or other methods to force a finite fixed point compu-
tation. Instead it performs iterations until a fixed point is reached (the same holds
for concrete TeSSLa). This is due to the special usage of the fixed points in the
monitoring setting: The monitor receives a finite prefix of the input streams up
to a certain timestamp (called progress) and, based on this, determines the output
streams (via fixed point iterations) up to the same timestamp. If new events on
the input streams are read and their progress increases, the fixed point computation
can be commenced from the previously computed fixed point. This is possible as
TeSSLa specifications always express monotonic stream transformations, i.e. such
where a continuation of the input stream prefixes also leads to a continuation of the
output stream prefixes. The monitoring process itself is thus equal to the iterative
computation of a fixed point.

However, as the abstract domain of the approach is basically a Cartesian combination
of the different abstract stream domains, the abstract computation of the whole
specification is sound but not perfect anymore. The reason for this is, that due to
the individual abstraction of each stream, the interconnections between events on
different streams get lost.

75

3
A generalized monitoring theory

In chapter 2 several well-known monitoring approaches for different kinds of logics
and specification formalisms have been presented. In this chapter, we will now de-
fine a unified framework for synchronous online monitoring, i.e. where the monitor
casts outputs whenever it receives inputs, including the handling of uncertainty and
assumptions. This framework forms a common basis for all synchronous monitoring
approaches from the previous section, including synchronous stream runtime verifi-
cation which will even be shown to be a general formalism for this kind of properties.
In this context also a translation of LTL, M(I)TL and STL for discrete time domains
to LOLA will be presented. The following two chapters will then discuss and de-
velop a generic and a concrete, symbolic implementation of the proposed monitoring
framework for LOLA.

3.1. Monitoring

In the following we distinguish between synchronous and asynchronous monitoring
(see [GS21b]). Synchronous monitoring describes the setting where the monitor
casts outputs only at instants, where inputs are fed to the monitor. Yet in asyn-
chronous monitoring the outputs of the monitor can be produced at arbitrary lo-
cations without inputs as well. In this thesis we focus on synchronous monitoring,
although at some points we will discuss how approaches would need to be adapted
for asynchronous monitoring, to hint at possible future work.

A synchronous monitor in our setting basically resembles a Moore machine from def-
inition 2.18. It receives a sequence of inputs and synchronously produces a sequence
of outputs, determined by the current state. However, unlike a Moore machine, we
do not require general synchronous monitors to have a finite state-space, nor a finite
in- and output domain.

77

3. A generalized monitoring theory

Definition 3.1 (Synchronous monitor; based on [KLSS22]).
A synchronous monitor M = (S,Σ,V, δ, γ, s0) is a 6-tuple of

– a non-empty set of states S,
– a non-empty input domain Σ,
– a non-empty output domain V,
– a deterministic transition function δ : S × Σ→ S,
– an output function γ : S → V,
– an initial state s0 ∈ S

A sequence of states s0, s1, . . . , sn with si ∈ S is called a run ofM for w ∈ Σ∗,
if and only if

si+1 ∈ δ(si, w(i)) for all i ∈ N.

The sequence γ(s0), γ(s1), . . . γ(sn) associated to this run is called output of
M. The final output of a monitor for w is denoted with M(w) := γ(sn).

The extension to infinite domains and state space is necessary for monitoring for-
malisms with higher expressivity, such as LOLA, but for example also for the support
of real-valued (multi-channel) signals as used in STL.

We will now deal with the question under which circumstances a monitor’s output
can be considered sound or perfect in terms of the monitored property. Therefore we
will distinguish between initial and pointwise properties. Initial properties assign a
single value to a full trace while point-wise properties assign a value to every location
in the trace. While traditional RV approaches focused mainly on monitoring initial
properties, pointwise properties have received increasing attention in recent times.

In the following sections, an extension of the results from [KLSS22, HKLS24] is pre-
sented, where different (partly novel) approaches for monitoring both kinds of prop-
erties are compared and their advantages and disadvantages are discussed. Thereby
in particular, the notion of impartial and anticipatory monitoring, as known from the
LTL3 approach, is extended to the synchronous monitoring of initial and pointwise
properties in general.

3.2. Initial monitoring

We start with the discussion of initial properties. We define such a property as a
function assigning a value (called valuation) to every finite or infinite trace over a
given input domain Σ. Again we keep the definition very general by not restricting
input or value domain to be finite.

78

3.2. Initial monitoring

Definition 3.2 (Initial property).
A function P : Ω→ D with Ω ∈ {Σ∗,Σn,Σω,Σ∞} where Σ is an input domain
and D a value domain is called initial property.

We call P a finite initial property if and only if Ω ⊆ Σ∗ and an infinite initial
property if and only if Ω = Σω.

Let φ be an LTL, MTL, MITL or STL formula, then the initial semantics of the
corresponding logics are initial properties according to definition 3.2 for any time
domain T, as the following table shows:

Logic Semantics Σ = Ω = D =
LTL (def. 2.14) Def. 2.16 2AP, AP finite Σ∗/n/ω/∞ B
MTL (def. 2.21) Def. 2.23 2AP or T× 2AP, AP finite Σ∗/n/ω/∞ B
MITL (def. 2.24) Def. 2.23 2AP or T× 2AP, AP finite Σ∗/n/ω/∞ B
STL (def. 2.25) Def. 2.27 Rm or T× Rm Σ∗/n/ω/∞ B

For M(I)TL and STL we thereby assume an encoding of the timed stream or signal
as finite or infinite (timed) trace. While this is no problem for discrete time domains,
non-discrete ones require some kind of representation strategy. For details on the
encoding of streams as timed traces, see section 2.1.3.

In general for a set M ⊆ Σ∗/n/ω/∞, the membership problem is an initial property
with D = B = {true, false}. However, more advanced functions like #a : Σ∗ → N,
which counts the number of occurrences of a ∈ Σ in w, also fit the definition of
initial properties.

Monitoring initial properties now consists in the task of subsequently receiving in-
put letters (thus prefixes of the full trace) and casting outputs which yield infor-
mation about possible property valuations for the full trace. LTL3 monitoring (see
section 2.2.2) for example does so by giving verdicts from B3 = {⊤,⊥, ?}, which
express potential outcomes of the language containment problem (⊤ =̂ {true},
⊥ =̂ {false}, ? =̂ {true, false}).

We now generalize this idea by requiring an output interpretation function γV : V→
2D, which translates a monitor output from V to the set of corresponding property
values in D it represents. Based on such a mapping we can define a notion of sound
and perfect monitoring of an initial property:

79

3. A generalized monitoring theory

Definition 3.3 (Initial monitoring; based on [KLSS22]).
Let P : Ω→ D (with Ω ∈ {Σ∗,Σn,Σω,Σ∞}) be an initial property. Let further
M = (S,Σ,V, δ, γ, s0) be a synchronous monitor with output interpretation
γV : V→ 2D.

M is called

• sound initial monitor for P if and only if

∀w ∈ Σ∗ : γV(M(w)) ⊇ {P(wv) | wv ∈ Ω}

• perfect initial monitor for P if and only if

∀w ∈ Σ∗ : γV(M(w)) = {P(wv) | wv ∈ Ω}

Thus an initial monitor is said to be sound, if it only produces outputs that over-
approximate the set of actually possible property valuations with respect to all
conceivable continuations of the input. I.e. it does not embezzle possible outcomes.
Further, a monitor is perfect if its outputs reflect exactly the possible property
valuations. Note that the definition of soundness coincides with the definition of
impartiality for the traditional RV word problem (see definition 2.13). Moreover a
monitor is perfect in this setting if and only if it is impartial and anticipatory (see
definition 2.13).

3.3. Pointwise monitoring

Initial properties and the corresponding monitoring are not perfectly suited for cer-
tain purposes. Therefore the notion and several variants of so-called recurrent mon-
itoring will be introduced in this section. In the following we will first motivate the
use of these monitoring techniques and subsequently consider the belonging formal
definitions.

3.3.1. Motivation

An initial property assigns a single value to the whole (finite or infinite) trace. This
way initial monitoring is not capable of identifying certain locations in the trace
where the observed property is breached or satisfied. Likewise, it is not possible to
detect all faults if the supervised property was violated more than once, which is for
example interesting in offline RV, as used for log analysis.

80

3.3. Pointwise monitoring

For illustration consider the following example: Imagine a self-driving robot system
with an extensible crane on its top. The ways on which the robot system is driving
lead through underpasses of different height. To prevent potential damage to the
crane, we want to be sure that the crane is always retracted when the system passes
through an underpass. In (futrue) LTL we can specify this property in the following
way:

φ = extendCrane→ (((¬underpass) U retractCrane) ∨ ¬Funderpass)

I.e. it may not be the case that whenever the crane gets extended, there is an
underpass before the crane is retracted again. Note at this point that the U would
by definition require a retractCrane event to follow, so we explicitly add that never
passing an underpass again for the rest of the trace (¬Funderpass) is fine as well.

Since we want to enforce this policy over the whole run, the LTL formula of the
initial property can be formulated as

φ′ = G(extendCrane→ (((¬underpass) U retractCrane) ∨ ¬Funderpass)).

Figure 3.1 illustrates a sample run of the (initial) LTL3 monitor (see section 2.2.2)
for this property over Σ = 2{ec,rc,up}, abbreviating the atomic propositions from the
formula.

0 1 2 3 4 5 6

Input
{ec} {rc} {ec} {up} {rc} {ec} {rc}

Output
?

property not
violated

? ?

property
violated

⊥ ⊥ ⊥

property not
violated

⊥

Figure 3.1.: Example run of initial LTL3 monitor for G(ec→ (((¬up)U rc)∨¬Fup)).

Note that the monitor yields the verdict ? until at instant 3 the input {up} occurs,
then the output switches to the final verdict ⊥. From then on the monitor stays with
this final verdict for all subsequent inputs it receives (which is typical for sound and
perfect initial monitoring). Yet we actually want to know in this example at which
locations in the trace the fault was caused, i.e. where the crane was extended despite
a following underpass. Hence we actually want to check, at which locations of the
trace φ (not φ′) is satisfied and at which not, i.e. we want to evaluate the trace with
respect to the pointed LTL semantics (definition 2.15). At position 0 this semantics
would for example yield true, which indicates that the extension of the crane there

81

3. A generalized monitoring theory

was safe. For instant 2 the value would be false and for instant 5 true again, which
matches our desired monitor outputs. The outputs of the LTL3 monitor however do
not reflect these valuations at all, instead the outputs for instant 0 and 2 are exactly
the same, and likewise all verdicts after position 2.

The given example suggests that initial monitoring as presented in the previous
section is mainly suitable for incrementally checking a global property of a trace.
Though for purposes like log analysis, bug tracking and explainability of faults or
the continuation of monitoring, after a property violation was detected, a point-wise
evaluation of a property might be more reasonable.

In the following section we will extend the definition of a property from defini-
tion 3.2 to the point-wise case and consider several monitoring strategies for such
properties.

3.3.2. Pointwise properties and their monitoring

In difference to initial properties which assign a single data value to a finite or infinite
trace, a pointwise property can assign such a value to every location in the trace:

Definition 3.4 (Pointwise property; based on [HKLS24]).
A partial function P : Ω × N ⇀ D with Ω ∈ {Σ∗,Σn,Σω,Σ∞} where Σ is an
input domain and D a value domain is called a pointwise property.

P is called a finite pointwise property if and only if Ω ⊆ Σ∗ and an infinite
pointwise property if and only if Ω = Σω.

Note that a pointwise property may also be undefined for some positions, e.g. those
behind the maximum trace length in the case of Ω = Σn.

Again, the pointed semantics of LTL, MTL, MITL and STL match this definition
for any discrete time domain T:

Logic Semantics Σ = Ω = D =
LTL (def. 2.14) Def. 2.15 2AP, AP finite Σ∗/n/ω/∞ B
MTL (def. 2.21) Def. 2.22 2AP or T× 2AP, AP finite Σ∗/n/ω/∞ B
MITL (def. 2.24) Def. 2.22 2AP or T× 2AP, AP finite Σ∗/n/ω/∞ B
STL (def. 2.25) Def. 2.26 Rm or T× Rm Σ∗/n/ω/∞ B

For the initial properties of M(I)TL and STL we could allow any time domain
(including non-discrete ones), as long as timed streams in this domain can be encoded
as timed traces, i.e. sequences of data values and timestamps (see section 2.1.3). This
is no longer possible for pointwise properties as they do not assign a single value

82

3.3. Pointwise monitoring

to the whole trace, but to every position instead. However, when encoding timed
streams over non-discrete domain as timed traces, some of the timestamps from the
stream’s time domain are skipped in the timed trace and e.g. pretended to be the
same as at the previous position (in case of piece-wise constant streams). Yet the
semantics of M(I)TL and STL which is defined over streams and not timed words
still provides values for all timestamps, including those which do not appear in the
timed trace. Consequently the semantics of M(I)TL and STL on these words can no
longer be considered as pointwise properties, as they assign valuations to timestamps
for which no input letter exists. Pointwise properties, as defined in definition 3.4
only assign values to every trace location.

For the case of non-discrete time domains a further extension of definition 3.4 to
continuous or asynchronous properties, i.e. those receiving any timed trace and as-
signing a value to every timestamp (P : STD × T → D), would be thinkable. In this
thesis however, we concentrate on synchronous properties and monitoring and leave
continuous properties for future work.

Note here that synchronous stream runtime verification languages (e.g. LOLA) also
describe pointwise properties. This connection will be considered separately in detail
at the end of the chapter.

Also, initial properties can generally be considered a special case of pointwise prop-
erties, which are ignorant regarding the position parameter. I.e. if P is an initial
property, it can be transformed to the pointed property P ′(w, i) = P(w).

Besides the LTL3 monitoring algorithm, which served us as a role-model for the
concept of initial monitoring in the previous section, section 2.2.2 also discussed
the approach from Havelund and Roşu [HR02] for monitoring past LTL w.r.t. its
pointed semantics (definition 2.15). In their approach they generate a monitor which
receives an input word incrementally and casts a verdict at every input. It reflects
the pointed LTL semantics of a given specification at the point up to which the
input has been received (in the following called current instant). We call such a
monitoring approach recurrent, because the same property is evaluated recurrently
(i.e. over and over again) by the monitor, each time a new input is received. Unlike
in initial monitoring, where the evaluation of the property is rather continued with
an additional piece of input.

We can generalize the mentioned strategy for past LTL monitoring to arbitrary
pointwise properties, by giving definitions for sound and perfect recurrent monitor-
ing, based on definition 3.3. Thereby we again follow the idea from LTL3 to consider
all potential input continuations and give outputs which yield the possible valuations
or over-approximate them in case of sound monitoring. We consequently unify the
approaches from the two algorithms.

83

3. A generalized monitoring theory

Definition 3.5 (Recurrent monitoring; based on [KLSS22, HKLS24]).
Let P : Ω × N ⇀ D with Ω ∈ {Σ∗,Σn,Σω,Σ∞} be a pointwise property. Let
further M = (S,Σ,V, δ, γ, s0) be a synchronous monitor with output interpre-
tation γV : V→ 2D.

M is called

• sound recurrent monitor for P if and only if

∀w ∈ Σ∗. γV(M(w)) ⊇ {P(wv, |w| − 1) | wv ∈ Ω ∧ P(wv, |w| − 1) def.}

• perfect recurrent monitor for P if and only if

∀w ∈ Σ∗. γV(M(w)) = {P(wv, |w| − 1) | wv ∈ Ω ∧ P(wv, |w| − 1) def.}

Hence a sound recurrent monitor casts an over-approximation of all possible valu-
ations for the current position in the input word. A perfect one provides an exact
representation of all such valuations.

The monitor construction from [HR02] yields a perfect recurrent monitor for past
LTL. Since past LTL’s pointed semantics never depends on input letters at later in-
stants than the considered one, this monitor only casts the final verdicts ⊤ =̂ {true}
and ⊥ =̂ {false}. These verdicts give full information about satisfaction or viola-
tion of the property at this position. However, for future or full LTL the situation is
different. There even a perfect recurrent monitor might oftentimes only be able to
cast ? =̂ {true, false} verdicts, as the pointwise semantics at some instant is usually
dependent on future letters. Consider for example the LTL formula (Pq) ∨ (XXp)
and the input/output traces of a perfect recurrent monitor in figure 3.2.

0 1 2 3 4 5

Input
{p} {q} {p, q} {} {p, q} {p}

Output
? ? ⊤ ⊤ ? ⊤

Figure 3.2.: Perfect recurrent monitor for (Pq) ∨ (XXp).

While at some instants (2,3,5) it is possible to give a final verdict, because the truth-
value of the formula is fully determined by the already received letters, this is not
the case at the other positions. There, the satisfaction of the property depends on
the XXp part and thus on inputs not yet received. The perfect monitor output is
consequently the uninformative verdict ?. However, if the verdicts for this particular
specification were to be cast for two positions prior to the current instant instead for

84

3.3. Pointwise monitoring

the current one, a perfect monitor would provide conclusive verdicts for all positions.
This is because the look-ahead, i.e. the number of future positions the formula (Pq)∨
(XXp) depends on, is two, conditioned by the two nested next operators. This
observation motivates to adjust the definition of recurrent monitoring to support a
constant offset between the instant until which the input is known and the instant
for which the monitor output is given. As above we do not restrict this notion of
k-offset recurrent monitoring to LTL or boolean verdicts, but define it for arbitrary
pointwise properties.

Definition 3.6 (k-offset recurrent monitoring; based on [KLSS22]).
Let P : Ω × N ⇀ D with Ω ∈ {Σ∗,Σn,Σω,Σ∞} be a pointwise property. Let
further M = (S,Σ,V, δ, γ, s0) be a synchronous monitor with output interpre-
tation γV : V→ 2D.

For a fixed k ∈ Z, M is called

• sound k-offset recurrent monitor for P if and only if

∀w ∈ Σ∗. γV(M(w)) ⊇ {P(wv, |w|−1−k) | wv ∈ Ω∧P(wv, |w|−1−k) def.}

• perfect k-offset recurrent monitor for P if and only if

∀w ∈ Σ∗. γV(M(w)) = {P(wv, |w|−1−k) | wv ∈ Ω∧P(wv, |w|−1−k) def.}

Note, that a fundamental concept behind k-offset recurrent monitoring is a separa-
tion between monitored time, i.e. the position to which the monitor output belongs,
and monitoring time, i.e. the position until which the monitor has received the
input.

In k-offset recurrent monitoring these two times are related by a constant offset.
While this is a satisfying solution for the case of monitoring (Pq) ∨ (XXp) as dis-
cussed above and depicted in figure 3.2, it might not be the optimal choice in other
specific scenarios, e.g. for 2-offset monitoring of q ∨ (p U q). A depiction of this case
can be found in figure 3.3.

0 1 2 3 4 5

Input
{q} {p} {p} {p} {} {q}

Output
⊤ ? ⊥ ⊥

Figure 3.3.: Perfect 2-offset recurrent monitor for q ∨ (p U q). The output verdicts
refer to the pointwise semantics of the formula two instants before.

85

3. A generalized monitoring theory

After receiving four input letters the monitor there yields the verdict ?, referring to
position 1. In fact the monitor would have required another input letter to cast a
final verdict (⊥), i.e. a 3-offset recurrent monitor would have been required in this
case. Yet, for any chosen k, there could have been a trace with k + 1 {p} input
letters in a row, which would have lead to an inconclusive ? verdict.

On the other hand the drawback of choosing a (too) high value for k can also be seen
in the example: The ⊤ verdict for instant 0 is cast when the third input letter is
read, however this verdict has already been clear, when the first letter was received.
In real world scenarios this delayed availability of final verdicts, though they are
already inevitable, is unfavorable.

In conclusion this leads to the insight that a constant offset between monitoring
and monitored time is often not advantageous. Thus we define a further variant of
recurrent monitoring which allows for a full separation of them. We call this kind of
monitoring random access (recurrent) monitoring. In advance of the definition we
first introduce the notion of a query domain, that is a function N→ 2N defining the
positions for which the monitor has to provide property valuations with respect to
the currently received input position. The query domain Q(t) = {t− 1, t, t+ 1} ∩N
would e.g. require the monitor to provide information about the current, the previous
and the next position. It thus represents a sliding window of size three around the
current instant. We call a query domain Q with Q(t) = ∅ trivial for instant t.

As output domain of a random access monitor we consequently do not choose V as
before, which encodes different property valuations, but the set of all partial func-
tions from N to V, which depict instants from the query domain to the corresponding
output there. The monitor can thus be considered as kind of question answering
machine: It receives the input word letter by letter and after each letter returns a
function object which provides a sound (or perfect) representation of the possible
property valuations at the instants in the query domain.

Definition 3.7 (Random access (recurrent) monitoring; based on [KLSS22]).
Let P : Ω × N ⇀ D be a pointwise property with Ω ∈ {Σ∗,Σn,Σω,Σ∞},
Q : N → 2N a query domain and M = (S,Σ,N ⇀ V, δ, γ, s0) a synchronous
monitor with output interpretation γV : V→ 2D.

M is called

• sound random access (recurrent) monitor for P,Q if and only if

∀w ∈ Σ+.∀i ∈ Q(|w|−1). γV(M(w)(i)) ⊇ {P(wv, i) | wv ∈ Ω∧P(wv, i) def.}

• perfect random access (recurrent) monitor for P,Q if and only if

∀w ∈ Σ+.∀i ∈ Q(|w|−1). γV(M(w)(i)) = {P(wv, i) | wv ∈ Ω∧P(wv, i) def.}

86

3.3. Pointwise monitoring

The principle of random access recurrent monitoring is illustrated in figure 3.4 which
depicts a perfect random access monitor for Q(t) = N, again for the LTL formula
q ∨ (p U q) and the trace from figure 3.3.

0 1 2 3 4 5

Input
{q} {p} {p} {p} {} {q}

Output

0→ ⊤
1→?
2→?
3→?
4→?
5→?

...

0→ ⊤
1→?
2→?
3→?
4→?
5→?

...

0→ ⊤
1→?
2→?
3→?
4→?
5→?

...

0→ ⊤
1→?
2→?
3→?
4→?
5→?

...

0→ ⊤
1→ ⊥
2→ ⊥
3→ ⊥
4→ ⊥
5→?

...

0→ ⊤
1→ ⊥
2→ ⊥
3→ ⊥
4→ ⊥
5→ ⊤

...

Figure 3.4.: Perfect random access monitor for q ∨ (p U q).

It is easy to see that a random access monitor subsumes all other monitoring models
from this chapter. E.g. k-offset recurrent monitoring is equal to random access
monitoring with query domain Q(t) = {t− k} ∩ N. Initial monitoring on the other
hand equals random access monitoring with query domain Q(t) = {0}.

Thus, a perfect random access monitor is a powerful tool for online monitoring, but –
depending on the chosen query domain – not suitable for practical use. For Q(t) = N
for example an efficient implementation of such a monitor is in general not possible.
It would have to store information about every single letter in the received word, to
give valuations for all positions. This is even the case for very simple properties like
the LTL formula p. To yield the output function assigning a verdict to every instant,
the monitor would have to record all instants of the received word which contained
the proposition p. In general this makes such a monitor trace-length-dependent,
which is an issue for the usage in runtime verification.

One could argue that the requirements for an implementation can be relaxed such
that the monitor output only has to contain values for positions that were not
conclusive (i.e. mapping to a singleton valuation set) in a previous output. This
is because these values are fully known and don’t change anymore until the end of
the monitoring. They can thus can be reported uniquely at their first occurrence.
In general, however, the monitor would still have to store an increasing amount of
information, even for simple properties. For example, consider the LTL formula
p → Fq. In this case the monitor would have to memorize all positions in which p
held until a subsequent q arrives, because only then the verdict for these locations

87

3. A generalized monitoring theory

would flip from ? to ⊤. Overall, these examples show that perfect random access
monitoring is generally incompatible with trace-length-independent monitoring.

Possibilities to counter this issue are either to restrict the query domain in some way
or to deliver abstractions of the actual outputs (the functions). An example for such
an abstraction is e.g. discussed in [KLSS22], called – slightly contrary to the wording
used in this thesis – anticipatory recurrent monitoring. There the monitor only casts
an interval which indicates the distance to the next instant where a monitored LTL
property may be satisfied.

3.3.3. Extensions

In order to provide a general theory for synchronous monitoring, we will discuss in
this section how to enrich the notion of random access monitoring with the presence
of uncertain input readings and assumptions.

Assumptions

As outlined in section 2.2.4 assumptions restrict the set of possible input traces that
can actually occur in the observed system and which the monitor has to consider.
This does not only restrict the prefixes which have been received by the monitor
but also the set of possible continuations, i.e. the “search space” of the monitor. We
can quite easily extend our notion of sound and perfect random access monitoring
to support assumptions.

Definition 3.8 (Random access (recurrent) monitoring under assumptions; based
on [HKLS24]).
Let P : Ω × N ⇀ D be a pointwise property with Ω ∈ {Σ∗,Σn,Σω,Σ∞} and
A ⊆ Ω an assumption. Let further Q : N → 2N be a query domain and
M = (S,Σ,N ⇀ V, δ, γ, s0) a synchronous monitor with output interpretation
γV : V→ 2D.

M is called

• sound random access (recurrent) monitor for P,Q and A if and only if

∀w ∈ Σ+.∀i ∈ Q(|w|−1). γV(M(w)(i)) ⊇ {P(wv, i) | wv ∈ A∧P(wv, i) def.}

• perfect random access (recurrent) monitor for P,Q and A if and only if

∀w ∈ Σ+.∀i ∈ Q(|w|−1). γV(M(w)(i)) = {P(wv, i) | wv ∈ A∧P(wv, i) def.}

88

3.3. Pointwise monitoring

Compared to the previous definition of random access monitoring, a perfect monitor
now only has to care about extensions of the received input that also match as-
sumption A. Likewise the output of a sound monitor only has to over-approximate
property valuations of runs that fit the assumption.

In case the input trace has already breached the assumption, there would be no
extension of w which is contained in A and thus a perfect random access monitor
would have to yield a representation of the empty value set. As discussed earlier, we
will not consider this case further in this thesis, because the monitor should never
receive an input which violates the assumption.

Uncertainty

In a similar straight-forward fashion we can extend our concept with the capability
of handling uncertainty. The problem of monitoring languages in Σ∗/n/ω/∞ under
uncertainty has already been discussed in section 2.2.4. There we had introduced a
notion of sound and perfect uncertain monitoring of language containment, which
we will now extend to the case of monitoring general pointwise properties.

We use the idea from there, that an uncertain input over Σ is essentially a sub-
set U ⊆ Σ∗ containing all potential concrete inputs. Our monitors, as defined in
definition 3.1, receive their input piece-wise, s.t. every received input letter reveals
additional information about the monitored run. To transfer this to the uncertain
setting, we require an abstract alphabet Γ and uncertainty encoding ν : Γ∗ → 2Σ∗

(see definition 2.30) which provides the mapping between the monitor input and the
corresponding uncertain input word. As suggested, this could e.g. be a letter- or
chunk-wise encoding of the uncertainty (see definition 2.32).

Based on this considerations we can extend the definition of perfect random access
monitors by assumptions and uncertainty.

Definition 3.9 (Random access monitoring under uncertainty and assumptions).
Let P : Ω × N ⇀ D with Ω ∈ {Σ∗,Σn,Σω,Σ∞} be a pointwise property and
A ⊆ Ω an assumption and Q : N → 2N a query domain. Let further M =
(S,Γ,N+ → V, δ, γ, s0) be a synchronous monitor with output interpretation
γV : V→ 2D and uncertainty encoding ν : Γ∗ → 2Σ∗ .

M is called

• sound uncertain random access (recurrent) monitor for P,Q under A if
and only if

∀w ∈ Γ+.∀i ∈ Q(|w| − 1). γV(M(w)(i)) ⊇ {P(w′v, i) | w′ ∈ ν(w) ∧
w′v ∈ A ∧ P(w′v, i) def.}

89

3. A generalized monitoring theory

• perfect uncertain random access (recurrent) monitor for P,Q under A if
and only if

∀w ∈ Γ+. ∀i ∈ Q(|w| − 1). γV(M(w)(i)) = {P(w′v, i) | w′ ∈ ν(w) ∧
w′v ∈ A ∧ P(w′v, i) def.}

Note that with the presence of uncertainty, w ∈ Γ∗ can generally represent a set
of possible words of different lengths. This leads to a peculiarity of definition 3.9
compared to the previous definitions. First the query domain now receives the
length of the encoded uncertain input but delivers positions in the decoded word for
which the monitor has to answer. In case of a non-linear relation between the length
of the encoded uncertain input and the represented certain inputs this makes e.g.
the encoding of sliding windows around the current position via the query domain
impossible. Likewise k-offset recurrent monitoring can no longer be considered as
special case of random access monitoring by “asking” the monitor forM(w)(|w|−1−
k) as there is no unique current input length anymore. The corresponding definition
of a k-offset recurrent monitoring under uncertainty and assumptions would therefore
be as given in definition 3.10.

Definition 3.10 (k-offset rec. monitoring under uncertainty and assumptions).
Let P : Ω × N ⇀ D be a pointwise property with Ω ∈ {Σ∗,Σn,Σω,Σ∞} and
A ⊆ Ω an assumption. Let further M = (S,Γ,V, δ, γ, s0) be a synchronous
monitor with output interpretation γV : V → 2D and uncertainty encoding
ν : Γ∗ → 2Σ∗ .

M is called

• sound uncertain k-offset recurrent monitor for P,Q and A if and only if

∀w ∈ Γ∗. γV(M(w)) ⊇ {P(w′v, |w′| − 1− k) |
w′ ∈ ν(w) ∧ w′v ∈ A ∧ P(w′v, |w′| − 1− k) def.}

• perfect uncertain k-offset recurrent monitor for P,Q and A if and only if

∀w ∈ Γ∗. γV(M(w)) = {P(w′v, |w′| − 1− k) |
w′ ∈ ν(w) ∧ w′v ∈ A ∧ P(w′v, |w′| − 1− k) def.}

Consequently, if the uncertain input encodes traces of different lengths, a sound or
perfect k-offset recurrent monitor reveals information about the instant k positions
away from the end of the different represented certain input traces. Thus in its
output the monitor combines the valuations for different absolute positions.

For monitoring under uncertainty (with the possibility of unevenly long concrete
words), neither a random access nor a k-offset monitor is strong enough to entail

90

3.4. Connection to stream runtime verification

the outputs of the other, and thus it is up to the user to decide which monitoring
model is appropriate for the concrete use case. However, in the subsequent chapter
we will restrict the handled uncertainty to the case where only traces of equal length
are encoded by the uncertain input. In particular we will only consider letter-wise
uncertainty, where the encoded input has the same length as the represented inputs.
In this case the random access monitor is again powerful enough to perform k-offset
recurrent monitoring, even for a sliding window.

3.4. Connection to stream runtime verification

The definitions given so far provide a general concept of sound and perfect mon-
itoring of arbitrary synchronous properties. We will now discuss stream runtime
verification approaches in terms of this framework and investigate which properties
it can express. In doing so, we will pay special attention to the language LOLA
and in particular show how other formalisms can be unified by embedding them
in LOLA. In the following chapter we will then present a generic implementation
of a sound and perfect recurrent monitor for LOLA, using abstract interpretation
techniques, which in turn will be able to generalize recurrent RV under uncertainty
and assumptions for several existing formalisms.

3.4.1. LOLA specifications as pointwise properties

As outlined in section 2.3.1, a well-defined LOLA specification describes a transfor-
mation from a fixed number of input streams to a fixed number of output streams
over arbitrary data domains. This conceptually fits to our notion of pointwise prop-
erties (definition 3.4) which receive a sequence of arbitrary data type and assign a
property of arbitrary datatype to every point of the sequence. The connection be-
comes clear, if we consider the input streams of the LOLA specification as a single
stream/sequence of tuples consisting of all stream values at this instant. Likewise
we can interpret the output streams as a single sequence of stream value tuples. Re-
member at this point that a finite synchronous stream (definition 2.3) is equivalent
to a finite sequence of data values (i.e. a trace).

Technically we describe the above translation with the functions

com : SD1 × · · · × SDn → (D1 × · · · × Dn)tmax+1

com((s1, . . . , sn)) = ⟨(s1(0), . . . , sn(0)), . . . , (s1(tmax), . . . , sn(tmax))⟩

composing a tuple of streams into a single sequence of value tuples and

dec : (D1 × · · · × Dn)tmax+1 → SD1 × · · · × SDn

dec(w) = (⟨π1(w(0)), . . . , π1(w(tmax))⟩, . . . , ⟨πn(w(0)), . . . , πn(w(tmax)⟩)

91

3. A generalized monitoring theory

decomposing a sequence of value tuples into a tuple of streams. Thereby πi(t)
denotes the ith component of tuple t.

Based on this translation, we can explicitly define the induced (pointwise) property
of a LOLA specification.

Definition 3.11 (Induced property of LOLA specification; based on [HKLS24]).
Let φ be a LOLA specification with input stream types D1, . . . ,Dn and output
stream types D′

1, . . . ,D′
m.

The function Pφ : (D1 × · · · × Dn)tmax+1 × N⇀ D′
1 × · · · × D′

n with

Pφ(w, t) =
{

com(JφK(dec(w)))(t) if t ∈ T
undef. else

where JφK : (SD1×· · ·×SDn)→ (SD′
1
×· · ·×SD′

m
) is the semantics of φ is called

the induced (pointwise) property of φ.

3.4.2. Embedding of pointwise properties in LOLA

Because of its generic nature and lack of restriction to specific data domains, LOLA
is a very powerful formalism for the description of stream transformations. In fact
every fixed-sized pointwise property (i.e. over Ω = Σtmax+1) as defined in defini-
tion 3.4 is expressible in LOLA.

Thereby the restriction to fixed trace lengths is not a grave one for practical ap-
plications. While for offline monitoring the trace length of the input is known a
priori anyway, for online monitoring one usually just wants to have a trace length
which is long enough such that the trace end is not reached during monitoring.
Consequently tmax can simply be chosen as a large number, e.g. 264 which would be
enough to monitor for over 500 million years at an event rate of one input instant
per millisecond.

The proposition about encoding pointwise properties in LOLA specifications is for-
malized in theorem 3.12.

Theorem 3.12.
For every finite pointwise property P : Σtmax+1 × N ⇀ D there is a LOLA
specification φ, s.t.

∀w ∈ Σtmax+1, t ∈ T = {0, 1, . . . , tmax}.Pφ(w, i) = P(w, i).

92

3.4. Connection to stream runtime verification

Proof. Let P : Σtmax+1×N⇀ D be a finite pointwise property. Consider the following
LOLA specification:

1 input in: Σ
2
3 n := n[-1|0] + 1
4 past := past [-1|⟨⟩]◦⟨in[now]⟩
5 future := ⟨in[now]⟩◦future [+1|⟨⟩]
6 out := P(past [-1|⟨⟩]◦future [now], n[now]-1)
7
8 output out

The specification contains three intermediate streams: n, which is counting the
length of the prefix up to the current position. The streams past and future which
are of type Σ∗ and maintain the received input up to/from the current position on.
They do this by converting the current input letter from stream in of type Σ into a
1-element sequence (function ⟨·⟩) and concatenating it (function · ◦ ·) with the last
and next value of themselves. Thus, past contains the prefix of the stream from the
beginning up to the current position and future the postfix from this position to the
trace end. Hence, for every timestamp, past[−1|⟨⟩] ◦ future[now] evaluates to the full
input trace. Consequently for arbitrary input trace w ∈ Σtmax+1 the single output
stream out at position i (0 ≤ i ≤ tmax) is by definition equivalent to P(w, i).

The “trick” of this construction basically consists in collecting all past input values
and all future input values and aggregating them in a sequence data structure. This
construction thus requires storage of all past and future inputs in a complex data
structure (list or sequence) to compute the output for a single instant. Yet not all
properties do actually need this unlimited amount of information, rather for some
it is enough to just reference a fixed number of past and future instances, or to
aggregate the past and future information in a compact value. This is e.g. the case
for properties expressed in LTL, M(I)TL and STL (with a discrete time domain).
In the following the (generic) translation from these logics to LOLA will be shown.
We start with LTL.

Let φ ∈ ltlAP be an LTL formula over atomic propositions AP. The main idea
(which is also used for the M(I)TL and STL translation) is that each subformula of
φ is represented by its own stream of type boolean (c.f. [HKLS24, Gor22, DSS+05]).
The stream for such an expression is in turn defined by a composition of the streams
of its sub-expressions. Finally we assume a single input stream in with sets of atomic
propositions from AP. The concrete translation of the different expression types is
given by the following table:

93

3. A generalized monitoring theory

φ = LOLA stream definition of sφ
true strue := true
p sp := (p ∈ in[now])
¬ψ s¬ψ := ¬sψ[now]

ψ1 ∧ ψ2 sψ1∧ψ2 := sψ1[now] ∧ sψ2[now]
Pψ sPψ := sψ[-1|false]

ψ1 S ψ2 sψ1Sψ2 := sψ2[now] ∨ (sψ1[now] ∧ sψ1Sψ2[-1|false])
Xψ sXψ := sψ[+1|false]

ψ1 U ψ2 sψ1Uψ2 := sψ2[now] ∨ (sψ1[now] ∧ sψ1Uψ2[+1|false])

The translation is mostly straight-forward, strue is the stream with true events at
all positions, and sp for p ∈ AP is true whenever p is contained in the current input
value. The propositional logic operators ¬, ∧ are applied to the current value(s)
of the sub-expression(s). P (X) takes the previous (next) value from the stream
of its sub-expression and is false at the first (last) position. S and U are unrolled
according to the well-known equalities

φ U ψ ≡ ψ ∨ (φ ∧ X (φ U ψ)) and φ S ψ ≡ ψ ∨ (φ ∧ P(φ S ψ)).

Note, that for practical applications it is often more convenient to consider sa for
each a ∈ AP as separate input streams of type boolean instead of one stream in
carrying sets of atomic propositions. In this case the input word would consist of
boolean vectors indicating which atomic propositions currently hold. In the following
we will make use of this equivalent version.

For φ = F((Pp) U q) = (true U ((Pp) U q)) we would for example get the following
specification:
1 input sp: B
2 input sq : B
3
4 strue := true
5 sPp := sp [-1|false]
6 s(Pp)Uq := sq [now] ∨ (sPp[now] ∧ s(Pp)Uq [+1|false])
7 sφ := s(Pp)Uq [now] ∨ (strue[now] ∧ sφ [+1|false])
8
9 output sφ

Similarly other formalisms like LTL with regular expressions [LS07] or linear dy-
namic logic (LDL) [GV13] can be translated to LOLA following a similar scheme.
Corresponding constructions are outlined in [KLS23].

For translation of M(I)TL we can also use the strategy of defining a stream for
every sub-expression of the formula to be monitored. For the timed streams on
which M(I)TL is defined, we use the encoding as a timed trace, i.e. a trace of
timestamp/value tuples (see section 2.1.3). For the LOLA specification we thus
assume - besides a stream for every atomic proposition - also an input stream t,

94

3.4. Connection to stream runtime verification

which carries the current timestamp and is of type T. As mentioned earlier, for
the M(I)TL-to-LOLA translation we restrict ourselves to discrete time domains T.
Such time domains are characterized by the fact that there is a smallest possible
distance dmin between two timestamps. Yet, it is not required by definition 2.4 that
all subsequent timestamps have exactly this minimal distance, i.e. the time domain
may be irregular.

If we have the common case of a regular time domain like e.g. T = Ntmax (i.e.
all natural numbers from 0 to tmax), where for every t ∈ T, either t + dmin ∈ T
or t = tmax, we can choose a strategy similar to the LTL translation above (also
comparable to the one from [Gor22]). In this case we define the LOLA specification
s.t. at instant k ∈ N it evaluates the M(I)TL formula for timestamp k · dmin ∈ T.

The operators ¬, ∧ and the constant true can be handled exactly in the same way
as in the LTL translation before. The operators until and since in M(I)TL however
carry an interval which restricts the time period in which the second argument has
to hold and thus require a special translation. First note, that for a discrete domain
T, we can restrict to inclusive intervals (except for ∞), as non-inclusive bounds can
simply be replaced by inclusive bounds of the next and previous instant. We slightly
abuse notation and write [a, b] with a ∈ R≥0 and b ∈ R≥0∪{∞} to denote the interval
between a and b, where b is exclusive if and only if it is ∞. In the following we will
consider the case for the since operator; the until operator is analogous.

Recall that expression ψ SI φ is satisfied whenever φ held some time ago which is
within the interval I from now and ever since ψ was satisfied at all points in time.
This means, it is necessary to memorize if φ held at a certain interval in the past
to determine the current value of ψ SI φ. Since we know that no events can occur
outside of the time domain, the following rules for a ∈ R>0 and b ∈ R>0 ∪{∞} hold
(where φ[−dmin] denotes the value of φ at the previous timestamp):

φ S[0,0] ψ ≡ ψ

φ S[0,b] ψ ≡ ψ ∨ (φ ∧ (φ S[0,b−dmin] ψ)[−dmin])
φ S[a,b] ψ ≡ φ ∧ (φ S[a−dmin,b−dmin] ψ)[−dmin].

Thus we can encode ψSI φ and likewise ψUI φ in LOLA by “unrolling” the intervals
into immediate streams:

φ = LOLA stream definition of sφ
φ S[0,0] ψ sφS[0,0]ψ := sψ[now]
φ S[0,b] ψ sφS[0,b]ψ := sψ[now] ∨ (sφ[now] ∧ sφS[0,b−dmin]ψ[-1|false])
φ S[a,b] ψ sφS[a,b]ψ := sφ[now] ∧ sφS[a−dmin,b−dmin]ψ[-1|false]
φ U[0,0] ψ sφU[0,0]ψ := sψ[now]
φ U[0,b] ψ sφU[0,b]ψ := sψ[now] ∨ (sφ[now] ∧ sφU[0,b−dmin]ψ[+1|false])
φ U[a,b] ψ sφU[a,b]ψ := sφ[now] ∧ sφU[a−dmin,b−dmin]ψ[+1|false]

95

3. A generalized monitoring theory

For illustration, the M(I)TL formula φ = F(p U[2,∞] q) = (true U[0,∞] (p U[2,∞] q))
with time domain T = Ntmax = {0, 1, . . . , tmax} and thus dmin = 1, would yield the
following specification:

1 input t: Ntmax

2 input sp: B
3 input sq : B
4
5 strue := true
6 spU[0,∞]q := sq [now] ∨ (sp[now] ∧ spU[0,∞]q [+1|false])
7 spU[1,∞]q := sp[now] ∧ spU[0,∞]q [+1|false]
8 spU[2,∞]q := sp[now] ∧ spU[1,∞]q [+1|false]
9 sφ := spU[2,∞]q [now] ∨ (strue[now] ∧ sφ [+1|false])

10
11 output sφ

Unfortunately this translation is not suited for the case of an irregular time domain
where subsequent timestamps have no equal distance. It also introduces a high
number of intermediate streams, especially when until and since operators use large
interval bounds. This has in general negative influence on the evaluation time. The
reason for the large number of streams, is, that for φS[a,b]ψ or φU[a,b]ψ with b ̸=∞,
b

dmin
variations of the formula with adjusted interval are iteratively evaluated and

stored in a dedicated stream. However information about all these individual points
is actually not necessary.

Indeed, the following observation can be made (for any time domain even dense
ones): Consider the M(I)TL formula φ = ψ1 S[a,b] ψ2 and a timed stream s ∈ STΣ
over arbitrary time domain with R≥0 distance measure, where ψ2 holds at timestamp
t1 and t2 which are closer to each other than the interval range b− a and ψ1 holds
at all positions between t1 and t2. In this case φ is satisfied at all instants t which
are at least a from t1 and at most b from t2 and up to which ψ1 holds from t2
(and thus also t1) on (see visualization in figure 3.5). A formalisation and proof of
this statement can be found in the following lemma, where we abbreviate the model
relation for MTL, |=mtl, with |=.

Lemma 3.13.
Let φ = ψ1S[a,b]ψ2 and s ∈ STΣ be a timed stream over time domain (T, <, 0,⊖)
with R≥0 distance measure. Let further t1, t2 ∈ T be two timestamps with
t1 < t2, (t2 ⊖ t1) ≤ (b− a) s.t.

(s, t1) |= ψ2 and (s, t2) |= ψ2 and ∀t′ ∈ T. t1 < t′ < t2 → (s, t′) |= ψ1.

Then for any t ∈ T with t > t2, t⊖ t1 ≥ a and t⊖ t2 ≤ b:

(s, t) |= φ if and only if ∀t′ ∈ T. t2 ≤ t′ ≤ t→ (s, t′) |= ψ1

96

3.4. Connection to stream runtime verification

Proof. Let t ∈ T with t > t2, t⊖ t1 ≥ a and t⊖ t2 ≤ b and (s, t1) |= ψ2, (s, t2) |= ψ2.
Further ∀t1 < t′ < t2. (s, t′) |= ψ1 and also ∀t2 ≤ t′ ≤ t. (s, t′) |= ψ1, thus ∀t1 < t′ ≤
t. (s, t′) |= ψ1. Consequently (s, t) |= φ as either t1 or t2 is within the interval [a, b]
from t.

ψ2

ψ1

ψ1 S[a,b] ψ2

t1 t2

tt tt

tt tt tt tt tt tt

tt tt tt

t1 + a t2 + b

≤ (b− a)

a
b

Figure 3.5.: Visualization of lemma 3.13: Since ψ1 is known to be true at t1 and t2
which are closer to each other than b − a, the valuation of ψ2 between
t1, t2 does not matter. ψ1 S[a,b] ψ2 is true at all instants t more than
a from t1 and less than b from t2 (marked area) iff ψ1 is true all the
way between t1 (exclusively) and t. This is because for all such t either
t⊖ t1 ∈ [a, b] or t⊖ t2 ∈ [a, b].

The symmetrical observation can be made for the until operator.

Lemma 3.14.
Let φ = ψ1 U[a,b] ψ2 and s ∈ STΣ a timed stream over time domain (T, <, 0,⊖)
with R≥0 distance measure. Let further t1, t2 ∈ T be two timestamps with
t1 < t2, (t2 ⊖ t1) ≤ (b− a) s.t.

(s, t1) |= ψ2 and (s, t2) |= ψ2 and ∀t′ ∈ T. t1 < t′ < t2 → (s, t′) |= ψ1.

Then for any t ∈ T with t < t1, t2 ⊖ t ≥ a and t1 ⊖ t ≤ b:

(s, t) |= φ if and only if ∀t′ ∈ T. t2 ≤ t′ ≤ t→ (s, t′) |= ψ1

Proof. Analogous to proof of lemma 3.13.

A consequence of these lemmas is, that for evaluating ψ1 S[a,b] ψ2 (or ψ1 U[a,b] ψ2)
it is enough to memorize a subset of instants where ψ2 did hold. Particularly if ψ2
holds at timestamps t1 and t2 closer to each other than b − a and ψ1 holds at all
locations in between, it is not necessary to store further information about instants

97

3. A generalized monitoring theory

between t1 and t2. This is because all locations that could be influenced by these
instants between are already determined by ψ2 holding at t1 and t2.

This motivates the following strategy for an M(I)TL to LOLA translation over dis-
crete time domains.

For translation of φ = ψ1 S[a,b] ψ2 (φ = ψ1 U[a,b] ψ2) we create a helper stream sset
φ

which stores a set of timestamps at which ψ2 has been (will be) true. Always when
ψ1 is not true at some instant, sset

φ is reset to the empty set. Using the lemmas
from above we remove such timestamps from the set, which are between two other
timestamps in the set that are closer than b−a. Furthermore timestamps which are
further in the past (future) than b are also removed from the set. Technically we
can define these stream as follows:

spre
φS[a,b]ψ

:= ite(sψ[now],

filterS[a,b](sset
φS[a,b]ψ

[-1|∅], t[now]) ∪ { t[now] }
sset
φS[a,b]ψ

[-1|∅])

sset
φS[a,b]ψ

:= ite(sφ[now], s
pre
φS[a,b]ψ

[now], ite(sψ[now], { t[now] }, ∅))

spre
φU[a,b]ψ

:= ite(sψ[now],

filterU[a,b](sset
φU[a,b]ψ

[+1|∅], t[now]) ∪ { t[now] }
sset
φU[a,b]ψ

[+1|∅])

sset
φU[a,b]ψ

:= ite(sφ[now], s
pre
φU[a,b]ψ

[now], ite(sψ[now], { t[now] }, ∅))

where the functions filterS[a,b] : 2T × T → 2T and filterU[a,b] : 2T × T → 2T are
defined as follows:

filterS[a,b](S, t) = {t′ ∈ S | t′ ⊖ t ≤ b ∧ ̸ ∃t′′ ∈ S. t′′ < t′ < t ∧ (t⊖ t′′) < (b− a)}
filterU[a,b](S, t) = {t′ ∈ S | t′ ⊖ t ≤ b ∧ ̸ ∃t′′ ∈ S. t < t′ < t′′ ∧ (t⊖ t′′) < (b− a)}

I.e. all elements are filtered away which are further from the current position than
b or where the current position and another element in the set are closer than b− a.
Based on these auxiliary streams we can define sφS[a,b]ψ, sφU[a,b]ψ by checking all
stored timestamps.

φ = LOLA stream definition of sφ
φ S[a,b] ψ sφS[a,b]ψ := ∃t ∈ sset

φS[a,b]ψ
[now]. (t[now] ⊖ t) ∈ [a, b]

φ U[a,b] ψ sφU[a,b]ψ := ∃t ∈ sset
φU[a,b]ψ

[now]. (t⊖ t[now]) ∈ [a, b]

98

3.4. Connection to stream runtime verification

Note at his place that the set we utilize to store the timestamps for the evaluation
of ψ1S[a,b]ψ2 and ψ1U[a,b]ψ2 will never have more entries than b

b−a +1 if b ̸= a. This
is because all timestamps further away from the current one than b are removed
and for each b − a time distance at most one timestamp is contained in the set.
Further the size of the set is limited by b

dmin
+ 1 where dmin is the smallest distance

between two timestamps in our time domain. Thus for MTL and MITL monitoring
over discrete time domain we have a constant size bound for the involved set data
structures. Consequently, the LOLA specification can be transformed into one that
represents the sets of at most n elements by n separate streams and applies all set
operations directly to these streams. Note that such a specification would not require
complex data structures and could be implemented within LOLA’s linear arithmetic
fragment (see definition 2.43) except from the function ite. The translation becomes
especially simple if the time domain is regular, then b

b−a streams can be introduced
which continuously shift information about the inputs in every ⌊b − a⌋ long trace
section.

The translation of M(I)TL can now easily be extended towards STL. In the case of
STL we have an n channel input signal, which is represented by n input streams
s1, . . . , sn of type R in the LOLA specification. For each STL predicate µi we
can define a stream sµi := µi(s1[now], . . . ,sn[now]) which is evaluating the
predicate at every timestamp. These streams can then directly be utilized in the
M(I)TL translation.

3.4.3. LOLA monitoring

With the insight that a LOLA specification essentially describes a synchronous point-
wise property, it appears natural to classify the traditional LOLA monitoring algo-
rithm from [DSS+05] described in section 2.3.1 in terms of the introduced monitoring
approaches from the previous section.

Therefore, we first give a definition of a LOLA monitor according to definition 3.1,
reflecting the traditional monitoring algorithm from figure 2.9. Note that the algo-
rithm there is casting output events up to the current instant as soon as they can
be evaluated into a concrete value. Consequently we cannot rely on the monitor to
directly provide us all output values for the current instant. Yet we can think of
it to give us an output map containing a concrete value for a random number of
streams and instants.

In our classification we would refer to such a device as random access monitor, as
it provides information about the monitored property at different instants. Yet
in definition 3.7 we model such monitors as kind of question answering machine
which can be asked for a specific instant, while the algorithm from figure 2.9 rather
suggests push semantics, yielding those values which have newly been computed.
We can bridge this gap by adding a final stage to the monitor which is collecting all

99

3. A generalized monitoring theory

the outputs and returning a map of output stream values that have been computed
so far. For all streams where the monitor has not cast outputs yet, the map contains
? entries, representing any value from the domain. Thus, formally this mapping is
a function m : T→ VD1,...,Dn with VD1,...,Dn = D1 ∪{?}× · · · ×Dn ∪{?} being the set
of output vectors where Di for i ∈ {1, . . . , n} denotes the type of the specification’s
ith output stream. Such an output function fits to the definition of a random access
recurrent monitor. The corresponding output interpretation for the elements from
VD1,...,Dn is given as

γVD1,...,Dn
: VD1,...,Dn → 2D1×···×Dn

γVD1,...,Dn
((a1, . . . , an)) = {(c1, . . . , cn) ∈ D1 × · · · × Dn | ∀i ∈ {1, . . . , n}.

ai ̸= ?→ ai = ci}.

For illustration consider the LOLA specification in figure 3.6.

1 input x: R
2
3 y := (x[now] = 11) ∨ y[-1| false]
4 z := y[+1| true]
5
6 output y
7 output z

Figure 3.6.: Example LOLA specification with future offset.

The specification there is receiving a numeric input stream x. Stream y is checking if
x did have an event with value 11 up to now. Stream z is true if and only if y is true at

Input
sequence

Output of
algorithm from
figure 2.9

Interpretation
as function
N+ → VB,B

x = 5 x = 7 x = 11 x = 8 . . .

0 : y = false 1 : y = false
0 : z = false

2 : y = true
1 : z = true

3 : y = true
2 : z = true

. . .

0→
(

ff
?

)

1→
(

?
?

)

2→
(

?
?

)

3→
(

?
?

)
...

0→
(

ff
ff

)

1→
(

ff
?

)

2→
(

?
?

)

3→
(

?
?

)
...

0→
(

ff
ff

)

1→
(

ff
tt

)

2→
(

tt
?

)

3→
(

?
?

)
...

0→
(

ff
ff

)

1→
(

ff
tt

)

2→
(

tt
tt

)

3→
(

tt
?

)
...

. . .

Figure 3.7.: Example run of the standard LOLA evaluation algorithm and corre-
sponding LOLA monitor output for the specification from figure 3.6.

100

3.4. Connection to stream runtime verification

the next instant or the trace ends after the current event. Figure 3.7 shows the output
of the monitoring algorithm from figure 2.9 for input stream x = ⟨5, 7, 11, 8, . . . ⟩.
Below is the interpretation of the output as a function from an instant to a vector
of output stream values (y, z).

Based on the considerations made, we now give a formalization of the LOLA moni-
toring algorithm from figure 2.9 as a synchronous monitor from definition 3.1.

Definition 3.15 (Synchronous LOLA Monitor).
Let φ = (I = {s1, . . . , sn}, S,O = {s′

1, . . . , s
′
m}, E) be a LOLA specification

where stream si is of type Di and s′
i of type D′

i. The corresponding synchronous
monitor is given as Mφ = (Q,Σ,V, δ, γ, q0) with

• state space Q = N × 2EB
φ × (T → VD′

1,...,D′
m

), consisting of the instant of
the next inputs, the set of symbolic equations maintained internally and
the current output function.

• Input alphabet Σ = D1 × · · · × Dn encoding a vector of input readings,

• Output alphabet V = (T→ VD′
1,...,D′

m
).

• Transition function δ : Q× Σ→ Q computing the successor state, based
on the current state and inputs. For state q = (t, E, o) and input i =
(i1, . . . , in) ∈ Σ, δ(q, i) = (t+1, E′, o′) where E′ results from E by adding
the input readings to E and execution of the procedures Compute and
Prune from figure 2.9, i.e.

E′ = Prune(t, Compute(t, E ∪ {sj = ij | 1 ≤ j ≤ n})).

Output o′ results from incorporating all equations from Compute(t, E ∪
{stj = ij | 1 ≤ j ≤ n}) of form s′t

j = vj into o.

• An output function γ((n,U, o)) = o returning the current output stored
in the state,

• Initial state q0 = (0, ∅, o?) with o?(i) = (?, . . . , ?) for all i ∈ T.

For the following considerations we distinguish between specifications that do not
contain future references (very efficiently monitorable fragment of LOLA, see defi-
nition 2.42) and unrestricted LOLA specifications.

For the very efficiently monitorable fragment we are able to build perfect recurrent
monitors.

Theorem 3.16.
For every very efficiently monitorable LOLA specification φ there is a perfect
recurrent monitor.

101

3. A generalized monitoring theory

Proof. Let φ = (I, S,O,E) be a flat, very efficiently monitorable LOLA specification
and Mφ = (Q,Σ,V, δ, γ, q0) the corresponding synchronous monitor according to
definition 3.15. Let further w ∈ Σ≤tmax+1 be a monitor input. Based on this we can
construct the monitorM′

φ = (Q,Σ,V, δ, γ′, q0) with γ′((t, E, o)) = o(t− 1), which is
directly casting the output vector for the current instant.

Since φ is very efficiently monitorable and flat, all contained offsets in φ are −1
or 0 offsets. The monitor M′

φ starts in state (0, ∅, o?). For s[−1, d] expressions it
uses the default value d in this state. The expression s[now] may either refer to
an input stream and can thus be resolved by the corresponding input reading or to
an intermediate stream. Besides offset expressions, a defining expression in E may
only contain constants and function symbols, which can directly be evaluated by
Compute(t,E). As we require LOLA specifications to be well-formed, there may
not be a cyclic dependency between stream events. The value of all intermediate
streams can thus be determined iteratively. For all streams s which are referenced as
s[−1, d] in φ the computed equations are not pruned and kept in the set of equations
during monitoring. Hence in the subsequent step these s[−1, d] expressions can also
be resolved and again values for all streams can be determined.

Therefore, after receiving w,M′
φ yields the output com(JφK(dec(ww′)))(|w| − 1) for

any continuation w′ of the received input trace w s.t. |w|+ |w′| = tmax +1. Note that
this output is equal for all w′ ∈ Σtmax−|w|−1, since φ contains no future references.
Consequently M′

φ is a perfect recurrent monitor for φ’s induced property, Pφ.

Since a perfect recurrent monitor only has to prepare outputs for the current in-
stant and discards past outputs and intermediate streams which are not referenced
by -1 offsets from the state, such a monitor can also be considered trace-length-
independent.

However, as the example from figure 3.6 already suggests, the algorithm from defi-
nition 3.15 is not perfect anymore, if the specification also contains future offsets.

Theorem 3.17.
The monitor construction from definition 3.15 yields a sound, but in general
imperfect random access monitor over any query domain Q : N→ 2T which is
non-trivial for at least one instant in T\{tmax}a.

aWe exclude tmax, as a monitor which only answers at tmax has the full trace available and is
thus an offline monitor. Further we don’t allow the query domain to yield locations which
are out of the instant domain T.

Proof. First we will proof the soundness. Let φ be a LOLA specification with output
stream types D1, . . . ,Dn andMφ the corresponding synchronous monitor according
to definition 3.15. Let further w ∈ Σ∗ be an arbitrary input trace prefix, w′ ∈ Σ+

with |w| + |w′| = tmax + 1 an input extension and t ∈ {0, 1, . . . , tmax} an instant.

102

3.4. Connection to stream runtime verification

The vector v = (v1, . . . , vn) = Pφ(ww′, t) is the valuation of φ at t for w continued
with w′. Let o = (o1, . . . , on) =Mφ(w)(t) be the output of the monitor for instant
t after receiving w. We now have to show that v ∈ γVD1,...,Dn

(o), i.e. the result vector
v is represented by the output of Mφ for instant t. We consider two cases for each
entry oi of o.

• Either oi = ?, which represents every value at this instant.

• Or oi = c for a constant c. In this case we also have vi = c, because oi = c
followed from a finite application of equivalence transformations (procedure
Compute) of defining expressions in φ.

By definition of γVD1,...,Dn
it follows that v ∈ γVD1,...,Dn

(o) andMφ is a sound recurrent
monitor for any query domain Q.

Now a counterexample for the perfectness of the random access monitor will be
given. W.l.o.g. let t′ ∈ Q(t) where t ∈ T\{tmax} will serve us as current instant. Let
φ be the specification from figure 3.6. If t′ < t we slightly modify the specification
s.t. stream z is defined as y[1 + t− t′|true].

Consider the random access monitor Mφ for this specification and assume it receives
the input trace prefix w = ⟨0, . . . , 0, 11⟩ ∈ Rt+1. In this case streams z and y
evaluate to true at all instants after and including t. Thus for instant t′ we have
Pφ(ww′, t′) = (true, true) if t′ ≥ t and Pφ(ww′, t′) = (false, true) if t′ < t for all
input extensions w′ ∈ Rtmax−t, i.e. {Pφ(ww′, t′) | w′ ∈ Rtmax−1} = {(true, true)} or
{Pφ(ww′, t′) | w′ ∈ Rtmax−1} = {(false, true)}, respectively.

Yet, by construction, the monitor Mφ does not add constraints about future events
to its internal state and thus yields ? output for z. For y it yields ? if t′ > t, true
if t′ = t and false otherwise. Consequently, the output of the monitor concerning
instant t′, Mφ(w)(t′), is either (?, ?) if t < t′ or (true, ?) if t = t′ or (false, ?) if
t′ < t. By definition of γVB,B(Mφ(w)(t′)), non of them matches the perfect output
for t′, {(false, true)} or {(true, true)}, respectively. Hence Mφ does not yield a
perfect output for t′ ∈ Q(t).

As discussed earlier in this chapter, a consequence of theorem 3.17 is that the tradi-
tional LOLA monitoring algorithm does also not yield a perfect initial nor a perfect
(k−offset) recurrent monitor, as they can be emulated by a random access monitor
with corresponding query domain.

Corollary 3.18.
The monitor construction from definition 3.15 yields in general neither a perfect
initial, nor a perfect k-offset recurrent monitor for any k ∈ Z with |k| < tmax.

Further note, that the algorithm from definition 3.15 is also not able to cope with
uncertain input readings and the presence of assumptions.

103

3. A generalized monitoring theory

3.4.4. Other SRV languages

Besides standard LOLA, two extensions of it, namely LOLA 2.0 and RTLola, and
two further SRV languages, TeSSLa and Striver, were touched upon in section 2.3.
While in this thesis we mainly focus on LOLA, here is a quick overview how these
formalisms can be considered in terms of our monitoring classification.

As discussed in section 2.3.1 LOLA 2.0 and RTLola can principally (with overhead)
be emulated in LOLA. As such, specifications in these languages can also be un-
derstood as or represented by pointwise properties. Yet in the case of RTLola one
might have to prepare “dummy” inputs during monitoring at instants of the time
domain where no actual inputs are available (see [Sch22]).

This is pretty similar to the case of Striver. While it can be considered an asyn-
chronous SRV formalism because the outputs can appear at other non-regular po-
sitions than the inputs, it is restricted to non-zeno output behavior. Therefore, any
Striver specification can still be mimicked by a LOLA specification with the same
strategy as used for RTLola (see [Sch22, GDS20]).

The language TeSSLa, on the other hand differs quite heavily from LOLA. TeSSLa
specifications can describe the values of output streams at arbitrary timestamps from
a dense time domain, independent from the input timestamps; there is no notion
of a global pulse, at which events occur. This concept however does neither fit to
the definition of pointwise properties (definition 3.4) nor to synchronous monitoring
(definition 3.1) on which this chapter is largely based. A TeSSLa specification rather
expresses a continuous property, i.e. a function assigning a value to every instant
of a dense time domain. Such properties would require a different kind of monitor,
which generates an output that yields information about a continuous time range
or can be „asked“ about a specific timestamp. A monitor for this scenario could
be based on the model of a random access recurrent monitor, but would require an
advanced output data structure.

However, it should be noted at this point that TeSSLa without its delay operator
has synchronous character as well and can thus be expressed in LOLA [Sch22]. Yet
in this case, LOLA is even more expressive than TeSSLa, due to the missing ability
of future references in TeSSLa. Thus, despite LOLA, TeSSLa is not able to express
arbitrary pointwise (synchronous) properties, but only future-independent, i.e. very
efficiently monitorable, ones.

In the remainder of this thesis we restrict ourselves to synchronous properties and
LOLA as universal formalism for them. A further elaboration on Striver, TeSSLa
and other asynchronous formalisms will be left for future work.

104

3.5. Summary

3.5. Summary

In this chapter, we have examined different kinds of synchronous properties, initial
and pointwise ones, and classified the corresponding monitoring approaches. We
have defined a notion of soundness and perfectness for these monitors, which can
be considered as continuation or generalization of the concepts anticipation and im-
partiality, as known from the LTL3 monitoring approach. Further we have seen how
synchronous stream runtime verification languages fit with the definition of pointwise
properties and exemplary showed how several other formalisms can be embedded
in these highly expressive languages. Yet the standard monitoring algorithm for
LOLA, as presented in chapter 2 bears two drawbacks in terms of our general view
on monitoring

• It does not provide utmost precise outputs for specifications with future offsets.

• It is not able to handle uncertain inputs and assumptions (besides simple
monitoring of them).

In the following chapter, the main contribution of this thesis will be presented. We
will overcome the limitations mentioned above by introduction of a recurrent moni-
toring algorithm for LOLA, based on abstraction, which is able to handle uncertainty
and assumptions. Further this monitor will be shown to be perfect under particular
circumstances.

105

4
A LOLA monitoring framework

In the previous chapter, we have examined the process for synchronous monitoring
of pointwise properties in general (which also subsumes the special case of initial
monitoring). It was found that the stream runtime verification language LOLA
can be used as a general formalism to specify this kind of properties. However, the
traditional LOLA monitoring algorithm [DSS+05] is not able to deliver a perfect (i.e.
anticipatory and impartial) recurrent monitor for properties which involve future
references and is likewise not capable of handling the presence of uncertain inputs
and assumptions.

In this chapter we will discuss approaches for sound and perfect monitoring of LOLA
specifications under presence of uncertainties and assumptions with consideration of
the future. To this end we will first extend the LOLA semantics from the preliminar-
ies chapter to a so-called monitoring semantics, capable of handling input prefixes
and input uncertainties.

Based on this semantics, we will develop a generic theory to build sound and per-
fect recurrent LOLA monitors. Therefore, we will introduce an abstraction-based
framework utilizing ideas and insights from the field of abstract interpretation. In
addition to the presented recurrent monitoring approach, there will be demonstrated
how several common advanced monitoring tasks can actually be reduced to recurrent
monitoring in LOLA.

In the subsequent chapter there will be a detailed description of a symbolic imple-
mentation, which instantiates the generic framework.

The results of this and the following chapter are mainly based on [HKLS24, KLS22a].

107

4. A LOLA monitoring framework

4.1. Basic notations

For convenience, we will use some common notations throughout the following sec-
tions.

Let φ = ({s1, . . . , sn}, {sn+1, . . . , sn+m}, {s′
o1 , . . . , s

′
ol
}, E) be a LOLA specification

with input stream identifiers s1, . . . , sn, intermediate stream identifiers sn+1, . . . , sn+m
and output stream identifiers so1 , . . . , sol

for o1, . . . , ol ∈ {n+ 1, . . . , n+m}.

With

Din
φ = D1 × · · · × Dn

we denote the product of all input stream types corresponding to s1, . . . , sn, with

Dint
φ = Dn+1 × · · · × Dn+m

the product of all intermediate stream types corresponding to sn+1, . . . , sn+m and
we use
Dout
φ = Do1 × · · · × Dol

,

Dφ = Din
φ ×Dint

φ .

Analogously for tuples of streams we use

Sin
φ = SD1 × · · · × SDn ,

Sint
φ = SDn+1 × · · · × SDn+m ,

Sout
φ = SDo1

× · · · × SDol
and

Sφ = Sin
φ × Sint

φ .

Additionally, we assume for this and the subsequent chapter that all LOLA specifi-
cations are in flattened form.

4.2. LOLA semantics revisited

The solution of a LOLA specification is defined as a tuple of streams, satisfying the
corresponding equation system of the specification (see definition 2.38). In the case
of well-defined LOLA specifications, to which we restrict in this thesis, the solution
of the specification is unique and can thus be considered as stream transformation,
from a tuple of completely known input streams from instant 0 to tmax to a tuple of
completely known output streams.

For illustration consider the LOLA specification φ in figure 4.1.

Stream s sums up all values of input stream i from the current instant to the
stream end. Assume T = {0, 1, 2}, and σ ∈ SR as input stream for identifier i. Let
further Π = (σ, π) ∈ SR × SR be the tuple of all (input and output) streams of the

108

4.2. LOLA semantics revisited

1 input i: N
2
3 s := s[+1|0] + i[now]
4
5 output s

Figure 4.1.: Example LOLA specification

specification. The semantics of s’s defining expression s[+1|0] + i[now] would be
given as

Js[+1|0] + i[now]KΠ,φ(0) = Js[+1|0]KΠ,φ(0) + σ(0) = π(1) + σ(0)
Js[+1|0] + i[now]KΠ,φ(1) = Js[+1|0]KΠ,φ(1) + σ(1) = π(2) + σ(1)
Js[+1|0] + i[now]KΠ,φ(2) = Js[+1|0]KΠ,φ(2) + σ(2) = 0 + σ(2)

Thus the only output stream π for identifier s, which is conformant with the seman-
tics of its defining expression s[+1|0] + i[now] and input streams σ is

π = JφK(σ) = ⟨σ(2) + σ(1) + σ(0), σ(2) + σ(1), σ(2)⟩.

Following [CHL+18], we will consider this kind of recursively defined LOLA seman-
tics as a fixed point equation (referred to as LOLA fixed point semantics).

Therefor let φ = (I = {s1, . . . , sn}, S = {sn+1, . . . , sn+m}, O = {si1 , . . . , sil}, E) be
a LOLA specification. Provided fully known input streams Σ = (σ1, . . . , σn) ∈ Sin

φ ,
a fixed point equation for φ can be given as function

JφKfpΣ : Sφ → Sφ
JφKfpΣ (Π) = (σ1, . . . , σn, JE(sn+1)KΠ,φ, . . . , JE(sn+m)KΠ,φ)

By definition 2.38 the solutions of JφKfpΣ for fixed input streams Σ are exactly the
solutions of the LOLA specification. Consequently, if φ is well-defined, also JφKfpΣ
has a unique fixed point µ(JφKfpΣ) = ν(JφKfpΣ). Thus, for (π1, . . . , πn+m) = µ(JφKfpΣ)
the semantics of the LOLA specification is given as

JφK : SD1 × · · · × SDn → SDi1
× · · · × SDil

JφK(Σ) = (πi1 , . . . , πil).

4.2.1. Monitoring semantics for LOLA

The standard LOLA semantics relates a tuple of fully known input streams with the
corresponding tuple of intermediate streams. Yet in the process of online monitoring
only prefixes of the input streams are available and output streams are iteratively
computed by the monitor. In fact, the definition of perfect recurrent monitors in

109

4. A LOLA monitoring framework

definition 3.8 determines which monitor outputs for received input prefixes are con-
sidered perfect with respect to a semantics (property) for complete traces. However,
the definition does not provide a construction for such a monitor nor reveals infor-
mation about feasibility of perfect monitoring.

Following [Sch24] we define a so-called monitoring semantics, on which we will later
base our monitor construction. The idea behind this kind of semantics is to provide
a mapping from incomplete input streams to incomplete output streams which bear
as much information as possible. The definition will also be given as fixed point
equation, based on the one above. In the remainder of this chapter we will then use
this semantics to build abstractions on it, and make it monitorable this way.

We start with the definition of so-called monitoring (event) streams (i.e. incomplete
streams). Here, we can use the idea from [Sch24] which we similarly introduced for
dealing with uncertainties in section 2.2.4: We define a monitoring event stream as
a set of concrete streams of full length. We will use them to encode all concrete
streams which are compatible with the inputs the monitor has received so far also
with respect to uncertain inputs.

Definition 4.1 (Monitoring event stream; based on [Sch24]).
A set of synchronous event streams S ⊆ SD of type D is called a monitoring
(event) stream of type D.

Imagine for example T = {0, 1, . . . , 4} and an input stream of type N, where the
monitor has received the trace ⟨0, 4, 2⟩ so far. The last two events are not yet
available. The corresponding monitoring stream S would be given as

S = {⟨0, 4, 2, a, b⟩ | a, b ∈ N}.

In the following we will use the notation S(t) for t ∈ T to refer to the set of all
possible values of S at instant t. E.g. S(0) = {0} and S(3) = N for the example
above.

Based on this notion of incomplete streams we want to define a fixed point semantics
that relates input monitoring event streams with output monitoring event streams
that reflect as much information about the output streams as possible. Since output
and intermediate streams of LOLA specifications are usually not independent of
each other, because events of different streams can be related, it is in general not
sufficient for perfect monitoring to consider the output or intermediate streams of
a specification as individual monitoring event streams. Instead we introduce the
notion of a monitoring event stream tuple, which is a set of event stream tuples,
encoding all possible combinations of concrete event streams.

110

4.2. LOLA semantics revisited

Definition 4.2 (Monitoring event stream tuple; based on [HKLS24]).
A set of synchronous event streams tuples T ⊆ SD1 × · · · × SDn of types
D1, . . . ,Dn is called monitoring (event) stream tuple of types D1, . . . ,Dn.

With TD1×···×Dn = 2SD1 ×···×SDn we denote the set of all monitoring event stream
tuples of types D1, . . . ,Dn.

For illustration consider the LOLA specification in figure 4.2.

1 input i: N
2
3 u := i[now] + 1
4 v := i[now] + 2
5
6 output u
7 output v

Figure 4.2.: Example LOLA specification

The monitoring event stream tuple T for the two output streams u, v, given the
input monitoring stream tuple S = {(⟨0, 4, 2, a, b⟩) | a, b ∈ N}, analogous to the one
from above, would be:

T = {(⟨1, 5, 3, c, d⟩, ⟨2, 6, 4, c+ 1, d+ 1⟩) | c, d ∈ N+}

I.e. the set of tuples of two streams which start with 1, 5, 3 and 2, 6, 4 followed by
two arbitrary positive numbers where the value of the second stream exceeds the one
of the first stream by exactly 1. Note that this monitoring stream tuple thus keeps
the relation, that the two streams differ by exactly one. In case we would represent
both streams as separate monitoring event streams this connection would be lost.

Again, we use the notation T (t) for t ∈ T to denote the set of all stream value tuples
at instant t. For the example above, T (0) = {(1, 2)}, T (3) = {(c, c+ 1) | c ∈ N+}.

We now define a derived version of LOLA’s fixed point semantics from above which
is operating on monitoring stream tuples and is thus able to handle incomplete and
uncertain streams. This adjusted fixed point equation takes a monitoring stream
tuple of the input and intermediate streams and also returns such a monitoring
stream tuple. The semantics is again invariant in the particular input readings,
which are also given as monitoring stream tuple.

Definition 4.3 (LOLA monitoring fixed point equation).
Let φ = (I = {s1, . . . , sn}, S = {sn+1, . . . , sn+m}, O,E) be a LOLA specifi-
cation and Σ ∈ TDin

φ
a monitoring event stream tuple corresponding to input

stream identifiers s1, . . . , sn.

111

4. A LOLA monitoring framework

The monitoring fixed point equation of φ is given as

JφKmonΣ : TDφ → TDφ

JφKmonΣ (T) = {JφKfp(π1,...,πn)(π1, . . . , πn+m) | (π1, . . . , πn+m) ∈ T, (π1, . . . , πn) ∈ Σ}

A solution of the monitoring fixed point equation is a monitoring stream tuple over
input and intermediate streams. Specifically a set of stream tuples, where the input
streams are contained in the input monitoring stream tuple and where each stream
tuple results from applying JφKfp(π1,...,πn) to a tuple in the set.

In contrast to the fixed point equation for a single fully known LOLA stream, the
equation above does not have a unique fixed point. Consider e.g. the monitoring
stream tuple

Σ = {(⟨1, 1, 1, 1⟩), (⟨2, 2, 2, 2⟩)}

representing a stream over time domain T = {0, 1, 2, 3} which either has the value 1
or 2 at every instant.

Let φ be the LOLA specification from figure 4.2. Using Σ as input monitoring
stream tuple, the four fixed points of JφKmonΣ would be (for streams i, u, v in this
order):

∅,
{(⟨1, 1, 1, 1⟩, ⟨2, 2, 2, 2⟩, ⟨3, 3, 3, 3⟩)},
{(⟨2, 2, 2, 2⟩, ⟨3, 3, 3, 3⟩, ⟨4, 4, 4, 4⟩)},

{(⟨1, 1, 1, 1⟩, ⟨2, 2, 2, 2⟩, ⟨3, 3, 3, 3⟩), (⟨2, 2, 2, 2⟩, ⟨3, 3, 3, 3⟩, ⟨4, 4, 4, 4⟩)}

Since we want to consider all possible inputs given by Σ, we are interested in the
greatest fixed point of JφKmonΣ according to the subset relation of the monitoring
event stream tuples · ⊆ ·. Note that monitoring event stream tuples together with
this order form a complete lattice where the meet and join operation corresponds to
the intersection (· ∩ ·) and union (· ∪ ·) operation for sets. The minimal element is
consequently the empty set and the maximal one the set of all stream tuples, which
we denote as ⊤mon. It is easy to see that JφKmonΣ is monotonic and thus has a least
and greatest fixed point (see theorem 2.47). While the least fixed point is always ∅,
the greatest one is equal to the set of all inputs concatenated with the intermediate
streams that result from applying the standard LOLA semantics on these streams,
i.e. the solution we are interested in:

Lemma 4.4.
Let φ = (I = {s1, . . . , sn}, S, S,E) be a LOLA specification and Σ ∈ TDin

φ
a

monitoring event stream tuple for input stream identifiers s1, . . . , sn.

112

4.2. LOLA semantics revisited

The greatest fixed point of JφKmonΣ is given as

ν(JφKmonΣ) = {(σ1, . . . , σn) ◦ JφK(σ1, . . . , σn) | (σ1, . . . , σn) ∈ Σ}.

Proof. It is easy to see that {(σ1, . . . , σn)◦JφK(σ1, ..., σn) | (σ1, . . . , σn) ∈ Σ} is a fixed
point of JφKmonΣ , because all input streams (σ1, . . . , σn) are from Σ and Jφ′K(σ1, ..., σn)
is equal to the tuple of intermediate streams from the fixed point of JφKfp(σ1,...,σn) as
argued above.

We further have to show that there is no greater fixed point. Therefore we assume
the opposite, i.e. ν(JφKmonΣ) ̸= {(σ1, . . . , σn) ◦ JφK(σ1, . . . , σn) | (σ1, . . . , σn) ∈ Σ}. In
this case there must be a stream tuple Π ∈ ν(JφKmonΣ) that starts with the input
streams (σ1, . . . , σn) ∈ Σ, yet Π ̸= (σ1, . . . , σn) ◦ JφK(σ1, . . . , σn).

Thus, Π must differ in at least one event of some stream from Υ = (σ1, . . . , σn) ◦
JφK(σ1, . . . , σn). Let D ⊆ S×T denote the set of all stream identifiers and positions
(i.e. events) where Π is different from Υ. Since Π must be a stream tuple that results
from application of JφKfp(σ1,...,σn) (otherwise it could not be contained in ν(JφKmonΣ)),
but is not the (unique) fixed point of it (as this would imply Υ = Π), there must
be another stream tuple Π′ ∈ ν(JφKmonΣ), s.t. Π = JφKfp(σ1,...,σn)(Π

′). Observe that
for each d ∈ D this stream tuple Π′ must differ from Υ in at least one stream and
instant on which the event at d is depending. This is because Π = JφKfp(σ1,...,σn)(Π

′)
and Υ = JφKfp(σ1,...,σn)(Υ) and if Π′ and Υ would not differ for events on which events
in D depend, these events in D and likewise Π and Υ would be equal. Since a
well-defined LOLA specification does not allow that an event is dependent on itself,
the elements in D may not have cyclic references and so Π′ must differ from Υ in at
least one stream and positions which is not already contained in D.

We can add this stream and position to D and apply the same argument inductively:
There must be a further stream tuple Π′′ ∈ ν(JφKmonΣ) s.t. Π′ = JφKfp(σ1,...,σn)(Π

′′)
which differs from Υ in even further streams and positions which we can add to D
etc.; This however directly leads to a contradiction, as the maximum size of elements
in D is limited by the number of streams in the specification and instants in the
instant domain. Thus, {(σ1, . . . , σn) ◦ JφK(σ1, . . . , σn) | (σ1, . . . , σn) ∈ Σ} is the
greatest fixed point of JφKmonΣ .

Using the greatest fixed point of the equation from definition 4.3 we can define the
monitoring semantics of φ. This semantics is a function from the monitoring stream
tuple of the input streams to the monitoring stream tuple of the specification’s
output streams. It originates from the greatest solution of the monitoring fixed
point equation w.r.t. the given inputs.

113

4. A LOLA monitoring framework

Definition 4.5 (LOLA monitoring semantics).
Let φ = (I = {s1, . . . , sn}, S = {sn+1, . . . , sn+m}, O = {s′

o1 , . . . , s
′
ol
}, E) be a

LOLA specification. The monitoring semantics of φ is the function

JφKmon : TDin
φ
→ TDout

φ

JφKmon(Σ) = {(ωo1 , . . . , ωol
) | (ω1, . . . , ωn+m) ∈ ν(JφKmonΣ)}

4.3. Recurrent LOLA monitoring

We will now discuss concepts for building LOLA monitors, based on the specifica-
tion’s monitoring semantics from the previous section. Therefore, we will introduce
a generic abstraction framework of the semantics from definition 4.3. In the subse-
quent section we will then discuss a symbolic approach as possible instantiation of
the framework.

In chapter 3, the concepts of recurrent and random access recurrent monitoring have
been presented. While random access monitoring was shown to be a very powerful
approach, it was already pointed out that it usually faces feasibility issues. This
is because it generally requires that information about event values at any instant
and their combination is stored by the monitor. This however leads to trace-length-
dependence and may make monitoring for realistic trace lengths from hundreds to
sometimes even millions of events intractable.

The situation is different for recurrent monitors which yield outputs only for the
current instant. Therefore in this section we will discuss a recurrent monitoring
approach for LOLA specifications. However, due to the expressiveness of LOLA,
several random access monitoring tasks and other advanced monitoring techniques
can be reduced to recurrent monitoring, which makes the presented approach quite
powerful. Thus, before details of the monitoring algorithm are presented, the fol-
lowing subsection quickly outlines how such reductions can be performed.

4.3.1. Monitoring reductions in LOLA

To carry out advanced monitoring tasks with a recurrent LOLA monitor we add
additional streams to the specification. These access the original output stream(s) by
offsets and thus provide information about the output values at different locations.

Consider a LOLA specification with a single output stream o (the following con-
structions can in general also be applied to an arbitrary number of output streams).
We can add another stream o′ for

114

4.3. Recurrent LOLA monitoring

• k-offset recurrent monitoring, if we define

o′ := o[−k|⊥]

where ⊥ is a default value in the domain of o indicating that there is no k-offset
position of o.

• initial monitoring, if we define

o′ := ite(ff[-1|true], o[now], o′ [-1|⊥])

where ff is an auxiliary stream which is defined to be false at all instants.
Note that the expression ff[-1|true] is always false except at instant 0 and
can thus be used to detect the beginning of the stream. At instant 0, stream o′

takes over the value of o and at other positions the previous value of o′. This
makes all events of o′ equal to o’s first event and a perfect recurrent monitor
will cast the most precise information about o at instant 0 in each step.

• monitoring with reset (c.f. [CTT19]), if we define

o′ := ite(r[now], o[now], o′ [-1|⊥])

where r is an additional boolean input stream indicating a reset of the moni-
tor. Stream o′ always carries the value of stream o when the reset event was
triggered the last time and ⊥ up to the first reset.

• monitoring the distance to the next satisfaction of o (c.f. [KLSS22]), if we add
the definition

o′ := ite(o[now], 0, o′ [+1|∞] + 1).

This obviously requires o to be a boolean stream. Stream o′ counts the number
of steps to the next instant where o is true. A recurrent monitor could provide
possible intervals for o′, revealing whether o is inevitably satisfied or not, or
whether o is known to be false for a certain number of instants. This kind of
monitoring might especially be useful to counter inevitable system failures at
early stages [KLSS22].

LOLA also makes a combination of several of the upper monitoring techniques pos-
sible. E.g. one is able to monitor the values of stream o in a fixed sliding window
around the current position by using several k-offset streams in parallel.

115

4. A LOLA monitoring framework

4.3.2. Prerequisites for monitor construction

Before we come up with a generic LOLA monitoring approach we first discuss some
fundamentals for building such monitors. We start with the translation of input trace
prefixes to monitoring stream tuples as required by the theory from the previous sec-
tion. Subsequently we study the incorporation of uncertainties and assumptions.

Input readings

Note that while the monitoring stream tuples from the previous section are sets of
potential streams of full length, the monitors discussed in chapter 3 receive prefixes
(sequences of value tuples for all input streams) of the full input, i.e. traces from
(D1 × · · · × Dn)≤tmax+1. We thus start with the definition of helper function conv,
translating between the input the monitor receives and the corresponding monitoring
stream tuple. For first we do not consider uncertainty in the inputs but rather
assume that they are fully known up to the received instant. Therefore, conv returns
a monitoring event stream tuple, where the beginning of each stream matches the
received trace prefix and all possible continuations for the not-yet-received part are
contained.

conv : (D1 × · · · × Dn)≤tmax+1 → TD1×···×Dn

conv(w) = {(⟨π1(w(0)) . . . π1(w(|w| − 1)), u|w|
1 . . . utmax

1 ⟩, . . . ,
⟨πn(w(0)) . . . πn(w(|w| − 1)), u|w|

n . . . utmax
n ⟩) | uij ∈ Dj}

where πi((v1, . . . , vn)) = vi denotes the ith component of a tuple.

For example consider T = {0, 1, 2, 3} and monitor input

w = ⟨(1, true), (2, false)⟩ ∈ (N× B)∗

which encodes the values of two streams (one of type N and one of type B) at
positions 0,1. The corresponding monitoring event stream tuple is

conv(w) = {(⟨1, 2, u2
1, u

3
1⟩, ⟨true, false, u2

2, u
3
2⟩) | u2

1, u
3
1 ∈ N, u2

2, u
3
2 ∈ B}.

Uncertainty

We now enrich the interpretation of input traces with the presence of uncertainties.
As suggested in section 3.3.3 we model uncertainty in a way that the monitor receives
an input over a special observation domain Γ which encodes an uncertain trace, i.e. a
set of possible input traces (see definition 2.28). Such an uncertain trace is already
strongly related to a monitoring stream tuple, which is also representing a set of
potential stream tuples. However, the difference to the monitoring stream tuples
we used before to encode inputs is that now not all events are fully known up to

116

4.3. Recurrent LOLA monitoring

a certain point in time and unknown after that. In the case of uncertainty, events
at arbitrary instants may fully or partially be unknown, as well as the relationship
among them.

In the previous subsection we defined the function conv : (D1 × · · · × Dn)∗ →
TD1×···×Dn that converts trace prefixes to corresponding monitoring stream tuples.
Assume an uncertain input domain Γ and an uncertainty encoding ν : Γ∗ →
2(D1×···×Dn)∗ , translating an input prefix over Γ into an uncertain input trace (see
definition 2.30). We extend the function conv to produce monitoring streams from
uncertain input traces in the following way:

uconvν : Γ∗ → TD1×···×Dn

uconvν(w) = ⋃
v∈ν(w)

conv(v)

I.e. we union all monitoring event stream tuples which are corresponding to a
concrete trace prefix represented by w.

As an example consider a specification with a single input stream of type R. The
uncertain domain is Γ = R×R∪ {?} together with encoding ν where (a, b) ∈ R×R
encodes an uncertain value between a ∈ R and b ∈ R (both inclusive) and ? a fully
uncertain input. For T = {0, . . . , 4}, the monitor input i = ⟨(2, 5), ?, (7, 7)⟩ would
be translated to the monitoring stream

uconvν(i) = {(⟨u0, u1, 7, u3, u4⟩) | 2 ≤ u0 ≤ 5, ui ∈ R for i ∈ {1, 3, 4}}

We will use the function uconvν instead of conv in our monitoring theory to support
uncertainty.

Uncertainty supported in recurrent monitoring

The uncertainty support in the recurrent monitoring approach that will be presented
in this chapter must be limited to ensure trace-length-independent monitoring. The
restrictions are outlined below.

First, as discussed in chapter 3, it is an obstacle to recurrent monitoring if an
uncertain input encodes certain inputs of different lengths. This is because in this
case there is no unique, current instant for which outputs can be cast. While the
definition of a recurrent monitor which deals with this kind of uncertain traces is
in principle possible (see definition 3.10) this leads to the case that outputs for
different trace positions get mixed, which is oftentimes not desired. Therefore we do
not handle this case for LOLA in this chapter. In particular, we restrict to uncertain
traces that encode a set of concrete traces of the same length as the uncertain trace.

Additionally for our recurrent monitoring approach we exclude uncertainties which
relate events across instants and restrict to timestamp-immanent uncertainty (also

117

4. A LOLA monitoring framework

referred to as instant-immanent uncertainty). For example we do not allow some-
thing like “The value of s is true at instant 5, if it was also true at instant 2 and
otherwise false”. If we would support such kinds of uncertainties, we would ulti-
mately have to store the full received trace in the monitor. If the relations among
instants are known to be within a certain bound, however, the monitoring algo-
rithm could in principle be adjusted to support these kind of uncertainties. In this
case, the input readings from previous instants would have to be stored until an in-
stant is reached where they cannot have influence on current input values anymore.
However, we will not handle this in the following.

In summary, we formally demand for a LOLA specification φ and a sequence of
uncertain input prefixes w(0), w(1), · · · ∈ Γ∗ the monitor receives with |w(i)| = i + 1
and uncertainty encoding ν

∀i, j ∈ T. j < i→ {v(j) | v ∈ uconvν(w(i))} = {v(j) | v ∈ uconvν(w(i−1))} and

∀i, j ∈ T. j > i→ {v(j) | v ∈ uconvν(w(i))} = 2Din
φ .

I.e. when receiving an uncertain input trace of length i + 1 (w(i)), all represented
streams at instants before i are the same as for the last received input prefix of
length i (w(i−1)). Further the streams are fully unknown for instants after i. With
these restrictions we effectively limit ourselves to timestamp-immanent uncertainty,
where we can only express uncertainty within a specific instant.

Assumptions

For the handling of assumptions in LOLA the concept from [KLS22a, HKLS24] is
followed. The LOLA specification is enriched by an intermediate stream Λ of type
B, which defines the assumption in terms of a LOLA expression. This stream Λ is
assumed to be true at all instants. This means that all input stream tuples which
would cause Λ to be false at some trace position are not possible and must not be
taken into consideration as potential input streams.

For illustration consider again the example from figure 4.2. Imagine the assumption
that the values on the input stream are increasing by at least one per instant. This
could be formulated in terms of the following LOLA assumption to be added to the
specification:

Λ := i[now] ≥ i[-1| -1] + 1

The stream Λ is only true if i surpasses its previous value by at least 1. Thereby
the default value of the offset expression is chosen in a way that at the first position
stream i is at least 0, i.e. any value of the stream’s domain N.

Note that for more complex assumptions it is of course also possible to add several
intermediate streams to the specification which are then referenced by Λ.

118

4.3. Recurrent LOLA monitoring

Recall that LOLA is in principle capable of expressing any synchronous property
(see theorem 3.12), thus for any set of possible input streams there is a LOLA
specification with a stream Λ that is true at all instants if and only if the input
streams are contained in this set. Consequently, every assumption can be encoded
in a LOLA specification using the proposed approach and adding stream Λ together
with utilized helper streams to the original specification.

Yet it is not enough to simply define such a stream Λ in a LOLA specification. During
the monitoring process, it is necessary to take into account that the assumption
stream cannot be false at any instant.

Therefore in definition 4.6 we slightly adjust the monitoring semantics from defini-
tion 4.5 to support assumptions. For a stream tuple s ∈ Sφ we use the notation
s(t,Λ) with t ∈ T to reference the value of stream Λ at instant t in s.

Definition 4.6 (Monitoring semantics under assumptions; based on [HKLS24]).
Let φ = (I = {s1, . . . , sn}, S = {sn+1, . . . , sn+m}, O = {so1 , . . . , sol

}, E) be
a LOLA specification with assumption stream Λ ∈ S and Σ ∈ TDin

φ
an input

monitoring event stream tuple.

The monitoring fixed point equation of φ under assumptions is given as

JφKmon,AΣ : TDφ → TDφ

JφKmon,AΣ (T) = {s = JφKfp(π1,...,πn)(π1, . . . , πn+m) | (π1, . . . , πn+m) ∈ T,
(π1, . . . , πn) ∈ Σ,∀t ∈ T. s(t,Λ) = true}

The monitoring semantics of φ under assumptions is given by the function

JφKmon,A : TDin
φ
→ TDout

φ

JφKmon,A(Σ) = {(ωo1 , . . . , ωol
) | (ω1, . . . , ωn+m) ∈ ν(JφKmon,AΣ)}

Throughout this chapter, we require the existence of the assumption stream Λ in
every LOLA specification. Of course, if there are no assumptions, the stream can
(implicitly) be defined to be constantly true. In this case, however, we refrain from
explicitly denoting this stream in the examples.

A peculiarity about the proposed way of specifying assumptions is the following:
Consider a past-only specification with assumption stream Λ that also uses only
negative offsets. Since Λ is known to be true at all instants (including future ones),
perfect recurrent monitoring requires reasoning about the future if additionally un-
certainty is involved. This is because the assumption in the future could influence
the possible values of the uncertain input in the presence.

As example consider the specification in figure 4.3. There are two input streams i, j
of type R and an assumption without future offsets. The assumption enforces that

119

4. A LOLA monitoring framework

input i : R
input j : R

Λ := (i[now] = i[-1|0] + 1) ∧ ((i[now] ≥ 20) → (j[now] = 10)) ∧
((i[now] > 1) → (j[now] = j[-1|0]))

k := j[now] + 1

output k

Figure 4.3.: Example LOLA specification with past-only assumption that requires
future reasoning if uncertainty is present.

the values of stream i are starting with 1 at instant 0 and are increasing by 1 per
instant. Because of the second part of the assumption, this leads to the situation
that if tmax ≥ 19, every event of j from instant 19 on has the value 10. By the last
part of the assumption however all events of j (except the first one) must be equal
to their predecessor and thus all values of j are 10 if tmax ≥ 19. In this case a perfect
recurrent monitor for this specification that receives the input ? for j at instant 0
would have to return the value 11 for output stream k, which is defined as j + 1.
This however requires reasoning about the future.

4.4. An abstraction-based recurrent LOLA monitoring
framework

Based on the considerations about monitor inputs, uncertainties and assumptions
in the previous section we now discuss a generic, abstraction-based recurrent LOLA
monitoring framework. This will serve as the theoretical foundation for the symbolic
approach presented afterwards.

4.4.1. Concrete recurrent LOLA monitoring

What we want to construct are sound or perfect recurrent LOLA monitors under un-
certainties and assumptions for the induced pointwise property Pφ (definition 3.11)
of a LOLA specification φ. A perfect monitor is one that iteratively yields all pos-
sible stream value combinations for the current instant that result from the LOLA
monitoring semantics under assumptions (definition 4.6) for the input trace received
so far. Further, the monitor is sound, if it delivers an over-approximation of the
possible stream values at the current instant. This connection between a recurrent
monitor as defined in definition 3.10 and the LOLA monitoring semantics is proved
in the following lemma.

120

4.4. An abstraction-based recurrent LOLA monitoring framework

Lemma 4.7.
Let φ be a LOLA specification with assumption and ν an uncertainty encoding
for uncertain input domain Γ.

Monitor Mφ is a sound recurrent monitor under uncertainty and assumption
for Pφ with output interpretation γV : V→ 2Dout

φ if and only if

∀w ∈ Γ≤tmax+1. γV(Mφ(w)) ⊇ JφKmon,A(uconvν(w))(|w| − 1)

and Mφ is a perfect recurrent monitor under uncertainty and assumption for
Pφ if and only if

∀w ∈ Γ≤tmax+1. γV(Mφ(w)) = JφKmon,A(uconvν(w))(|w| − 1)

Proof. We prove the soundness condition. For perfectness the ⊇ in the proof can be
replaced by equality. Let A ⊆ (Din

φ)∗ be the assumption encoded by Λ.

By definitions 3.10 and 3.11 and our requirement that uncertain inputs only encode
certain traces of the same length we have

∀w ∈ Γ∗.
γV(Mφ(w)) ⊇ {Pφ(w′v, |w′|−1) | w′ ∈ ν(w), w′v ∈ A,Pφ(w′v, |w′|−1) def.} ⇔

∀w ∈ Γ≤tmax+1.
γV(Mφ(w)) ⊇ {Pφ(w′v, |w| − 1) | w′ ∈ ν(w), w′v ∈ A, v ∈ (Din

φ
tmax−|w|+1)} =

{com(JφK(dec(w′v)))(|w| − 1) | w′ ∈ ν(w), w′v ∈ A, v ∈ (Din
φ)tmax−|w|+1}.

From the fact that JφKmon,A filters out all streams from JφKmon which contain at least
one Λ event which is false and lemma 4.4 which proofs that JφKmon and JφK(dec(w′v))
deliver the same set of intermediate stream tuples we can further conclude that

{com(JφK(dec(w′v)))(|w| − 1) | w′ ∈ ν(w), w′v ∈ A, v ∈ (Din
φ)tmax−|w|+1} =

JφKmon,A(uconvν(w))(|w| − 1).

The lemma motivates that we can build a recurrent LOLA monitor based on the
LOLA monitoring semantics.

As discussed, a recurrent monitor only provides information about the output stream
events at the current instant. Thus, for past-only specifications without uncertainty
and assumptions, the monitor can compute outputs based only on the stream values
from the previous instant and the current input readings (since the specification is
flattened). Subsequently it may discard the stream values from the last step, which
leads to a trace-length-independent, recurrent monitoring algorithm. Note that, his

121

4. A LOLA monitoring framework

is exactly what the traditional LOLA monitoring algorithm, but also similar past-
only monitoring approaches, like the past LTL construction from Havelund and Roşu
(see section 2.2.2) do.

However, if the specification involves future references, the monitor also has to reason
about future events. Yet future events may themselves depend on events further in
the future and so on, which at first glance requires ”unrolling” of the specification
all the way to the end of the trace. Reconsider for example the specification in
figure 4.1. There stream s at instant 0 is dependent on stream s at instant 1, which
is in turn dependent on stream s at instant 2 and so on. Unfortunately, full unrolling
of the specification leads to performance problems for longer trace lengths.

The same holds, if the specification is past-only, but assumptions and uncertain
input readings are present. In this case, the future also has to be considered, as
the assumption in future states may have implications on the possible values of an
uncertain event in the presence as outlined in section 4.3.2.

In the following we tackle the problem of evaluating LOLA specifications with fu-
ture by introducing an abstraction of the monitoring semantics under assumption
JφKmon,A. The basic idea is to store the possible stream values at a certain instant
(almost) independently from the values at other instants. We will then show how
this abstract structure can be computed efficiently without unrolling the full trace
(sometimes for the sake of over-approximation), and how to build a trace-length-
independent recurrent monitor based on it. After the introduction of this generic
abstraction-based theory, a symbolic implementation of the approach will be dis-
cussed in chapter 5.

For a LOLA specification φ the possible value combinations of all input and inter-
mediate streams at a specific instant (which we call (stream) configurations) can be
represented in the domain 2Dφ .

Definition 4.8 (Stream configuration; based on [HKLS24]).
Let φ = (I, S,O,E) be a LOLA specification.

A (stream) configuration of φ is an element c ∈ Dφ. With c(s) for s ∈ I ∪S we
denote the entry of stream s in stream configuration c ∈ Dφ.

Elements s ∈ 2Dφ are called (stream) configuration sets or (stream) configura-
tions of φ.

Consider for example a specification with a real-valued input stream and one output
stream, where the output stream – also of type R – is defined as the input stream
multiplied by three. If at some instant the input 3 is received the corresponding
stream configurations would be given as {(3, 9)}. If the input value at this instant
is unknown, the stream configurations would be {(v, 3 · v) | v ∈ R}.

122

4.4. An abstraction-based recurrent LOLA monitoring framework

In the semantics that we will define as the basis of our recurrent monitoring approach,
we will compute an extended version of the stream configurations at each instant.
We will determine the stream configurations parametric in the configuration of the
previous instant. We call such parametric configurations configuration transformers
as they can be used to transform one set of stream configurations to the set of
stream configurations at the subsequent instant. A formal definition of them is
given in definition 4.9.

Definition 4.9 (Configuration transformer; based on [HKLS24]).
Let φ be a LOLA specification.

A function τ ∈ Tφ := (Dφ → 2Dφ) is called (configuration) transformer for φ.

A configuration transformer is a function assigning all possible stream configurations
of the subsequent instant to the stream configuration of the current instant. The
usage of configuration transformers instead of plain configuration sets will pay off
later, as they allow for a highly efficient computation and storage of the recurrent
monitoring semantics.

For illustration of configuration transformers consider the example LOLA specifica-
tion in figure 4.4.

1 input i: B
2
3 u := u[+1 | 0] + ite(i[now], 1, 0)
4 v := u[−1 | 0]

Figure 4.4.: Example LOLA specification

In this specification stream u (of type N) sums up the number of instants where
i is true until the end of the trace and v (also of type N) takes the last value of
u. Consider T = {0, 1, . . . , 99}. The configuration transformer for t = 20 without
information about the inputs at this instant available would for example be given
by the function

τ((i19, u19, v19)) = {(true, u20, u19) | 1 ≤ u20 ≤ 80} ∪
{(false, u20, u19) | 0 ≤ u20 ≤ 79}

where the tuples indicate the values of i, u and v in this order. The value of u20

cannot be greater than 80, since this is the maximum number of trace instants
beyond and including 20 where 1 can be added to u. However if i20 is true u20 must
at least be 1, otherwise it can at most be 79. The value of v is in both cases equal
to u one instant before.

Configuration transformers build a complete lattice structure (Tφ,≼) where τ1 ≼ τ2
holds for τ1, τ2 ∈ Tφ if and only if ∀v ∈ Dφ. τ1(v) ⊆ τ2(v), i.e. ≼ is the pointwise ⊆

123

4. A LOLA monitoring framework

relation. Meet and join operation are also given as the pointwise application of ∩
and ∪ on all corresponding function values.

In the following we will define a LOLA semantics over a (Tφ)|T| structure, where each
tuple entry contains the configuration transformer for the corresponding instant.Note
that this structure (Tφ)|T| is also a complete lattice (see lemma 2.53) together with
the order

(τ0, . . . , τtmax) ⪯ (τ ′
0, . . . , τ

′
tmax) iff ∀t ∈ T. τt ≼ τ ′

t .

For definition of a transformer-based LOLA semantics we first require a definition
how configuration transformers for a specific trace instant can be determined. There-
fore we start with an adapted LOLA expression semantics. It provides us the value
of a LOLA expression, given the configuration for the current, previous and subse-
quent instant (recall that c(s) for s ∈ I ∪ S denotes the entry of stream s in stream
configuration c ∈ Dφ).

Definition 4.10 (Adapted LOLA expression semantics; based on [HKLS24]).
Let φ = (I, S,O,E) be a LOLA specification. Let b, a, c ∈ Dφ be configurations
over all streams before, after and at the current instant.

The value of a LOLA expression e ∈ ExpI∪S
D in the middle of the trace, denoted

[e]φb,c,a ∈ D, is given as

– [d]φb,c,a = d

– [s[now]]φb,c,a = c(s)
– [s[−1, d]]φb,c,a = b(s)
– [s[1, d]]φb,c,a = a(s)
– [f(e1, . . . , ek)]φb,c,a = f([e1]φb,c,a, . . . , [ek]

φ
b,c,a)

– [ite(e1, e2, e3)]φb,c,a =
{

[e2]φb,c,a if [e1]φb,c,a = true
[e3]φb,c,a else

for constant d ∈ D, stream identifier s ∈ I ∪ S and LOLA sub-expressions
e1, . . . , ek ∈ ExpI∪S .

The value of e ∈ ExpI∪S
D at the beginning of the trace, [e]φ,▷c,a ∈ D, is given as

– [s[−1, d]]φ,▷c,a = d
– analogous to [e]φb,c,a for other expressions

for stream identifier s ∈ I ∪ S and constant d ∈ D.

The value of e ∈ ExpI∪S
D at the end of the trace, [e]φ,◁b,c ∈ D, is given as

– [s[1, d]]φ,◁b,c = d

– analogous to [e]φb,c,a for other expressions

for stream identifier s ∈ I ∪ S and constant d ∈ D.

124

4.4. An abstraction-based recurrent LOLA monitoring framework

For specification φ = (I, S,O,E) with intermediate streams s′
1, . . . , s

′
m we use the

following shorthand syntax to apply the introduced semantics on the defining ex-
pressions of all intermediate streams:

[E]φ,◁b,c = ([E(s′
1)]φ,◁b,c , . . . , [E(s′

m)]φ,◁b,c)
[E]φb,c,a = ([E(s′

1)]φb,c,a, . . . , [E(s′
m)]φb,c,a)

[E]φ,▷c,a = ([E(s′
1)]φ,▷c,a , . . . , [E(s′

m)]φ,▷c,a)

Further we drop the φ in the superscript if it is clear from the context.

Based on definition 4.10 we can now define the configuration transformers for each
specific instant. Therefore we have to distinguish between the transformer at the
trace end, which is constant and the transformers in the middle of the trace and at
the beginning which are dependent on the transformer of the subsequent instant to
resolve future offsets. To handle assumptions in the definition of the transformers,
we also include only those configurations in the set of possible configurations where
the entry of the assumption stream Λ is true.

Definition 4.11 (Transformer computation; based on [HKLS24]).
Let φ = (I, S,O,E) be a LOLA specification with assumption stream Λ ∈ S
and an input monitoring stream tuple Σ ∈ TDin

φ
.

The transformer of φ and Σ for instant tmax, τφ,tmax
Σ ∈ Tφ, is given as

τφ,tmax
Σ : Dφ → 2Dφ

τφ,tmax
Σ (b) = {c | c = i ◦ [E]◁b,c, i ∈ Σ(tmax), c(Λ) = true}.

The transformer for instant t ∈ T, t < tmax, τφ,tΣ (τ ′) ∈ Tφ in dependence of the
subsequent transformer τ ′ ∈ Tφ = (Dφ → 2Dφ) is given as

τφ,tΣ : (Dφ → 2Dφ)→ (Dφ → 2Dφ)

τφ,t
′

Σ (τ ′)(b) = {c | c = i ◦ [E]b,c,a, i ∈ Σ(t′), a ∈ τ ′(c), c(Λ) = true}

for t′ > 0 and

τφ,0Σ (τ ′)(b) = {c | c = i ◦ [E]▷c,a, i ∈ Σ(0), a ∈ τ ′(c), c(Λ) = true}.

Thus, the transformers simply result from application of the adapted LOLA expres-
sion semantics on the defining expressions of all streams. For predecessor config-
uration b they yield the set of all configurations c, which are a concatenation of
inputs at this instant and the corresponding expression semantics for c itself, b and
the configurations of the subsequent instant a. This definition is recursive in the

125

4. A LOLA monitoring framework

sense that the computation of a via the subsequent transformer and the expression
semantics relies on c. Hence, c is dependent on itself. In the set of solutions we
include all vectors c which satisfy the given equality, thus define the maximal set of
such vectors. However, since a well-defined LOLA specification cannot define events
that depend on themselves, also no entry in c can depend on itself. Consequently,
c and a can be computed deterministically, stream by stream alternately. Finally,
configurations where the assumption is broken are not considered valid and excluded
from the set of possible configurations.

Reconsider again the example specification φ from figure 4.4 for T = {0, 1, 2, 3} and
the input trace ⟨true, true⟩ received so far, corresponding to the monitoring stream
tuple

Σ = {(⟨true, true, b2, b3⟩) | b2, b3 ∈ B}
For this specification the configuration transformer for tmax = 3 is given as

τ3((i2, u2, v2)) = τφ,3Σ ((i2, u2, v2)) = {(true, 1, u2), (false, 0, u2)}

where the tuples contain the values of streams i, u and v in that order. It expresses
the situation that at instant 3, stream u is 1 if stream i is true and 0 otherwise.

The transformer for instant t = 2 can by definition 4.11 be determined as

τ2((i1, u1, v1)) = τφ,2Σ (τ3)((i1, u1, v1)) = {c | c = (true, a(u) + 1, u1), a ∈ τ3(c)} ∪
{c | c = (false, a(u), u1), a ∈ τ3(c)}.

For any a in τ3(c), the second component (a(u)) representing stream u is 0 or 1
independent of the concrete c. Thus we have

τ2((i1, u1, v1)) = {(false, 0, u1), (false, 1, u1), (true, 1, u1), (true, 2, u1)}.

This reflects exactly the possible stream configurations at instant 2, parametric in
the configuration of the predecessor instant. The transformer for instant t = 1 would
likewise be given as

τ1((i0, u0, v0)) = τφ,1Σ (τ2)((i0, u0, v0)) = {c | c = (true, a(u) + 1, u0), a ∈ τ2(c)}.

Again for all a ∈ τ2(c), the second component is 0, 1 or 2, independent of c, and
thus:

τ1((i0, u0, v0)) = τφ,1Σ (τ2)((i0, u0, v0)) = {(true, 1, u0), (true, 2, u0), (true, 3, u0)}

As before, these are exactly the potential stream values at instant 1 in dependence
of those at instant 0. The transformer τ0 can be determined analogously.

Based on definition 4.11 we can now define a LOLA semantics which yields an ele-
ment from (Tφ)|T|, referred to as transformer structure, containing the configuration
transformer for each instant. The definition is again given by means of a fixed point
equation. The transformer at each instant depends solely on the transformer of the
subsequent instant in the transformer structure.

126

4.4. An abstraction-based recurrent LOLA monitoring framework

Definition 4.12 (Transformer semantics; based on [HKLS24]).
Let φ be a LOLA specification and Σ ∈ TDin

φ
a corresponding input monitoring

stream tuple.

The transformer fixed point equation of φ is defined as:

JφKtra
Σ : (Tφ)|T| → (Tφ)|T|

JφKtra
Σ (T) = (τφ,0Σ (T (1)), τφ,1Σ (T (2)), . . . , τφ,tmax

Σ)

The transformer semantics of φ is given as µ(JφKtra
Σ).

It is easy to see that the fixed point of this fixed point equation is unique (i.e.
µ(JφKtra

Σ) = ν(JφKtra
Σ)) as it can deterministically be computed from back to front.

Note that this is only possible due to the usage of transformers instead of configu-
rations in the structure, as they are decoupled from the predecessor values, one of
the causes why this structure was chosen.

Indeed the entries of the LOLA transformer semantics are compliant with the LOLA
monitoring semantics JφKmon,A(Σ) from definition 4.6. The transformers in there
match exactly with the configurations of two subsequent instants that appear in a
concrete stream from the monitoring semantics.

We can thus consider the transformer semantics as an abstraction of the monitoring
semantics in the transformer structure (Tφ)|T|. In the transformer structure domain,
the information about the relationships between the stream events is abstracted
away, and only the relations among events of the same instant and to the instant
before are preserved. Thus, the transformer semantics looses information among the
interconnection of events at non-consecutive locations, but it is still the perfect result
in the transformer structure domain (with the auxiliary condition that we consider
only those mappings of the transformers which can actually be triggered with the
values from the previous transformer). This relation is visualized in figure 4.5. There

Transformer
semantics
over (Tφ)|T|:

Monitoring
semantics
over TD1...Dn :

⊤TD1...Dn ν(JφKmon,A
Σ)

⊥(Tφ)|T| µ(JφKtra
Σ) = ν(JφKtra

Σ)

γ
(
µ(JφKtra

Σ))
)

⊆
JφKmon,AΣ

JφKtraΣ

γ
α

Figure 4.5.: Monitoring semantics abstraction by transformer semantics. The re-
sult of the fixed point iteration for the transformer semantics over-
approximates the result of the upper fixed point iteration for the moni-
toring semantics. Yet the abstraction of the monitoring semantics cor-
responds to the transformer semantics.

127

4. A LOLA monitoring framework

α : TDφ → (Tφ)|T|, γ : (Tφ)|T| → TDφ denote the translation functions between both
domains, where α translates a monitoring stream tuple to the transformer structure
that represents all transitions that appear in one of the streams. Further γ translates
a transformer structure into the set of all streams which are compatible with the
transformers. In fact the transformer structure is (though it looses information w.r.t.
the monitoring semantics) sufficient for recurrent monitoring, where we only care
about the events at the current instant. This is proved in theorem 4.13.

Theorem 4.13.
Let φ = (I, S,O,E) be a LOLA specification with assumption stream Λ ∈ S
and Σ ∈ TDin

φ
an input monitoring stream tuple with instant-immanent uncer-

tainty.

For all t ∈ T with t > 0 and stream configurations v ∈ ν(JφKmon,A
Σ)(t − 1) it

holds that

µ(JφKtra
Σ)(t)(v) = {s(t) | s ∈ ν(JφKmon,A

Σ), s(t− 1) = v}

and for any v ∈ Dφ

µ(JφKtra
Σ)(0)(v) = ν(JφKmon,A

Σ)(0).

Proof. We directly prove by induction over both structures from tmax to 1.

We start with t = tmax and first show that µ(JφKtra
Σ)(tmax)(b) = ν(JφKtra

Σ)(tmax)(b) ⊆
{s(tmax) | s ∈ ν(JφKmon,A

Σ), s(tmax − 1) = b} for Σ ∈ TDin
φ

and an arbitrary b ∈
ν(JφKmon,A

Σ)(tmax − 1).

Therefore assume c ∈ µ(JφKtra
Σ)(tmax)(b). By definition 4.11, we have c = i ◦ [E]◁b,c

with i ∈ Σ(tmax). Further the Λ entry in c is true. Note that there must be a
stream s ∈ ν(JφKmon,A

Σ) s.t. s(tmax − 1) = b. Since we demand instant-immanent
uncertainty for Σ we can find a stream where in addition to this condition s(tmax)
contains the values from i for the input streams. Due to the equality that c satisfies,
we thus have an s ∈ ν(JφKmon,A

Σ) with s(tmax − 1) = b and s(tmax) = c (because in
ν(JφKmon,A

Σ) all equations of φ are satisfied as by definition of [E]◁b,c). Consequently
c ∈ {s(tmax) | s ∈ ν(JφKmon,A

Σ), s(tmax − 1) = b}.

Now we show the opposite direction. Assume c ∈ {s(tmax) | s ∈ ν(JφKmon,A
Σ),

s(tmax − 1) = b}. Thus, there is a stream s ∈ ν(JφKmon,A
Σ), s.t. s(tmax) = c and

s(tmax − 1) = b. Further there is an i ∈ Σ(tmax) s.t. s(tmax) = c contains the entries
from i as inputs. Since s is from ν(JφKmon,A

Σ) all equalities of φ are satisfied for s.
From the definition of [E]◁b,c it follows that c = i ◦ [E]◁b,c also holds. Further the Λ
entry in s(tmax) must be true. Consequently c ∈ µ(JφKtra

Σ)(tmax)(b).

128

4.4. An abstraction-based recurrent LOLA monitoring framework

Provided the proposition holds for t ∈ T with t > 1, we can use the same idea to
show the equality for t− 1. In difference to above, however, the adapted expression
semantics for the middle of the trace, [E]b,c,a, which also depends on a successor
configuration a has to be used.

For the fist direction we again have to prove that there is an s ∈ ν(JφKmon,A
Σ)

s.t. s(t − 1) = b and s(t) = c = i ◦ [E]b,c,a with its Λ entry true for some b ∈
ν(JφKmon,A

Σ)(t − 1), a ∈ µ(JφKtra
Σ)(t + 1)(c) and i ∈ Σ(t). We will show, that there

is a stream s with b = s(t − 1), c = s(t) and a = s(t + 1) which is compatible
with an input stream from Σ and φ. Since ν(JφKmon,A

Σ) is the greatest fixed point
of the monitoring fixed point equation we can then also conclude s ∈ ν(JφKmon,A

Σ).
Consider all intermediate stream events in c and a. Since our LOLA specification is
well-formed, every of these events has a finite chain of other input and intermediate
stream events it depends on. There may not be a cyclic dependency. Thus for every
event in c and a we can set up a term over input events from instants t−1 to tmax and
intermediate events from instant t − 1 which determines the value of these events.
Such a term can be retrieved by unrolling of the specification up to t− 1 in the one
direction and tmax in the other. Based on these terms we can then form equations
for each event in a and c. We can follow from definitions 4.11 and 4.12 that there
must be an input vector from Σ(t′) for each t′ ∈ T with t′ > t− 1 s.t. the elements
in b, c, a satisfy these equations, otherwise they could not have been included in the
corresponding transformers, as the elements there preserve the equations from the
LOLA specification. Those input vectors from t− 1, t, t+ 1 can further be chosen to
fit the inputs in b, c and a. Due to the instant-immanent uncertainty we demanded
for Σ and the fact that b ∈ ν(JφKmon,A

Σ)(t − 1) (i.e. all event values in b are by
definition compatible with the specification and some prefix of the input streams),
we can further conclude that there is also a single σ ∈ Σ which contains an input
prefix that leads to b and all the subsequent input vectors. This completes the proof
of the first direction.

For the second direction we can use exactly the same argumentation as for t = tmax
above and simply choose the successor state for [E]b,c,a as a = s(t + 1). The fact
that a ∈ µ(JφKtra

Σ)(t+ 1)(c) follows directly from the induction hypothesis Thus we
have proved the theorem for all t ∈ T with t > 1.

The proof for t = 0 is analogous, but for [E]▷c,a instead of [E]b,c,a, where the trans-
former parameter b is not used.

The theorem together with lemma 4.7 justifies the use of the LOLA transformer
semantics for a recurrent monitoring algorithm. In the following, the basic idea
behind such a monitor for a LOLA specification φ is sketched.

Consider a sequence of (potentially uncertain) monitor inputs w(0), w(1), . . . , w(tmax)

∈ Γ∗ over uncertain input domain Γ and corresponding uncertainty encoding ν. Let

129

4. A LOLA monitoring framework

Σ0 = uconvν(w(0)), Σ1 = uconvν(w(1)), . . . Σtmax = uconvν(w(tmax)) ∈ TDin
φ

be the
correlating monitoring stream tuples.

As mentioned before (see section 4.3.2), we require that the streams represented by
Σi are fully unknown for instants greater than i, and all stream prefixes up to position
i excludingly were already represented by Σi−1. We have this restriction to guarantee
an efficient computation of subsequent transformer semantics. If the monitoring
streams could alter at arbitrary positions, this would make a full recomputation of
the whole semantics necessary for every new received input.

The monitoring strategy is as follows:

1. First, the monitor computes the initial transformer semantics µ(JφKtra
⊤mon) for

the empty input trace (encoded by monitoring stream tuple ⊤mon), i.e. where
no input readings are known. This can be done before the actual monitoring
starts.

2. Then it reads the input for the current instant t and recomputes transformer
µ(JφKtra

Σt)(t). Note that this transformer only depends on µ(JφKtra
Σt)(t+1). Since

Σt may not contain information about instant variables after t and µ(JφKtra
Σt)(t+

1) is due to the chosen transformer structure only dependent on the inputs
at instant t + 1 and greater, we have µ(JφKtra

Σt)(t + 1) = µ(JφKtra
⊤mon)(t + 1).

Thus, it can be taken from the initial transformer semantics and only a single
transformer has to be recomputed.

3. Finally the monitor determines the current monitor state st = µ(JφKtra
Σt)(t)(st−1)

and repeat from 2 for the subsequent instant unless t = tmax.

The monitor state st, which is a set of stream configurations, can finally be used
as monitor output as it reveals possible stream configurations at the current in-
stant. The initial state s−1 can be set to any non-empty configuration set, as the
transformer for instant 0 is invariant in the concrete predecessor value.

4.4.2. Abstract recurrent LOLA monitoring

As the Tφ elements are usually hard to represent in memory and to compute on,
it seems natural to use further abstractions to compute the transformer semantics.
The idea is to introduce abstract domains for transformers and configurations and an
abstraction of the transformer semantics in these domains. Therefore we introduce
the notion of a perfect transformer abstraction, which allows for a lossless translation
back to the concrete transformer, and a sound transformer abstraction, which causes
an over-approximation of the transformer semantics. The abstracted semantics can
then be used in the monitoring algorithm to substitute the computation in the
concrete transformer domain. A visualization of the relation between abstract and
concrete transformer semantics can be found in figure 4.6.

130

4.4. An abstraction-based recurrent LOLA monitoring framework

Abstracted
transformer
semantics
over Ã|T|:

Transformer
semantics
over (Tφ)|T|:

Monitoring
semantics
over TD1...Dn :

⊤TD1...Dn ν(JφKmon,A
Σ)

⊥(Tφ)|T| µ(JφKtra
Σ)

⊥Â µ(JφKtra,♯
Σ)

γ
(
µ(JφKtra

Σ))
)

⊆

γ♯
(
µ(JφKtra,♯

Σ)
)

⪯

JφKmon,AΣ

JφKtraΣ

JφKtra,♯Σ

γ
α

γ♯

α♯ γ♯

Figure 4.6.: Perfect abstract transformer semantics iteration JφKtra,♯Σ in case of a
sound (blue) and perfect (red) transformer abstraction. While the
transformer semantics always over-approximates the monitoring seman-
tic (but preserves the relation between current and previous events),
the abstracted transformer semantics may further over-approximate the
transformer semantics, but may also yield a perfect representation of it.
The latter requires the transformer abstraction to be perfect and the
abstracted semantics to be a perfect abstraction.

The definition of a sound and perfect transformer abstraction is given in defini-
tion 4.14. To be able to apply the result about abstract interpretation from sec-
tion 2.4.2 we demand the abstract structure to be a complete lattice and the trans-
lations functions to form a Galois connection.

Definition 4.14 (Configuration transformer abstraction; based on [HKLS24]).
Let φ be a LOLA specification.

A (configuration) transformer abstraction for φ is a complete lattice (Ã,⊑Ã)
together with a Galois connection

Tφ −−−−→←−−−−
αÃ

γÃ

Ã.

It is called perfect (configuration) transformer abstraction for φ, if and only if

∀τ ∈ Tφ. τ = γÃ(αÃ(τ)).

An analogous notion to abstract transformers is also introduced for configuration
sets in definition 4.15.

131

4. A LOLA monitoring framework

Definition 4.15 (Configuration set abstraction; based on [HKLS24]).
Let φ be a LOLA specification.

A configuration set abstraction for φ is a complete lattice (A,⊑A) together with
a Galois connection

2Dφ −−−−→←−−−−
αA

γA

A.

It is called perfect configuration set abstraction for φ, if and only if

∀c ∈ 2Dφ . c = γA(αA(c)).

As example consider again the configuration transformer

τ2((i1, u1, v1)) = {(false, 0, u1), (false, 1, u1), (true, 1, u1), (true, 2, u1)}

for the specification from figure 4.4.

In the symbolic abstract domain, which we will discuss in detail in the subsequent
chapter, we can encode this transformer as set of symbolic constraints:

{v2 = u1,¬i2 → (0 ≤ u2 ≤ 1), i2 → (1 ≤ u2 ≤ 2)}.

This domain is indeed a perfect abstraction and preserves all relations between the
events of instants 2 and 1.

Another thinkable – but imperfect – abstraction would be to encode the transformer
as tuple with one semi-symbolic field per stream. Such semi-symbolic entries are
either sets or intervals of possible values or instant variables from a previous stream,
e.g.

({true, false}, [0, 2], u1).

This abstraction still preserves the relation between v and u at the previous instant,
as well as the ranges of the single event values, but looses the interconnection among
them.

Finally, it is also a valid but imperfect abstraction to store only an interval or set of
possible values per stream:

({true, false}, [0, 2], [−∞,∞])

This way all relations between the stream events and the events at the previous
instant are lost.

We will not make use of the latter two abstract domains in this thesis, they were
only intended to demonstrate the variety of such abstract transformer domains. The
symbolic domain however will be discussed in detail and an implementation of it will
be evaluated in the subsequent chapters.

132

4.4. An abstraction-based recurrent LOLA monitoring framework

In the abstract setting we will use the domain Â = Ã|T| to represent the abstracted
transformers for the whole trace. Like (Tφ)|T|, Â also forms a complete lattice
with order ⊑Â which results from a pointwise application of ⊑Ã on the elements.
Furthermore a Galois connection (Tφ)|T| −−−→←−−−

γ♯

α♯

Â between both domains, which

also consists in pointwise application of the functions αÃ, γÃ, can be defined (see
lemma 2.53).

From principles of abstract interpretation (see theorem 2.55) we can derive that if
we have a sound, i.e. over-approximating, abstract semantics JφKtra,♯

Σ , which operates
on Â, we can compute an over-approximation of the concrete transformer semantics
in this domain, that is α♯(µ(JφKtra

Σ)). The analogous result holds for the perfect case.
This finding is formulated in corollary 4.16.

Corollary 4.16.
Let φ be a LOLA specification, Σ ∈ TDin

φ
an input monitoring stream tuple and

JφKtra,♯
Σ an abstraction (definition 2.54) of JφKtra

Σ .

It holds that

– α♯(µ(JφKtra
Σ)) ⊑Â µ(JφKtra,♯

Σ) and

– α♯(µ(JφKtra
Σ)) = µ(JφKtra,♯

Σ)

if for all c ∈ (Tφ)|T|: α♯(JφKtra
Σ (c)) = JφKtra,♯

Σ (α♯(c))

The question remains how to construct such a sound or perfect abstract transformer
semantics. In definition 4.11 we defined the computation of the individual concrete
transformers on basis of a LOLA specification and later built up the transformer
semantics from them (see definition 4.12). For the abstract semantics it seems ad-
vantageous to stick to this kind of construction and build the abstract transformer
semantics on abstractions of the single transformer elements. Lemma 4.17 prepares
the necessary theoretical foundation for this. It states that if all utilized abstract
transformers (τ t,♯Σ) are sound approximations or perfect representations of the con-
crete ones (τφ,tΣ), then the resulting abstract transformer semantics is also a sound
or perfect abstraction.

Note that, as in the concrete case before, the abstract transformers τ t,♯Σ which are
not at the trace end depend on their successor transformers. Without concrete
instantiation with their successor, we call these “transformer templates” of type
Ã → Ã or Tφ → Tφ (abstract) dependent transformers. We use the notations
τ ≾ τ ♯ or τ ⋍ τ ♯ to denote that an abstract dependent transformer τ ♯ : Ã→ Ã is a
sound or perfect abstraction of a concrete one τ : Tφ → Tφ. Therefore we require
τ ♯ to be a (perfect) abstraction (c.f. definition 2.54 and theorem 2.55), instantiated
for any successor transformer:

133

4. A LOLA monitoring framework

τ ≾ τ ♯ iff ∀a ∈ Ã. τ(γÃ(a)) ≼ γÃ(τ ♯(a)) and
τ ⋍ τ ♯ iff ∀c ∈ Tφ. αÃ(τ(c)) = τ ♯(αÃ(c)).

Note that by the Galois condition (definition 2.52) the first relation can also be
defined as ∀a ∈ Ã. αÃ(τ(γÃ(a))) ⊑Ã τ ♯(a) and thus τ ♯ ⋍ τ implies τ ♯ ≾ τ for
monotonic τ ♯. Based on this notation we can now phrase lemma 4.17.

Lemma 4.17.
Let φ be a LOLA specification and Σ ∈ TDin

φ
an input monitoring stream tuple.

Let JφKtra,♯
Σ : Â→ Â be an abstract transformer semantics s.t.

JφKtra,♯
Σ (a) = (τ0,♯

Σ (a(1)), τ1,♯
Σ (a(2)), . . . , τ tmax,♯

Σ)

with τ tmax,♯
Σ ∈ Ã, τ t,♯Σ ∈ Ã → Ã for t ∈ T\{tmax} where all dependent trans-

formers τ t,♯Σ ∈ Ã→ Ã are monotonic.

It holds that

– α♯(µ(JφKtra
Σ)) ⊑Â µ(JφKtra,♯

Σ) if

τφ,tmax
Σ ≼ γ♯(τ tmax,♯

Σ) and ∀t ∈ T\{tmax}. τφ,tΣ ≾ τ t,♯Σ

– α♯(µ(JφKtra
Σ)) = µ(JφKtra,♯

Σ) if

α♯(τφ,tmax
Σ) = τ tmax,♯

Σ and ∀t ∈ T\{tmax}. τφ,tΣ ⋍ τ t,♯Σ .

Proof. The abstract transformer semantics is – as the concrete transformer semantics
– a composition of transformer computations for every instant. Since we have τφ,tΣ ≾

τ t,♯Σ and τφ,tmax
Σ ≼ γ♯(τ tmax,♯

Σ) for all components, by definition of ⪯ we also have for
the complete abstract transformer structure: JφKtra

Σ (γ♯(T)) ⪯ γ♯(JφKtra,♯
Σ (T)) for all

T ∈ Â. As all dependent transformers are monotonic, again by definition of ⪯, also
JφKtra,♯

Σ is monotonic and thus an abstraction of JφKtra
Σ .

For the perfect abstraction we have τφ,tΣ ⋍ τ t,♯Σ and α♯(τφ,tmax
Σ) = τ tmax,♯

Σ for all
components, which also implies that JφKtra,♯

Σ is an abstraction and by definition of
⊑Â also that α♯(JφKtra

Σ (T)) = JφKtra,♯
Σ (α♯(T)) for all T ∈ (Tφ)|T|.

The lemma then follows directly from corollary 4.16, which builds on principles of
abstract interpretation.

In the subsequent chapter, a realization of the individual τ t,♯Σ in the mentioned
symbolic domain will be presented, which adheres to the conditions of lemma 4.17.

134

4.4. An abstraction-based recurrent LOLA monitoring framework

Note that, like the concrete transformer semantics, the abstract semantics can also
be determined deterministically from back to front, and thus has a unique fixed
point. Therefore in the following we use µ(JφKtra,♯

Σ) to denote it.

However, before we can continue with a monitoring algorithm based on the ab-
stract transformer semantics we first discuss how the semantics can efficiently be
computed.

Efficient computation of the initial abstract transformer semantics

In order to guarantee an efficient computation of the abstract transformer semantics,
there are two more assumptions about the abstract transformers that we have to
make for the remainder of this thesis. First, the definition of τ t,♯Σ must exclusively
depend on the events of Σ at instant t. It may not depend on inputs at other
instants. Second, we require that all dependent transformers τ t,♯Σ for the different
t ∈ {1, . . . , tmax − 1} are defined equally. I.e. that they are identical, if the input
streams at these instants are. This assumption is reasonable as there is little reason
to use different techniques to determine the individual abstract transformers, which
are neither at the beginning nor at the end of the trace. We can phrase these two
requirements in a single formal condition:

∀Σ,Σ′ ∈ TDin
φ
.∀t, t′ ∈ T\{0, tmax}. (Σ(t) = Σ(t′))→ (τ t,♯Σ = τ t

′,♯
Σ)

Based on this, an important observation can be made regarding the efficient com-
putation of the transformer semantics. Note that (abstract) transformers are - in
difference to plain stream configurations at some instant - only dependent on the
transformer of the subsequent instant, not the one from the previous instant. This
is a feature of the special transformer structure we have chosen for our semantics;
a transformer is parametric in the value of the events at the previous instant, and
thus agnostic about them. Consequently, if in the abstract transformer semantics
the entries at instants t, t′ > 1 are equal and the way the dependent transformers
for instants t− 1 and t′ − 1 are defined equally (which we require with the previous
assumption), then the abstract transformers for t − 1 and t′ − 1 are also the same.
This insight is formulated in lemma 4.18.

Lemma 4.18 (Based on [HKLS24]).
Let φ be a LOLA specification, Σ ∈ TDin

φ
an input monitoring stream tuple and

t, t′ ∈ T with 0 < t < t′ two instants.

If τ t−1,♯
Σ = τ t

′−1,♯
Σ , then

µ(JφKtra,♯
Σ)(t) = µ(JφKtra,♯

Σ)(t′) implies µ(JφKtra,♯
Σ)(t− 1) = µ(JφKtra,♯

Σ)(t′ − 1).

135

4. A LOLA monitoring framework

Proof. µ(JφKtra,♯
Σ)(t− 1) = τ t−1,♯

Σ (µ(JφKtra,♯
Σ)(t)) = τ t

′−1,♯
Σ (µ(JφKtra,♯

Σ)(t′)) =
µ(JφKtra,♯

Σ)(t′ − 1).

This lemma has significant impact on the computation of the abstract initial trans-
former semantics JφKtra,♯

⊤mon , i.e. the one for completely unknown input streams. With
the assumption from above, we have that, if the input streams are fully unknown
(and thus equal for all instants), then τ t,♯⊤mon = τ t

′,♯
⊤mon for all t, t′ ∈ T\{0, tmax}. This

means, if we compute the abstract initial transformer semantics from back to front
as lemma 4.17 suggests and we recognize that one element in the semantic repeats,
we can directly get the whole semantics (except for the first instant) without further
computations.

This is because of the following: If the transformers for t, t′ ∈ T are equal, then by
lemma 4.18 also those for t − 1 and t′ − 1 and - by the same argument - those for
t − 2 and t′ − 2 are equal and so on, as long as they are greater than instant 0.
I.e., when computing the initial abstract transformer semantics from backward, the
whole structure (except the first entry) is determined as soon as one transformer
element repeats. Algorithmically the procedure for this accelerated computation of
JφKtra,♯

⊤mon is represented in figure 4.7.

1 S(tmax)← τ tmax,♯
⊤mon ;

2 for t← tmax − 1, . . . , 1 do
3 S(t)← τ t,♯⊤mon(S(t+ 1));
4 if exists t′ ∈ {t+ 1, . . . , tmax} s.t. S(t) = S(t′) then
5 for k ← 1, . . . , t− 1 do
6 S(t− k)← S(t′ − k);
7 break;

8 S(0)← τ0,♯
⊤mon(S(1));

Figure 4.7.: Algorithm for fast computation of the initial transformer semantics S =
JφKtra,♯

⊤mon for LOLA specification φ under the premise that ∀t, t′ ∈ T \
{0, tmax}. (Σ(t) = Σ(t′))→ (τ t,♯Σ = τ t

′,♯
Σ).

The algorithm determines the initial transformer semantics S = JφKtra,♯
⊤mon from back

to front by application of the transformer constructions from lemma 4.17. As soon
as a repeating element is found (i.e. condition in line 4 is met) all other element
in S (except for the one at instant 0) are directly copied from the already existing
part of the structure and not explicitly computed: As argued above, that abstract
transformers at t and t′ repeat, implies that the elements at t− k and t′− k are also
repeating unless t− k = 0 and so the element from t′− k is copied to t− k in a loop
until the beginning of the structure is reached. The first element however requires a

136

4.4. An abstraction-based recurrent LOLA monitoring framework

dedicated computation as it depends on default values for offsets and thus is defined
differently.

In a practical implementation one can of course even avoid the explicit copying,
as described in figure 4.7. Therefore a smart data structure for the storage of the
initial semantics can be chosen which uses pointers to link the reused entries to
their corresponding transformer object instead of copying it. Consequently, if a
repeating element is found during computation, this enables efficient runtime and
also an efficient storage of the initial semantics.

Enforcing a repeating abstract transformer with widening techniques

If the chosen abstract transformer domain Ã is finite and smaller than the chosen
trace length tmax, a repeating entry is eventually inevitable (a selection of domains
with practical relevance that have this property are listed in [FMPW23]). Abstract
domains which do not have this guarantee can still lead to a repeating entry for
particular specifications but don’t have to. If this is not the case, we can take an
adaptation of the previous algorithm. Instead of the assignment S(t)← τ t,♯⊤mon(S(t+
1)) in line 3 one can use S(t) ← S(t + 1)∇τ t,♯⊤mon(S(t + 1)) where ∇ is a widening
operator (see section 2.4.2) as known from the field of abstract interpretation [CC77,
Cou21]. Such a widening operator ∇ : Ã×Ã→ Ã is characterized by two properties.
First, a ⊔ a′ ⊑Ã a∇a′ has to hold for any a, a′ ∈ Ã. I.e. the result of the widening
must over-approximate its arguments. Second, for every sequence s0, s1, . . . with
si = si−1∇ai for i ∈ N+ and arbitrary ai ∈ Ã, there must be an n ∈ N s.t. sn = sn+1.
This means, that a subsequent application of widening must eventually result in a
repeating entry.

Widening is a very common technique for fixed point approximation in the field
of static analysis, especially abstract interpretation. In our setting the widening
operator forces the appearance of a repeating element in the initial fixed point
computation, yet the corresponding abstract transformers at the widened positions
are over-approximations of the actual transformers. Thus they make the computed
initial semantics a sound over-approximation (see lemma 4.17). This will later also
make the outputs of the monitor sound over-approximations, yet will guarantee an
efficient termination of the initial fixed point computation for domains where this
is not possible otherwise. There is a wide range of widening operators available in
literature, which are usually introduced together with the abstract domains they are
used in. For the symbolic domain which is presented in the next chapter we will
also briefly touch upon a possible widening strategy.

For the computation of the initial semantics in practice it makes sense to use the fol-
lowing strategy: One starts with an exact computation of the abstract transformers
and hopes for a repeating entry. If no repeating entry is found after several steps,
a widening strategy can be applied. In particular it might even make sense to use

137

4. A LOLA monitoring framework

a cascade of differently coarse widening operators or stages which are increasingly
over-approximating the concrete element and thus make a repetition more likely.

With the insight about efficient computation of the initial transformer semantics, we
have now prepared all the requirements for the abstract recurrent LOLA monitoring
algorithm presented in the next subsection.

4.4.3. Abstract recurrent LOLA monitoring algorithm

Consider a LOLA specification φ, a sequence of inputs w(0), w(1), . . . , w(tmax) ∈ Γ∗

over uncertain input domain Γ and corresponding uncertainty encoding ν, which are
passed to the monitor. For t ∈ T let Σt = uconvν(w(t)) be the input monitoring
stream tuple corresponding to this instant. Recall that we assumed for w(t) to encode
only words of length t + 1 and that at instant t the monitor may also only receive
information about the events at instant t (see section 4.3.2).

The recurrent abstract monitoring algorithm for φ (following the principle already
sketched in the previous section) is depicted in figure 4.8. The monitoring procedure
consists of three steps:

1. First the monitor computes the initial transformer semantics µ(JφKtra,♯
⊤mon), with-

out any information about the input streams. This can be done in an efficient
manner following the algorithm from figure 4.7 possibly extended by appli-
cation of a widening operation. Note that this first monitoring step can be
performed before the actual monitoring starts and the result (the initial trans-
former semantics) be reused for further monitor executions.

2. After the initial transformer semantics is computed, the monitor iteratively
receives the input readings for current instant t and the belonging transformer
τ = µ(JφKtra,♯

Σt)(t) is recomputed. Due to the assumption from the previ-
ous section about equal transformer computation in the middle of the trace
and the fact that Σt may not contain information about instants beyond t
we have µ(JφKtra,♯

Σt)(t + 1) = µ(JφKtra,♯
⊤mon)(t + 1). Thus the recomputation of

µ(JφKtra,♯
Σt)(t) = τ t,♯Σt (µ(JφKtra,♯

⊤mon)(t + 1)) only requires a single application of
τ t,♯Σt . The subsequent transformer µ(JφKtra,♯

⊤mon)(t + 1) can be taken from the
pre-computed initial semantics.

3. Finally the monitor determines the abstract stream configuration set s for
the current instant (called monitor state). Therefore it applies the computed
transformer τ on the previous monitor state (which is initially ⊤A) and receives
the state of the new instant.

Given an abstract configuration set a ∈ A and an abstract transformer τ ∈ Ã,
τ can be applied to a with help of function app. We receive the result – in

138

4.4. An abstraction-based recurrent LOLA monitoring framework

general – by applying the concretization of τ on all configurations represented
by a and translating it back to the abstract configuration set domain.

app : Ã×A→ A

app(τ, a) = αA({r | r ∈ γÃ(τ)(c), c ∈ γA(a)})

The resulting monitor state is then used as monitor output as it can be con-
cretized to the set of potential stream configurations at this instant. After
output, the monitor proceeds with step 2 if the end of the input trace has not
yet been reached.

1 Compute µ(JφKtra,♯
⊤mon) (or over-approximation);

2 s← ⊤A;
3 foreach t ∈ T do
4 Read input w(t);
5 τ ← τ t,♯

uconvν(w(t))(µ(JφKtra,♯
⊤mon)(t+ 1));

6 s← app(τ, s);
7 Output s;

Figure 4.8.: Abstract recurrent monitoring algorithm for LOLA specification φ. The
received input trace at instant t is w(t) over a possible uncertain input
domain and corresponding encoding ν. The abstract configuration set
domain is denoted by A.

Altogether the monitor yields the output sequence

s0 = app(τ0,♯
uconvν(w(0))(µ(JφKtra,♯

⊤mon)(1)),⊤A),
s1 = app(τ1,♯

uconvν(w(1))(µ(JφKtra,♯
⊤mon)(2)), s0),

s2 = app(τ2,♯
uconvν(w(2))(µ(JφKtra,♯

⊤mon)(3)), s1),
...

Note that the first element of the initial transformer semantics (µ(JφKtra,♯
⊤mon)(0)) is

actually never used in the monitoring algorithm, thus we can directly skip its com-
putation in the algorithm from figure 4.7.

If the specification does not contain future-offsets and either no assumptions or
all input readings are certain (and thus the assumption has no effect), then the
computation of the initial fixed point can completely be skipped. In this case the
current monitor state relies only on the past. Thus, the current abstract transformer
is independent of the subsequent one and can be computed without it. However,
if uncertainty and assumptions are present, the assumptions from the future may
discard some input values for the current instant (see section 4.3.2), and thus the
subsequent transformer which encodes this relation must be taken into account.

139

4. A LOLA monitoring framework

An example of the proposed monitoring algorithm follows at the end of the next
chapter for the symbolic abstract domain, which is presented there.

The LOLA monitor resulting from the algorithm in figure 4.8 is a sound recurrent
monitor under uncertainties and assumptions, if the chosen abstract domain and
abstract semantics are sound. Further it is a perfect recurrent monitor if both are
perfect. This is a direct result from theorem 4.13, lemma 4.17 and the fact that
for a perfect transformer abstraction γ♯ ◦ α♯ = id holds. The mentioned theorem
and lemma proof that the semantics we compute in the algorithm from figure 4.8
are sound over-approximations of the transformer semantics from definition 4.12.
This semantics is in turn a perfect approximation of the monitoring semantics (see
theorem 4.13) which yields a perfect recurrent monitor (see lemma 4.7). Further, if
the computed transformers are perfect abstractions then this also holds for the cor-
responding abstract transformer semantics. If additionally the abstract transformer
and configuration set domains are perfect, a lossless translation back to concrete
transformers and configurations is possible. We can summarize this result in corol-
lary 4.19.

Corollary 4.19 (Based on [HKLS24]).
The algorithm from figure 4.8 delivers a sound recurrent monitor under uncer-
tainties and assumptions for LOLA specification φ.

The monitor is perfect if JφKtra,♯
Σ is a perfect abstraction of JφKtra

Σ and the utilized
transformer and configuration abstractions are perfect.

Note again at this point that if widening is used in the algorithm for determining
the initial transformer semantics, then the resulting structure is a (sound) over-
approximation of the actual abstract transformer semantics. In this case the monitor
would be sound but lose perfection.

In addition to soundness and perfectness, we also have that the monitor is trace-
length-independent (see definition 2.13), if the computation of the transformer and
its application to the current monitor state takes constant time and if the repre-
sentation of state and transformer in the memory are constant (which is related to
the constant runtime). Note that in terms of trance-length-independence we con-
sidered the maximal instant tmax to be implicit part of the input (see section 2.3.1).
Without having available this information at monitor synthesis, a computation of
the initial transformer semantics before monitoring starts is only possible if a re-
peating element is found after a fixed number of steps and no full unrolling of the
specification is necessary. In this case the computation of the initial transformer
semantics is independent of the concrete tmax. Thus, for trace-length-independence
we also demand that the initial transformer semantics can efficiently be computed,
i.e. a repeating transformer is inevitable to appear.

140

4.5. Summary

4.5. Summary

In this chapter we have devoted ourselves to the study of recurrent LOLA monitoring
under uncertainties and assumptions. Therefore we have started with the definition
of an extended LOLA fixed point semantics (the monitoring semantics) which is
capable of describing the output of a LOLA specification for partially given traces.

We have further argued that a simple (0-offset) recurrent LOLA monitor is power-
ful enough to encompass several advanced monitoring approaches. E.g. traditional,
initial monitoring, as well as random access monitoring in a sliding window around
the current instant and many more can all be solved with such a monitor. Conse-
quently, we focused in this chapter on the construction of a recurrent LOLA monitor
without offset or random access. Additionally in section 4.3.2 we have discussed re-
strictions for the uncertain inputs that we require for an efficient LOLA monitoring
algorithm and a strategy was described how assumptions can be embedded in LOLA
specifications.

The main contribution of the chapter is a general algorithmic monitoring approach
based on abstractions of the concrete monitoring semantics. Therefore in section 4.4
we have introduced a first abstraction of the monitoring semantics which only pre-
serves the relations between events of subsequent instants (transformer semantics).
Later a general theory for a further abstraction of this semantics and conditions
for soundness and perfectness, based on principles of abstract interpretation, were
given. Subsequently we could show how an efficient, under certain conditions also
trace-length-independent monitoring algorithm can be built, provided that an ab-
straction of stream configurations and transformers is available which is sufficient
precise for the intended purpose.

An advantage of the generality of the introduced theory is that it can serve as a uni-
versal framework for constructing trace-length-independent monitors for arbitrary
LOLA sub-fragments (and other formalisms that can be translated to them) and for
analyzing their monitoring properties. In the subsequent chapter we will revisit the
theory for a symbolic abstraction of the transformer semantics.

141

5
Symbolic LOLA monitoring

In this chapter, an instantiation of the abstract recurrent LOLA monitoring frame-
work based on symbolic computation is presented and discussed in terms of sound-
ness, perfectness, and efficiency. The resulting recurrent LOLA monitoring algo-
rithm will be shown to have a constant resource bound and still maintain perfectness
in some cases. We will also identify some LOLA fragments, for which the recurrent
monitoring is perfect and trace-length-independent and for other fragments a sound
over-approximation will be suggested.

An implementation and evaluation of the symbolic recurrent monitoring algorithm
from this chapter will then be presented in the subsequent chapter.

The contents of this chapter are based on [HKLS24, KLS22a].

We will start with a discussion on how individual events of a LOLA specification
and their combinations can be symbolically encoded in general. Subsequently we
will derive symbolic representations of stream configurations and transformers and
also a symbolic transformer semantics.

5.1. Symbolic constraints

To encode possible event values and combinations symbolically we use constraint sets
of boolean expressions over instant variables (i.e. stream identifiers with attached
timestamp to represent a stream event, see definition 2.41). Recall that we use Vφ
and Aφ to denote the instant variables and induced algebra of a LOLA specification
φ (see definition 2.37). With ED

A,V we denote expressions of type D over algebra A

and variables V. Additionally we use the abbreviation ED
A,φ := ED

A,Vφ . We sometimes
refrain from explicitly noting the utilized algebra if it is clear from the context. In the
case of boolean expressions, we also skip the B in the superscript and just write EV

143

5. Symbolic LOLA monitoring

or Eφ respectively for these sets of expressions. For further notation on constraints
and constraint sets, see section 2.1.5.

The domain of all boolean constraint sets over algebra A and variables V is called
symbolic domain.

Definition 5.1 (Symbolic domain).
The symbolic domain over algebra A and variables V is given as SAV = 2E

B
A,V .

With the order relation · |= · on constraint sets (see section 2.1.5) the symbolic
domain (SAV, |=) is a complete lattice together with meet operation ∧ and join oper-
ation ∨ applied to the term representation (i.e. the conjunction of all constraints).
Greatest element of this domain is ∅ not restricting the involved instant variables
in any way. Least element is {false} which cannot be satisfied by any valuation of
the instant variables.

For a LOLA specification φ we use SAφ for SAVφ . Again we drop the algebra A if it is
clear from the context.

5.1.1. Encoding of streams and events

We can encode certain event values easily by constraints like st = v, which determine
the value of stream s of type D at instant t to have the value v ∈ D. This way we can
represent single certain events but also their combinations, e.g. fully known streams
and monitoring stream tuples of stream prefixes without uncertainty. Therefore we
just add constraints like the one above for every certain event to a constraint set.
Note that to construct such constraints, the induced algebra of the corresponding
LOLA specification Aφ is always sufficient. It contains by definition all necessary
sorts from the specification and corresponding value constants, as well as the equality
relation for these sorts.

As an example take a LOLA specification φ with input streams s of type R and t
of type B. Let further be T = {0, 1, 2, 3}. Suppose the streams are only known for
instant 0, where s has an event with value 11 and t with value true, and instant
1, where the values are 23 and false, respectively. The corresponding monitoring
stream tuple T is thus given as

T = {(⟨11, 23, r2, r3⟩, ⟨true, false, b2, b3⟩) | ∀i ∈ {2, 3}. ri ∈ R, bi ∈ B}.

Algebra Aφ would contain sorts R and B together with their constants and the
operator = for R and B. For representation of T we can use the constraint set

C = {s0 = 11, t0 = true, s1 = 23, t1 = false} ∈ SA
φ

φ .

144

5.1. Symbolic constraints

Since we also want to deal with uncertain inputs in our monitoring approach we
have to consider them in the symbolic encoding. First, note that in the case of
uncertainties it is strongly influenced by the expressiveness of the utilized algebra
A which event relations can actually be described in SAφ. This is different to the
symbolic encoding of certain events as discussed above which can always be described
in Aφ. Algebra A thus has to be carefully chosen, s.t. we are able to represent the
input monitoring streams, the configurations and transformers we want to deal with
in the subsequent monitoring algorithm.

As an example consider the uncertain input i = ⟨(2, 5), ?, (7, 7)⟩ for input stream
identifier s of type R, where the tuples denote inclusive intervals of potential values
and ? total uncertainty. For T = {0, 1, 2, 3} this input would be represented by
monitoring stream tuple

T = {(⟨u0, u1, 7, u3⟩) | 2 ≤ u0 ≤ 5, ui ∈ R for i ∈ {1, 3}}.

A possible constraint set encoding of T would be

C = {2 ≤ s0, s0 ≤ 5, s2 = 7}.

However, this symbolic encoding would require the operation ≤ on reals to be part
of the utilized algebra. Yet, this operator is not necessarily contained in the induced
algebra of the belonging specification (e.g. if it is from the linear algebra LOLA
fragment).

In the following we therefore demand that an algebra Aunc is given, which is able
to encode all uncertainties that may appear on input streams and which is a super
set of the specification’s induced algebra. We will see later that this algebra is also
sufficient to encode all symbolic configuration sets and transformers that arise in the
symbolic monitoring algorithm for this input.

In general, all uncertain input events and their combinations can be expressed over
an algebra with appropriate predicates of form P : D → B indicating possible and
non-possible values for a particular event and predicates of form P : D1×· · ·×Dn → B
indicating possible value combinations among different events. These predicates can
be logically combined to encode complete monitoring event stream tuples or sections
of them.

Prominent examples of partial uncertainty can be encoded as follows:

• Numeric intervals. If for numeric stream s the value at instant t is known to be
within the interval [a, b], it can be expressed by the constraint (a ≤ st)∧ (st ≤
b), which we also denote as a ≤ st ≤ b in the following. For excluded interval
bounds < can be used instead of ≤. For upper bound ∞ or lower bound −∞
no constraint has to be included.

145

5. Symbolic LOLA monitoring

• Finite set of potential values. If for the event of stream s at instant t the
value is known to be within a finite set of values V = {v1, . . . , vn} it can be
expressed as ∨

v∈V
(st = v).

• Finite set of non-possible values. If for the event of stream s at instant t
the value is known not to be within a finite set V = {v1, . . . , vn} it can be
expressed as ∧

v∈V
(st ̸= v).

• Linear relations between values. Linear relations between numeric events on
streams s1, . . . , sn at instant t can be expressed as 0 = ∑

i∈1,...,n ci·sti+o for con-
stants c1, . . . , cn, o ∈ R. Similarly an encoding of non-linear (e.g. quadratic)
relations is thinkable. Note that such constraints could also be used to express
relations among events from different instants, but this is not supported by
the monitoring approach from this thesis (see section 4.3.2).

For complete uncertainty about an event, simply no constraint involving the instant
variable is included in the constraint set.

In the following we assume that for all uncertain monitoring inputs a translation
strategy to symbolic constraints is available.

5.1.2. Symbolic configuration abstraction

We can now use the theory about symbolic encoding of events and their combina-
tions to build a symbolic abstraction of the configuration sets according to defini-
tion 4.15.

Since a configuration is only expressing the relations between events of a specific
instant t ∈ T, we will consequently only use instant variables for instant t in the
corresponding constraint set. With Vφ,t := {st | s ∈ I ∪ S} for LOLA specification
φ = (I, S,O,E) we denote all instant variables for instant t ∈ T. We use Sctx,A

φ,t :=
SAVφ,t for the corresponding domain of constraint sets over these instant variables
and drop the algebra if clear from the context, especially if it is chosen as Aunc.

It was argued that the symbolic domain over any set of variables forms a complete
lattice with order relation · |= ·. For LOLA specification φ = (I, S,O,E) with
input stream identifiers I = {s1, . . . , sn} and intermediate stream identifiers S =
{sn+1, . . . , sn+m}, we can additionally define translation functions between stream
configurations and their symbolic representations:

146

5.1. Symbolic constraints

γctx,t : Sctx
φ,t → 2Dφ

γctx,t(A) = {(v1, . . . , vn+m) | ∧
1≤i≤n+m

(sti = vi) |= A}

and

αctx,t : 2Dφ → Sctx
φ,t

αctx,t(C) = [C].

Thereby [C] describes a canonical (arbitrarily chosen) symbolic encoding of configu-
ration set C, s.t. C = γctx,t([C]). As mentioned before, the existence of [C] requires
the utilized algebra to be powerful enough to encode the configuration set C in a
symbolic way, which we assume. In case of fully certain monitor inputs, the in-
duced algebra of the specification Aφ is sufficient. The presence of uncertainty may
however require an extended algebra Aunc to encode the resulting relations among
events.

The functions αctx,t, γctx,t together with Sctx
φ,t form a perfect configuration abstraction

as lemma 5.2 shows.

Lemma 5.2 (Based on [HKLS24]).
Let φ be a LOLA specification and t ∈ T an instant.

The complete lattice (Sctx
φ,t, |=) and 2Dφ −−−−−→←−−−−−

αctx,t

γctx,t

Sctx
φ,t are a perfect configuration

abstraction.

Proof. Let C ∈ 2Dφ be a set of stream configurations for specification φ. By defini-
tion we have

γctx,t(αctx,t(C)) = γctx,t([C]) = C.

Further from the definition of · |= · (see section 2.1.5) we can conclude that αctx,t,
γctx,t form a Galois connection:

Let A ∈ Sctx
φ,t, C ∈ 2Dφ be arbitrary elements.

αctx,t(C) |= A⇔ [C] |= A⇔ J[C]K ⊆ JAK⇔ γctx,t([C]) ⊆ γctx,t(A)⇔ C ⊆ γctx,t(A)

Consequently (Sctx
φ,t, |=) and the belonging translation functions are a perfect config-

uration abstraction.

Note that the abstract domain we have introduced is parametric in the concrete
instant t of the represented configuration set. We use this for convenience s.t. we
can deal with absolute variable identifiers later on. Yet, in section 4.3 we assumed
a unique configuration abstraction for every instant instead. This is not a problem,
however, as the constraint sets could also be translated into an instant-independent
format by simply renaming all instant variables to their plain stream identifiers.
Since the constraint sets only contain variables from one instant at a time, this
would not cause any conflicts.

147

5. Symbolic LOLA monitoring

5.1.3. Symbolic transformer abstraction

We can also utilize the introduced symbolic encoding for transformers. The basic
idea is to use symbolic constraints that involve instant variables of streams at the
current and previous instant. Therefore we define Vφ,t := {st, st−1 | s ∈ I ∪ S} for
some t ∈ T as the set of instant variables at instant t and the one before (if t = 0
we technically use the pseudo-instant −1; however, these variables will not actually
be used in the subsequent symbolic transformer semantics). With Stra,A

φ,t = SA
Vφ,t we

denote the corresponding domain of constraint sets and discard the algebra as usual
if it is clear from the context.

Note that in general we can understand a transformer τ : (Dφ) → 2Dφ as set of
tuples

τ =̂ {(v1, . . . , vn, v1, . . . , vn) | (v1, . . . , vn) ∈ τ((v1, . . . , vn))}.

So we can basically reuse the functions αctx,t and γctx,t from above, extended to
instant variables for t and t − 1. Let therefore φ = (I, S,O,E) be a LOLA spec-
ification with input stream identifiers I = {s1, . . . , sn} and intermediate stream
identifiers S = {sn+1, . . . , sn+m}. The translation functions are given as

γtra,t : Stra
φ,t → 2Dφ

γtra,t(C) = {(v1, . . . , vn+m, v1, . . . , vn+m) | ∧
1≤i≤n+m

((sti = vi) ∧ (st−1
i = vi)) |= C}

and

αtra,t : 2Dφ → Stra
φ,t

αtra,t(τ) = [τ].

Again [τ] is an arbitrarily chosen, canonical symbolic encoding of transformer τ , s.t.
τ = γtra,t([τ]).

Analogous to configurations, symbolic transformers are a perfect transformer ab-
straction.

Lemma 5.3 (Based on [HKLS24]).
Let φ be a LOLA specification and t ∈ T an instant.

The complete lattice (Stra
φ,t, |=) and Tφ −−−−−→←−−−−−

αtra,t

γtra,t

Stra
φ,t are a perfect transformer

abstraction.

Proof. Based on the isomorphism between transformers and sets of tuples the proof
is analogous to the one from lemma 5.2.

As for configurations before, we use domain and abstraction function that are para-
metric in the instant of the abstracted transformer. Again, from a theoretical stand-
point, this makes no difference, since the instant variables could be renamed to

148

5.2. Constraint rewriting

instant-independent identifiers, because transformers always contain only variables
for the current and previous instants. However, this makes also an adaption of the
equivalence checking and copying of abstract transformers during the initial fixed
point computation (figure 4.7, line 4,6) necessary. Two symbolic transformers have
to be considered equal if they describe the same relations between instant variables
with respect to the shifted timestamp. Likewise a repeating symbolic transformer
in the initial semantics must be adjusted to the actual instant before it can be used
in the monitoring algorithm.

5.2. Constraint rewriting

We have now seen how input readings, stream configurations and transformers can
be encoded as symbolic constraint sets.

For the symbolic computation of the transformers, it will be necessary to determine
a symbolic transformer from its successor. In this context it will be required to
remove instant variables from the constraint sets which originate from subsequent
transformers but are no longer relevant for the transformer of the current instant.
Otherwise we would accumulate more and more instant variables and basically unroll
the whole specification. In this section we study the technique to remove variables
from constraint sets, which we call constraint rewriting. For a perfect monitor it will
be important that the relations between the remaining instant variables are the same
as before the rewriting process. For a sound monitor, the resulting constraints must
at least over-approximate the original ones. We will discuss the topic of symbolic
constraint rewriting upfront in this section and then introduce the whole symbolic
monitoring approach, which is fundamentally based on it.

As a very simple example to illustrate the idea of constraint rewriting, consider the
following constraint set over boolean instant variables s0, t0, i1, i2, i3.

C = {s0 = (i1 ∧ i2 ∧ i3), t0 = (i1 ∨ i2 ∨ i3)}

Imagine we are not interested in the concrete relation to and among the values of
i1, i2 and i3. A more concise representation of this constraint set preserving only
the variables s0, t0 would be

C′ = {s0 → t0}.

The possible value combinations of s0, t0 satisfying C are (false, false), (false,
true), (true, true). Exactly these combinations satisfy the rewritten constraint set
C′. However, the connection between s0, t0 and i1, i2, i3 is lost during rewriting.

We will now introduce a general theory for perfect and sound rewriting of constraint
sets with a constant bound on their size. Therefore we start with a size measure of
symbolic constraint sets over an arbitrary algebra A. We distinguish between a weak
measure which is assuming variables, constants and function symbols in the formulas

149

5. Symbolic LOLA monitoring

to be of constant size and a strict one which assumes them to have logarithmic size
in terms of the number of available variables, constants and functions. This is the
amount of memory a computer can be assumed to require to store the corresponding
symbol. Both versions of the measure will later play a role w.r.t. the trace-length-
independence of the recurrent LOLA monitor.

Definition 5.4 (Constraint set measure; based on [KLS22a]).
The weak size measure of an expression over algebra A with constants C, func-
tion symbols F and variables V, | · |w : EA,V → N is defined as

|v|w = 1, |c|w = 1, |f(e1, . . . , en)|w = |e1|w + · · ·+ |en|w + 1

for variable v ∈ V, constant c ∈ C and function symbol f ∈ F .

The strict size measure of an expression over algebra A with constants C, func-
tion symbols F and variables V, | · |s : EA,V → R ∪ {∞} is defined as

|v|s = log(|V|), |c|s = log(|C|), |f(e1, . . . , en)|s = |e1|s + · · ·+ |en|s + log(|F|)

for variable v ∈ V, constant c ∈ C and function symbol f ∈ F .

Let S ⊆ EA,V be a constraint set. The weak and strict size measure of S is
given as

|S|w =
∑
φ∈S
|φ|w and |S|s =

∑
φ∈S
|φ|s.

If an algebra has an infinite number of function or constant symbols we have log |F| =
∞ and log |C| = ∞, respectively. Thus, for algebras with infinitely many constant
or function symbols, the strict size measure of a constraint is ∞ as soon as one
constant or function application is involved.

A perfect rewriting strategy transforms one constraint set into another one, such
that both constraint sets are satisfied by exactly the same valuations of the preserved
variables. These variables are called relevant variables in the following. We model a
rewriting strategy as a functionRR : 2EA,V → 2EA,V where R ⊆ V is the set of relevant
variables. If the rewritten constraint set is over-approximating the valuations of the
original constraint set, we call the rewriting strategy sound.

Definition 5.5 (Rewriting strategy; based on [KLS22a]).
Let A be an algebra and V a set of variables. Let further R ⊆ V be the subset
of relevant variables.

A rewriting strategy RR : 2EA,V → 2EA,V is called

– sound if ∀C ⊆ EA,V. C |=R RR(C).
– perfect if ∀C ⊆ EA,V. C ≡R RR(C).

150

5.2. Constraint rewriting

The rewriting strategy RR is further called constant w.r.t. the weak or strict
constraint set measure respectively, if

∃c ∈ R. ∀C ⊆ EA,V. |RR(C)|w < c or ∃c ∈ R.∀C ⊆ EA,V. |RR(C)|s < c.

Depending on the algebra A, there may or may not be a perfect, strict or weak
constant rewriting strategy. Note that a strict-constant rewriting strategy can only
depict to a finite amount of elements.

For a constraint set C over variables V = {r1, . . . , rk, n1, . . . , nl} let γ = ∧
c∈C c be the

term representation, i.e. the conjunction of all constraints in C. Note that perfect
rewriting of C or γ w.r.t. relevant variables R = {r1, . . . , rk} can be solved by finding
a (quantifier-free) expression γ′ s.t. γ′ ≡ (∃n1, . . . , nl. γ) This task is handled in
particular by so-called quantifier elimination strategies, which have been extensively
studied in literature (e.g. [Pre29, Hod93, CJ12]). However, these strategies are
usually not constant (which may cause the following monitoring algorithm not to
be trace-length-independent). Further quantifier elimination is not available for all
algebras (e.g. Presburger arithmetic without division and congruency [Nip10]).

In this section, we will study three prominent LOLA fragments and their corre-
sponding algebras in terms of rewritability. Simple constant rewriting (or quantifier
elimination) strategies for the fragments will be presented to illustrate the underlying
concept and to reason about the properties of these fragments w.r.t. definition 5.5.

The recurrent monitoring algorithm which will be presented afterwards relies on a
strict-constant rewriting strategy. Under specific circumstances also a weak-constant
rewriting strategy will be sufficient. We will show that the monitor is perfect if the
corresponding rewriting strategy is perfect, and sound if it is sound. Thus, the
existence of a rewriting strategy for a family of specifications becomes the key to its
perfect, recurrent monitorability under uncertainties and assumptions. In general,
the more restricted the form of the specifications is, the better a rewriting strategy
can be found.

In particular we will examine rewriting for the boolean, the linear algebra and the
linear arithmetic fragment of LOLA as defined in definition 2.43. For the boolean
fragment we will find a perfect, strict-constant rewriting strategy, for the linear
algebra fragment a perfect, weak-constant one, and for linear arithmetic a perfect,
non-constant and a sound, weak-constant one. Further we will show that better
rewriting strategies do not exist for these fragments.

However, note that common quantifier elimination strategies are usually more so-
phisticated and use multiple optimizations compared to the simple rewriting strate-
gies presented in this thesis. Thus, they should be preferred in practical applications
if they are available and meet the required properties such as constantness (as e.g. for

151

5. Symbolic LOLA monitoring

the boolean fragment). It also makes sense to first use non-constant, perfect quanti-
fier elimination techniques in the monitoring process and switch to other rewriting
strategies if the computation of the initial fixed point does not terminate or the
monitor runs out of resources. Later in this chapter, we will discuss this aspect in
more detail.

5.2.1. The boolean fragment

We start with the boolean LOLA fragment, where all streams (inputs and outputs)
are of type B, involved constants are true and false and functions are the usual
boolean operators ∨,∧,¬

As described above, we require a strategy RRB that receives a boolean constraint set
and delivers one of constant size, which is equivalent w.r.t. the variables in R.

The rewriting that will be presented is based on the following fundamental insight:
The number of value combinations expressible by the boolean variables in R is finite
and thus describable with a constraint set of constant size w.r.t. |R|.

As a consequence we can iterate all value combinations of variables in R (i.e. 2|R|

many) and check if they are satisfiable by the constraint set. In the end, we set up
the new constraint set from a single disjunction of all possible variable assignments.
The procedure is formalized in the algorithm in figure 5.1.

1 C′ ← ∅;
2 foreach v ∈ B|R| do
3 if

∧
ri∈R

(ri = v(i)) |=R C then

4 γ ← γ ∨
(∧
ri∈R

(ri = v(i))
)

;

5 C′ ← {γ}

Figure 5.1.: Algorithm of rewriting strategy RRB for constraint set C with R =
{r0, . . . , rn}. Resulting constraint set: C′.

As example consider the constraint set

C = {u2 = (i2 ∨ v1 ∨ u3), v2 = (i2 ∨ v1)}.

Assume we apply the rewriting for R = {v1, v2, u2}. The following combinations of
values for R do satisfy C:

v1 = false, v2 = false, u2 = false v1 = false, v2 = false, u2 = true
v1 = false, v2 = true, u2 = true v1 = true, v2 = true, u2 = true

152

5.2. Constraint rewriting

Thus, the rewriting (with = true erased and = false replaced by negation) results
in the constraint set

{(¬v1 ∧ ¬v2 ∧ ¬u2) ∨ (¬v1 ∧ ¬v2 ∧ u2) ∨ (¬v1 ∧ v2 ∧ u2) ∨ (v1 ∧ v2 ∧ u2)}

which is equal to
C′ = {(v1 → v2) ∧ (v2 → u2)}

This constraint set reflects exactly the relation between v2, u3, v3 that was expressed
by the original constraint set C.

In lemma 5.6 we conclude that the boolean rewriting strategy is strict-constant and
perfect.

Lemma 5.6 (Based on [KLS22a]).
The rewriting strategy for boolean algebra as presented in figure 5.1 is strict-
constant and perfect.

Proof. The rewriting produces a DNF over the variables in R. Thus, the rewriting
is a strict-constant one. Likewise the resulting constraint set models exactly those
valuations of variables in R which were modeled by the original constraint set.

Several other finite domains (e.g. enumerations, modulo fields etc.) can be embed-
ded in boolean algebra. Hence, they can also be rewritten in a perfect, strict-constant
manner.

5.2.2. The linear algebra fragment

In the linear algebra LOLA fragment the constraint set may only contain constraints
of the form ∑

v∈V
cv · v + o1 =

∑
v∈V

c′
v · v + o2

where V is the set of variables, cv, c′
v ∈ R for v ∈ V and o1, o2 ∈ R are constants.

We assume all these equations to be transformed into a normal form where every
variable multiplication is on the right hand side and constants are on the left (which
can be easily done by equivalence transformations). Consequently the equations
look as follows.

o =
∑
v∈V

cv · v

We call the cv coefficients and o the offset. We say an equation contains a variable
if it has a non-zero coefficient.

Note that by definition 2.43 we do actually not allow assumptions in the linear
algebra fragment, as they are encoded in a boolean stream Λ which is not supported

153

5. Symbolic LOLA monitoring

there. Yet we can permit such a stream if it only consists of a conjunction of linear
algebra equations. In this case we can consider these equations directly as part of
the constraint set, instead of the two constraints Λt = . . . and Λt as usual.

In linear algebra we can interpret a constraint set as a linear equation system over
V = {s1, . . . , sn}, which can also be denoted in matrix notation: o1

...
om

 =

 c1,1 . . . c1,n
. . .

cm,1 . . . cm,n

 ∗
 s1

...
sn

Concerning the order of the variables we require the relevant variables (R = {r1,. . . ,rl}
⊆ V) to be preceded by the non-relevant ones (V\R = {n1, . . . , nk}):

 o1
...
om

 =

c′

1,1 . . . c′
1,k c′

1,k+1 . . . c′
1,k+l

.
c′
m,1 . . . c′

m,k c′
m,k+1 . . . c′

m,k+l

 ∗

n1
...
nk
r1
...
rl

We assume throughout our algorithm that the constraint set is indeed satisfiable.
The opposite could only happen if the assumption encoded in stream Λ is not sat-
isfiable for the given inputs. However, as already mentioned in the preliminaries
chapter, we do not consider this case in this thesis.

We now aim to eliminate every non-relevant variable from the system of equations
using the Gaussian elimination method [Str80]. Therefore we transform the matrix
into row echelon form [Str80], i.e. the first non-zero coefficient of each row is strictly
right of the one from the previous row, or the row contains only zero coefficients. To
transform the matrix into this shape we proceed as follows: We choose one equation
from the system s.t. no other equation has a non-zero coefficient further on the
left. We then eliminate this left-most variable from all other equations. Therefore
we multiply and subtract the chosen equation from all others, s.t. the resulting
equations do not contain the variable to be removed anymore. The chosen equation
remains the only one with this variable but no variable further on the left and is
added to the resulting equation system in row echelon from. The procedure is then
repeated for the remaining equations until no more equations are left. After this
transformation the matrix multiplication is in the following form:

 o′
1
...
o′
m

 =

c′′

1,1 c′′
1,2 . . . c′′

1,i . . . c′′
1,n

0 c′′
2,2 . . . c′′

2,i . . . c′′
2,n

...
0 0 . . . c′′

m,i . . . c′′
m,n

 ∗

n1
...
nk
r1
...
rl

154

5.2. Constraint rewriting

Depending on whether the equation system is over- or under-determined, the matrix
might contain rows with all coefficients zero, or the last row might still contain non-
zero coefficients.

We can then remove all equations from the system, where a non-relevant variable
is contained (i.e. has a non-zero coefficient). This is because these equations do
not contain any direct information about the relation among relevant variables,
as also non-relevant ones are involved. Additionally there are no other equations to
eliminate the non-relevant variables without introducing a new non-relevant variable,
because of the row echelon form the matrix has. Equations where all coefficients
are zero can of course also be neglected. Let row o be the first row where all non-
relevant variables are zero. Altogether we receive the following equation system of
r equations consisting only of relevant variables:

 o′′
1
...
o′′
r

 =

c′′
o+1,k+1 c′′

o+1,k+2 . . . c′′
o+1,k+l

0 c′′
o+2,k+2 . . . c′′

o+2,k+l
...
0 0 . . . c′′

o+r,k+l

 ∗
 r1

...
rl

From these equations the rewritten constraint set can be built. Note that r is limited
by the number of relevant variables l. This is because the row vectors in the final
matrix are linearly independent (because of the row echelon form). Since the matrix
has l columns its rank and thus the number of linearly independent row vectors is
limited by l.

For illustration consider the following constraint set with assumption Λ4:

{u4 = 2i2 + 4i3, v4 = i0 + i1 − i2, w4 = 2i3 + i0,Λ4 = ((i1 = 7) ∧ (−i0 = 2i3)),Λ4}

Suppose we want to rewrite this constraint set for relevant variables R = {u4, v4, w4}
After resolving the assumptions and transforming the equations we receive the fol-
lowing equation system:

0
0
0
7
0

 =

0 0 2 4 −1 0 0
1 1 −1 0 0 −1 0
1 0 0 2 0 0 −1
0 1 0 0 0 0 0
1 0 0 2 0 0 0

 ∗

i0

i1

i2

i3

u4

v4

w4

155

5. Symbolic LOLA monitoring

In row echelon form we have

0
0
7
−14

0

 =

1 1 −1 0 0 −1 0
0 −1 1 2 0 1 −1
0 0 1 2 0 1 −1
0 0 0 0 −1 −2 2
0 0 0 0 0 0 1

 ∗

i0

i1

i2

i3

u4

v4

w4

.

Thus we preserve the last two equations and get

(
−14

0

)
=
(
−1 −2 2
0 0 1

)
∗

 u4

v4

w4

 .
or in constraint representation

{−u4 − 2v4 + 2w4 = −14, w4 = 0} ≡ {u4 = −2v4 + 14, w4 = 0}

which expresses exactly the relation between u4, v4, w4 in the original constraint set,
i.e. that w4 is 0 and u4 is the double of −v4 plus 14.

Algorithmically the rewriting procedure for linear algebra is described in figure 5.2.
The version there is slightly adjusted and performs the transformation to echelon
normal form and elimination of equations in parallel. Therefore the algorithm pro-
ceeds as follows: After transforming the equation system into the proposed normal
form it iterates over all variables in the suggested order. One after another it takes
a row r where this coefficient of the variable is not zero and subtracts this row (ad-
justed by a factor) from all other rows, including r itself, to eliminate this variable
from the equation system. Note that by this procedure row r is replaced by 0 = 0.
The rows where all non-relevant variables are 0 are added to the resulting constraint
set C ′.

As in the case of boolean rewriting, the linear algebra rewriting strategy is also
perfect, but only weak-constant.

Lemma 5.7 (Based on [KLS22a]).
The rewriting strategy for linear algebra as presented in figure 5.2 is weak-
constant and perfect.

Proof. The algorithm only utilizes equivalence rewritings, which do not introduce
errors. As argued above, equations with non-relevant variables in the echelon normal
form do not allow any implications on relations among relevant variables and can
thus be removed.

156

5.2. Constraint rewriting

1 C′ ← ∅;
2 Transform C to O = (MN |MR) ∗ (n1, . . . , nk, r1, . . . , rl)T ;
3 M ← (MN |MR|O);

4 foreach i ∈ {1, . . . , k + l} do
5 if exists row r in M with first non-zero coefficient in column i then
6 if i > k then
7 C ′ ← C ′ ∪ {r};
8 foreach row r′ in M do
9 Replace r′ by r′ − r′(i)

r(i) · r in (MN |MR|O);

Figure 5.2.: Algorithm of rewriting strategyRRLA withR = {r1, . . . , rl} for constraint
set C over V = R ∪ {n1, . . . , nk}. Resulting constraint set: C′.

The resulting constraint set contains at most l equations with at most l variables
and is thus of constant size for a fixed number of relevant variables, according to
the weak measure.

It is easy to see that a perfect, strict-constant rewriting strategy cannot exist for the
linear algebra fragment. Consider e.g. the family of constraint sets {s = 1}, {s =
2}, Perfect rewriting for relevant variables R = {s} would require each of
these sets to be rewritten to a different constraint set. This causes infinitely many
constraint sets to result from rewriting, which prevents a strict constant size.

Finally, note that the approach which was presented in this section is not only
applicable to real linear algebra, but in general to any vector space algebra.

5.2.3. The linear arithmetic fragment

The linear real arithmetic LOLA fragment combines both previously examined frag-
ments, additionally allowing the operators <, = applied to reals inside boolean con-
straints (see definition 2.43). Linear real arithmetic is of great practical relevance as
lots of properties with continuous and discrete components can be expressed. Unfor-
tunately there is no perfect, weak-constant (thus also no strict-constant) rewriting
strategy for this fragment, as proved in the subsequent lemma.

Lemma 5.8.
There is no perfect, strict-constant nor weak-constant rewriting strategy for
linear real arithmetic.

157

5. Symbolic LOLA monitoring

Proof. Let C be a constraint set over variables V = {r} and γ its term representation,
resulting from conjunction of all constraints in C. We say for variable r, that p ∈ R
is a separating point if there is a δ ∈ R+, s.t. ∀ϵ ∈ R. (0 < ϵ < δ)⇒ (r = p) |= C ⇔
(r = p+ ϵ) ̸|= C In other words: the satisfaction of C flips directly at value p for r.

Note that we can easily construct a constraint set with any number of separating
points for r: Cn = {(r = 1)∨ (r = 2)∨ · · · ∨ (r = n)}. While the expression (r = k),
for k ∈ N, 1 ≤ k ≤ n models Cn, (r = k + ϵ) for 0 < ϵ < 1 does not and hence Cn
has n separating points for r.

A perfect rewriting strategy for relevant variables R = {r} would by definition have
to preserve all separating points. On the other hand the number of separating points
a constraint set C (with term representation γ) has, is limited by its size. Assume
γ contains m linear sub-expressions of form o+ cr = o′ + c′r or o+ cr < o′ + c′r for
constants o, o′, c, c′ ∈ R. Every conjunction which contains every of these linear sub-
expressions or its negation can have at most m separating point for r. Consequently,
a constraint with m linear (in)-equalities as sub-expressions cannot have more than
2m×m separating points for a variable r as it can be written in distributive normal
form over its linear sub-expressions.

Hence, there is no weak-constant (and thus also no strict-constant) rewriting strategy
for linear real arithmetic.

As a consequence this section will present a perfect, but non-constant rewriting
strategy for the linear real arithmetic LOLA fragment. Further, a sound and weak-
constant rewriting strategy is discussed.

The idea behind perfect rewriting of linear real arithmetic formulas is to substitute
all (in)-equalities in the constraint set by fresh boolean variable identifiers and, as
a first step, to perform boolean rewriting. The boolean rewriting results in a single
constraint in distributive normal form. In this constraint the boolean variables
are replaced by the original linear real arithmetic expressions again and variable
elimination is then performed on each conjunction of (in)-equalities.

Core of the procedure is thus the elimination of real variables from conjunctions of
(in)-equalities. The approach that was used in the previous section for elimination
of variables in sets of equations can in general not be applied to sets of inequalities.
This is because in the case of inequalities it is not sufficient anymore to use a single
equation to remove a variable from all other constraints. One would rather have to
use all pairs of equations to generate the new constraints without the variable to be
eliminated.

A strategy to eliminate variables in sets of inequalities, which basically relies on
the idea of combining all suitable pairs of inequalities, is Fourier–Motzkin elimina-
tion [KS16]. In the first step, the approach rewrites all the equations, s.t. they have

158

5.2. Constraint rewriting

the variable to be eliminated isolated on one side. Then it combines all suitable (ac-
cording to their inequality sign) pairs of sides, which do not contain the variable to
be eliminated, to build new inequalities. Specifically, for a set of inequalities where
variable x is isolated on the left side,

{x <
∑
i

c1
ixi, . . . , x <

∑
i

cni xi, x >
∑
i

d1
ixi, . . . , x >

∑
i

dmi xi}

each right hand side of the <-equations is combined with each right hand side of the
>-equations. This leads to the following equivalent set of n ·m inequalities without
variable x:

{
∑
i

d1
ixi <

∑
i

c1
ixi,

∑
i

d2
ixi <

∑
i

c1
ixi, . . . ,

∑
i

dmi xi <
∑
i

cni xi}

Thus, unlike Gaussian elimination, the number of resulting constraints after remov-
ing a single variable is quadratic in the number of original constraints, making the
rewriting non-constant. The method is also applicable to non-strict inequalities
(≤/≥). In this case the combination of two non-strict inequalities also leads to a
non-strict one, while combinations of at least one strict inequality result in a strict
one. Equations can be handled by splitting them into two non-strict inequalities.
The overall algorithm for elimination of a variable from a set of linear inequalities
can be found in figure 5.3.

The algorithm for the entire linear real arithmetic rewriting strategy based on
Fourier-Motzkin elimination is presented in figure 5.4. It is an extension of the
boolean rewriting strategy from figure 5.1. At first all inequality sub-expressions
in C are replaced by fresh variables, then all combinations of relevant boolean vari-
ables and the replacement variables are iterated. If a specific valuation is a model
of the rewritten constraint set, the replacement variables are substituted again by
the original inequalities, and the procedure from figure 5.3 is applied to eliminate
all non-relevant variables from them. Out of the resulting constraints and the val-
uations of the relevant boolean variables a product term is built and added to the
DNF γ, which becomes the only constraint of the resulting constraint set C ′.

The rewriting strategy is perfect, as shown in lemma 5.9.

Lemma 5.9.
The rewriting strategy for linear real arithmetic from figure 5.4 is perfect.

Proof. The boolean rewriting preserves equivalence for all relevant variables, i.e. the
relevant boolean variables and the boolean variables substituting inequalities. For
each product term in the resulting DNF the conjunction of inequalities is rewritten to
be free of non-relevant variables by Fourier-Motzkin elimination which solely applies
equivalence transformations.

159

5. Symbolic LOLA monitoring

1 L ← ∅;
2 G ← ∅;
3 I ′ ← ∅;
4 foreach inequality i ∈ I do
5 if i does not contain x then
6 I ′ ← I ′ ∪ {i};
7 continue;
8 Transform i s.t. x is isolated without coefficient on the left hand side;
9 if sign in i is < or ≤ then

10 L ← L ∪ {i};
11 else
12 G ← G ∪ {i};

13 foreach x⊗ t ∈ L do
14 foreach x⊙ t′ ∈ G do
15 if {⊗,⊙} = {≤,≥} then
16 ⊕ ← ≤
17 else
18 ⊕ ← <

19 I ′ ← I ′ ∪ {t′ ⊕ t};

Figure 5.3.: Fourier-Motzkin algorithm [KS16] for elimination of variable x from the
set of inequalities I. The symbols ⊗,⊙,⊕ ∈ {<,>,≤,≥} are placehold-
ers for inequality relations. Resulting set of inequalities I ′.

As example consider the following constraint set on which we perform rewriting for
R = {s1, e1}

C = {e2 < 20, s1 → (e1 − e2 < 10),¬s1 → (e1 − e2 < 5)}

We replace e2 < 20 by a1, e1 − e2 < 10 by a2 and e1 − e2 < 5 by a3, and receive the
constraint set

{a1, s
1 → a2,¬s1 → a3}.

The satisfying valuations of this constraint set are

(s1 ∧ a1 ∧ a2 ∧ a3), (¬s1 ∧ a1 ∧ a2 ∧ a3), (¬s1 ∧ a1 ∧¬a2 ∧ a3) and (s1 ∧ a1 ∧ a2 ∧¬a3).

One of the contained assignments to a1, a2, a3 is a1 ∧ a2 ∧ a3, corresponding to

{e2 < 20, e1 − e2 < 10, e1 − e2 < 5}.

To eliminate e2 we isolate it on the left hand side of each inequality:

{e2 < 20, e2 > e1 − 10, e2 > e1 − 5}

160

5.2. Constraint rewriting

1 Replace all equations in C by conjunction of two non-strict inequalities;
2 Replace inequalities i1, . . . , in in C by fresh boolean variables

ai ∈ A = {a0, . . . , an};
3 C′ ← ∅;
4 foreach v ∈ B|RB| do
5 foreach v′ ∈ B|A| do
6 if

∧
ri∈RB

(ri = v(i)) ∧ ∧
ai∈A

(ai = v′(i)) |=RB∪A C then

7 S ← ∅;
8 foreach ai ∈ A do
9 if v′(i) then

10 S ← S ∪ {ii};
11 else
12 S ← S ∪ {ii};

13 foreach e ∈ VR\RR do
14 Eliminate e in S;

15 γ ← γ ∨
((∧

ri∈RB

(ri = v(i))
)
∧
(∧
s∈S

s

))
;

16 C′ ← {γ};

Figure 5.4.: Algorithm of rewriting strategy RRLRA for constraint set C over variables
V. Set V splits into VB which contains all boolean variables and VR
which contains all real variables. An analogous notation is used for the
sets of relevant variables R and its subsets RB = {r0, . . . , rm} and RR.
With ii the negated version of inequality ii is denoted (i.e. < exchanged
by ≥ etc.). Resulting constraint set: C′.

Applying the Fourier-Motzkin transformation ultimately leads to the constraints
{e1−10 < 20, e1−5 < 20} ≡ {e1 < 25}. I.e. a1∧a2∧a3 can be replaced by e1 < 25.
Applying the same strategy for the remaining ai conjunctions we get

{(s1 ∧ (e1 < 25)) ∨ (¬s1 ∧ (e1 < 25)) ∨ (¬s1 ∧ (e1 < 25) ∧ (e1 − 5 < e1 − 10)) ∨
(s1 ∧ (e1 < 30) ∧ (e1 − 10 < e1 − 5))}

which can be simplified (note that the third product term is not satisfiable) to

{(s1 ∧ (e1 < 30)) ∨ (e1 < 25)}.

As mentioned above, the problem with this strategy is that the size of the resulting
constraint set is not bounded by a constant, but depends on the size of the origi-
nal constraint set, specifically the number of inequalities there. There are several
approaches to tackle this problem (which also plays a significant role in the field of

161

5. Symbolic LOLA monitoring

static analysis) and provide a weak-constant rewriting algorithm. One possibility is
a restriction of the set of considered inequalities A to a constant number (either in
general or separately for each product term in the resulting DNF). This leads to a
sound but less precise over-approximation of the original constraint set. It is espe-
cially useful when there is an intelligent strategy for the application scenario that
determines which inequalities to select. A selection strategy for a similar problem is
e.g. discussed in [SQ18].

In this thesis we will consider another rewriting strategy (similar to the one from
[KLS22a]) for the linear real arithmetic fragment in detail, which is based on a
separate rewriting of the real and boolean parts of the specification. This separation
leads to a total loss of information about all interconnections between variables from
the two different types. To mitigate this somewhat, minimum and maximum bounds
for all relevant real variables (if they exist) are added to the constraint set instead.

The specific steps of the rewriting strategy are:

1. Separate the constraint set into linear equations and other constraints.

2. Use the linear algebra rewriting algorithm (figure 5.2) for all constraints w.r.t.
the relevant real variables.

3. Compute bounds for all relevant real variables and add them to the new con-
straint set.

4. Use the boolean rewriting algorithm (figure 5.1) for all constraints w.r.t. the
relevant boolean variables.

However, the applied bound query in this algorithm does not have to be perfect but
can be done by any sound numerical approximation approach. Obviously bound
inference always causes precision loss for linear real arithmetic constraints, even if
the bounds are inferred perfectly. Consider e.g. the simple constraint set C = {r =
1 ∨ r = 3} and R = {r}. For r, the perfect bounds 1 ≤ r and r ≤ 3 can be inferred,
yet r = 2 does not conform to C.

The algorithm for the whole imperfect rewriting strategy for linear real arithmetic
is presented in figure 5.5.

As example consider again the constraint set C from before and R = {s1, e1}:

C = {e2 < 20, s1 → (e1 − e2 < 10),¬s1 → (e1 − e2 < 5)}

Since there are no linear equations in the constraint set, CLA = ∅ follows. The linear
algebra rewriting strategy consequently delivers an empty constraint set. Yet one is
able to infer the bound e1 < 30 on e1, thus C′

LA = {e1 < 30}. The boolean rewriting
for RB = {s1} results in C′

B = {s1 ∨ ¬s1} ≡ {true} ≡ {}. Thus the rewritten
constraint set is given as

C′ = {e1 < 30}.

162

5.2. Constraint rewriting

1 Extract linear algebra constraints from C into CLA;
2 C′

LA ← R
RR
LA(CLA);

3 foreach r ∈ RR do
4 if there is bound m ∈ R s.t. for all m′ ≤ m : (r = m′) ̸|={r} C then
5 C′

LA ← {m < r}
6 if there is bound m ∈ R s.t for all m′ ≥ m : (r = m′) ̸|={r} C then
7 C′

LA ← {m > r}

8 C′
B ← R

RB
B (C);

9 C′ ← C′
LA ∪ C′

B;

Figure 5.5.: Algorithm of imperfect rewriting strategy R̃RLRA with R = RB ∪RR for
constraint set C. RB contains all boolean variables in R, RR all real
variables. Resulting constraint set: C′.

While the bound on e1 can thus be preserved, the relation between the boolean
variable s1 and the real variable e1 gets lost.

However the presented rewriting strategy is still sound and weak-constant. This is
proofed in lemma 5.10.

Lemma 5.10 (Based on [KLS22a]).
The rewriting strategy for linear real arithmetic as presented in figure 5.5 is
sound and weak-constant.

Proof. Assuming the opposite, there would have to be a valuation of variables in
R, s.t. {r1 = v1, . . . , rn = vn} |=R C but {r1 = v1, . . . , rn = vn} ̸|=R C′. This is
a contradiction. Let r1, . . . , rk be the relevant boolean variables, then we have by
perfectness of the boolean rewriting strategy (lemma 5.6) {r1 = v1, . . . , rk = vk}
|=RB C′

B.

For real variables rk+1, . . . , rn we have {rk+1 = vk+1, . . . , rn = vn} |=RR C and
thus also {rk+1 = vk+1, . . . , rn = vn} |=RR CLA, as CLA contains a subset of the
constraints from C. By perfectness of the real rewriting strategy (lemma 5.7) {rk+1 =
vk+1, . . . , rn = vn} |=RR C′

LA holds before insertion of additional constraints. If we
add a constraint m < ri (or m > ri respectively), then vi > m (vi < m) holds by the
if condition and thus {rk+1 = vk+1, . . . , rn = vn} |=RR C′

LA still holds for the final
constraint set C′

LA.

As there is no constraint in C′
B or C ′

LA involving boolean and real variables at the
same time we also have {r1 = v1, . . . , rn = vn} |=R C′.

163

5. Symbolic LOLA monitoring

The resulting constraint set contains the results from the boolean and linear algebra
rewriting and additionally at most two bound constraints for each relevant real
variable. The rewriting is thus weak-constant.

5.3. Symbolic monitoring

Based on the symbolic abstraction of stream configurations and configuration trans-
formers, as well as the rewriting strategies, we will now develop a symbolic abstrac-
tion of the transformer semantics from definition 4.12. This will eventually yield
us a sound or perfect recurrent LOLA monitor (see corollary 4.19) – dependent on
whether a sound or perfect rewriting strategy was chosen.

5.3.1. Symbolic transformer semantics

Following lemma 4.17, it is sufficient for the abstract transformer semantics to give
computations for all abstract transformers and compose them. We define a symbolic
LOLA expression semantics, and based on this, the symbolic transformer computa-
tion in definition 5.11.

Definition 5.11 (Symbolic transformer computation; based on [HKLS24]).
Let φ = (I, S,O,E) be a LOLA specification with assumption stream Λ ∈ S.

The symbolic semantics of a LOLA expression e ∈ ExpI∪S
D at instant t ∈ T,

JeKsym(t) ∈ SAφ

φ , is given as

– JcKsym(t) = c

– Js[o, c]Ksym(t) = c if (t+ o) ̸∈ T

– Js[o, c]Ksym(t) = st+o if (t+ o) ∈ T

– Jf(e1, . . . , en)Ksym(t) = f(Je1Ksym(t), . . . , JenKsym(t))

– Jite(e1, e2, e3)Ksym(t) = ite(Je1Ksym(t), Je2Ksym(t), Je3Ksym(t))

for constant c ∈ D, offset o ∈ {−1, 0, 1} and expressions e1, . . . , en ∈ ExpI∪S .
With f and ite the symbolic representations of functions f and ite is denoted.

Let Σ ∈ SAunc
φ be a symbolic encoding of the (potentially) uncertain input

steams and R a rewriting strategy for Aunc. The symbolic transformer for tmax
is defined as

τ sym,tmax
Σ = RVφ,tmax

({stmax = JE(s)Ksym(tmax) | s ∈ S} ∪ Σ ∪ {Λtmax})

164

5.3. Symbolic monitoring

The symbolic transformer for t ∈ T\{tmax} w.r.t. its subsequent symbolic trans-
former τ ′ is defined as

τ sym,t
Σ (τ ′) = RVφ,t

({st = JE(s)Ksym(t) | s ∈ S} ∪ Σ ∪ τ ′ ∪ {Λt}).

The symbolic semantics of a LOLA expression is a symbolic representation of the
expression, where all offsets operators (also those with zero offset), which do not
evaluate to their default value, are replaced by the corresponding instant variables.

The symbolic transformers contain a defining equation for all intermediate stream
events of the corresponding instant and the symbolic encoding of the input readings.
Additionally the transformer constraint sets include the constraints from the subse-
quent symbolic transformer (in case t ̸= tmax) and the assumption instant variable
for the current instant. However, the instant variables of other instants (which orig-
inate from +1 offsets, the subsequent transformer or input readings) are removed
from the constraint set by application of a rewriting strategy, which only preserves
instant variables of the current and previous instant. An example of symbolic trans-
formers which are computed by the given rules can be found at the end of this
subsection after definition 5.13 and for a more complex setting at the end of this
chapter in section 5.3.4.

In fact the presented transformers are sound or perfect abstractions of the concrete
ones, according to lemma 4.17, depending on whether the utilized rewriting strategy
is sound or perfect. This is shown in theorem 5.12.

Theorem 5.12.
Let φ = (I, S,O,E) be a LOLA specification and Σ ∈ SAunc

φ a symbolic encoding
of the (potentially) uncertain input steams.

If a sound rewriting strategy R is used in the transformer computation, then

τφ,tmax
Σ ≼ γtra,tmax(τ sym,tmax

Σ) and ∀t ∈ T\{tmax}. τφ,tΣ ≾ τ sym,t
Σ

If a perfect rewriting strategy R is used in the transformer computation, then

αtra,tmax(τφ,tmax
Σ) ≡ τ sym,tmax

Σ and ∀t ∈ T\{tmax}. τφ,tΣ ⋍ τ sym,t
Σ .

Proof. Assume I = {s1, . . . , sn}, S = {sn+1, . . . , sn+m}. Let t ∈ T\{0, tmax} be an
instant.

In the first part of the proof we will show that the symbolic semantics of all defining
expressions of a LOLA specification coincide with the adapted LOLA expression
semantics from definition 4.10. In the second part we will then argue that the

165

5. Symbolic LOLA monitoring

symbolic transformers which are built on top of the symbolic expression semantics
are related to the concrete transformers as stated in the theorem.

Let C ∈ SV be a constraint set over V = {st−1, st, st+1 | s ∈ I ∪ S}, i.e. the set of
instant variables for t − 1, t and t + 1. Let C further not contain variables st for
s ∈ S, i.e. C may not restrict the intermediate streams from the current instant.

Let D be the set of models (see section 2.1.5) of C restricted to st−1
1 , . . . , st−1

n+m, st1,
. . . , stn, st+1

1 , . . . , st+1
n+m

D = JCK{st−1
1 ,...,st−1

n+m,s
t
1,...,s

t
n,s

t+1
1 ,...,st+1

n+m}

Thus, set D contains all valuations of input and intermediate streams at previous
and next instant and input streams at the current instant which are encoded by C.
As usual, for d ∈ D we denote with d(sti) the entry of sti in d.

We will now show that {c | c = i ◦ [E]φb,c,a, b ◦ i ◦ a ∈ D} is exactly the set of models
restricted to stn+1, . . . , s

t
n+m of C ∪ {st = JE(s)Ksym(t) | s ∈ S}.

Note, that due to the acyclicity of φ, the streams in S can be put into an order
sj1 , sj2 , . . . , sjm (with ji ∈ {n + 1, . . . , n + m}) s.t. for instant t the value of sjk is
not dependent on the value of any sjl with l > k.

Observe that, stj1 does only depend on the values of the previous and next instant
plus inputs from the current instant. Further the definition of JE(sj1)Ksym and
[E]φb,c,a are substantially equal such that

JC ∪ {stj1 = JE(sj1)Ksym(t)K{st
j1

} = {c(sj1) | c = i ◦ [E]φb,c,a, b ◦ i ◦ a ∈ D}.

I.e. the possible values for stj1 w.r.t. the symbolic constraints are exactly the values
for sj1 in all vectors c that satisfy c = i ◦ [E]φb,c,a.

By induction principle we can apply the same argumentation for all s ∈ S in the
given order and receive

JC ∪ {st = JE(s)Ksym(t) | s ∈ S}K{st|s∈S} = {c | c = i ◦ [E]φb,c,a, b ◦ i ◦ a ∈ D}.

For t = 0 and t = tmax we can do analogous reasoning with the expression semantics
[E]φ,▷c,a , [E]φ,◁c,b instead of [E]φb,c,a.

In the remainder of this proof we will use these finding in the following way: We will
argue that Σ together with the assumption instant variable is a set of constraints
(C) which restricts the possible value combinations for t − 1, t and t + 1. I.e. it
reflects a set D of possible value combinations, on which the concrete transformer
computation is also based. By the equalities above we can then conclude that the
symbolic transformer is equal to the concrete one for all st combinations. Then
we additionally restrict D and the possible combinations of current and subsequent
values in the symbolic transformer, which is done by incorporation of the subsequent

166

5.3. Symbolic monitoring

transformer. Since the values from the previous instant are not restricted in the
symbolic semantics and in the concrete transformers, the mentioned equality does
finally also hold for all combinations of st and st−1.

We start with t = tmax:

τφ,tmax
Σ (b) = {c | c = i ◦ [E]φ,◁b,c , i ∈ Σ(tmax), c(Λ) = true}

As argued, it follows from the equality above and the definition of αtra,t that

αtra,tmax(τφ,tmax
Σ) ≡{st,st−1|s∈S} {stmax = JE(s)Ksym(tmax) | s ∈ S} ∪ Σ ∪ {Λtmax}

Now we handle the case for t ∈ T\{tmax} For a symbolic transformer τ ∈ Stra
φ,t+1

observe that we have a ∈ γtra,t+1(τ)(c) if and only if

{st1 = c(s1), . . . , stn+m = c(sn+m), st+1
1 = a(s1), . . . , st+1

n+m = a(sn+m)} |= τ.

Thus adding τ to the set of symbolic constraints rules out all pairs of a, c which
are not compatible with τ . This implies by the same argumentation as for the
transformer at the trace end that

αtra,t(τφ,tΣ (γtra,t+1(τ))) ≡{st,st−1|s∈S} {st = JE(s)Ksym(t) | s ∈ S} ∪ Σ ∪ τ ∪ {Λt}.

Finally the application of a sound rewriting strategy RVφ,t

removes non-relevant
variables from the constraint set and preserves the soundness. This leads to

αtra,tmax(τφ,tmax
Σ) |= τ sym,tmax

Σ and αtra,t(τφ,tΣ (γtra,t+1(τ))) |= τ sym,t
Σ (τ).

If perfect rewriting strategies are used the |= relation of the subsequent and current
transformer becomes an ≡ relation.

By the Galois condition from definition 2.52 and the fact that γtra,t ◦ αtra,t = id the
theorem can finally be concluded from these propositions.

By lemma 4.17 we get the symbolic transformer semantics for LOLA specifications.

Definition 5.13 (Symbolic transformer semantics; based on [HKLS24]).
Let φ = (I, S,O,E) be a LOLA specification and Σ ∈ SAunc

φ be a symbolic
encoding of the (potentially) uncertain input steams.

The symbolic transformer semantics of φ is given as

JφKstr
Σ : Stra

φ,0 × · · · × Stra
φ,tmax

JφKstr
Σ = µ(T 7→ (τ sym,0

Σ (T (1)), . . . , τ sym,tmax−1
Σ (T (tmax)), τ sym,tmax

Σ))

167

5. Symbolic LOLA monitoring

Note that in this context the definition of the τ sym,t
Σ is monotonic in terms of their

subsequent transformer. Thus by lemma 4.17 the symbolic transformer semantics
above is a sound or perfect abstraction of the concrete one, depending on the chosen
rewriting strategy.

Note also that the definition of the symbolic transformer semantics includes the
symbolic encoding of the full input monitoring stream tuples Σ. Due to the as-
sumption that uncertain input readings do not relate events from different instants
(section 4.3.2), this is actually not necessary. This is because only the input stream
events of the current, previous, and next instant can be referenced by the constraints
in the symbolic transformer. Since in our monitoring approach the inputs of the next
instant have not yet been received, and those of the previous instant are passed to
the transformer as argument, it is sufficient to add only the symbolic encoding of
the inputs at the current instant to the symbolic transformer instead of the full Σ.

Example

For a first small example (a more sophisticated one follows in section 5.3.4) consider
the LOLA specification φ for the LTL formula F(Pq) given in figure 5.6.

1 input q: B
2
3 FPq := q[-1|false] ∨ FPq [+1|false]
4 output FPq

Figure 5.6.: Example LOLA specification equivalent to LTL property F(Pq).

Let T = {0, . . . , 100} be the instant domain. The initial symbolic transformer se-
mantics JφKstr

∅ for φ without inputs available (i.e. Σ = ∅) and a perfect rewriting
strategy R can be determined from back to front as follows (note that we skip the
Λ constraint as the specification has no assumption).

The transformer JφKstr
∅ (100) = τ sym,100

∅ is given as

τ sym,100
∅ = RVφ,100

({FPq100 = q99 ∨ false}) = {FPq100 = q99}

Based on this, the transformer for t = 99, τ99 := JφKstr
∅ (99) = τ sym,99

∅ (τ sym,100
∅) can

be determined as

τ99 = RVφ,99
({FPq99 = q98 ∨ FPq100,FPq100 = q99}) = {FPq99 = q98 ∨ q99}

and τ98 := JφKstr
∅ (98) = τ sym,98

∅ (τ99) as

τ98 = RVφ,98
({FPq98 = q97 ∨ FPq99,FPq99 = q98 ∨ q99}) = {(q97 ∨ q98)→ FPq98}.

We can then apply the same procedure for t = 97 and get:

168

5.3. Symbolic monitoring

τ97 = RVφ,97
({FPq97 = q96 ∨ FPq98, (q97 ∨ q98)→ FPq98})={(q96 ∨ q97)→ FPq97}

Note that the transformers for instants 97 and 98 are equal modulo renaming. By
lemma 4.18 we thus have that for all k ∈ {1, . . . , 97}

JφKstr
∅ (k) = {(qk−1 ∨ qk)→ FPqk}.

The first symbolic transformer for t = 0 is further given as

JφKstr
∅ (0) = RVφ,0

({FPq0 = false ∨ FPq1, (q0 ∨ q1)→ FPq1}) = {q0 → FPq0}

This example illustrates the concept of symbolic transformers and the correspond-
ing symbolic transformer semantics. Note that the symbolic transformers basically
reflect the gist of the LOLA specification with respect to the previous and current
instants: FPq is true at the current instant, if q is true at the current or previous
instant (if existent) and otherwise unknown. In the monitoring algorithm from fig-
ure 4.8 (which will in detail be discussed for the symbolic setting in the subsequent
sections) we can use this information for perfect recurrent monitoring.

Note, that even in this simple example, where the amount of reasoning about the
future is rather limited, the symbolic approach surpasses the capabilities of the
traditional LOLA monitor from figure 2.9. Imagine the monitor receives the input
that q is true at instant 0. The traditional LOLA monitoring algorithm would not
be able to conclude that stream FPq is true at this instant. It would just add the
equation Fpq0 = (false ∨ Fpq1) to its internally maintained equations and wait for
the next instant to resolve Fpq1. The symbolic transformer semantics on the other
hand directly contains the information q0 → Fpq0 in the symbolic transformer for
the first instant t = 0.

5.3.2. Symbolic transformer application

The presented symbolic semantics builds the core of the symbolic recurrent moni-
toring. However, before we discuss this algorithm in detail, there is one more aspect
that needs to be addressed. That is, how in the symbolic domain a transformer can
be applied to a given configuration set.

In fact, it is sufficient to simply unify the symbolic constraint sets representing
transformers and configurations, and then apply a rewriting strategy that removes
superfluous instant variables not belonging to the current instant. All stream con-
figurations of the current instant that model the unified constraint set are obviously
the results of the transformer application. This is simply because they adhere to the
constraints of the transformer and the configuration set it is applied to. Formally
for a LOLA specification φ and t ∈ T we have

appsym : Stra,A
φ,t × Sctx,A

φ,t−1 → Sctx,A
φ,t

appsym(τ,A) = RVφ,t(τ ∪A)

169

5. Symbolic LOLA monitoring

where R is a perfect rewriting strategy for corresponding algebra A. Clearly, for a
sound rewriting strategy the resulting constraint set is an over-approximation.

For example consider a specification with a single stream s of type R and the trans-
former for instant t ∈ T, τ(st−1) = {(st−1 + 1)}, which is symbolically represented
by {st = st−1 + 1}. If we apply the transformer to the uncertain configuration
{(5), (6), (7)}, expressing that s is either 5, 6 or 7, which is symbolically encoded as
{(st−1 = 5) ∨ (st−1 = 6) ∨ (st−1 = 7)}, we get for a perfect rewriting strategy R

R{st}({st = st−1 + 1, st−1 = 5 ∨ st−1 = 6 ∨ st−1 = 7}) = {st = 6 ∨ st = 7 ∨ st = 8}

This matches exactly the configurations {(6), (7), (8)} which result from the appli-
cation in the concrete.

5.3.3. Symbolic monitoring algorithm

We can use the symbolic semantics JφKstr
Σ and application function appsym in the

algorithm from figure 4.8 to receive a symbolic recurrent LOLA monitor. The adap-
tion of the algorithm can be found in figure 5.7.

1 Compute JφKstr
∅ ;

2 s← ∅;
3 foreach t ∈ T do
4 Read symbolic input encoding for t, Σt;
5 τ ← τ sym,t

Σt (JφKstr
∅ (t+ 1));

6 s← appsym(τ, s);
7 Output s;

Figure 5.7.: Symbolic instantiation of the monitoring algorithm from figure 4.8.

By corollary 4.19 the algorithm yields a sound or perfect recurrent LOLA monitor
(depending on the rewriting strategy), which we conclude in corollary 5.14.

Corollary 5.14.
The algorithm from figure 5.7 for symbolic transformer semantics JφKstr

Σ yields

• a sound recurrent LOLA monitor, if a sound rewriting strategy is available
for the corresponding algebra and

• a perfect recurrent LOLA monitor, if a perfect rewriting strategy is avail-
able for the corresponding algebra.

The symbolic outputs of the monitor can be interpreted by use of an SMT solver
which may reveal information about possible events and their combinations.

170

5.3. Symbolic monitoring

Concerning trace-length-independence of the monitor (definition 2.13) it has already
been outlined that trace-length-independent monitoring can be achieved if the trans-
formers and states (line 5,6 in the algorithm) can be computed in constant time and
(related to this) the transformers and monitor states can be stored in constant mem-
ory. Additionally we demanded that the initial semantics is efficiently computable
due to appearance of a repeating transformer. This is possible if the utilized rewrit-
ing strategy is strict-constant, as in this case a repeating element in the computation
of the initial symbolic semantics is guaranteed and it has finite size. Yet, it is not the
case for a weak-constant rewriting strategy which may still yield an infinite number
of different symbolic transformers and thus no repeating transformer may be found.
However, if the specification does not contain future offsets and the monitoring does
either not involve assumptions or uncertainty (which makes the assumptions useless)
the computation of the initial semantics can totally be skipped (see section 4.4.3). In
this case a weak-constant rewriting strategy also guarantees a pseudo-constant size
of the transformer and configuration set abstractions used in the monitoring algo-
rithm. Still the involved constants (e.g. numbers) in these constraint sets can grow
arbitrarily large, yet in a practical setting we assume storage and computation of
these constants to be constant, which is reasonable as even huge numbers can be en-
coded with relatively small memory requirements. Thus, without future reasoning,
a weak-constant rewriting strategy is sufficient for trace-length-independence.

Further, if a weak-constant rewriting strategy is utilized for a specification which
depends on future estimation and a repeating element cannot be found during com-
putation of the initial fixed point, it is also possible to use a widening strategy
which enforces such a repeating element. This however comes at the cost of an over-
approximation and implies a sound but imperfect monitor. For the linear algebra
and linear arithmetic LOLA fragment a widening strategy is e.g. the one proposed
in [CH78]. The idea consists in removing those constraints from the set which do
not stabilize or adjusting their coefficients s.t. they are over-approximative. This
way the constraint set either repeats or looses at least one constraint per iteration
finally leading to an empty constraint set.

Altogether we can summarize the insights from above in the following corollary.

Corollary 5.15.
The symbolic LOLA monitoring algorithm from figure 5.7 yields

• a trace-length-independent recurrent LOLA monitor, if a strict-constant
rewriting strategy or a weak-constant rewriting strategy together with
widening is available for the corresponding algebra and

• a trace-length-independent recurrent LOLA monitor for specifications
without future, if a weak-constant rewriting strategy is available for the
corresponding algebra and no assumptions or uncertainties are present.

171

5. Symbolic LOLA monitoring

The results from this corollary are also summarized in the following table, which
visualizes for which specifications and rewriting strategies trace-length-independent
recurrent monitoring is possible (✓) and for which it is not (✗).

Specification without future with
+Ass. +Unc. +Ass. +Unc. future

Strict-const. rewriting ✓ ✓ ✓ ✓ ✓

Weak-const. rew. & widening ✓ ✓ ✓ ✓ ✓

Weak-const. rewriting ✓ ✓ ✓ ✗ ✗

Corollary 5.15 together with the results from section 5.2 finally implies the following
findings on specific LOLA fragments and logics:

• The symbolic monitoring approach is trace-length-independent and perfect for
the boolean LOLA fragment LolaB with uncertainty and assumptions and thus
also for LTL specifications translated to LOLA.

• The symbolic monitoring approach is trace-length-independent and perfect for
the linear algebra LOLA fragment LolaLA restricted to past-only specifications
with either uncertainty or assumptions.

• The symbolic monitoring approach is trace-length-independent and sound for
the linear algebra and linear arithmetic LOLA fragments LolaLA and LolaLRA
with uncertainty and assumptions and thus also for M(I)TL and STL specifi-
cations translated to LOLA1.

In the next section the introduced symbolic, recurrent monitoring approach is pre-
sented again in its entirety by means of an example.

5.3.4. Overall example

As final example for the symbolic LOLA monitoring algorithm we consider the
specification φ = (I, S,O,E) depicted in figure 5.8, which shows similarities to the
one from the introduction chapter. As in chapter 1, the specification checks whether
an input stream vel (for velocity), which indicates the speed of a vehicle, e.g. a
robot, exceeds a certain value (3). Stream err is true if vel is greater or equal 3
at the current or any subsequent instant. Stream diff determines the difference
between the current and last speed. The specification also contains an assumption,
encoded in stream Λ, which rules that the value of diff between two steps (i.e. the
second derivation of stream vel) does not exceed 1 in absolute value.

1Note that depending on the chosen translation from section 3.4.2, the specifications may contain
ite operators which are actually not allowed in linear real arithmetic but can be handled there
by introducing helper constraints (see [KLS22a]).

172

5.3. Symbolic monitoring

1 input vel: R≥0

2
3 def diff = vel[now] - vel [-1|0]
4 def err = err [+1|false] ∨ (vel[now] ≥ 3)
5 output err
6
7 def Λ = |diff[now] - diff [-1|0]| ≤ 1

Figure 5.8.: Example LOLA specification with future references.

In difference to the specification from chapter 1 the speed limit was adjusted from
5 to 3 to make the fixed point convergence faster for sake of the full presentation
of the example. Furthermore in this example stream err is true if an error occurs
at the current or a future trace position. In the example from the introduction it
was true if an error occurred at the current or a past position. This adjustment
was made to illustrate the handling of future offsets by the algorithm, but the
kind of anticipatory reasoning in both examples is comparable. As time domain we
assume T = {0, . . . , 99}, representing a time domain of non-trivial size. For better
readability we will also abbreviate the involved streams in the constraint sets by
their initial letters (i.e. I = {v}, S = {d, e,Λ}).

The example is in the linear arithmetic LOLA fragment (though we do not directly
allow the absolute value operator there, the corresponding constraints in this ex-
ample could be expressed by a conjunction of two inequalities). For the monitoring
we will apply the perfect rewriting strategy from figure 5.4 (which will lead to a
repeating symbolic transformer in this concrete example). To optimize readability,
the particular rewritings are not performed step by step, but simplified versions of
the resulting constraint sets are given and their correctness is argued.

Computation of the initial symbolic transformer semantics

Following the algorithm from figure 5.7 we start with the computation of JφKstr
∅ . In

this example we abbreviate the transformers of the initial semantics as τ0, . . . , τ99.
For τ99 = τ sym,99

∅ we instantiate the specification symbolically for the last instant
and receive

τ99 ≡ RVφ,99

LRA ({s99 = JE(s)Ksym(99) | s ∈ S} ∪ ∅ ∪ {Λ99})

≡ RVφ,99

LRA ({d99 = v99 − v98, e99 = (v99 ≥ 3),Λ99 = (|d99 − d98| ≤ 1),Λ99})

≡ {d99 = v99 − v98, e99 = (v99 ≥ 3),Λ99 = (|d99 − d98| ≤ 1),Λ99}.

Note that at this first step no non-relevant variables are contained in the constraint
set and the application of the rewriting RVφ,99

LRA has no effect. We can proceed with

173

5. Symbolic LOLA monitoring

computation of τ98 = τ sym,98
∅ (τ99). After unrolling the specification symbolically we

get the symbolic transformer

τ98 ≡ RVφ,98

LRA ({s98 = JE(s)Ksym(98) | s ∈ S} ∪ ∅ ∪ {Λ98} ∪ τ99)

≡ RVφ,98

LRA ({d99 = v99 − v98, e99 = (v99 ≥ 3),Λ99 = (|d99 − d98| ≤ 1),Λ99,
d98 = v98 − v97, e98 = e99 ∨ (v98 ≥ 3),Λ98 = (|d98 − d97| ≤ 1),Λ98}).

Now we can apply the rewriting strategy and eliminate all instant variables for
instant 99 from these constraints. This leads to a symbolic transformer equivalent
to the constraint set

τ98 ≡ {d98 = v98 − v97, ((v98 + d98 ≥ 4) ∨ (v98 ≥ 3))→ e98,
Λ98 = (|d98 − d97| ≤ 1),Λ98}.

The sub-constraint (v98 + d98 ≥ 4) results from the rewriting of (|d99 − d98| ≤ 1)
which (together with other constraints) is equal to (|v99− v98− d98| ≤ 1). It follows
from this constraint that (v98 + d98 ≥ 4) implies v99 ≥ 3 and consequently e99 and
e98. Thus, the rewriting delivers us the constraint ((v98+d98 ≥ 4)∨(v98 ≥ 3))→ e98.
As mentioned, the rewriting strategy from figure 5.4 would produce an equivalent
constraint set as the one above in distributive normal form, but for the sake of the
example we use the simplified version here.

The initial fixed point computation then proceeds in a similar fashion and yields

τ97 ≡ {d97 = v97 − v96, ((v97 + 2d97 ≥ 6) ∨ (v97 + d97 ≥ 4) ∨ (v97 ≥ 3))→ e97,
Λ97 = (|d97 − d96| ≤ 1),Λ97}

and

τ96 ≡ {d96 = v96 − v95,
((v96 + 3d96 ≥ 9) ∨ (v96 + 2d96 ≥ 6) ∨ (v96 + d96 ≥ 4) ∨ (v96 ≥ 3))→ e96,
Λ96 = (|d96 − d95| ≤ 1),Λ96}.

After these four computation steps a repeating transformer entry is found, because

τ96 ≡ τ97[97\96]

where [m\n] represents a renaming of all instant variables in the symbolic trans-
former from instant m to n and m − 1 to n − 1. This is because the constraint
(v96 + 3d96 ≥ 9) is already implied by (v96 + 2d96 ≥ 6) for all non-negative v96 (note
that vel is from R≥0). Thus we have

τk ≡ τ97[97\k]

for all k ∈ {1, 2, . . . , 96}, and so JφKstr
∅ is determined except for the first transformer

entry, which is based on default values for -1 offsets and thus different. As mentioned,

174

5.3. Symbolic monitoring

the first transformer in the initial semantics is actually never used in the monitoring
algorithm and its determination can therefore be skipped.

Symbolic Monitoring

Now the actual online monitoring of the specification in lines 3 to 7 of figure 5.7
starts. Assume the monitor receives the uncertain input trace

⟨0, 1, [2.5, 3], . . . ⟩

letter by letter, where [2.5, 3] denotes the uncertain interval between 2.5 and 3. We
go through the first three monitoring steps.

The first input reading can symbolically be encoded as Σ0 = {v0 = 0}. In line 5 the
monitoring algorithm proceeds with the recomputation of the symbolic transformer
of the current instant, τ = τ sym,0

{v0=0}(JφKstr
∅ (1)) = τ sym,0

{v0=0}(τ1).

τ ≡ RVφ,0

LRA({s0 = JE(s)Ksym(0) | s ∈ S} ∪ {v0 = 0} ∪ {Λ0} ∪ τ1)

≡ RVφ,0

LRA({d0 = v0, e0 = e1 ∨ (v0 ≥ 3),Λ0 = (|d0| ≤ 1), v0 = 0,Λ0, d1 = v1 − v0,
((v1 + 2d1 ≥ 6) ∨ (v1 + d1 ≥ 4) ∨ (v1 ≥ 3))→ e1,Λ1 = (|d1 − d0| ≤ 1),Λ1})

≡ {v0 = 0, d0 = 0,Λ0}

In line 6, the monitor then applies the transformer to the current state s (which is
initially ∅) which leads to the monitoring state

s = appsym(τ, s) ≡ RVφ,0
LRA(τ) ≡ {v0 = 0, d0 = 0,Λ0}.

This state is used as monitor output. As mentioned, it may further be interpreted
with help of an SMT solver, e.g. to receive the set of possible values for stream err.
In our case this would yield e0 ∈ {true, false}, as both values are conformant with
the computed constraint set, which contains no constraints about e0.

The monitor then proceeds in line 4 with receiving the second input value of stream
vel which is 1, i.e. Σ1 = {v1 = 1} (recall that the transformer computation only
requires the input readings of the current events). The transformer τ = τ sym,1

{v1=1}(τ2)
can be determined as

175

5. Symbolic LOLA monitoring

τ ≡ RVφ,1

LRA({s1 = JE(s)Ksym(1) | s ∈ S} ∪ {v1 = 1} ∪ {Λ1} ∪ τ2)

≡ RVφ,1

LRA({d1 = v1 − v0, e1 = e2 ∨ (v1 ≥ 3),Λ1 = (|d1 − d0| ≤ 1), v1 = 1,Λ1,
d2 = v2 − v1, ((v2 + 2d2 ≥ 6) ∨ (v2 + d2 ≥ 4) ∨ (v2 ≥ 3))→ e2,
Λ2 = (|d2 − d1| ≤ 1),Λ2})

≡ {v1 = 1, d1 = 1− v0, ((v1 + 2d1 ≥ 6) ∨ (v1 + d1 ≥ 4) ∨ (v1 ≥ 3))→ e1,
|d1 − d0| ≤ 1,Λ1}

≡ {v1 = 1, d1 = 1− v0, ((3− 2v0 ≥ 6) ∨ (2− v0 ≥ 4))→ e1, |d1 − d0| ≤ 1,Λ1}

If we apply this transformer by adding the constraints {v0 = 0, d0 = 0,Λ0} we get
the new monitor state

s = appsym(τ, s) ≡ RVφ,1
LRA(τ ∪ s) ≡ {v1 = 1, d1 = 1,Λ1}.

which again yields e1 ∈ {true, false} as output for stream err.

If we finally receive the interval [2.5, 3] as input for stream vel at instant 2, sym-
bolically expressed as Σ2 = {2.5 ≤ v2 ≤ 3}, we compute the symbolic transformer
τ = τ sym,2

{2.5≤v2≤3}(τ3) as

τ ≡ RVφ,2

LRA({s2 = JE(s)Ksym(2) | s ∈ S} ∪ {2.5 ≤ v2 ≤ 3} ∪ {Λ2} ∪ τ3)

≡ RVφ,2

LRA({d2 = v2 − v1, e2 = e3 ∨ (v2 ≥ 3),Λ2 = (|d2 − d1| ≤ 1), 2.5 ≤ v2 ≤ 3
Λ2, d3 = v3 − v2, ((v3 + 2d3 ≥ 6) ∨ (v3 + d3 ≥ 4) ∨ (v3 ≥ 3))→ e3,
Λ3 = (|d3 − d2| ≤ 1),Λ3})

≡ {2.5 ≤ v2 ≤ 3, d2 = v2 − v1, |d2 − d1| ≤ 1,Λ2,
((3v2 − 2v1 ≥ 6) ∨ (2v2 − v1 ≥ 4) ∨ (v2 = 3))→ e2}

which together with the previous monitoring state {v1 = 1, d1 = 1,Λ1} leads to

s = appsym(τ, s) ≡ RVφ,2
LRA(T ∪ s) ≡ {2.5 ≤ v2 ≤ 3, d2 = v2 − 1, e2,Λ2}.

This output is anticipatory as e2 = true can be concluded even though v2 is not nec-
essarily greater or equal 3. The cause for this is that in the transformer constraints,
2v2 − v1 ≥ 4 implies e2, which together with v1 = 1 is equal to (2v2 − 1 ≥ 4). The
constraint (2v2 − 1 ≥ 4) ≡ (v2 ≥ 2.5) however is implied by 2.5 ≤ v2 ≤ 3.

Intuitively the reason that we can conclude this output is the following. At the
current instant stream diff lies between 1.5 and 2. According to the assumption,
stream diff at the next instant (d3) must be in the interval between 0.5 and 3 and
v3 must consequently be at least 3. This is because d3 = v3 − v2, i.e. v3 = v2 + d3

176

5.3. Symbolic monitoring

and with 2.5 ≤ v2 ≤ 3 and 0.5 ≤ d3 ≤ 2.5 we have v3 ≥ 3. So the actual error
condition vel ≥ 3 is satisfied at instant 3.

Altogether this example shows how the symbolic recurrent monitoring approach can
be used to perfectly monitor LOLA specifications without the unrolling of the full
specification. The following subsection contains some final remarks on the presented
symbolic monitoring technique.

5.3.5. Remarks

The symbolic recurrent LOLA monitoring algorithm presented in this chapter shows
parallels to the traditional anticipatory LTL3 monitoring approach, described in
section 2.2.2 and may be considered as a generalization of it. The analogy is the
following.

The LTL3 monitor operates on states, which encode sub-formulas of the original
LTL formula that still have to be satisfied. As such, these states can be seen as
concise encodings of the trace which has been received so far with respect to the
information which is relevant for the specification. The outputs of the monitor rely
on an emptiness per state check (done during monitor synthesis) which determines
if acceptance from the current state, i.e. sub-formulas, in the negated and non-
negated Büchi automaton is still possible at all by considering all possible future
input extensions.

The recurrent monitoring approach presented in this chapter also develops constraint
sets (the monitor states) of finite size, capturing all information from the received
inputs with respect to the specification. These monitoring states encode all stream
value combinations that are possible under the previously received inputs. Further-
more constraint sets about the future are determined (before monitoring) to give
information about possible values of future references by considering all possible
future inputs. Unlike the LTL3 monitor however, the presented recurrent monitor-
ing algorithm is focused on monitoring of pointwise properties, like the past LTL
monitor from section 2.2.2. It can thus be considered as a combination of both
techniques.

Altogether, this chapter provides a theory about symbolic synchronous monitoring
of finite fixed-size traces under instant-immanent uncertainty, assumptions and with
consideration of the future. This is because, as discussed in chapter 3, LOLA can
serve as a general formalism for pointwise properties over a discrete time domain.
Corollary 5.14 shows that if for the algebra which encodes the specification (includ-
ing assumptions) and uncertain input readings, there is a perfect, strict-constant
rewriting strategy then also a perfect recurrent monitor exists and how it can be
constructed. The same holds for sound monitoring which requires a sound, strict-
constant rewriting strategy or a weak-constant rewriting strategy together with a
widening technique. If the specification does only contain past references and either

177

5. Symbolic LOLA monitoring

no assumptions or no uncertainty is present, also a weak-constant rewriting strategy
is sufficient. As a consequence the problem of building a recurrent monitor gets
reduced to finding an appropriate rewriting strategy.

As for several algebras there is no strict-constant, perfect rewriting (most promi-
nently linear arithmetic), these sound rewriting strategies also play an important
role when it comes to building such monitors in practice. We defined sound rewrit-
ing strategies generally as those which over-approximate the actual configurations of
the involved variables. The quality of these strategies however, i.e. how many addi-
tional value-combinations are introduced by rewriting, also plays a significant role.
Therefore it may make sense to investigate appropriate quality measures on sound
rewriting strategies and likewise widening operators, which we leave for future work
here. However, note that such a measure would also be useful to build a cascade
of more and more coarse rewriting and widening strategies which are applied after
each other until a stabilizing approximation of the initial semantics is found.

Also some perfect, strict-constant rewriting strategies, e.g. the one for the boolean
fragment in section 5.2 might suffer from efficiency issues in practice. This is because
their runtime and resulting constraint set is in the worst case exponential in the
number of streams in the specification. For practical application it might thus in
general make sense to use sound (i.e. over-approximating) strategies with run time
benefits, in case the computation of the initial semantics does not terminate in
reasonable time.

Further, it seems natural to ask whether the presented approach can be extended
to infinite instant domains and to stream runtime verification languages other than
LOLA. This question is also left for future work here. Yet, the definition of a fixed
point based monitoring semantics as done in section 4.2 as basis of the algorithm can
be considered a first step towards support of other SRV formalisms (c.f. [Sch24]), in-
cluding those with richer instant domains. Also, the recurrent monitoring approach
discussed in this chapter does not necessitate a full unrolling of the specification
along the trace, as the computation of the initial semantics terminates as soon as
equivalent constraint sets for two transformers are recognized. This property princi-
pally makes the theory suitable for an extension to formalisms over instant domains
with an unbounded number of elements. One major problem however remains for
infinite time domains (i.e. those without a maximal timestamp): The computation
of the initial semantics as presented in this thesis starts at the end of the trace
with the default values of future offsets. In case of infinite instant domains, how-
ever, there is no end of the trace. Therefore, an adapted strategy for computing
the initial semantics is required. How this can be done is highly dependent on the
definition of the concrete infinite semantics.

178

5.4. Summary

5.4. Summary

In this and the previous chapter, recurrent monitoring of LOLA specifications under
uncertainties and assumptions has been studied. While the previous chapter intro-
duced a generic theory based on abstract interpretation, this chapter dealt with
a concrete, symbolic monitoring approach based on this theory. As outlined, the
presented symbolic monitoring algorithm can also serve as a general framework for
sound and perfect synchronous monitoring over discrete time domains, since it essen-
tially reduces the monitoring problem to finding perfect or sound rewriting strategies
for the induced algebra of the LOLA specification.

In the following section, we discuss a prototypical implementation of the symbolic
recurrent monitoring approach for linear arithmetic specifications. The implemen-
tation is evaluated in three practical application scenarios, and its practicality and
weaknesses are examined.

179

6
Application and evaluation

In this chapter, we will discuss a proof-of-concept implementation of the symbolic
LOLA monitoring approach that was theoretically discussed in the previous chapter.
The goal is to provide some first insights into the capabilities of symbolic LOLA
monitoring, to show where the potential shortcomings lie, and for which kinds of
applications the approach may be suitable.

The tool which is presented and evaluated in this chapter has been developed at
the Institute for Software Engineering and Programming Languages of University of
Lübeck alongside the publications [KLS22a, HKLS24].

The chapter begins with a brief overview of the implementations used. This covers
two variants of the symbolic algorithm from this thesis and another simple LOLA
backend for comparison. In the second part the results of the tool’s usage in three
different case studies are presented and discussed.

6.1. Implementation

The tool we use for the evaluation of the previously presented monitoring approach
is written in Scala1 and provides three backends for the evaluation of LOLA spec-
ifications. As mentioned, two of these backends are symbolic engines following the
approach from the previous chapter. The third backend follows a different monitor-
ing strategy and will be used for comparison and grading of the symbolic approach.
Specifically the backends are:

• Interval backend: Past-only interval backend with uncertainties. This imple-
mentation basically follows the standard LOLA monitoring algorithm from

1https://www.scala-lang.org/

181

https://www.scala-lang.org/

6. Application and evaluation

figure 2.9 restricted to past-only specifications, but also supports the pres-
ence of uncertainties (yet no assumptions). Thereby uncertainties can be fully
unknown events or numeric intervals. For the computations, the backend
utilizes simple, over-approximating set and interval semantics comparable to
[LSS+19]. That is, instead of concrete stream events it computes sets (for
boolean streams) and intervals (for real-valued streams) which contain and
possibly over-approximate all potential event values. This implementation is
used for qualitative and quantitative comparison with the symbolic approach
which is in difference to this backend able to encode relations among various
stream events and to support assumptions.

• Past-only symbolic backend: Sound, past-only symbolic backend with uncer-
tainties and assumptions. This symbolic implementation from [KLS22a] fol-
lows in principle the approach discussed in this thesis but is not anticipatory.
This includes that it only considers an unrolling of the assumption (if avail-
able) up to the current instant but not for the future. For the linear arithmetic
LOLA fragment it uses a sound but imperfect weak-constant rewriting strat-
egy which is an adaption of the one from figure 5.5. Due to these restrictions
the approach can use an optimized internal representation of the symbolic con-
straints. Instead of a single constraint set, it organizes the maintained symbolic
constraints in a map data structure where each stream identifier is mapped
to a corresponding symbolic expression describing its current value. These
expressions are then used for computation of the subsequent symbolic map
entries. Additional constraints that might arise during rewriting are appended
to the symbolic representation of the assumption stream. The outlined tech-
nique turns out to be way faster than the plain symbolic approach. However,
the sound but imperfect rewriting strategy also makes it less precise. Fur-
thermore the approach, as it is implemented in this backend, cannot easily be
extended to support future reasoning, as the union of the current monitoring
state and the computed symbolic transformer introduces cyclic dependencies
among instant variables. Also the (perfect) rewriting strategies as proposed
in the previous chapter cannot directly be applied to this approach, as they
do not yield a single symbolic constraint for every stream. Nevertheless, this
backend provides insight into the capabilities of an optimized version of the
symbolic monitoring approach for past-only reasoning. The incorporation of
these optimizations in a perfect backend with future reasoning is left for future
work. As engine for symbolic reasoning the backend uses Z3 [dMB08] with its
Java bindings2.

• Full symbolic backend: Perfect past and future symbolic backend with uncer-
tainties and assumptions. This symbolic backend is the direct implementation
of the full symbolic approach from section 5.3 with uncertainties, assump-
tions and future reasoning. As symbolic engine this approach also utilizes Z3.

2https://github.com/Z3Prover/Z3

182

https://github.com/Z3Prover/Z3

6.2. Evaluation

For the computation of the symbolic transformers it uses quantifier elimina-
tion as rewriting strategy to achieve perfectness. The backend also contains a
widening technique in case the perfect rewriting does not lead to a repeating
transformer or the monitor state gets too large. However, in the case studies
from this evaluation where this backend was used, the application of widening
was not necessary. In general this implementation follows quite strictly the
approach outlined in the previous chapter and contains only a couple of ob-
vious optimizations. Thus, the evaluation of this backend reflects directly the
practicality of the basic symbolic monitoring approach. With further complex
engineering and application-specific optimizations, the performance of the tool
can probably be increased significantly.

All three backends share a common ANTLR3-based frontend which parses LOLA
specifications into an abstract syntax tree (AST), as well as a common input/output
handling and logging facility. This architecture enables an easy and precise com-
parison of the different monitoring approaches. The LOLA specification format is a
direct realization of definition 2.36. Supported data types are booleans and floating
point numbers (as substitution for reals) with the common operations (&&, ||, !, +,
* . . .). There is no restriction to a special LOLA fragment (like linear arithmetic)
per se, the two symbolic backends however are restricted to linear arithmetic or sub-
sets and refuse execution if the input specification does not belong to the supported
fragment.

Besides the standard LOLA operators the tool also supports a macro syntax for the
quick definition of a number of similar streams. These macros are unfolded during
the monitor synthesis. Likewise the specification is flattened – as required by the
symbolic monitoring algorithm – such that only -1 and +1 offsets are contained in
the final specification. For each output stream the tool casts (independent of the
chosen backend) the outputs true, false and ? in case of boolean streams and
numeric values or intervals in case of real-valued streams at each instant.

6.2. Evaluation

With regard to the evaluation of the symbolic monitoring approach from the previous
chapter, we concentrate on the following two aspects of interest.

• How does the symbolic algorithm compare to other existing monitoring ap-
proaches under uncertainty and assumptions? This includes a qualitative
comparison, i.e. under which circumstances which approach provides more ac-
curate results, and a quantitative comparison in terms of runtime and memory
required for monitor execution, but also for monitor synthesis.

3https://www.antlr.org/

183

https://www.antlr.org/

6. Application and evaluation

• What is the qualitative and quantitative difference when uncertainties and
assumptions are present or not?

For an exhaustive evaluation of the symbolic approach, it would be necessary to
check all these aspects in different combinations for different LOLA fragments and
for different synthetic and realistic scenarios. Even then, however, the problem arises
that the implementation of all backends presented here is of prototypical nature and
leaves potential for optimization in some places. Therefore, the implementation
cannot demonstrate the maximum efficiency of the symbolic approach per se. Con-
sequently, the following is not intended to be a complete evaluation of the symbolic
monitoring approach or tool, but rather a presentation of three case studies that
provide first insights into the general practicality and potential pitfalls of symbolic
monitoring.

6.2.1. Case studies and evaluation results

The three presented case studies restrict to the linear arithmetic fragment, as a lot of
properties with practical relevance can be formulated in there. In terms of quantita-
tive analysis we only measure the runtime of the monitor per instant and the amount
of time required for synthesis (i.e. computation of the initial semantics). Memory
consumption is hard to measure for programs running on the Java virtual machine,
mainly because garbage collection is subject to random influences. For all case stud-
ies, however, it can be confirmed that the memory consumption did not continuously
grow during the monitoring process and is thus trace-length-independent.

For the comparison with other tools we restrict to the mentioned interval backend.
This is mainly because no other implementations which perform anticipatory LOLA
monitoring under uncertainties and assumptions for the linear arithmetic LOLA
fragment exist. The comparison to similar tools, which would require a transfor-
mation of the specification to another formalism, is little meaningful. Especially
because these translations are often not even possible, when other formalisms are
less expressive than linear arithmetic LOLA. Besides, interval computation can be
considered as standard imperfect monitoring approach for handling uncertainty in
the linear arithmetic fragment. However, since the interval approach is limited to
past specifications, we can only conduct the comparison for the first case study,
which does not involve future reasoning.

All experiments presented in the following are taken from the publications [KLS22a,
HKLS24], but extended in some points (which is noted in the text). For the mea-
surements in this thesis, they were rerun on a Linux machine (kernel version 6.5.3)
with an Intel i7-8550U CPU running at 1.80 GHz base frequency and with 8 GB of
RAM. All measured values can be found in appendix B.

184

6.2. Evaluation

Case Study 1. ECG signal analysis: Past-only monitoring

The first case study (also presented in [KLS22a]) is the analysis of an electrocardio-
gram (ECG) signal of the human heartbeat by means of a LOLA monitor. The spec-
ification is a simplified version of the one from [GS21a]. The input data (also taken
and adapted from [GS21a]) consists of a timed sequence of ECG measurements. The
LOLA specification is used to detect heartbeats in the trace, i.e. locations where the
value of the smoothed input signal surpasses a certain threshold and is the greatest
of the 100 surrounding data values. Therefore it has a boolean output stream which
is true if the peak of a heartbeat is present at the current instant. To determine the
values of this stream, the specification first smooths the input stream by applying
a sliding average filter of size 15. Further the technique from section 4.4 is applied
to mimic k-offset monitoring with k = 50, s.t. the whole window around a certain
position is available when the monitoring output for a particular instant is cast.
This way no future reasoning is necessary for the monitoring task. In particular the
value of the last 100 (smoothed) input values is maintained in 100 streams. In addi-
tional streams it is checked if the 50th last value is greater than all others. This can
effectively be specified by usage of the aforementioned macro syntax. The sliding
average mentioned above is implemented in such a way that a stream convoluted
aggregates the 15 last values by adding the current input value and subtracting the
15th last input again, i.e.

convolved = convolved [-1|0] + squared [now] - squared [-15|0]

where input stream squared denotes the (squared) input ECG signal. For some
of the following experiments, also an assumption was included in the specification,
stipulating that two heartbeats must be a certain number of steps apart.

For the qualitative analysis of the approach the capabilities of the past-only symbolic
backend, which is specialized for this kind of specification, were compared to those
of the interval backend. As input, a preprocessed ECG signal (the value was squared
which could not be done by the LOLA specification since it wouldn’t have been in
the linear arithmetic fragment then) with 14 heartbeats was used where uncertainty
was manually injected. For the first group of experiments noise was added to the
trace. A certain percentage of input values was replaced by an interval of a given
percent range around the actual value. For further experiments five gaps (bursts)
of size 6 to 19 events at random positions have been inserted into the trace where
the input values were changed to completely unknown.

First, the specification has been evaluated with both approaches for a trace where
20% of the values were exchanged by ranges of ±20% around the actual values.
The symbolic approach was still able to detect all heartbeats with certainty. The
interval monitor however delivered significantly worse results. Around the first two
heartbeats it gave the output ?, indicating that there may be a peak. Later it did
yield more and more ? outputs even far off from heartbeats until after about a third

185

6. Application and evaluation

of the trace it did permanently cast ? for any trace position. The resulting traces
with certainly (green) and maybe (yellow) detected heartbeats are visualized in the
upper part of figure 6.1.

Figure 6.1.: Comparison of the interval (left) and past-only symbolic backend (right)
for a trace with blurred input values (above) and bursts of full uncer-
tainty (below). Yellow: Maybe peaks (? output). Green: Certainly
detected peaks.

The main reason for the different qualities of the approaches lies in the stream
convoluted (see above). If an event on stream squared is uncertain in the symbolic
approach it is represented by an instant variable in the symbolic expression for
convoluted and subtracted again 15 instants later. This causes the variable to be
removed again from the symbolic expression, and certainty about the stream value
may be regained. In the interval approach however, the value of stream convolved
becomes uncertain (i.e. a non-singular interval) once stream squared is uncertain.
When 15 instants later the uncertain value of squared is subtracted again from
convolved, the value of the stream stays uncertain. This is because the information
that the subtracted uncertain interval is exactly the same as the one added 15 steps
before is lost in the interval calculation.

For the five uncertainty bursts the result is comparable (see lower part of figure 6.1).
While the symbolic approach yields some ? verdicts around the gaps, it recovers and
detects the heartbeats between the gaps again with certainty. The interval approach
looses complete track after the first gap as stream convolved and several derived
streams get fully unknown from then on.

Another interesting aspect in this matter is that by adding the mentioned assumption
to the specification, the symbolic approach is able to detect some more heartbeats
with certainty. This is because it can conclude that some gaps actually cannot
contain a heartbeat, as the last certain heartbeat has been to close. However, if
the assumption is not handled as assumption but as filter, i.e. the specification only
detects peaks when the assumption is satisfied but does not require it to be satisfied,

186

6.2. Evaluation

the overall result is worse. The reason for this is that treating the condition that
heartbeats can only occur at a certain distance as an assumption allows advanced
reasoning about the values of intermediate streams. Especially a range of the last
possible timestamp with a heartbeat can be concluded. Such reasoning is in general
not possible if the assumption condition is just used as a filter.

Further, the runtime of the two monitoring approaches has been compared. There-
fore variations of the specification have been analyzed where the size of the sliding
window in which a heartbeat is detected (originally 100) was reduced, to measure
the runtime for different specification sizes. The following table shows the size of
the flattened specification (in terms of the streams involved) relative to the length
of the window.

Spec. with window of length 5 10 20 40 60 80 100
Number of streams in flattened spec. 34 44 64 104 144 184 224

The runtimes for both approaches (symbolic and interval) per received input event
w.r.t. the specification size are shown in figure 6.2 for (a) a trace where 5 % of all
input events have been replaced by uncertain intervals ±20% around the exact value
and (b) the mentioned trace with five gaps. Additionally the symbolic approach
under the presence of the mentioned assumption is depicted. Note that the handling
of assumptions in the specification increases the runtime notably strong. This is
because to support assumptions in a meaningful way the optimaization capability
of Z3 had to be switched on. This was needed to infer bounds of real variables w.r.t.
the assumptions during the imperfect rewriting strategy. Without assumption a
simpler reasoning about the bounds was sufficient.

101.6 101.8 102 102.2

100

101

102

Spec size [streams]

Av
g.

ru
nt

im
e/

in
st

an
t

[m
s]

(a) Noisy trace

101.6 101.8 102 102.2

100

101

102

Spec size [streams]

Av
g.

ru
nt

im
e/

in
st

an
t

[m
s]

(b) Trace with bursts

Figure 6.2.: Average runtime per instant in ms of the interval () vs. symbolic ()
vs. symbolic & assumption () approach for input traces with different
uncertainty types and different specification sizes (i.e. window sizes).

The figure shows that the average computation time of the interval approach is (not
surprisingly) significantly smaller than that of symbolic reasoning. The symbolic

187

6. Application and evaluation

approach without assumptions is up to 90 times slower, depending on the size of the
specification. Adding assumptions increases the runtime again by factor 2 to 10.

For the noisy input, the runtime per instant was roughly the same throughout the
trace and did not increase over time for all approaches. With a runtime of 73 ms per
instant for the symbolic monitoring with assumptions and a window size of 100, the
monitoring of the entire trace with 14 heartbeats takes about 200 seconds and would
thus be too slow for online monitoring of an ECG signal at this event rate. In the case
of the gap trace, the symbolic approach’s runtime differed significantly depending on
whether or not the current window contained uncertainty bursts requiring advanced
symbolic reasoning. In this case the computation time per instant rose at maximum
to 1.5 seconds for the symbolic approach with assumptions and a window size of 100
events, which is also too slow for online monitoring. In the specific situation even
two uncertainty gaps have been within the considered window. Furthermore the
runtime of the symbolic approaches shows non-linear growth in terms of the streams
in the flatted specification. For the interval technique the growth is linear.

Case Study 2. Path planning: Combination of discrete and continuous
monitoring

In the second (synthetic) case study from [HKLS24] we analyze the behavior of the
(full) symbolic backend for a specification which equally contains discrete parts and
parts which require continuous calculation. The setting is the following: A battery
powered mobile robot system is driving around a building with a number of rooms,
where some of them are connected to each other. In room 0 the base station of the
robot is located, which is used for charging. As time proceeds the energy level of
the robot is continuously going down.

For such a robot system, it is crucial to ensure that no matter what concrete task
the robot is performing, it always has enough energy to return to the base station
in room 0 for recharging. In this example, we want to create a safety layer around
the robot’s controller unit that prevents the robot from entering rooms where this
property is violated, using the anticipatory symbolic monitoring approach.

We can formulate the final violation of the outlined condition in STL syntax (which
can be translated to LOLA syntax, see section 3.4.2) as follows:

φerr = F(room ̸= 0 ∧ (energy < 5))

I.e. we state that the energy level may not run below threshold 5 (percent) without
being in room 0 somewhere in the trace. For representation of the current room we
use a real-valued stream but specify via an assumption that it may only take a finite
number of concrete values. We thus use it as discrete variable.

In the considered building, it is only possible to go from one room to a selection
of other directly connected rooms within one instant. We can encode this in an

188

6.2. Evaluation

assumption, where we specify that if room has a particular value at the current
instant the value at the subsequent instant may only be within a specific set (of
connected rooms).

We specify a further condition that the energy level of the battery decreases by a
fixed amount of 5 units per instant:

φegy = G(energy+1 = (energy− 5))

Thereby energy+1 denotes the value of the energy input at the next instant. Note
that actually this cannot be formulated in STL, as STL does not allow access of the
input values at previous or subsequent instants. However, we can realize a property
like this without problems in LOLA via an offset expression and thus translate this
condition to LOLA.

To ensure that the robot does not enter a room from which it cannot get back to
the base station without running out of energy, we want to monitor the condition

φenteri = (room+1 = i) ∧ φegy ∧ ¬φerr

for each room i, where room+1 denotes the value of the next event on stream room,
i.e. the next room the robot enters.

What we aim at in this example is to anticipatorily monitor the φenteri formulas
and prevent the monitor from entering room i if φenteri is false. This is because if a
perfect recurrent monitor casts the output false for φenteri , there is no extension of
the current input trace (i.e., no path of the robot) where it can enter room i in the
next step and is still able not to run into the error condition φerr when the energy
consumption follows φegy.

A benefit of synthesizing a monitor from this property, rather than programming
one manually, is that we can easily add further conditions to our properties. In our
example we don’t only want to check that the robot can return to the base station
but we also want to be sure that throughout the whole trace it remained for at least
three steps in a row in a specific room k (e.g. to fulfill some task there). Therefore
we can simply adjust the monitored condition to

φenteri = (room+1 = i) ∧ φegy ∧ ¬φerr ∧ F(O(G[0,3](room = k)))

As pointed out in section 3.4.2, the STL conditions from above (including the access
of stream values of the next and previous instant) can be translated to a LOLA
specification and be monitored with the symbolic approach from this thesis.

In the following the synthesis time and monitoring time per instant (with and with-
out the presence of uncertainty) of the described specification are analyzed for differ-
ent numbers of rooms (6-20) in the building. For the measurement a test bench was
created which simulates a random walk of the robot through the building, following
the instructions of the monitor. This way, the monitor made sure that when the

189

6. Application and evaluation

robot started to run out of energy, it would choose an appropriate way back to room
0 (and with remaining in room k for three instants if still necessary) and stay there.
The correctness of the walk was later double-checked to confirm the correctness of
the monitor’s answers. In the example the perfect rewriting strategy for linear arith-
metic was used, which did yield a repeating constraint set in the initial symbolic
transformer semantics for all utilized specifications. This is due to the nature of
the problem. For every room a minimal energy level can be determined which is
sufficient to return to the base room, depending on whether the task has already
been fulfilled or not. This is what the repeating symbolic transformer in the initial
semantics encodes.

Concerning the synthesis, the monitor creation time was measured for 6,8,12,16 and
20 rooms. The development of the synthesis time is visualized in figure 6.3.

6 8 10 12 14 16 18 20

2,000

4,000

Number of rooms

Sy
nt

he
si

s
tim

e
[s

]

Figure 6.3.: Synthesis time of the symbolic monitor (i.e. computation time of initial
semantics) in seconds for the path planning case study with a growing
room number.

As one can see the synthesis time increases significantly with the complexity of the
specification. While for 6 rooms the computation of the initial semantics is under
14 seconds, the time for 20 rooms is already 4,515 seconds, i.e. roughly 11

4 hours,
which is pretty high for the complexity of the specification.

On the one hand this is because during the initial semantics computation from
backward, the last determined symbolic transformer has to be compared to a growing
number of other transformers until the repeating constraint set is found. In fact with
a growing complexity of the specification more and more transformers have to be
computed from backward until the repeating one is found, as the longest possible way
in the building also grows with the specification complexity. Likewise the complexity
of the individual symbolic transformers increases with the number of rooms, as
information about every room have to be computed. The number of transitions
between the rooms (which gives a rough measure of the specification complexity)
and the number of computed transformers in the initial semantics (corresponding to
the longest way back to room 0 plus three instants lasting in room k) in relation to
the number of rooms is listed in the subsequent table. The fact that the synthesis
time for 12-20 rooms only shows linear growth is probably due to the fact that the
number of computed transformers for these room numbers is almost equal.

190

6.2. Evaluation

Room number in specification 6 8 12 16 20
Number of transitions between rooms 14 22 30 46 55
Number of computed symbolic transformers 9 9 12 13 13

On the other hand, while the SMT backend, Z3, is highly performant in deciding
the satisfiability of logical formulas, it is much less sophisticated in other tasks, es-
pecially in the simplification of expressions. A first glance at the computed formulas
immediately shows that the simplification keeps many superfluous sub-expressions,
e.g. · · · ∨ (x ≤ 10) ∨ (x ≤ 15) ∨ , where the (x ≤ 10) part can obviously be
removed from the disjunction. Throughout the computation of the initial semantics
this leads to a strongly increasing blow-up in size of the constraint sets which makes
all subsequent computations harder.

However note, that the computation of the initial semantics can be done in advance
of the actual monitoring process, during monitor synthesis. The relevant measure
for the online monitor execution is the computation time per received input instant,
because this determines the event rate the monitor can handle. For the example
above, the runtime per instant (on average) has been measured for a random walk
of size 500, one time without uncertainty; One time with 30 % of the energy input
values set to an interval of up to 15% below the actual value and the room input
exchanged by a set of three possible rooms around (and including) the current one;
And finally one time with 15 % of the input events set to full uncertainty.

The development of the runtimes, again for the different complex specifications with
6 to 20 rooms, is visualized in figure 6.4.

6 8 10 12 14 16 18 20
100

200

300

400

Number of rooms

Av
g.

ru
nt

im
e/

in
st

an
t

[m
s]

Figure 6.4.: Average runtime of the symbolic monitor per instant in ms for the path
planning case study and a growing number of rooms without uncertainty
in the input () vs. 30 % of all input values replaced by intervals/sets
around the exact value () vs. 15 % of all input values completely
unknown ().

One can see that the presence of uncertainty is in fact increasing the runtime. Yet
in the concrete scenario of a robot moving around rooms and requiring verdicts
whether a specific room may still be entered, the runtime for 20 rooms even under

191

6. Application and evaluation

the presence of uncertainty (364 ms per instant) would be sufficient. The runtimes
for 15 % full uncertainty and 30 % partial uncertainty are roughly comparable. For
the certain case the runtime is not significantly increasing for room sizes above 12
and stabilizes at about 130 ms per instant. This is probably due to the fact that
when the room is certainly known, the formula can be reduced directly to a relatively
compact representation, no matter how many rooms were originally involved.

Case Study 3. Collision avoidance: Continuous monitoring

Finally the case study from [HKLS24] reflecting a specification with mainly numeric
character is presented in this section. The idea is to use an anticipatory LOLA
monitor to control a robot to drive around objects. In the particular setting a robot
is following a user defined path in an area with obstacles. The LOLA monitor
yields information about which steer angles the robot can take to avoid collisions
with objects in the way. In this respect it is important that the robot cannot steer
arbitrarily strong and thus several monitoring steps have to be anticipated to figure
out if a collision is avoidable under a particular steer angle.

In detail the case study is modeled as follows. The specification defines four input
streams of type R. On the one hand the steer angle of the robot on stream angle.
On the other hand streams dist, left and right which indicate the distance and the
leftmost and rightmost point of the closest obstacle to the robot in driving direction
on a horizon parallel to the robot (see figure 6.5).

left right

angle

d

b

0

di
st

Figure 6.5.: Scheme of the third case study. The monitor figures out by anticipation
which steer angles are possible (green) and which would lead to a colli-
sion with the closest object (red); (figure from [HKLS24]).

We assume that the obstacles are circular or we presume a circular bounding area
around the obstacles. Via assumption we define the maximal steer angle, a maximal
size of the objects and other basics, like the value of left is lower than the one of

192

6.2. Evaluation

right. As in the case study before the condition of the error scenario, φerr, and also
the other properties are given in STL syntax which is then translated to LOLA:

φerr = F((dist < d) ∧ (right ≥ −b) ∧ (left ≤ b))

Thereby d, b ∈ R are constants which define a bounding box around the robot (see
figure 6.5). The formula states that an error is caused if anywhere in the input trace
the nearest obstacle is closer than d to the robot and it is neither fully left (right
edge left of −b) nor fully right (left edge right of b) of the robot. In this case the
robot would collide with the object.

Additionally we describe the worst-case approaching behavior of the robot in φapp:

φapp = (dist− dist+1 = v) ∧ (left− left+1 = c · angle) ∧ (right− right+1 = c · angle)

for constants v, c ∈ R. Thus, we specify that the obstacle gets closer to the robot
with a speed of v units per instant and the left and right edges move according to the
steer angle, related by a constant c. Note that this relation is of course not accurate.
The way the obstacle gets closer in relation to a specific steer angle is a non-linear
relation, however, the above equation is sufficient as long as it over-approximates
the reality, i.e. overestimates the speed the obstacle gets closer and underestimates
the speed it moves out of the robots collision range. Therefore c and the (possibly
non-linear) translation between the value of stream angle and the actual steer angle
must be chosen appropriately.

The given definitions can be used to check whether a collision of the robot is in-
evitable if a certain steer angle is chosen for the next instant. Therefore, we define
φsteer,ai for a set of specific steer angles ai ∈ R as

φsteer,ai = (angle+1 = ai) ∧ G(φapp) ∧ ¬φerr.

If a recurrent LOLA monitor casts false as output for this stream we can conclude
that setting the steer angle to ai in the next step will inevitably lead to a crash -
provided the approaching behavior specified in φapp. Note that an alternative to
define the streams φsteer,ai would be to let the monitor cast the whole computed
constraint set for each instant and then to determine externally which angles are
possible for the next step. Yet for the case study this kind of querying a set of
discrete angles seems to be more convenient.

Finally, for additional stability of the approach also the constraint G(angle+2 ≤
amax ∧ angle+2 ≥ −amax) was added to the φsteer,ai properties, where amax ∈ R is
a constant below the maximal possible steer angle of the robot (which is set by
assumption). This leads to a situation where the monitor has more options for
the next step than considered in previous anticipations, resulting in more robust
guidance of the robot as additional options arise in the current step.

193

6. Application and evaluation

For qualitative evaluation of the case study an integration of the robot operating
system ROS4 and the LOLA monitoring tool has been created and run on a turtle
bot robot5 inside the robot simulation environment gazebo6 [KH04] (see figure 6.6)7.
To evaluate the approach the robot was set into an area with several cyclic obstacles
around. Furthermore the user could set a path the robot should follow. While
driving, the robot’s main program loop periodically determined the closest obstacle
in the robot’s driving direction (by a query to the gazebo environment) and passed it
to the LOLA monitor, which determined possible steer angles. The robot was then
programmed to chose the steer angle which was closest to the user defined path.
This way the robot followed the path given by the user but drove around obstacles
if the path led through them or was too close to them.

Figure 6.6.: Screenshot of the simulated robot in the gazebo environment, controlled
by a LOLA monitor (figure from [HKLS24]).

The example was first run with fully certain inputs. Additionally experiments were
carried out where the values of the left and right position of the obstacle were
substituted by uncertainty intervals with a margin of ±x% (for x from 5 to 40 in
steps of 5) of the maximal values around the actual value. Of course, the monitor’s
tolerance for uncertainty is strongly influenced by how over-approximative φapp is
defined. In our case the monitor was still able to steer the robot correctly up to
an uncertainty margin of 30% without defining φapp so over-approximative that no
movement was possible anymore.

4https://www.ros.org/
5https://www.turtlebot.com/
6https://gazebosim.org/
7The simulation in gazebo, which was developed as part of [HKLS24], was done by a co-author

and is not the work of the author of this thesis.

194

6.2. Evaluation

Note at this point that it can be a problem that the monitor only observes the
closest obstacle to the robot. This is because it could allow steer angles which
avoid a collision to the closest object but not to the second closest one. There
are two approaches to counter this problem. First, one could duplicate the input
streams, φerr and φapp for the second closest obstacle and include these streams in
the queries for the steer angles. This would of course increase the complexity of the
specification and computation time. Second, one could run two monitors in parallel,
one for the closest and one for the second closest obstacle and only allow angles
which are allowed by both monitors. However in some situations this second option
would allow some angles which ultimately lead to collisions. This is because if the
monitors are independent of each other, they can assume different continuations for
a given angle that avoid a crash, but are not compatible with each other.

For the quantitative analysis of the case study the traces from the gazebo simulation
have been extracted and handed to the monitor in an offline setting (i.e. without the
actual simulation running in parallel) to measure the pure runtime of the monitor
per instant. As one would expect the runtime increases if the input values contain
uncertainty. In this case the constraint set cannot be simplified as much as under
presence of certain values. Larger uncertain intervals also slightly increase the run-
time, since they require more options for future continuations to be considered. The
runtimes for the different uncertainty margins are visualized in figure 6.7.

0 5 10 15 20 25 30 35 40
0

100
200
300
400

Uncertainty margin added to input values [%]

Av
g.

ru
nt

im
e/

in
st

an
t

[m
s]

Figure 6.7.: Average runtime per instant in ms of the LOLA monitor with uncer-
tainty of 0 to 40 % around the exact input values.

The runtime is sufficient to execute roughly 3-6 angle queries per second, depending
on the chosen uncertainty level. Compared to the second case study, the synthesis
time of the monitor was significantly faster as the computed constraint sets were
much smaller: It took 8-9 seconds and the initial semantics could be determined
after 14 computed states.

195

6. Application and evaluation

6.3. Discussion

Overall, the case studies presented in this chapter have shown that perfect recur-
rent monitoring of the linear arithmetic LOLA fragment under uncertainty and as-
sumptions is a powerful technique and can be used in several scenarios of practical
relevance. Also the perfect rewriting strategy for linear arithmetic based on quan-
tifier elimination has shown to be suitable for perfect and trace-length-independent
recurrent online monitoring in a selection of non-trivial use cases, which relied on
reasoning about the future.

However the relatively high evaluation and synthesis time of the resulting symbolic
monitors compared to other runtime verification tools can be considered a problem of
the approach. Already the evaluation time in the first past-only case study has shown
to be roughly 10 to 220 times slower than a comparable interval-based solution (yet
also significantly more precise). This is despite the fact that an optimized version
of the symbolic monitoring approach is used. In the first case study the monitor is
even too slow for online monitoring a human heartbeat at the given event rate. In
the latter two case studies, the runtime is acceptable for the specific scenarios.

Especially the second case study shows the limits of the full symbolic monitoring
approach. The extended graph-search task with 20 nodes and 55 transitions takes
already over one hour of synthesis time. This makes it likely that for larger graphs or
more complex tasks the symbolic approach is not applicable in practice anymore.

The case study is exemplary for a situation where symbolic reasoning significantly
slows down the computation of relatively simple problems. First and foremost, this
is because during symbolic reasoning, all contextual information about the problem
– that would be the key to an efficient solution – is lost, which increases the com-
putation effort. On the other hand exactly this makes symbolic monitoring very
general. Another negative influence on the runtime is – as already mentioned in the
second case study – that the computed symbolic expressions are much more complex
than they need to be due to the insufficient capabilities of formula simplification in
the used SMT backend Z3.

An interesting direction for future work to address this problem would be to inves-
tigate symbolic monitoring in more application-specific LOLA fragments. E.g. to
reason about spacial-temporal properties it would be possible to enrich the boolean
LOLA fragment with simple RCC8 spatial operators [RCC92] which would probably
allow for more efficient symbolic computations and better simplifications.

A further not yet discussed drawback of the symbolic LOLA monitoring approach,
which became particularly apparent during the evaluation of the second and third
case study, is that sometimes small adjustments in the specification can make the
difference between being able to perfectly determine the initial symbolic transformer
semantics or having to use over-approximations (widening). Basically every state-
ment in the specification that effectively leads to “counting” the number of positions

196

6.3. Discussion

from the trace end to the beginning leads to a non-stabilizing initial semantics.
Counting from the beginning of the trace however is not an issue as the computed
symbolic transformers are parametric in the predecessor stream events. However,
this “counting” from the end often happens unintentionally. Consider e.g. the two
assumptions s[now] ≤ s[−1|vmax + 1] − 1 and s[+1|vmin] ≤ s[now] − 1 where vmax,
vmin denote the possible maximal and minimal value allowed for stream s of type R.
Both assumptions look relatively similar. They both state that a value on stream s
has to be at least one less than the value before. Yet with the second assumption the
computed constraint sets of the initial semantics also contain that in the last step s
is at least vmin + 1, in the second last step at least vmin + 2 and so on. This however
leads to non-stabilizing constraint sets in the computation of the initial semantics
and widening has to be applied. For the first assumption this is not the case, as it
contains no reference to vmin. It is important to identify such parts of the specifica-
tion and to communicate to the user that they are the actual cause that no perfect
monitoring is possible. Further this example shows the need of precise widening
strategies which can identify exactly those constraints and widen or remove them,
but not other constraints which are actually stable.

Altogether we can conclude that the symbolic recurrent LOLA monitoring approach
is indeed a viable and powerful solution for perfect and sound monitoring of linear
arithmetic properties under presence of uncertainty and assumptions. Especially for
shielding and guiding the monitored system, the use of perfect, anticipatory monitor-
ing seems promising. For properties of higher complexity however the approach may
become intractable, which could probably be solved by usage of more application-
specific logics and specialized solvers. In addition, the prototypical implementation
presented in this chapter still requires further usability improvements to increase its
suitability for practical use.

197

7
Conclusion and future work

In this final chapter, we want to recapitulate the contents presented in this thesis
and discuss directions for future research.

7.1. Summary

The main question that has been addressed in this work has been whether and
how a perfect and efficient monitoring procedure for LOLA specifications, including
those with future references, can be constructed in the presence of uncertainties and
assumptions.

Therefore, in the preliminaries chapter, the notion of perfect LTL monitoring, as
suggested by the LTL3 construction, was reviewed, which requires the properties of
impartiality (i.e. revealing all possible output valuations w.r.t. the received input
prefix) and anticipation (i.e. considering all future continuations of the input pre-
fix for the current output). Also, the standard past LTL monitoring algorithm of
Havelund and Roşu has been revisited there, as it serves as a role model for moni-
toring a correctness property repeatedly with respect to the current trace position
instead of the initial one; a concept which was later called recurrent monitoring.

Based on these concepts we have defined a general theory about different kinds
of synchronous properties and their (perfect) monitoring in chapter 3. We were
able to show that the stream runtime verification language LOLA describes such
synchronous properties, particularly pointwise ones. In this thesis, it was further
proved that any such property – and thus logic over discretely timed traces or streams
– can indeed be expressed as a LOLA specification. Yet, the traditional LOLA
monitoring algorithm from the original paper [DSS+05] does not provide a perfect
monitor in terms of the previous definitions, as it is not able to consider potential
continuations of the currently received input trace. Furthermore, this algorithm is

199

7. Conclusion and future work

not able to handle uncertainties (i.e. unknown or noisy input values) nor assumptions
(i.e. additional knowledge about the monitored system) which restrict the set of
actual possible input continuations.

To remedy this, a novel generic monitoring framework for LOLA specifications based
on abstract interpretation was introduced in chapter 4. In addition to the general
construction of a LOLA monitor itself, also conditions for its perfectness have been
discussed. Compared to other approaches for perfect (i.e. impartial and anticipatory)
monitoring of complex properties [CTT19, FMPW23], the novelty of the presented
framework on the one hand is, that it is not restricted to specific theories nor to
correctness properties, which can only be satisfied or not, but can be used for all
kinds of synchronous properties. On the other hand, the approach of efficiently
computing the initial specification semantics from back to front, parametric in the
predecessor configuration of each instant, and then using this structure for successive
monitoring has not been proposed so far.

The introduced theory of LOLA monitoring is then utilized in chapter 5 to build
a canonical symbolic LOLA monitor. The monitoring technique from this chapter
basically consists of symbolic unrolling of the specification and so-called expression
rewriting to keep the resulting symbolic expressions constant in size. This enables
efficient trace-length-independent monitoring. In some cases (e.g. boolean LOLA)
perfect versions of this expression rewriting can be obtained by applying quantifier
elimination. For other fragments (e.g. the linear arithmetic LOLA fragment) this is
not possible and over-approximating techniques together with widening have to be
chosen, resulting in an imperfect but sound, trace-length-independent monitor.

Finally, in the previous chapter, a prototypical implementation of the symbolic mon-
itoring approach for the linear arithmetic LOLA fragment has been evaluated by
means of three practical case studies. In the first, past-only specification, detection
of heartbeats in an ECG signal was performed under presence of uncertainties in the
input trace and assumptions. The second one was about anticipatory path planning
in a room map in presence of an energy consumption constraint. Finally, the third
case study dealt with controlling a robotic system to steer around obstacles along a
given path. The case studies demonstrated application scenarios where the perfect
LOLA monitoring was advantageous to use. Yet they also demonstrated its pitfall:
The runtime – of the synthesis as well as of the evaluation – was significantly higher
than a similar non-anticipatory and imperfect monitoring approach. Especially for
the second case study the synthesis time increased strongly with the specification’s
complexity and thus made room for optimizations visible.

7.2. Future work

Potential future research can be divided into two groups: theoretical and practical.
From a theoretical point of view, the following research questions are of interest.

200

7.2. Future work

1. In chapter 3 we have restricted to so-called synchronous properties, i.e. those
that assign a property value to every position of an input trace or timed stream
over a discrete time domain. Several formalisms however, e.g. M(I)TL, STL
or TeSSLa, can also be used over non-discrete and dense time domains. While
in this case the monitor inputs are usually still timed traces which e.g. encode
a piece-wise constant signal, the corresponding monitor outputs are not nec-
essarily synchronous to the timestamps for which the monitor receives inputs
anymore. An extension of properties to this asynchronous setting and analo-
gous monitoring strategies are left open in chapter 3, but are relevant when
it comes to the question how the corresponding specifications can perfectly be
monitored.

2. Likewise, several formalisms as LTL, TeSSLa or M(I)TL are defined not (only)
for finite but also for infinite traces or streams. As the algorithm in this thesis
is based on the language LOLA, it is restricted to finite traces, specifically
those of a fixed, constant length. To be able to monitor formalisms over
infinite input sequences, one would have to adapt the approach to this end. A
possible way to go would be to extend the LOLA semantics to infinite streams
and investigate whether it is still a canonical formalism for infinite pointwise
properties. Further it remains open if the suggested algorithm can – with
some modifications – also be used in an infinite setting. Some preliminary
considerations about the extension to infinite traces can be found at the end
of chapter 5.

3. Further, in chapter 3 we have introduced sound and perfect monitoring strate-
gies for pointwise properties. Yet, for sound but imperfect monitoring, it is usu-
ally desirable to have a measure of how coarse the resulting over-approximation
is in the worst case. The introduction and elaboration of such a measure and
the valuation of the presented sound monitoring approaches was left as future
work in this thesis.

4. Finally, regarding uncertainty, the introduced monitoring algorithm was re-
stricted to the case of timestamp-immanent uncertainty, without specific prob-
abilities assigned to each possible value. It is left open whether and how the
presented algorithm can be adapted to handle these kinds of uncertainties.

From a practical perspective several directions may be followed to optimize the
performance of the basic symbolic monitoring implementation from chapter 5 and
to make it applicable to large and complex specifications.

1. While in chapter 6 the expressive linear arithmetic LOLA fragment was used to
encode the specific examples, it is unclear whether the use of more application-
tailored algebras could lead to better runtimes in synthesis and execution of
the monitor. Therefore, it would be necessary to introduce and study algebras
with operators for the specific application domains, together with appropriate
rewriting and widening strategies for them (see also end of chapter 6).

201

7. Conclusion and future work

2. Additionally it should be analyzed to which degree a more sophisticated expres-
sion simplification can speed up the symbolic monitoring for linear arithmetic.
An extension of the utilized Z3 backend in this direction could also be advan-
tageous for several other use cases. Related to this, also further optimizations
of the basic algorithm from chapter 5 would be conceivable, e.g. splitting the
constraint set into several independent ones to speed up the symbolic compu-
tation and the like.

3. Finally, also advanced widening and sound rewriting strategies for the utilized
algebras should be investigated. This would allow for a sound monitoring
with little error in case the original specification is not in a shape s.t. it can
be monitored in a perfect manner (see also remarks at end of chapter 6).
Therefore it might be beneficial to revisit approaches from the field of abstract
interpretation where similar issues have to be handled.

Together with the mentioned extensions and optimizations, the presented frame-
work could indeed have potential as a generic monitoring solution in the area of
runtime verification, as a general framework to reason about monitorability and
constructions, and in practical use.

202

A
Basic notations
This appendix provides basic notations and introduces fundamental mathematical
definitions which are used throughout the whole thesis. Several of them are recapit-
ulated or again defined in the main part of the work.

A.1. Notations

We use the common logical symbols ∧, ∨, ¬,→,↔ as operators in symbolic formulas.
For reasoning on a meta level the symbols⇔ and⇒ and English language are used.

If we define a newly introduced symbol s by some expression φ, we write s := φ.
To define syntactical structures we use EBNF-like syntax: φ ::= . . . where the
right hand side may contain several definition alternatives, separated by |, and φ for
recursive definitions.

A.2. (Ordered) sets, families, tuples, sequences, relations,
functions

Note: In this section φ(x) represents an expression over x.

We denote sets in the common enumerating ({s0, s1, . . . , sn}) or descriptive notation
({x | φ(x)}), where φ(x) can be a comma-separated conjunction of propositions
and all free variables in φ apart from x are existentially quantified. For union,
intersection, difference, subset relation and containment relation of sets the usual
operators ∪,∩, \,⊆,∈ are used. To quantify universally or existentially over a set S
we use the notations ∀s ∈ S. φ(s) and ∃s ∈ S. φ(s) respectively. After s ∈ S we may
also note down further conditions on s, separated by comma. We use the notations
̸∃ and ̸ ∀ to denote that the corresponding quantification does not hold. With |S|

203

A. Basic notations

we denote the number of elements in S and have |S| =∞ if it is an infinite set. We
use 2S for the power set of S and ∅ for the empty set. The set B := {true, false}
is the boolean domain.

Families over an index set I are indexed collections with elements si for every i ∈ I.
We denote such a family with (si)i∈I . We use the notation s ∈ (si)i∈I if there is an
i ∈ I s.t. s = si. For a family (si)i∈I we also use notations like ⋃i∈I si to fold an
operation over all elements of a sequence.

With S∗ we refer to the set of all finite sequences of elements from set S. We
use Sω for infinite sequences, S∞ = S∗ ∪ Sω. With |s| ∈ N we refer to the
length of a sequence s ∈ S∗ and have |s| = ∞ for s ∈ Sω. Sn denotes the
set of all sequences of size n and S≤n all sequences of size up to n. As nota-
tion of a concrete sequence ⟨s0, s1, . . . ⟩ or alternatively s0, s1, . . . and s0s1 . . . is
used. With S(k) we denote the kth element in S, starting with 0. The empty
sequence is represented by ϵ. We use S+ := S∗\{ϵ} for all sequences of positive
length. The concatenation of a finite with a finite or infinite sequence is denoted
by ⟨s0, s1, . . . , sn⟩ ◦ ⟨sn+1, sn+2, . . . ⟩ := ⟨s1, s2, . . . , sn, sn+1, sn+2, . . . ⟩ or simply by
⟨s0, s1, . . . , sn⟩⟨sn+1, sn+2, . . . ⟩. Sequences are families of elements over index set
{0, 1 . . . , n} or N respectively, thus we also use the notation (si)i∈I for sequences.

The set of all tuples of sets S1, . . . , Sn is denoted with S1×· · ·×Sn, elements of it are
written as (s1, . . . , sn). We use πi((s1, . . . , sn)) := si as selector of the ith element in
a tuple. We consider sequences as special case of tuples. For concatenation of two
tuples we also use the operator · ◦ ·.

For a binary relation R between elements in sets A and B we use, as common, the
infix notation a R b if and only if (a, b) ∈ R for some a ∈ A, b ∈ B. With a ̸R b we
indicate that relation R does not hold for a, b.

A tuple of a set and a belonging binary relation (S,≤) is called (partially) ordered
set (c.f. [DP90]), if and only if for all a, b, c ∈ S

– a ≤ a and
– a ≤ b and b ≤ c imply a ≤ c and
– a ≤ b and b ≤ a implies a = b.

If in this thesis we use a partially ordered set (S,≤) (e.g. for symbolic constraint
sets in chapter 5) we implicitly identify all non identical elements s, s′ ∈ S for which
we define s ≤ s′ and s′ ≤ s, i.e. we consider s and s′ as different representations
of the same element (w.r.t. the order) and write s = s′. A tuple of a set and a
belonging binary relation (S,<) is called strictly partially ordered set, if and only if
< results from the relation of a partial order for S by removing the relation a < a
for all a in S. For a partially ordered set (S,≤) we use the notation a < b if a ≤ b
and a ̸= b and for a strictly partially ordered set (S,<) we use a ≤ b if a < b or
a = b. In this thesis we use the notation a ≤ b ≤ c to denote that a ≤ b and b ≤ c
(and analogously for <). Ordered and strictly ordered sets are called totally ordered

204

A.3. Numbers

if for every pair a, b ∈ S with a ̸= b the order relations either relate a with b or b
with a.

For the set of (total) functions from set A to B we use the notation A → B, for
partial ones A ⇀ B. To define a function f from A to B (written f : A → B) we
use the notations f(a) = φ(a) or a 7→ φ(a). For f : B → C and g : A → B we use
the concatenation operator f ◦ g : A → C for the function x 7→ f(g(x)). With fn

for f : A → A, n ∈ N we denote the n-fold concatenation of f . For f : A → B,
pic(f) := {b | b = f(a), a ∈ A}. The above notations are also applicable to partial
functions. With id : A → A we denote the function x 7→ x for any set A. For
f : N → N we use the Landau notation O(f) = {g | g ∈ N → N,∃c ∈ N.∃n0 ∈
N. ∀n ∈ N. n ≥ n0 → c · f(n) ≥ g(n)}.

A.3. Numbers

The following symbols are used to denote specific sets of numbers in the thesis:

– N for the set of natural numbers, including 0.
– N+ for the set of positive natural numbers.
– Z for the set of integers.
– Q for the set of rational numbers.
– Q≥0 for the set of non-negative rational numbers.
– Q+ for the set of positive rational numbers.
– R for the set of real numbers.
– R≥0 for the set of non-negative real numbers.
– R+ for the set of positive real numbers.

With IS ⊆ 2S, where S is any of the above number sets, we denote the set of all open,
half-open and closed bounded and unbounded intervals of values for S. We write
[a, b] for the closed interval between a ∈ S and b ∈ S, where a and b are included. For
half-open and open intervals we use “]” as left delimiter instead if a is excluded and
if b is excluded “[” as right delimiter. For unbounded intervals we use the symbols
∞ and −∞ as exclusive upper or lower bound.

For numbers from the above sets we use the common operators +,−, ∗, ·
· , ·

·, log, <
,≤, >,≥. For a ∈ R we extend +,− for addition and subtraction with infinity:
a +∞ = ∞ and a −∞ = −∞. Likewise we write log(∞) = ∞. We use ⌊a⌋ and
⌈a⌉ for a ∈ R to denote the greatest and smallest integer which is smaller or greater
than a, respectively.

205

A. Basic notations

A.4. Graphs, trees

A graph is a tuple (V,E) of a set of vertices (also called nodes) V and a set of edges E.
In case of an unweighted graph we have a relation E ⊆ V ×V , indicating a connection
between two vertices and in case of a weighted graph E ⊆ V ×V ×R where the last
component denotes the numerical weight of the edge. We call a graph undirected,
if for all (u, v) ∈ E (or (u, v, w) ∈ E) we have that also (v, u) ∈ E (or (v, u, w) ∈ E
resp.), otherwise directed. For a labeled graph we further add a function l : V → L
to the tuple which assigns a label from a set L to every vertex. A path is a finite or
infinite sequence of vertices s.t. all subsequent vertices are connected by edges. A
finite path where first and last vertex are equal is called cycle. The distance between
two vertices u and v in a graph is the number of elements of the shortest path, s.t.
the first element is u and the last one is v. In a weighted graph, the sum of the edge
weights of all edges in a path is called weight of the path and is ∞ if this sum does
not exist in case of infinite paths.

A tree is a directed graph where no cycle exists and with a special vertex called
root, from which a unique path to every other vertex in the tree exists. Analogous
to graphs we also consider labeled trees in this thesis.

A.5. Finite automata

A nondeterministic finite automaton (NFA) (c.f. [HU79]) A = (Q,Σ,∆, qI , F) is a
5-tuple of a finite set of states Q, an input alphabet Σ which is finite, a transition
relation ∆ ⊆ Q× Σ×Q, an initial state qI ∈ Q and a set of finite states F ⊆ Q. A
sequence of states q0, q1, . . . , qn+1 ∈ Q∗ corresponds to a finite sequence (aka word)
w = w0w1 . . . wn ∈ Σ∗ if q0 = qI and (qi, wi, qi+1) ∈ ∆ for all i ∈ {0, . . . , n}. The
state sequence is called accepting if and only if qn+1 ∈ F . The language of A is the
set of all words to which an accepting state sequence corresponds.

A deterministic finite automaton (DFA) (c.f. [HU79]) is a nondeterministic finite
automaton where ∆ contains exactly one element (q, s, q′) for all pairs (q, s) ∈ Q×Σ.
For every NFA there is a DFA with the same language [HU79].

206

B
Measurement tables
This appendix contains the measured values for all case studies from chapter 6.
All experiments were run on a Linux machine (kernel version 6.5.3) with an Intel
i7-8550U CPU running at 1.80 GHz base frequency and with 8 GB of RAM.

B.1. Case Study 1. ECG signal analysis: Past-only
monitoring

For a detailed description see section 6.2.1, case study 1.

Spec. size [streams] Interval [ms] Symbolic [ms] Symbolic w/ ass. [ms]
34 0.134 6.29 17.208
44 0.138 6.507 19.537
64 0.151 7.364 23.963
104 0.223 9.894 35.186
144 0.298 14.626 48.039
184 0.278 19.523 62.119
224 0.381 32.914 73.635

Table B.1.: Avg. runtimes per instant in ms for case study 1 with differently complex
specifications, where 20% of the values are exchanged by ranges of ±20%
around the actual values. Measurements for the interval backend, the
past-only symbolic backend and the past-only symbolic backend with an
additional assumption in the specification.

207

B. Measurement tables

Spec. size [streams] Interval [ms] Symbolic [ms] Symbolic w/ ass. [ms]
34 0.102 1.518 15.909
44 0.139 1.601 17.228
64 0.182 2.337 19.536
104 0.24 3.852 30.106
144 0.344 5.756 33.442
184 0.319 8.048 53.702
224 0.414 16.743 54.475

Table B.2.: Avg. runtimes per instant in ms for case study 1 with differently complex
specifications, where 5 full uncertainty gaps of 6-19 events are inserted
in the trace. Measurements for the interval backend, the past-only sym-
bolic backend and the past-only symbolic backend with an additional
assumption in the specification.

B.2. Case Study 2. Path planning: Combination of discrete
and continuous monitoring

For a detailed description see section 6.2.1, case study 2.

Rooms in spec. Synthesis time [s]
6 13.635
8 37.413
12 636.885
16 2306.874
20 4514.926

Table B.3.: Synthesis time in seconds for case study 2 with different room numbers,
full symbolic backend.

Rooms in spec. No uncertainty [ms] 30% noisy [ms] 15% unknown [ms]
6 72.073 123.322 109.063
8 80.169 112.658 101.891
12 120.56 142.983 195.306
16 142.922 259.192 232.69
20 121.064 317.497 363.948

Table B.4.: Avg. runtimes per instant in ms for case study 2 with different room
numbers, full symbolic backend. Measurements for full certainty; 30%
of the energy input values exchanged by ranges of up to 15% below the
real value and 15% of room inputs set to a set of three possible rooms;
and 15% of the input values fully unknown.

208

B.3. Case Study 3. Collision avoidance: Continuous monitoring

B.3. Case Study 3. Collision avoidance: Continuous
monitoring

For a detailed description see section 6.2.1, case study 3.

Injected uncertainty [%] Runtime per instant [ms]
0 175.338
5 252.287
10 265.971
15 270.028
20 288.653
25 284.018
30 297.351
35 328.504
40 329.476

Table B.5.: Runtime per instant in ms for case study 3, full symbolic backend. Mea-
surements for different amounts of uncertainty. Input values exchanged
by intervals of ±x% around actual values.

209

Bibliography

[ADFdB13] Azzeddine Amiar, Mickaël Delahaye, Yliès Falcone, and Lydie du Bous-
quet. Compressing microcontroller execution traces to assist system
analysis. In Gunar Schirner, Marcelo Götz, Achim Rettberg, Mauro Ce-
sar Zanella, and Franz J. Rammig, editors, Embedded Systems: Design,
Analysis and Verification - 4th IFIP TC 10 International Embedded Sys-
tems Symposium, IESS 2013, Paderborn, Germany, June 17-19, 2013.
Proceedings, volume 403 of IFIP Advances in Information and Commu-
nication Technology, pages 139–150. Springer, 2013.

[AFH91] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits
of relaxing punctuality. In Luigi Logrippo, editor, Proceedings of the
Tenth Annual ACM Symposium on Principles of Distributed Comput-
ing, Montreal, Quebec, Canada, August 19-21, 1991, pages 139–152.
ACM, 1991.

[AH91] Rajeev Alur and Thomas A. Henzinger. Logics and models of real time:
A survey. In J. W. de Bakker, Cornelis Huizing, Willem P. de Roever,
and Grzegorz Rozenberg, editors, Real-Time: Theory in Practice, REX
Workshop, Mook, The Netherlands, June 3-7, 1991, Proceedings, vol-
ume 600 of Lecture Notes in Computer Science, pages 74–106. Springer,
1991.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Pro-
gram Development - Coq’Art: The Calculus of Inductive Constructions.
Texts in Theoretical Computer Science. An EATCS Series. Springer,
2004.

[BFFR18] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. In-
troduction to runtime verification. In Ezio Bartocci and Yliès Falcone,
editors, Lectures on Runtime Verification - Introductory and Advanced
Topics, volume 10457 of Lecture Notes in Computer Science, pages 1–33.
Springer, 2018.

211

Bibliography

[BG92] Gérard Berry and Georges Gonthier. The esterel synchronous program-
ming language: Design, semantics, implementation. Sci. Comput. Pro-
gram., 19(2):87–152, 1992.

[BHKZ11] David A. Basin, Matús Harvan, Felix Klaedtke, and Eugen Zalinescu.
MONPOLY: monitoring usage-control policies. In Sarfraz Khurshid and
Koushik Sen, editors, Runtime Verification - Second International Con-
ference, RV 2011, San Francisco, CA, USA, September 27-30, 2011,
Revised Selected Papers, volume 7186 of Lecture Notes in Computer
Science, pages 360–364. Springer, 2011.

[BKR10] Udi Boker, Orna Kupferman, and Adin Rosenberg. Alternation re-
moval in büchi automata. In Samson Abramsky, Cyril Gavoille, Claude
Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, edi-
tors, Automata, Languages and Programming, 37th International Col-
loquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings,
Part II, volume 6199 of Lecture Notes in Computer Science, pages 76–
87. Springer, 2010.

[BKV13] Andreas Bauer, Jan-Christoph Küster, and Gil Vegliach. From propo-
sitional to first-order monitoring. In Axel Legay and Saddek Bensalem,
editors, Runtime Verification - 4th International Conference, RV 2013,
Rennes, France, September 24-27, 2013. Proceedings, volume 8174 of
Lecture Notes in Computer Science, pages 59–75. Springer, 2013.

[BLS06a] Andreas Bauer, Martin Leucker, and Christian Schallhart. Monitoring
of real-time properties. In S. Arun-Kumar and Naveen Garg, editors,
FSTTCS 2006: Foundations of Software Technology and Theoretical
Computer Science, 26th International Conference, Kolkata, India, De-
cember 13-15, 2006, Proceedings, volume 4337 of Lecture Notes in Com-
puter Science, pages 260–272. Springer, 2006.

[BLS06b] Andreas Bauer, Martin Leucker, and Jonathan Streit. SALT - struc-
tured assertion language for temporal logic. In ICFEM, volume 4260 of
Lecture Notes in Computer Science, pages 757–775. Springer, 2006.

[BLS10] Andreas Bauer, Martin Leucker, and Christian Schallhart. Comparing
LTL semantics for runtime verification. J. Log. Comput., 20(3):651–674,
2010.

[BNK16] Andrew Butterfield, Gerard Ekembe Ngondi, and Anne Kerr. A Dic-
tionary of Computer Science. Oxford University Press, 2016.

[BRH10] Howard Barringer, David E. Rydeheard, and Klaus Havelund. Rule
systems for run-time monitoring: from eagle to ruler. J. Log. Comput.,
20(3):675–706, 2010.

212

Bibliography

[BS14] Laura Bozzelli and César Sánchez. Foundations of boolean stream run-
time verification. In Borzoo Bonakdarpour and Scott A. Smolka, ed-
itors, Runtime Verification - 5th International Conference, RV 2014,
Toronto, ON, Canada, September 22-25, 2014. Proceedings, volume
8734 of Lecture Notes in Computer Science, pages 64–79. Springer, 2014.

[Büc90] J. Richard Büchi. On a Decision Method in Restricted Second Order
Arithmetic, pages 425–435. Springer New York, New York, NY, 1990.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or ap-
proximation of fixpoints. In Robert M. Graham, Michael A. Harrison,
and Ravi Sethi, editors, Conference Record of the Fourth ACM Sympo-
sium on Principles of Programming Languages, Los Angeles, California,
USA, January 1977, pages 238–252. ACM, 1977.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation frame-
works. J. Log. Comput., 2(4):511–547, 1992.

[CGK+18] Edmund M. Clarke, Orna Grumberg, Daniel Kroening, Doron A. Peled,
and Helmut Veith. Model checking, 2nd Edition. MIT Press, 2018.

[CH78] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear
restraints among variables of a program. In Alfred V. Aho, Stephen N.
Zilles, and Thomas G. Szymanski, editors, Conference Record of the
Fifth Annual ACM Symposium on Principles of Programming Lan-
guages, Tucson, Arizona, USA, January 1978, pages 84–96. ACM Press,
1978.

[CHL+18] Lukas Convent, Sebastian Hungerecker, Martin Leucker, Torben Schef-
fel, Malte Schmitz, and Daniel Thoma. Tessla: Temporal stream-
based specification language. In Tiago Massoni and Mohammad Reza
Mousavi, editors, Formal Methods: Foundations and Applications - 21st
Brazilian Symposium, SBMF 2018, Salvador, Brazil, November 26-30,
2018, Proceedings, volume 11254 of Lecture Notes in Computer Science,
pages 144–162. Springer, 2018.

[CHS+18] Lukas Convent, Sebastian Hungerecker, Torben Scheffel, Malte Schmitz,
Daniel Thoma, and Alexander Weiss. Hardware-based runtime verifica-
tion with embedded tracing units and stream processing. In Christian
Colombo and Martin Leucker, editors, Runtime Verification - 18th In-
ternational Conference, RV 2018, Limassol, Cyprus, November 10-13,
2018, Proceedings, volume 11237 of Lecture Notes in Computer Science,
pages 43–63. Springer, 2018.

[CJ12] Bob F Caviness and Jeremy R Johnson. Quantifier elimination and
cylindrical algebraic decomposition. Springer Science & Business Media,
2012.

213

Bibliography

[Cou21] Patrick Cousot. Principles of abstract interpretation. The MIT Press,
2021.

[CPHP87] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. Lus-
tre: A declarative language for programming synchronous systems. In
Conference Record of the Fourteenth Annual ACM Symposium on Prin-
ciples of Programming Languages, Munich, Germany, January 21-23,
1987, pages 178–188. ACM Press, 1987.

[CTT19] Alessandro Cimatti, Chun Tian, and Stefano Tonetta. Assumption-
based runtime verification with partial observability and resets. In
Bernd Finkbeiner and Leonardo Mariani, editors, Runtime Verification
- 19th International Conference, RV 2019, Porto, Portugal, October
8-11, 2019, Proceedings, volume 11757 of Lecture Notes in Computer
Science, pages 165–184. Springer, 2019.

[CTT21] Alessandro Cimatti, Chun Tian, and Stefano Tonetta. Assumption-
based runtime verification of infinite-state systems. In Lu Feng and
Dana Fisman, editors, Runtime Verification - 21st International Con-
ference, RV 2021, Virtual Event, October 11-14, 2021, Proceedings,
volume 12974 of Lecture Notes in Computer Science, pages 207–227.
Springer, 2021.

[CVWY90] Costas Courcoubetis, Moshe Y. Vardi, Pierre Wolper, and Mihalis Yan-
nakakis. Memory efficient algorithms for the verification of temporal
properties. In Edmund M. Clarke and Robert P. Kurshan, editors,
Computer Aided Verification, 2nd International Workshop, CAV ’90,
New Brunswick, NJ, USA, June 18-21, 1990, Proceedings, volume 531
of Lecture Notes in Computer Science, pages 233–242. Springer, 1990.

[DGH+17] Normann Decker, Philip Gottschling, Christian Hochberger, Martin
Leucker, Torben Scheffel, Malte Schmitz, and Alexander Weiss. Rapidly
adjustable non-intrusive online monitoring for multi-core systems. In
Simone André da Costa Cavalheiro and José Luiz Fiadeiro, editors,
Formal Methods: Foundations and Applications - 20th Brazilian Sym-
posium, SBMF 2017, Recife, Brazil, November 29 - December 1, 2017,
Proceedings, volume 10623 of Lecture Notes in Computer Science, pages
179–196. Springer, 2017.

[Dij72] Edsger W. Dijkstra. Chapter I: Notes on Structured Programming, page
1–82. Academic Press Ltd., GBR, 1972.

[DLS08] Wei Dong, Martin Leucker, and Christian Schallhart. Impartial antic-
ipation in runtime-verification. In Sung Deok Cha, Jin-Young Choi,
Moonzoo Kim, Insup Lee, and Mahesh Viswanathan, editors, Auto-
mated Technology for Verification and Analysis, 6th International Sym-
posium, ATVA 2008, Seoul, Korea, October 20-23, 2008. Proceedings,

214

Bibliography

volume 5311 of Lecture Notes in Computer Science, pages 386–396.
Springer, 2008.

[DLT14] Normann Decker, Martin Leucker, and Daniel Thoma. Monitoring mod-
ulo theories. In Erika Ábrahám and Klaus Havelund, editors, Tools and
Algorithms for the Construction and Analysis of Systems - 20th Inter-
national Conference, TACAS 2014, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2014, Greno-
ble, France, April 5-13, 2014. Proceedings, volume 8413 of Lecture Notes
in Computer Science, pages 341–356. Springer, 2014.

[dMB08] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient
SMT solver. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools
and Algorithms for the Construction and Analysis of Systems, 14th In-
ternational Conference, TACAS 2008, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4963
of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

[DP90] Brian A Davey and Hilary A Priestley. Introduction to lattices and
order. Cambridge university press, 1990.

[DSS+05] Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robin-
son, Bernd Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, and Zohar
Manna. LOLA: runtime monitoring of synchronous systems. In 12th
International Symposium on Temporal Representation and Reasoning
(TIME 2005), 23-25 June 2005, Burlington, Vermont, USA, pages 166–
174. IEEE Computer Society, 2005.

[EH97] Conal Elliott and Paul Hudak. Functional reactive animation. In ICFP,
pages 263–273. ACM, 1997.

[EM85] Hartmut Ehrig and Bernd Mahr. Fundamentals of algebraic specification
1: Equations and initial semantics. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1985.

[FFS+19] Peter Faymonville, Bernd Finkbeiner, Malte Schledjewski, Maximil-
ian Schwenger, Marvin Stenger, Leander Tentrup, and Hazem Torfah.
Streamlab: Stream-based monitoring of cyber-physical systems. In Isil
Dillig and Serdar Tasiran, editors, Computer Aided Verification - 31st
International Conference, CAV 2019, New York City, NY, USA, July
15-18, 2019, Proceedings, Part I, volume 11561 of Lecture Notes in
Computer Science, pages 421–431. Springer, 2019.

[FFST16] Peter Faymonville, Bernd Finkbeiner, Sebastian Schirmer, and Hazem
Torfah. A stream-based specification language for network monitoring.
In Yliès Falcone and César Sánchez, editors, Runtime Verification - 16th
International Conference, RV 2016, Madrid, Spain, September 23-30,

215

Bibliography

2016, Proceedings, volume 10012 of Lecture Notes in Computer Science,
pages 152–168. Springer, 2016.

[FFST17] Peter Faymonville, Bernd Finkbeiner, Maximilian Schwenger, and
Hazem Torfah. Real-time stream-based monitoring. CoRR,
abs/1711.03829, 2017.

[FKRT21] Yliès Falcone, Srdan Krstic, Giles Reger, and Dmitriy Traytel. A tax-
onomy for classifying runtime verification tools. Int. J. Softw. Tools
Technol. Transf., 23(2):255–284, 2021.

[FMPW23] Paolo Felli, Marco Montali, Fabio Patrizi, and Sarah Winkler. Moni-
toring arithmetic temporal properties on finite traces. In AAAI, pages
6346–6354. AAAI Press, 2023.

[GDS20] Felipe Gorostiaga, Luis Miguel Danielsson, and César Sánchez. Unifying
the time-event spectrum for stream runtime verification. In Jyotirmoy
Deshmukh and Dejan Nickovic, editors, Runtime Verification - 20th
International Conference, RV 2020, Los Angeles, CA, USA, October
6-9, 2020, Proceedings, volume 12399 of Lecture Notes in Computer
Science, pages 462–481. Springer, 2020.

[GH05] Allen Goldberg and Klaus Havelund. Automated runtime verification
with eagle. In Ulrich Ultes-Nitsche, Juan Carlos Augusto, and Joseph
Barjis, editors, Modelling, Simulation, Verification and Validation of
Enterprise Information Systems, Proceedings of the 3rd International
Workshop on Modelling, Simulation, Verification and Validation of En-
terprise Information Systems, MSVVEIS 2005, In conjunction with
ICEIS 2005, Miami, FL, USA, May 2005. INSTICC Press, 2005.

[GL87] Thierry Gautier and Paul Le Guernic. SIGNAL: A declarative language
for synchronous programming of real-time systems. In Gilles Kahn,
editor, Functional Programming Languages and Computer Architecture,
Portland, Oregon, USA, September 14-16, 1987, Proceedings, volume
274 of Lecture Notes in Computer Science, pages 257–277. Springer,
1987.

[GL02] Dimitra Giannakopoulou and Flavio Lerda. From states to transitions:
Improving translation of LTL formulae to büchi automata. In Doron A.
Peled and Moshe Y. Vardi, editors, Formal Techniques for Networked
and Distributed Systems - FORTE 2002, 22nd IFIP WG 6.1 Interna-
tional Conference Houston, Texas, USA, November 11-14, 2002, Pro-
ceedings, volume 2529 of Lecture Notes in Computer Science, pages 308–
326. Springer, 2002.

[GO01] Paul Gastin and Denis Oddoux. Fast LTL to büchi automata transla-
tion. In Gérard Berry, Hubert Comon, and Alain Finkel, editors, Com-
puter Aided Verification, 13th International Conference, CAV 2001,

216

Bibliography

Paris, France, July 18-22, 2001, Proceedings, volume 2102 of Lecture
Notes in Computer Science, pages 53–65. Springer, 2001.

[GO03] Paul Gastin and Denis Oddoux. LTL with past and two-way very-
weak alternating automata. In Branislav Rovan and Peter Vojtás, edi-
tors, Mathematical Foundations of Computer Science 2003, 28th Inter-
national Symposium, MFCS 2003, Bratislava, Slovakia, August 25-29,
2003, Proceedings, volume 2747 of Lecture Notes in Computer Science,
pages 439–448. Springer, 2003.

[Gor22] Felipe Gorostiaga. Theory and Practice of Stream Runtime Verifica-
tion for Sequences and Real-Time Event Based Systems. PhD thesis,
Technical University of Madrid, Spain, 2022.

[GPMS20] Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou,
and Johann Schumann. Generation of formal requirements from struc-
tured natural language. In REFSQ, volume 12045 of Lecture Notes in
Computer Science, pages 19–35. Springer, 2020.

[GPSS80] Dov M. Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On
the temporal analysis of fairness. In Paul W. Abrahams, Richard J. Lip-
ton, and Stephen R. Bourne, editors, Conference Record of the Seventh
Annual ACM Symposium on Principles of Programming Languages, Las
Vegas, Nevada, USA, January 1980, pages 163–173. ACM Press, 1980.

[GS18] Felipe Gorostiaga and César Sánchez. Striver: Stream runtime veri-
fication for real-time event-streams. In Christian Colombo and Mar-
tin Leucker, editors, Runtime Verification - 18th International Confer-
ence, RV 2018, Limassol, Cyprus, November 10-13, 2018, Proceedings,
volume 11237 of Lecture Notes in Computer Science, pages 282–298.
Springer, 2018.

[GS21a] Felipe Gorostiaga and César Sánchez. Nested monitors: Monitors as
expressions to build monitors. In Lu Feng and Dana Fisman, editors,
Runtime Verification - 21st International Conference, RV 2021, Virtual
Event, October 11-14, 2021, Proceedings, volume 12974 of Lecture Notes
in Computer Science, pages 164–183. Springer, 2021.

[GS21b] Felipe Gorostiaga and César Sánchez. Stream runtime verification of
real-time event streams with the striver language. Int. J. Softw. Tools
Technol. Transf., 23(2):157–183, 2021.

[GV13] Giuseppe De Giacomo and Moshe Y. Vardi. Linear temporal logic
and linear dynamic logic on finite traces. In Proc. of the 23rd Int’l
Joint Conf. on Artificial Intelligence (IJCAI’13), pages 854–860. IJ-
CAI/AAAI, 2013.

217

Bibliography

[HKLS24] Raik Hipler, Hannes Kallwies, Martin Leucker, and César Sánchez.
General anticipatory runtime verification. In Arie Gurfinkel and Vi-
jay Ganesh, editors, Computer Aided Verification - 36th International
Conference, CAV 2024, Montreal, QC, Canada, July 24-27, 2024, Pro-
ceedings, Part II, volume 14682 of Lecture Notes in Computer Science,
pages 133–155. Springer, 2024.

[HL11] Martin Hofmann and Martin Lange. Automatentheorie und Logik. eX-
amen.press. Springer, 2011.

[Hod93] Wilfrid Hodges. Model theory, volume 42 of Encyclopedia of mathemat-
ics and its applications. Cambridge University Press, 1993.

[HPU17] Klaus Havelund, Doron Peled, and Dogan Ulus. First order temporal
logic monitoring with bdds. In FMCAD, pages 116–123. IEEE, 2017.

[HR02] Klaus Havelund and Grigore Roşu. Synthesizing monitors for safety
properties. In Joost-Pieter Katoen and Perdita Stevens, editors, Tools
and Algorithms for the Construction and Analysis of Systems, 8th Inter-
national Conference, TACAS 2002, Held as Part of the Joint European
Conference on Theory and Practice of Software, ETAPS 2002, Greno-
ble, France, April 8-12, 2002, Proceedings, volume 2280 of Lecture Notes
in Computer Science, pages 342–356. Springer, 2002.

[HS20] Thomas A. Henzinger and N. Ege Saraç. Monitorability under assump-
tions. In Jyotirmoy Deshmukh and Dejan Nickovic, editors, Runtime
Verification - 20th International Conference, RV 2020, Los Angeles,
CA, USA, October 6-9, 2020, Proceedings, volume 12399 of Lecture
Notes in Computer Science, pages 3–18. Springer, 2020.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley, 1979.

[IEE98] IEEE. IEEE standard for software verification and validation. IEEE
Std 1012-1998, pages 1–80, 1998.

[Ins13] Project Management Institute. A guide to the project management
body of knowledge (pmbok guide). Project Management Institute, 2013.

[KH04] Nathan P. Koenig and Andrew Howard. Design and use paradigms
for gazebo, an open-source multi-robot simulator. In 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Sendai,
Japan, September 28 - October 2, 2004, pages 2149–2154. IEEE, 2004.

[KHF19] Sean Kauffman, Klaus Havelund, and Sebastian Fischmeister. Mon-
itorability over unreliable channels. In RV, volume 11757 of Lecture
Notes in Computer Science, pages 256–272. Springer, 2019.

218

Bibliography

[KHF21] Sean Kauffman, Klaus Havelund, and Sebastian Fischmeister. What
can we monitor over unreliable channels? Int. J. Softw. Tools Technol.
Transf., 23(4):579–600, 2021.

[Kin76] James C. King. Symbolic execution and program testing. Commun.
ACM, 19(7):385–394, 1976.

[KLS22a] Hannes Kallwies, Martin Leucker, and César Sánchez. Symbolic run-
time verification for monitoring under uncertainties and assumptions.
In Ahmed Bouajjani, Lukás Hoĺık, and Zhilin Wu, editors, Automated
Technology for Verification and Analysis - 20th International Sympo-
sium, ATVA 2022, Virtual Event, October 25-28, 2022, Proceedings,
volume 13505 of Lecture Notes in Computer Science, pages 117–134.
Springer, 2022.

[KLS+22b] Hannes Kallwies, Martin Leucker, Malte Schmitz, Albert Schulz, Daniel
Thoma, and Alexander Weiss. Tessla - an ecosystem for runtime veri-
fication. In Thao Dang and Volker Stolz, editors, Runtime Verification
- 22nd International Conference, RV 2022, Tbilisi, Georgia, September
28-30, 2022, Proceedings, volume 13498 of Lecture Notes in Computer
Science, pages 314–324. Springer, 2022.

[KLS23] Hannes Kallwies, Martin Leucker, and César Sánchez. General antic-
ipatory monitoring for temporal logics on finite traces. In Panagiotis
Katsaros and Laura Nenzi, editors, Runtime Verification - 23rd Inter-
national Conference, RV 2023, Thessaloniki, Greece, October 3-6, 2023,
Proceedings, volume 14245 of Lecture Notes in Computer Science, pages
106–125. Springer, 2023.

[KLSS22] Hannes Kallwies, Martin Leucker, César Sánchez, and Torben Scheffel.
Anticipatory recurrent monitoring with uncertainty and assumptions.
In Thao Dang and Volker Stolz, editors, Runtime Verification - 22nd
International Conference, RV 2022, Tbilisi, Georgia, September 28-30,
2022, Proceedings, volume 13498 of Lecture Notes in Computer Science,
pages 181–199. Springer, 2022.

[Knu97] Donald E. Knuth. The Art of Computer Programming, Volume 2:
Seminumerical Algorithms. Addison-Wesley, Boston, third edition,
1997.

[Koy90] Ron Koymans. Specifying real-time properties with metric temporal
logic. Real Time Syst., 2(4):255–299, 1990.

[KPD22] Peeyush Kushwaha, Rahul Purandare, and Matthew B. Dwyer. Opti-
mal finite-state monitoring of partial traces. In Thao Dang and Volker
Stolz, editors, Runtime Verification - 22nd International Conference,
RV 2022, Tbilisi, Georgia, September 28-30, 2022, Proceedings, volume

219

Bibliography

13498 of Lecture Notes in Computer Science, pages 124–142. Springer,
2022.

[KS16] Daniel Kroening and Ofer Strichman. Decision Procedures - An Algo-
rithmic Point of View, Second Edition. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2016.

[Leu11] Martin Leucker. Teaching runtime verification. In Sarfraz Khurshid
and Koushik Sen, editors, Runtime Verification - Second International
Conference, RV 2011, San Francisco, CA, USA, September 27-30, 2011,
Revised Selected Papers, volume 7186 of Lecture Notes in Computer
Science, pages 34–48. Springer, 2011.

[Leu12] Martin Leucker. Sliding between model checking and runtime verifica-
tion. In Shaz Qadeer and Serdar Tasiran, editors, Runtime Verification,
Third International Conference, RV 2012, Istanbul, Turkey, September
25-28, 2012, Revised Selected Papers, volume 7687 of Lecture Notes in
Computer Science, pages 82–87. Springer, 2012.

[Lov78] Donald W. Loveland. Automated theorem proving: a logical basis, vol-
ume 6 of Fundamental studies in computer science. North-Holland,
1978.

[LPZ85] Orna Lichtenstein, Amir Pnueli, and Lenore D. Zuck. The glory of the
past. In Rohit Parikh, editor, Logics of Programs, Conference, Brooklyn
College, New York, NY, USA, June 17-19, 1985, Proceedings, volume
193 of Lecture Notes in Computer Science, pages 196–218. Springer,
1985.

[LS07] Martin Leucker and César Sánchez. Regular linear temporal logic. In
Proc. of the 4th Int’l Colloquium on Theoretical Aspects of Computing
(ICTAC’07), volume 4711 of LNCS, pages 291–305. Springer, 2007.

[LS09] Martin Leucker and Christian Schallhart. A brief account of runtime
verification. J. Log. Algebraic Methods Program., 78(5):293–303, 2009.

[LSS+18] Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmitz, and
Alexander Schramm. Tessla: runtime verification of non-synchronized
real-time streams. In Hisham M. Haddad, Roger L. Wainwright, and
Richard Chbeir, editors, Proceedings of the 33rd Annual ACM Sympo-
sium on Applied Computing, SAC 2018, Pau, France, April 09-13, 2018,
pages 1925–1933. ACM, 2018.

[LSS+19] Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmitz, and
Daniel Thoma. Runtime verification for timed event streams with par-
tial information. In Bernd Finkbeiner and Leonardo Mariani, editors,
Runtime Verification - 19th International Conference, RV 2019, Porto,

220

Bibliography

Portugal, October 8-11, 2019, Proceedings, volume 11757 of Lecture
Notes in Computer Science, pages 273–291. Springer, 2019.

[M+56] Edward F Moore et al. Gedanken-experiments on sequential machines.
Automata studies, 34:129–153, 1956.

[Mag16] Andrea Maglie. Reactive Java Programming. Apress, Berkeley, CA,
2016.

[Mar03] Nicolas Markey. Temporal logic with past is exponentially more suc-
cinct, concurrency column. Bull. EATCS, 79:122–128, 2003.

[Mea55] George H. Mealy. A method for synthesizing sequential circuits. The
Bell System Technical Journal, 34(5):1045–1079, 1955.

[MH84] Satoru Miyano and Takeshi Hayashi. Alternating finite automata on
omega-words. In Bruno Courcelle, editor, CAAP’84, 9th Colloquium
on Trees in Algebra and Programming, Bordeaux, France, March 5-7,
1984, Proceedings, pages 195–210. Cambridge University Press, 1984.

[Min01] Antoine Miné. The octagon abstract domain. In Elizabeth Burd, Peter
Aiken, and Rainer Koschke, editors, Proceedings of the Eighth Working
Conference on Reverse Engineering, WCRE’01, Stuttgart, Germany,
October 2-5, 2001, page 310. IEEE Computer Society, 2001.

[Mis99] Mishap Investigation Board. Mars Climate Orbiter Mishap Investiga-
tion Board Phase I Report November 10, 1999, 1999.

[MN04] Oded Maler and Dejan Nickovic. Monitoring temporal properties of con-
tinuous signals. In Yassine Lakhnech and Sergio Yovine, editors, Formal
Techniques, Modelling and Analysis of Timed and Fault-Tolerant Sys-
tems, Joint International Conferences on Formal Modelling and Analy-
sis of Timed Systems, FORMATS 2004 and Formal Techniques in Real-
Time and Fault-Tolerant Systems, FTRTFT 2004, Grenoble, France,
September 22-24, 2004, Proceedings, volume 3253 of Lecture Notes in
Computer Science, pages 152–166. Springer, 2004.

[MNP06] Oded Maler, Dejan Nickovic, and Amir Pnueli. From MITL to timed
automata. In Eugene Asarin and Patricia Bouyer, editors, Formal
Modeling and Analysis of Timed Systems, 4th International Confer-
ence, FORMATS 2006, Paris, France, September 25-27, 2006, Proceed-
ings, volume 4202 of Lecture Notes in Computer Science, pages 274–289.
Springer, 2006.

[MP79] Zohar Manna and Amir Pnueli. The modal logic of programs. In Her-
mann A. Maurer, editor, Automata, Languages and Programming, 6th
Colloquium, Graz, Austria, July 16-20, 1979, Proceedings, volume 71 of
Lecture Notes in Computer Science, pages 385–409. Springer, 1979.

221

Bibliography

[MP91] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Sys-
tems. Springer-Verlag, 1991.

[MP92] Zohar Manna and Amir Pnueli. The temporal logic of reactive and
concurrent systems - specification. Springer, 1992.

[Nip10] Tobias Nipkow. Linear quantifier elimination. J. Autom. Reason.,
45(2):189–212, 2010.

[ØH07] Peter Øhrstrøm and Per Hasle. Temporal logic: From ancient ideas to
artificial intelligence, volume 57. Springer Science & Business Media,
2007.

[Øhr19] Peter Øhrstrøm. The Significance of the Contributions of A.N.Prior
and Jerzy Loś in the Early History of Modern Temporal Logic. Logic
and Philosophy of Time. Aalborg Universitetsforlag, 1 edition, 2019.

[Ore44] Oystein Ore. Galois connexions. Transactions of the American mathe-
matical society, 55:493–513, 1944.

[OW06] Joël Ouaknine and James Worrell. On metric temporal logic and faulty
turing machines. In Luca Aceto and Anna Ingólfsdóttir, editors, Foun-
dations of Software Science and Computation Structures, 9th Interna-
tional Conference, FOSSACS 2006, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2006, Vienna,
Austria, March 25-31, 2006, Proceedings, volume 3921 of Lecture Notes
in Computer Science, pages 217–230. Springer, 2006.

[PGMN10] Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. Copi-
lot: A hard real-time runtime monitor. In Howard Barringer, Yliès Fal-
cone, Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon J. Pace,
Grigore Roşu, Oleg Sokolsky, and Nikolai Tillmann, editors, Runtime
Verification - First International Conference, RV 2010, St. Julians,
Malta, November 1-4, 2010. Proceedings, volume 6418 of Lecture Notes
in Computer Science, pages 345–359. Springer, 2010.

[Pnu77] Amir Pnueli. The temporal logic of programs. In 18th Annual Sympo-
sium on Foundations of Computer Science, Providence, Rhode Island,
USA, 31 October - 1 November 1977, pages 46–57. IEEE Computer
Society, 1977.

[Pre29] M Presburger. Über die vollständigkeit eines gewissen systems der arith-
metik ganzer zahlen, in welchem die addition als einzige operation her-
vortritt. In Comptes Rendus du I. congrès de Mathématiciens des Pays
Slaves, pages 92–101, 1929.

[Pri58] A. N. Prior. The syntax of time-distinctions. Franciscan Studies,
18(2):105–120, 1958.

222

Bibliography

[PZ06] Amir Pnueli and Aleksandr Zaks. PSL model checking and run-time
verification via testers. In Jayadev Misra, Tobias Nipkow, and Emil
Sekerinski, editors, FM 2006: Formal Methods, 14th International Sym-
posium on Formal Methods, Hamilton, Canada, August 21-27, 2006,
Proceedings, volume 4085 of Lecture Notes in Computer Science, pages
573–586. Springer, 2006.

[RCC92] David A. Randell, Zhan Cui, and Anthony G. Cohn. A spatial logic
based on regions and connection. In Bernhard Nebel, Charles Rich,
and William R. Swartout, editors, Proceedings of the 3rd International
Conference on Principles of Knowledge Representation and Reasoning
(KR’92). Cambridge, MA, USA, October 25-29, 1992, pages 165–176.
Morgan Kaufmann, 1992.

[Ric53] Henry Gordon Rice. Classes of recursively enumerable sets and their
decision problems. Transactions of the American Mathematical society,
74(2):358–366, 1953.

[RRS14] Thomas Reinbacher, Kristin Y. Rozier, and Johann Schumann.
Temporal-logic based runtime observer pairs for system health man-
agement of real-time systems. In Proc. 20th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’14),
volume 8413 of LNCS, pages 357–372. Springer, 2014.

[RU71] Nicholas Rescher and Alasdair Urquhart. Temporal logic. Springer Vi-
enna, Vienna, 1971.

[RY20] Xavier Rival and Kwangkeun Yi. Introduction to static analysis: an
abstract interpretation perspective. Mit Press, 2020.

[SB00] Fabio Somenzi and Roderick Bloem. Efficient büchi automata from LTL
formulae. In E. Allen Emerson and A. Prasad Sistla, editors, Computer
Aided Verification, 12th International Conference, CAV 2000, Chicago,
IL, USA, July 15-19, 2000, Proceedings, volume 1855 of Lecture Notes
in Computer Science, pages 248–263. Springer, 2000.

[SBS+11] Scott D. Stoller, Ezio Bartocci, Justin Seyster, Radu Grosu, Klaus
Havelund, Scott A. Smolka, and Erez Zadok. Runtime verification
with state estimation. In Sarfraz Khurshid and Koushik Sen, editors,
Runtime Verification - Second International Conference, RV 2011, San
Francisco, CA, USA, September 27-30, 2011, Revised Selected Papers,
volume 7186 of Lecture Notes in Computer Science, pages 193–207.
Springer, 2011.

[Sch22] Torben Scheffel. Expressiveness and complexity of stream-based specifi-
cation languages. PhD thesis, University of Lübeck, Germany, 2022.

223

Bibliography

[Sch24] Malte Schmitz. Efficient Implementation of Stream Transformations.
PhD thesis, University of Lübeck, Germany, 2024.

[SL10] César Sánchez and Martin Leucker. Regular linear temporal logic with
past. In Proc. of the 11th Int’l Conf. on Verification, Model Checking,
and Abstract Interpretation, (VMCAI’10), volume 5944 of LNCS, pages
295–311. Springer, 2010.

[SQ18] Yassamine Seladji and Zheng Qu. Polyhedron over-approximation for
complexity reduction in static analysis. Int. J. Comput. Math. Comput.
Syst. Theory, 3(4):215–229, 2018.

[SSA+19] César Sánchez, Gerardo Schneider, Wolfgang Ahrendt, Ezio Bartocci,
Domenico Bianculli, Christian Colombo, Yliès Falcone, Adrian Fran-
calanza, Srdan Krstic, João M. Lourenço, Dejan Nickovic, Gordon J.
Pace, José Rufino, Julien Signoles, Dmitriy Traytel, and Alexander
Weiss. A survey of challenges for runtime verification from advanced
application domains (beyond software). Formal Methods Syst. Des.,
54(3):279–335, 2019.

[Str80] Gilbert Strang. Linear algebra and its applications. Academic Press,
New York, 1980.

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applica-
tions. Pacific journal of Mathematics, 5(2):285–309, 1955.

[THK23] Rania Taleb, Sylvain Hallé, and Raphaël Khoury. Uncertainty in run-
time verification: A survey. Computer Science Review, 50:100594, 2023.

[Var95] Moshe Y. Vardi. An automata-theoretic approach to linear tempo-
ral logic. In Faron Moller and Graham M. Birtwistle, editors, Logics
for Concurrency - Structure versus Automata (8th Banff Higher Or-
der Workshop, Banff, Canada, August 27 - September 3, 1995, Pro-
ceedings), volume 1043 of Lecture Notes in Computer Science, pages
238–266. Springer, 1995.

[Var11] Moshe Y. Vardi. The rise and fall of linear time logic. 2nd Int’l Symp.
on Games, Automata, Logics and Formal Verification, 2011.

[WAH19] Masaki Waga, Étienne André, and Ichiro Hasuo. Symbolic monitor-
ing against specifications parametric in time and data. In Proc. of
CAV’19(1), volume 11561 of LNCS, pages 520–539. Springer, 2019.

[Wol81] Pierre Wolper. Temporal logic can be more expressive. In 22nd An-
nual Symposium on Foundations of Computer Science, Nashville, Ten-
nessee, USA, 28-30 October 1981, pages 340–348. IEEE Computer So-
ciety, 1981.

224

Bibliography

[Wol00] Pierre Wolper. Constructing automata from temporal logic formulas: A
tutorial. In Ed Brinksma, Holger Hermanns, and Joost-Pieter Katoen,
editors, Lectures on Formal Methods and Performance Analysis, First
EEF/Euro Summer School on Trends in Computer Science, Berg en
Dal, The Netherlands, July 3-7, 2000, Revised Lectures, volume 2090 of
Lecture Notes in Computer Science, pages 261–277. Springer, 2000.

[ZJLS00] Jun Zhang, Karl Henrik Johansson, John Lygeros, and Shankar Sastry.
Dynamical systems revisited: Hybrid systems with zeno executions. In
HSCC, volume 1790 of Lecture Notes in Computer Science, pages 451–
464. Springer, 2000.

225

Index

ω-word, 16

abstract interpretation, 71
abstraction, 70, 73

perfect, 74
algebra, 21
alphabet, 15
alternating Büchi automaton, 32
anticipation, 6
assignment, 22
assumption, 7, 44, 48, 118

containment, 49
asynchronous property, 83

base set, 21

Cartesian domain, 72
chunk uncertainty model, 47
concrete trace, 45
configuration, 122

abstraction, 132
set, 122

configuration transformer, 123
abstraction, 131

constant, 21
constant symbol, 21
constraint rewriting, 149
constraint set, 23

term representation, 23
constraint set measure

strict, 150
weak, 150

continuity, 66
continuous property, 83
correctness property, 3, 24
current instant, 83
cyber-physical system, 3

data domain, 15
dependent transformers, 133
directed set, 20

downward, 20
upward, 20

domain, 21

expression, 22
expression size measure

strict, 150
weak, 150

fixed point, 65
abstraction, 74
greatest, 65
iteration, 67
least, 65

formal method, 2
Fourier–Motzkin elimination, 158

Galois connection, 72
Gaussian elimination method, 154
greatest lower bound, 20

induced (pointwise) property, 92
induced algebra, 54
infimum, 20

227

INDEX

initial (transformer) semantics, 130
initial monitor

perfect, 80
sound, 80

initial property, 79
finite, 79
infinite, 79

instant domain, 16
instant expression, 57
instant variable, 57
instant-immanent uncertainty, 46,

118
instrumentation, 3
intermediate stream, 50

join, 20

k-offset recurrent monitor
perfect, 85
sound, 85
under uncertainty and

assumptions, 90
Kleene’s fixed point theorem, 67
Knaster-Tarski fixed point theorem,

66

lattice, 21
complete, 21

least upper bound, 20
letter, 16
letter-wise uncertainty, 46
linear temporal logic, 27

future, 30
past, 30
past with bounded future, 30
semantics, 28, 29

LOLA, 52
expression semantics, 55
fixed point semantics, 109
induced (pointwise) property,

92
induced algebra, 54
monitoring fixed point equation,

112
under assumptions, 119

monitoring semantics, 114
under assumptions, 119

semantics, 55
specification, 53

dependency graph, 56
efficiently monitorable, 60
flattened, 53
solution, 55
very efficiently monitorable,

60
well-formedness, 56

stream expression, 53
symbolic transformer semantics,

167
transformer semantics, 127
universal monitor, 56

Lola 2.0, 62
lower bound, 20

Mealy machine, 31
meet, 20
metric interval temporal logic, 43
metric model, 18
metric temporal logic, 41
model, 22

restricted to R, 22
model checking, 2
monitor, 3

synchronous, 78
monitor state, 138
monitored time, 85
monitoring event stream, 110
monitoring event stream tuple, 111
monitoring semantics, 110
monitoring time, 85
monotonic function, 66
Moore machine, 31

narrowing, 74
negation normal form, 35
nondeterministic Büchi automaton,

32

observation, 3
configuration, 3

228

INDEX

operation, 21
operation symbol, 21

pointwise property, 82
finite, 82
infinite, 82

query domain, 86
trivial, 86

random access (recurrent) monitor
perfect, 86
sound, 86
under assumptions, 88
under uncertainty and

assumptions, 89
recurrent monitor

perfect, 84
sound, 84

relevant variables, 150
rewriting strategy, 150

constant, 151
perfect, 150
sound, 150

row echelon form, 154
RTLola, 62
run, 3
runtime reflection, 4
runtime verification, 2, 24

offline, 4, 24
online, 4, 24

S-algebra, 21
Scott-continuous, 66
semi-lattice, 21

complete, 21
join, 21
meet, 21

signal, 18
signal temporal logic, 43
signature, 21
sort, 21
specification, 2, 3
static analysis, 2
stream configuration, 122

set, 122
stream runtime verification, 4, 50

asynchronous, 6
synchronous, 5

Striver, 64
supremum, 20
symbolic configuration set, 146
symbolic domain, 144
symbolic transformer, 148

computation, 164
symbolic transformer semantics,

167
synchronous event stream, 16

finite, 16
infinite, 16

synchronous monitor, 78
output, 78
run, 78

synchronous property, 83
system under scrutiny, 2, 3

TeSSLa, 63
testing, 2
theorem proving, 2
time domain, 17

dense, 17
discrete, 17
finite, 17
non-discrete, 17
with R≥0 distance measure, 18

timed stream, 18
timestamp, 17
timestamp-immanent uncertainty, 46,

117
trace, 3

finite, 16
infinite, 16
timed, 19

transformer, 123
abstraction, 131

transformer fixed point equation,
127

transformer semantics, 127
transformer structure, 126

229

INDEX

type, 21

uncertain trace, 45
extension, 45

uncertainty, 7, 44, 45, 116
upper bound, 20

validation, 2
valuation, 78
variable identifier, 22

verdict, 4, 24
verification, 2

widening, 74, 137
operator, 137

word, 16

zeno behavior, 20, 64
zenoness, 20

230

	Introduction
	Formal methods
	Runtime verification
	Stream runtime verification
	Monitoring

	Contributions of this work
	Related work
	Thesis structure

	Preliminaries
	Basic concepts
	Traces
	Streams
	Timed streams
	Ordered sets and lattices
	Algebras

	Runtime verification
	Linear temporal logic
	Monitor constructions
	Metric (interval) and signal temporal logic
	Monitoring under uncertainty and assumptions

	Stream runtime verification
	LOLA
	TeSSLa
	Striver

	Fixed point computation and abstract interpretation
	Recursive computations as fixed point equations
	Abstract fixed point computation
	Usage of abstractions in runtime verification

	A generalized monitoring theory
	Monitoring
	Initial monitoring
	Pointwise monitoring
	Motivation
	Pointwise properties and their monitoring
	Extensions

	Connection to stream runtime verification
	LOLA specifications as pointwise properties
	Embedding of pointwise properties in LOLA
	LOLA monitoring
	Other SRV languages

	Summary

	A LOLA monitoring framework
	Basic notations
	LOLA semantics revisited
	Monitoring semantics for LOLA

	Recurrent LOLA monitoring
	Monitoring reductions in LOLA
	Prerequisites for monitor construction

	An abstraction-based recurrent LOLA monitoring framework
	Concrete recurrent LOLA monitoring
	Abstract recurrent LOLA monitoring
	Abstract recurrent LOLA monitoring algorithm

	Summary

	Symbolic LOLA monitoring
	Symbolic constraints
	Encoding of streams and events
	Symbolic configuration abstraction
	Symbolic transformer abstraction

	Constraint rewriting
	The boolean fragment
	The linear algebra fragment
	The linear arithmetic fragment

	Symbolic monitoring
	Symbolic transformer semantics
	Symbolic transformer application
	Symbolic monitoring algorithm
	Overall example
	Remarks

	Summary

	Application and evaluation
	Implementation
	Evaluation
	Case studies and evaluation results

	Discussion

	Conclusion and future work
	Summary
	Future work

	Basic notations
	Notations
	(Ordered) sets, families, tuples, sequences, relations, functions
	Numbers
	Graphs, trees
	Finite automata

	Measurement tables
	Case Study 1. ECG signal analysis: Past-only monitoring
	Case Study 2. Path planning: Combination of discrete and continuous monitoring
	Case Study 3. Collision avoidance: Continuous monitoring

	Bibliography
	Index

