
jUnitRV—Adding Runtime Verification to jUnit

Normann Decker, Martin Leucker, and Daniel Thoma

Institute for Software Engineering and Programming Languages
Universität zu Lübeck, Germany

{decker, leucker, thoma}@isp.uni-luebeck.de

Abstract. This paper presents jUnitRV as a tool extending the unit
testing framework jUnit by runtime verification capabilities. Roughly,
jUnitRV provides a new annotation @Monitors listing monitors that are
synthesized from temporal specifications. The monitors check whether
the currently executed tests satisfy the correctness properties underlying
the monitors. As such, jUnit’s concept of plain assert-based verification
limited to checking properties of single states of a program is extended
significantly towards checking properties of complete execution paths.

1 Introduction

Testing is the verification technique that is most applied in practice. Yet, testing
is still quite ad-hoc, time consuming and as such, expensive. Easily, testing of
software systems consumes up-to 50% of total development costs in safety-critical
systems.

One of the most popular testing approaches to Java code is unit testing
based on the jUnit framework [1]. Unit testing is essential in test-driven devel-
opment such as extreme programming but also common when following classical
development models.

Runtime verification is still a rather new verification technique in which a
formal correctness property is checked on the actual execution of a system under
scrutiny. Typically, monitor code checking the property at hand is synthesized
and interweaved with the underlying program. Then, any execution of the re-
sulting program is checked with respect to this property.

In this paper, we present jUnitRV as a tool combining the ideas of unit testing
and runtime verification.1 It allows for high-level specifications of monitors for
temporal assertions within the jUnit framework. Testing temporal properties
commonly leads to complicated test cases and may require modifications to the
application code. In jUnitRV, monitors can be annotated to single test cases to
automatically check the corresponding properties during execution.

While there are several runtime verification frameworks (see [2] for a recent
overview), none of the available tools provides a close integration into jUnit.

In the next section, we give a brief overview on how to use jUnit and jUnitRV.
Afterwards, we discuss technical issues of our tool. Section 3 details how temporal

1 jUnitRV is freely available at http://www.isp.uni-luebeck.de/junitrv.

specifications are related to program executions and Section 4 describes how
monitoring is integrated into the jUnit framework.

2 jUnitRV—A quick starting guide

In this section, we introduce jUnitRV by means of an example. We recall the
ideas of jUnit, explain current limitations and show how jUnitRV can simplify
testing of so-called temporal assertions by means of runtime verification.

Testing and jUnit. The aim of unit testing is to check simple, individual units
of a program. While jUnit is originally developed to support unit testing, it
allows, in principle, for complex test scenarios and it is often used for integration
testing and system testing in practice as well.

Let us explain the main ideas about jUnit based on the following, exempli-
fying hospital application: For every patient, the hospital personnel takes the
necessary data and submits it to the central hospital information system. The
information may be queried and modified later on. For this, the hospital person-
nel uses terminals which may be shared by different users by switching between
the respective accounts.

The terminal runs a Java application which takes care of user management
and modification of patient data. To access and modify patient data in the
hospital information system, it uses the following (simplified) interface.

public interface DataService {
void connect(String userID) throws UnknownUserException;
void disconnect ();
Data readData(String field);
void modifyData(String field , Data data);
void commit () throws CommitException;

}

The terminal application, called client in the following, is to be tested whether
it meets the following requirement: If data was modified through the interface,
the client must instruct the data service to commit the changes before the user
logs out since local changes would be lost otherwise. A user is logged out from
the system, e.g. when the client is shut down or the user is switched, and, as
such, the requirement has to be tested at different functions of the application.

Within Java’s unit testing framework jUnit, test cases are specified in ded-
icated test classes. A test case in jUnit is a method comprising the annotation
@Test and a sequence of method calls to be executed. Additionally, assertions
are used to specify expectations to the program state at certain steps. jUnit
loads a specified test class and consecutively invokes all included test cases. A
typical test case for the requirement mentioned above looks as follows.

@Test
public void test1() {

DataService service = new MyDataService ("http :// myserver.net ");
MyDataClient client = new MyDataClient(service);

client.authenticate (" daniel ");
client.addPatient ("Mr. Smith ");

client.switchToUser ("ruth ");
assertTrue(service.debug_committed ()); // switching means logout

client.getPatientFile ("miller -2143 -1");
client.setPhone ("miller -2143 -1", "012345678");
client.exit ();
assertTrue(service.debug_committed ());

}

The difficulty of using jUnit in this example is twofold: (i) for executing
the test case above the implementation must be refactored to provide enough
information to indicate whether a commit has happened. Moreover, (ii) the tester
needs the information which methods actually perform a logout (switch() and
exit() in our example).

Clearly, the need for complete knowledge of such information as well as the
need for refactoring e.g. an interface in late development phases makes testing
labor-intensive and error prone. In essence, the problem in the example above
is that a requirement on the execution trace should be checked while jUnit only
supports assertions to be checked in individual states of the system.

Runtime Verification and jUnitRV. Runtime verification (see [3] for a sur-
vey) aims at verifying properties on individual execution traces. To this end,
temporal assertions may be specified, typically in terms of temporal logic formu-
lae, and are automatically translated into a so-called monitoring code. A monitor
is a program that observes the current execution and yields a verdict whether
the property is fulfilled or violated.

The requirement in the example above can be stated as

Always (modify ⇒ ¬disconnect Until committed)

meaning it is always the case, that whenever the method DataService.modify()

is invoked, the client does not disconnect until a call to DataService.commit()

returned successfully. The link between formal events and method calls are made
explicit in jUnitRV as follows:

String dataService = "myPackage.DataService ";

private static Event modify = called(dataService , "modify ");
private static Event committed = returned(dataService , "commit ");
private static Event disconnect = called(dataService , "disconnect ");

Note that, besides events, jUnitRV also supports propositions. The distinction is
made precise in the next section. A corresponding monitor definition within the
jUnitRV framework can be given as follows.

private static Monitor commitBeforeDisconnect = new FLTL4Monitor(
Always(implies(

modify ,
Until(not(disconnect), committed)

)
));

jUnitRV is in general capable to deal with different logic plug-ins but comes with
a DSL for specifying temporal assertions in the temporal logic FLTL4, which
follows [4] and is defined formally in [2].

Individual test cases can now be monitored by just adding an annotation
@Monitors together with a list of monitor names that have been defined before.
For our example, we get:

@Test
@Monitors ({" commitBeforeDisconnect "})
public void test1() {

DataService service = new MyDataService ("http :// myserver.net ");
MyDataClient client = new MyDataClient(service);

client.authenticate (" daniel ");
client.addPatient ("Mr. Smith ");
client.switchToUser ("ruth ");
client.getPatientFile ("miller -2143 -1");
client.setPhone ("miller -2143 -1", "012345678");
client.exit ();

}

3 Execution Traces and Formal Runs

jUnitRV allows for specifying temporal assertions in jUnit. Such specifications
can be annotated to test cases and are monitored during test execution. At every
execution step, the monitor reports a (possibly preliminary) verdict. The test
case fails, if the monitor reports a violation of the property during the execution.

The monitor specifications are based on temporal logic, which describes dis-
crete sequences of observations, i.e. individual steps in time. At every such time
step, atomic propositions are assumed to evaluate to either true or false. How-
ever, the actual observation that is made and the user intends to describe is the
execution trace or run of a program.

Such a run includes e.g. method invocations and returns, variable access and
variable evaluations. To use temporal logic as a tool to describe program runs, the
mapping between formal semantics and program traces must be clear, intuitively
as well as formally. We therefore introduce our notion of events and propositions.
In first place, events serve as clock triggers to the monitors, thereby defining
the discrete steps in time. Additionally, propositions characterize the current
program state within such a discrete time unit. They are evaluated within the
scope of an event, i.e. a specific time instant.

Events. In jUnitRV, events are specified explicitly and are automatically trig-
gered. The temporal assertion in our example above uses the events modify,
committed and disconnect. Such events, mark specific actions of the program.
The events modify and disconnect trigger as soon as the methods modify()

and disconnect(), respectively, are invoked on an object of type DataService.
The event committed occurs when the method commit() returned successfully,
i.e. without throwing an exception. Each monitor is associated with a set of
events and whenever one of them occurs, a time step is indicated to it.

Propositions. Within the context of a particular time step, propositions are
evaluated and define the current observation. This evaluation defines which tran-

sition a monitor takes in the current step. In jUnitRV, propositions are defined
explicitly as follows:

private static Proposition auth =
new Proposition(eq(invoke($this , "getStatus "),AUTH);

The proposition auth evaluates to true if the method getStatus() returns the
value AUTH. The method is invoked on the current object (denoted $this), which
is the object on which the method was invoked that caused the current event,
i.e. the current time step.

Additional propositions are defined implicitly in terms of events: For each
event there is a proposition with the same name that can be used in the tem-
poral specification. Note that in any time step, only a single event can occur
and thus the propositions implicitly defined by events exclude each other. For
example, the property modify ∧ committed, meaning that the events modify

and committed occur at the same time, can never be true. In the data service
example, the specified property only uses propositions that are defined implicitly
by the corresponding events.

4 jUnit Integration

The jUnit testing framework comes with sophisticated default test case execution
capabilities. Moreover, it provides the possibility to change the test execution
behavior with the help of annotation @RunWith, which takes as argument a
suitable test runner class. As jUnitRV has to take care of event injection and
monitor execution, it provides the class RVRunner. To reuse most of jUnit’s
standard test runner, like its reporting facilities etc., RVRunner inherits from
jUnit’s test runner.

The notion of events is bound to the access of fields and invocation or return
of methods in the program under test. That means that the program must be
interleaved with code being executed whenever a respective method is invoked.
As the classes to be tested are compiled and already loaded by jUnit, when they
are about to be tested with RVRunner, monitoring code cannot be added to the
byte code directly. For code injection, RVRunner uses the following idea: It cre-
ates a customized class loader that will inject corresponding code when loading
classes. It then reloads all involved classes using this custom class loader, which
now adds the monitoring code into the program under test. Our framework uses
the Javassist library [5] that provides the functionality to manipulate the Java
bytecode at load-time of Java classes. For test execution, RVRunner delegates to
jUnit’s the default implementation preserving the standard functionality.

While jUnitRV maintains the monitor state, recognizes events and evaluates
propositions, the behavior of monitors is provided by the implementation of a
single interface Mealy which basically represents the transition function and out-
put labeling of some deterministic (possibly infinite-state) Mealy machine. That
is, jUnitRV provides the current state and proposition evaluations and expects
the subsequent monitor state. The implementation of a monitor construction

remains independent of the state and event management. This easily allows for
the integration of custom monitoring approaches.

Since all required classes are loaded by the jUnit framework, jUnitRV can
be deployed as a standard jar-archive and integrated into any common testing
environment, it suffices to make jUnitRV available through the Java class path.
The tool works with common IDEs, e.g. Eclipse or Netbeans as it leverages the
jUnit test integration.

A major advantage of manipulation of byte code runtime verification is, that
it allows to insert event generation routines even into third party code where the
sources are not available. jUnitRV is hence also independent of the programming
language of the target program as long as it is run on the JVM. Testing Scala
applications or libraries, for example, is thus also possible.

Note that, in principle, manipulation of byte code must be treated with
care as the tested and deployed byte code differ. However, we consider this
uncritical in most practical cases. Additionally, jUnitRV allows for deploying the
instrumented application, i.e. including all modifications.

5 Conclusion

In this paper, we introduced jUnitRV as a tool extending the unit testing frame-
work jUnit by runtime verification capabilities. Within jUnit, test cases are spec-
ified manually together with assertions that are evaluated in the corresponding
states of the system under scrutiny. Using jUnitRV, it is now possible to specify
temporal assertions that specify correctness properties for complete test runs. As
such, test case specification is simplified significantly in many situations. In the
near future, we plan a case study with a larger number of users to investigate
jUnitRV’s usability in practical applications, including scalability under larger
test suites and the practical overhead.

References

1. Beck, K., Gamma, E.: Test-infected: programmers love writing tests. In Deugo, D.,
ed.: More Java Gems. SIGS Reference Library, Cambridge University Press (2000)
357–376

2. Leucker, M.: Teaching runtime verification. In Khurshid, S., Sen, K., eds.: RV.
Volume 7186 of Lecture Notes in Computer Science., Springer (2011) 34–48

3. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr.
Program. 78(5) (2009) 293–303

4. Lichtenstein, O., Pnueli, A., Zuck, L.D.: The glory of the past. In Parikh, R., ed.:
Logic of Programs. Volume 193 of Lecture Notes in Computer Science., Springer
(1985) 196–218

5. Chiba, S.: Load-time structural reflection in java. In Bertino, E., ed.: ECOOP.
Volume 1850 of Lecture Notes in Computer Science., Springer (2000) 313–336

