
Monitoring Modulo Theories

Normann Decker, Martin Leucker, and Daniel Thoma

Institute for Software Engineering and Programming Languages
Universität zu Lübeck, Germany

{decker, leucker, thoma}@isp.uni-luebeck.de

Abstract. This paper considers a generic approach to enhance tradi-
tional runtime verification techniques towards first-order theories in order
to reason about data. This allows especially for the verification of multi-
threaded, object-oriented systems. It presents a general framework lifting
the monitor synthesis for propositional temporal logics to a temporal
logic over structures within some first-order theory. To evaluate such
temporal properties, SMT solving and classical monitoring of proposi-
tional temporal properties is combined. The monitoring procedure was
implemented for linear-time temporal logic (LTL) based on the Z3 SMT
solver and evaluated regarding runtime performance.

1 Introduction

In this paper we consider runtime verification of multi-threaded, object-oriented
systems, representing a major class of today’s practical software. As opposed
to other verification techniques such as model checking or theorem proving,
runtime verification (RV) does not aim at the analysis of the whole system but
on evaluating a correctness property on a particular run, based on log-files or
on-the-fly. To this end, typically a monitor is synthesized from some high-level
specification that is monitoring the run at hand.

In recent years, a variety of synthesis algorithms has been developed, differing
in the underlying expressiveness of the specification formalism and the resulting
monitoring approach. Typically, a variant of linear-time temporal logic (LTL)
is employed as specification language and monitoring is automata-based or
rewriting-based.

Within the setting of multiple, in general arbitrarily many instances of program
parts, for example in terms of threads or objects, a software engineer is naturally
interested in verifying that the interaction of individual instances follows general
rules. The ability of taking the dynamics of data structures and values into
account is a desirable feature for specification and verification approaches. As
such, the expressiveness of plain propositional temporal logics such as LTL does
not suffice, as they do not allow for specifying complex properties on data.

In this paper, we enhance traditional runtime verification techniques for propo-
sitional temporal logics by first-order theories for reasoning about data, based
on SMT solvers. In result, we obtain a powerful tool for verifying complex prop-
erties at runtime which exceeds the expressiveness of previous approaches. The
implementation in our tool jUnitRV [1] also shows that the framework is suitable
for practical applications.

Today’s SMT solvers are highly optimized tools that can check the satisfiability
of formulae over a variety of first-order theories such as arithmetics, arrays, lists

and uninterpreted functions. They allow for reasoning on a large class of data
structures used in modern software systems. We hence aim at integrating their
capabilities with the efficient monitoring approaches for temporal properties. We
formulate example properties showing the specific strength of our framework in
terms of expressiveness. Our benchmarks for monitoring Java programs show
that such specifications can be monitored efficiently.

Combining monitoring and SMT. In the following we outline the idea of
our approach my means of a running example. Consider a mutual exclusion
property where a resource must not be accessed while it is locked, stated in LTL
as G(lock→ ¬access U unlock). If there are several resource objects available at
runtime, this is too restrictive and one might specifically limit foreign access to
locked resources. Using variables r and p, p′, intended to represent resources and
processes, respectively, and suitable predicates, the property can be stated as

G(lock(p, r)→ (∀p′ 6= p : ¬access(p′, r)) U unlock(p, r)). (1)

The free variables r and p are then implicitly universally quantified. Formally,
all variables range over some universe that is fixed by the application. In our
example, this could be the set of object identifiers in a certain Java program.

Data theories. To define a formal semantics for expressions as those above we
note that we essentially use an LTL formula and exchanged propositions by
first-order formulae. In LTL, propositions are evaluated at a position in some
word, i.e. a letter. To evaluate first-order formulae, such a letter must now be a
first-order structure describing a system state.

In the example we fixed the universe to object IDs and used a binary predicate
“=” indicating equality. This is covered by the first-order theory of natural
numbers with equality and can be handled by essentially all SMT solvers. It
is possible to use more powerful theories, e.g., with linear order or arithmetics.
Section 3.4 provides more examples.

What remains are the predicates that are not part of the theory. These specifi-
cally characterize the current system state or, more accurately, are interpreted
by the current system state in terms of the current observation. We call them
observation predicates, in the example we use binary predicates lock, unlock and
access. Inspecting the program states, we obtain, at any time, an observation g
that interprets all observation predicates in terms of relations on the universe.

The first-order formulae reason about the data structures under a specific
observation. We therefore refer to this logic as data logic. Data logic formulae may
have free variables, such as p and r in the example. Summing up, we can define
the semantics of a data logic formula in terms of (1) an observation interpreting
the observation predicates (and possibly observation functions), (2) a theory that
fixes the interpretation of all other predicates and functions and (3) a valuation
that assigns a value from the universe to each free variable.

Temporal data logic. In the example, the data logic replaces the propositional part
that LTL is based on. To the logic expressing the temporal aspect, we generically
refer to as the temporal logic. Our assumptions on the temporal logic must be
that it is linear (defined on words) and that it only uses atomic propositions
to “access” the word. For example, the semantics of some temporal operator
must not depend on the current letter directly but only on the semantics of
some proposition. We formally define that requirement in Section 3 but for now

2

only remark that typical temporal logics like LTL, the linear µ-calculus or the
temporal logic of calls and returns (CaRet) [2] fit into that schema.

Given a suitable temporal logic and data logic we can define the formalism
we aim at. Taking the temporal logic and replacing the atomic propositions by
data formulae, we obtain what we call a temporal data logic. The theory and
universe is fixed by the data logic and the semantics of temporal data logic
formulae can thus be defined over a sequence of observations. The free variables
are bound universally so the formula is evaluated over the observation sequence
for all possible valuations. The semantics of the formula is the conjunction (more
generally the infimum) of these results.

Monitor construction. Assuming a monitor construction for the (propositional)
temporal logic, we can evaluate a sequence of observations on-the-fly. The idea
is to construct a symbolic monitor that deals atomically with data formulae. In
the example formula (Equation 1) we treat lock(p, r), ∀p′ 6= p : ¬access(p′, r)
and unlock(p, r) as three atomic propositions, say χ1,χ2 and χ3. We obtain
a temporal logic formula G(χ1 → χ2 Uχ3) over a set of atomic propositions
AP = {χ1, χ2, χ3}. A monitor can then be constructed that reads words over the
finite symbolic alphabet Σ := 2AP.

The free variables in the formula are p and r and range over the universe of
natural numbers N. Given a valuation θ : {p, r} → N for those, mapping, e.g., p
to θ(p) = 1 and r to θ(r) = 2, we can map an observation g to the letter a ∈ Σ
that contains all formulae that are satisfied by g. For example, say g interprets
the observation predicates as lockg = {(1, 2), (10, 7)} and accessg = unlockg = ∅
(because objects 1 and 10 happen to lock the resources 2 and 7, respectively, and
otherwise nothing happened in the current execution step of the program). Then,
under θ, g is mapped to a = {χ1, χ2} ∈ Σ since χ1 and χ2 hold but χ3 does not.
The observation g might be mapped to some other symbolic letter for another
valuation θ′. If, for example, θ′(p) = 2 then χ1 does not hold and g is projected
to a′ = {χ2} ∈ Σ.

In Section 4 we present a monitoring algorithm that maintains a copy of
the symbolic monitor for each valuation. For a new observation, the algorithm
simulates the individual transition for each copy by projecting the observation
under the specific valuation. As the universe is in general infinite, the number of
monitor instances is infinite as well but the algorithm uses a data structure to
finitely represent the state of all monitor instances.

Related work. In runtime verification, handling data values to reason about
the computation of a system more precisely has always been a concern. One
of the first works extending LTL by parameters is by Stolz and Bodden [3].
Binding of parameters of propositions takes place in a Prolog-style fashion and
the resulting approach is reasonable for the intended applications. However, no
precise denotational semantics is given.

The works on Eagle and RuleR [4, 5] allow the formulation of first-order safety
properties. The corresponding systems come with a rewriting-based semantics and
are well-suited for specifying safety properties of especially finite, yet perhaps ex-
panding traces. In [6] a runtime verification approach for the temporal evaluation
of integer-modulo-constraints was presented. The underlying logic has a decidable
satisfiability problem and the overall approach is anticipatory. However, only
limited computations can be followed. To reason about the temporal evolution

3

of data values along some computation, some form of bounded unrolling like in
bounded model checking [7] can be used. For runtime verification, however, such
an approach is not suitable, as the observed trace cannot be bounded.

Closely related to our work is that of Chen and Rosu [8]. It considers the
setting of sequences of actions which are parameterized by identifiers (ID). The
main idea is to divide the sequence of a program into sub-sequences, called slices,
containing only a single ID, and monitor each slice independently. Hence, in
contrast to our approach, no interdependencies between the different slices can be
checked. Moreover, our monitoring approach is not limited to plain IDs but allows
the user to reason more generally over data in terms of arbitrary (decidable)
first-order theories. The work considers a dedicated temporal logic (LTL) together
with the dedicated notion of parameters, whereas in our framework an arbitrary
linear temporal logic is extended by a first-order theory.

Recently, Bauer et al. presented an approach combining LTL with a variant
of first-order logic for runtime verification [9]. However, their approach restricts
quantification to finite sets always determined in advance by the system observa-
tion. This allows for finitely instantiating quantifiers during monitor execution,
but also profoundly limits the expressiveness of first-order logic. Basically, it is
only possible to evaluate first-order formulae over finite system observations, and
not to express properties in a declarative manner.

2 Preliminaries

First-order logic. A signature S = (P, F, ar) consists of finite sets P , F of
predicate and function symbols, respectively, each of some arity defined by
ar : P ∪ F → N. An extension of S is a signature T = (P ′, F ′, ar′) such that
P ⊆ P ′, F ⊆ F ′ and ar′ ⊆ ar.

The syntax of first-order formulae over the signature S is defined in the usual
way using operators ∨ (or), ∧ (and), ¬ (negation), variables x0, x1, . . . , predicate
and function symbols p ∈ P , f ∈ F , quantifiers ∀ (universal), ∃ (existential).
Free variables are not in the scope of some quantifier and are assumed to come
from some set V . The set of all first-order formulae over a signature S is denoted
FO[S]. We consider constants as function symbols f with ar(f) = 0. A sentence
is a formula without free variables.

An S-structure is a tuple s = (U , s) comprising a non-empty universe U and a
function s mapping each predicate symbol p ∈ P to a relation ps ⊆ Un of arity
n = ar(p) and each function symbol f ∈ F to a function fs : Um → U of arity
m = ar(f). A T -structure t = (T , t) is an extension of s if T is an extension of
S, T = U and s(r) = t(r) for all symbols r ∈ P ∪ F .

A valuation is a mapping θ : V → U of free variables to values. The set of
all such mappings may be denoted UV . The semantics of first-order formulae is
defined as usual. We write (s, θ) |= χ if a formula χ is satisfied for some structure
s and valuation θ. For sentences, we refer to a sole satisfying structure as a model,
omitting a valuation. The theory T of an S-structure s is the set of all sentences
χ such that s is a model for χ.

Temporal specifications. We use AP to denote a finite set of atomic propo-
sitions and Σ := 2AP for the finite alphabet over AP . For arbitrary, possibly
infinite alphabets we mostly use Γ . A word over some alphabet Γ is a sequence
of letters from Γ and Γ ∗, Γω denote the sets of finite and infinite words over

4

Γ , respectively. The syntax of linear-time temporal logic (LTL) is defined in
the usual way over atomic propositions AP using negation, boolean connectives
and temporal operators X (next), U (until), G (globally) and F (eventually).
We refer to the standard LTL semantics over infinite words w ∈ Σω as LTLω
given for an LTL formula ϕ by a mapping JϕKω : Σω → B where B = {>,⊥}
denotes the two-valued boolean lattice. The finitary three-valued LTL semantics
LTL3 [10], is given for ϕ by a mapping JϕK3 : Σ∗ → B3 where B3 = {>, ?,⊥}
denotes the three-valued boolean lattice ordered > > ? > ⊥. It is defined
for w ∈ Σ∗ as JϕK3(w) := > if ∀u ∈ Σω : JϕKω(wu) = >, JϕK3(w) := ⊥ if
∀u ∈ Σω : JϕKω(wu) = ⊥ and JϕK3(w) := ? otherwise.

Monitor. A monitor M = (Q,Γ, δ, q0, λ, Λ) for a temporal property is a Moore
machine where Q is a possibly infinite set of states, Γ is a possibly infinite input
alphabet, δ : Q× Γ → Q is a deterministic transition function and λ : Q→ Λ is
a labeling function mapping states to labels from the set Λ.

3 Temporal Data Logic

The aim of the framework is to enable the user to specify and check complex
properties of execution traces. As described above we consider two aspects, time
and data. Note that we refer to discrete time, as opposed to continuous notions
like in timed automata. In this section we therefore formalize how and under
which assumptions two logics considering time (temporal logic) and data (data
logic) can be combined to a specification formalism (temporal data logic) that
can express the timely behaviour of a system with respect to the data it processes.
The clear separation of the aspects will give rise to a monitoring procedure.

3.1 Temporal Logic

The notion of a temporal logic (TL) that we consider for our monitoring
framework is inspired by the intuition for LTL which is widely used for behavioural
specifications, in particular in runtime verification. However, our monitoring
approach does only rely on some specific properties that also come with other,
also more expressive logics. In the following we identify the required features of a
suitable temporal logic for our framework.

We require the desired temporal behaviour to be specified in a finitary, linear
logic, that is, the semantics is defined on finite words over some alphabet Γ . The
truth values of the semantics need to come from a complete semi-lattice (S,u)
since we will handle multiple monitor instances and combine individual verdicts.

Second, there must be a monitor construction for the logic in question since our
framework is intended to generically lift such a construction for handling data. We
assume that such a construction turns a TL formula ϕ into a Moore machineMϕ

with output Mϕ(w) = JϕK(w) for w ∈ Γ ∗. The restriction to Moore machines is
not essential, our constructions are applicable to similar models, including Mealy
machines and we do not rely on a finite state space.

As we aim at replacing atomic propositions, we require that the semantics
of the temporal logic can only distinguish letters by means of the semantics of
such propositions. This allows for lifting the semantics from a propositional to a
complex alphabet where letters have more internal structure.

Proposition semantics. We formalize the distinction of positional and temporal
aspects of a temporal logic formula using a proposition semantics ps : AP→ 2Γ

5

mapping propositions p ∈ AP to the set of letters ps(p) ⊆ Γ that satisfy the
proposition. Given, that the semantics of some propositional temporal logic can
be defined by only referring to letters using a proposition semantics, it can be
substituted without influencing the temporal aspect.

We refer to the canonical semantics for Γ = Σ = 2AP as psAP : AP → 2Σ ,
with psAP(p) := {a ⊆ AP | p ∈ a}. It is the “sharpest” in the sense that it
distinguishes maximally many letters by means of combinations of propositions.

Symbolic abstraction. For an alphabet Γ , atomic propositions AP and a propo-
sition semantics ps : AP→ 2Γ , let πps : Γ → Σ be a projection with πps(g) :=
{p ∈ AP | g ∈ ps(p)}, mapping a letter g ∈ Γ to the set of propositions that
hold for it. For convenience, we lift the projection to words g1. . . gn (gi ∈ Γ)
by πps(g1. . . gn) := πps(g1). . . πps(gn). Using πps, we consider the letters form Σ
as symbolic abstractions of Γ wrt. AP and ps in the sense that πps maintains
all the structure of Γ that is relevant for evaluating (boolean combinations of)
propositions form AP .

As argued above, for the purpose of lifting a temporal logic over atomic
propositions to propositions carrying data, i.e., structure, it is essential that the
semantics of propositions can be encapsulated and exchanged without influencing
the temporal aspect. We can formalize this requirement on a temporal logic TL
using the symbolic abstraction. We assume the semantics of a TL formula ϕ to
be a mapping that takes linear sequences from Γ ∗ and assigns a truth value from
the complete semi-lattice S. If the semantics satisfies our criterion we can make
the proposition semantics ps : AP→ 2Γ an explicit parameter and assume the
semantics of a formula ϕ is given by a mapping JϕK(ps) : Γ ∗ → S, or, generally,
JϕK : (AP→ 2Γ)→ (Γ ∗ → S). Moreover, projecting the input word to a symbolic
word and evaluating JϕK(psAP) on it must not change the result.

Definition 1 (Propositional semantics). Let AP be a set of atomic propo-
sitions and Γ an alphabet. A semantics JϕK : (AP → 2Γ) → (Γ ∗ → S) is
propositional iff for all proposition semantics ps : AP→ 2Γ and all words γ ∈ Γ ∗

JϕK(ps)(γ) = JϕK(psAP)(πps(γ)).

Based on that notion of propositional semantics we can summarize the formal
criteria for a temporal logic to be suitable for our monitoring framework.

Definition 2 (Temporal logic). A temporal logic is a specification formalism
TL over a set of atomic propositions AP that enjoys the following properties.
1. The semantics of formulae ϕ is given for finite words over an input alphabet

Γ by a mapping JϕKTL : (AP→ 2Γ)→ (Γ ∗ → S) where (S,u) is a complete
semi-lattice.

2. The semantics is propositional.
3. A monitor construction is available that turns a formula ϕ into a Moore

machine Mϕ with output Mϕ(w) = JϕKTL(psAP)(w) for w ∈ Σ∗.

3.2 Data logic

To reason about data values our framework can use a so called data logic DL
based on any first-order theory for which satisfiability is decidable. We assume
the theory is represented by some structure which can be extended by additional
predicate and function symbols that will represent observations from the system
that shall be monitored.

6

Definition 3 (Data logic). Let T = (P, F, ar) be a signature, t = (D, a) some
T -structure and P ′, F ′ be additional predicate and function symbols with arity
defined by ar′ : P ′ ∪ F ′ → N, called observation symbols.

A data logic DL is a tuple (t, G,V,D) such that G = (P ∪ P ′, F ∪ F ′, ar ∪ ar′)
is an extension of T and V is a finite set of first-order variables.

A DL formula is a first-order formula over the signature G and possibly free
variables from V. A DL formula is called observation-independent, if it does not
contain observation symbols. An observation is a G-structure g = (D, g) that is
an extension of t. The set of all observations is denoted Γ .

The semantics of a DL formula is defined over tuples (g, θ) ∈ Γ×DV consisting
of an observation and a valuation θ : V → D of free variables in the usual way.

For an instance of the monitoring framework the structure t representing the
theory is fixed. An observation-independent DL formula ϕ with free variables
x1, . . . , xn ∈ V can be evaluated just wrt. t, without considering an observation.
A decision procedure for the theory of t can thus be applied directly. Further, ϕ
can be interpreted as a constraint on the domain of variable valuations DV by
considering the set Θϕ := {θ ∈ DV | (t, θ) |= ϕ}.
3.3 Temporal data logic

Given a temporal and a data logic as described above, we can now define their
combination, the temporal data logic TDL.

In TDL formulae we use brackets 〈 and 〉 to clarify which parts come from the
data logic.

Definition 4 (Temporal data logic). Let TL be a temporal logic and DL =
(t, G,V,D) a data logic. Let AP be a finite set {〈χ1〉, . . . , 〈χn〉} where χ1, . . . , χn
are DL formulae with free variables from V.

A TDL formula is a TL formula over AP. A structured word is a finite
sequence γ ∈ Γ ∗ of DL observations. For a valuation θ ∈ DV , let the proposition
semantics psθ : AP → 2Γ be defined by psθ(〈χ〉) := {g ∈ Γ | (g, θ) |= χ} for
〈χ〉 ∈ AP. The semantics of a TDL formula ϕ is a mapping JϕKTDL : Γ ∗ → S
defined for γ ∈ Γ ∗ by

JϕKTDL(γ) :=
l

θ∈DV

JϕKTL(psθ)(γ).

Recall, for psθ we obtain a projection πpsθ : Γ ∗ → Σ∗ from structured to
symbolic words. In the following we abbreviate πpsθ by πθ. From Definition 2 of
the temporal logic it follows that we can evaluate the semantics of some TDL
formula symbolically, which is an essential step in lifting a monitor construction
for TL to the data setting.

Proposition 1. Let ϕ be a TDL formula, DV the valuation space for free vari-
ables in ϕ, χ1, . . . , χn the data logic formulae used in ϕ and AP = {〈χ1〉, . . . , 〈χn〉}.
For γ ∈ Γ ∗ we have JϕKTDL(γ) =

d
θ∈DV JϕKTL(psAP)(πθ(γ)).

3.4 LTL and CaRet with Data

We now exemplify the instantiation of our framework by means of LTL.
More precisely, we show that the the finitary, three-valued LTL3 semantics
JϕK3 : Σ∗ → B3 can be formulated to comply Definition 2. It is defined over
Σ = 2AP based on the infinitary LTLω semantics. The inductive definition of

7

mutex G(〈lock(f, t)〉 → 〈∀t′ 6= t : ¬access(f, t′)〉U〈unlock(f, t)〉)
access (〈open(x)〉R¬〈access(x)〉) ∧G(〈close(x)〉 → G¬〈access(x)〉)
iterator G((〈iterator(i)〉 ∨ 〈next(i)〉)→ X(〈hasNext(i, true)〉R¬〈next(i)〉))
modified G(〈iterator(c, i)〉 → G(〈add(c)〉 → (¬〈next(i)〉U〈finalize(i)〉)))
server G(〈request(t, x)〉 → F〈∃t′ : response(t′, x, t)〉)
response G(〈request(t)〉∧〈x = time〉 → (〈time < x+100〉U〈response(t)〉))
counter G(〈p(x)〉 → X〈p(x+ 1)〉)
velocity G(〈s = x ∧ t = y〉 → X〈s− x < vmax · (t− y)〉)
matching G((〈call〉 ∧ 〈printOpen(x)〉)→ Xa〈printClose(x)〉)
bound G(〈open(x)〉 → X(¬〈ret〉 → Ga(〈open(y)〉 → 〈x > y〉)))
depth G(〈open(x)〉 → X((¬〈ret〉 ∧ Fa〈open(x− 1)〉) ∨ (〈ret〉 ∧ 〈x = 0〉))

Table 1. Example properties using LTL and CaRet with data.

LTLω only refers to letters for atomic propositions. This can be easily reformulated
in terms of an arbitrary proposition semantics ps : AP→ 2Γ over an arbitrary
alphabet Γ . Instead of defining JpKω(w) = > iff p ∈ w0, we let JpKω(ps)(γ) := >
if γ0 ∈ ps(p) and JpKω(ps)(γ) := ⊥ otherwise, for γ ∈ Γω. The rest of the
definition remains untouched. The definition of the three-valued semantics JϕK3
does not at all refer to letters directly but only to LTLω. With these simple
modifications LTL3 fits to the notion of temporal logic in the sense of Definition
2. The corresponding monitor construction proposed in [10, 11] can be applied.

Proposition 2. The MMT framework can be instantiated for LTL3.

The mutual exclusion property presented earlier is one example for a specifica-
tion based on LTL and the theory of IDs. Other common examples of temporal
properties are the correct use of iterators or global request/response properties.
In the propositional versions of such properties the objects in question, iterators,
resources or requests, are assumed to be unique. Adding data in terms of IDs, for
example, allows for a much more realistic formulation. Table 1 lists formulations
of these properties and also others that cannot be expressed without distinguish-
ing at least identities. The property modified requires that an iterator must not
be used after the collection it corresponds to has been changed.

Further, counting (counter) or arithmetic constraints (response, velocity), also
on real numbers, are valuable features for a realistic specification.

RLTL and CaRet: Regular and nesting properties. Regular LTL [12] is an ex-
tension of LTL based on regular expressions. CaRet [2] is a temporal logic with
calls and returns expressing non-regular properties. In addition to the LTL
operators, CaRet allows for abstract temporal operators such as Xa and Ga,
moving forward by jumping on a word from a calling position to matching return
position, reflecting the intuition of procedure calls. For RLTL and CaRet monitor
constructions have been proposed [6, 13]. Despite both are more complex the
same arguments as for LTL apply. Example properties are listed in Table 1 and
express matching call- and return values and nesting-depth bounds.

4 Monitoring

In this section we present our monitoring procedure for TDL formulae. It relies
on the observation made in Proposition 1, namely that the TDL semantics for
an input word γ ∈ Γ ∗ is characterized by the TL semantics for projections of γ.

8

Any TDL formula can be interpreted as TL formula when considering all
occurring data logic formulae as individual symbols. With this interpretation we
can employ the monitor construction for TL to obtain a monitor over a finite
alphabet constructed from these symbols.

Definition 5 (Symbolic monitor). Let ϕ be a TDL formula and χ1, . . . , χn
the data logic formulae used in ϕ and AP = {〈χ1〉, . . . , 〈χn〉}. The symbolic
alphabet for ϕ is the finite set Σ := 2AP. The symbolic monitor for ϕ is the
monitor MΣ constructed for ϕ interpreted as TL formula over AP.

The symbolic monitor MΣ for a TDL formula ϕ computes the semantics
JϕK(psAP) : Σ∗ → S. Following Proposition 1, what remains is to maintain a
monitor for each valuation θ ∈ DV and to individually compute the corresponding
projection πθ on the input.

Within this section we present an algorithm for efficiently maintaining these,
in general infinitely many, monitor instances. It uses a data structure, called
constraint tree, that represents finitely many equivalence classes of symbolic
monitors. The constraint tree also allows for easy computation of the infimum of
the outputs of all monitor instances, which is the semantics of the property on
the input trace read so far.

4.1 Representing and Evaluating Observations

While observations are formally defined as first-order structures, we want
to use them algorithmically and must therefore choose a representation. An
actual implementation of an SMT solver already fixes how to represent all objects
essential for handling a certain theory, such as first-order formulae, predicates and
function symbols. We have defined observations to be extensions of a structure
representing the theory and want to handle them practically using an SMT solver.
Consequently, we assume them to be extensions of the structure that the tool uses
to represent and handle a theory. For the purpose of the implementation, it is a
reasonable assumption that the semantics of observation symbols be expressible
or, more precisely, expressed within the considered data theory.

Formally, for DL = (t, G,V,D) where t is a T -structure, we assume that
any observation g ∈ Γ induces a mapping ĝ : FO[G] → FO[T] s.t. for all DL
formulae χ and all valuations θ ∈ DV we have (g, θ) |= χ iff (t, θ) |= ĝ(χ).
Note that this can be realized by substituting observation predicates by some
observation-independent formula that characterizes its semantics wrt. g. Function
symbols f can be replaced using existential substitution replacing expressions of
the form e(f(e′)) by ∃z : e(z) ∧ ξf (e′, z) where an observation-free DL formula
ξf characterizes the semantics of f wrt. g.

As noted earlier, we can also employ observation-free formulae ρ to describe sets
of valuations Θρ ⊆ DV . While this does not allow for representing any arbitrary
set of valuations, the expressiveness of the data theory suffices to express any
relevant set. If ρ represents an equivalence class wrt. some formula ĝ(χ), meaning
(t, θ) |= ĝ(χ) holds for all θ ∈ Θρ or none, we have that (t, θ) |= ĝ(χ) iff there is
any θ′ ∈ DV such that (t, θ′) |= ĝ(χ) ∧ ρ.

Proposition 3. Let χ be a DL formula and g ∈ Γ an observation. Let ρ be an
observation-free DL formula such that for all θ1, θ2 ∈ Θρ we have (t, θ1) |= ĝ(χ)
iff (t, θ2) |= ĝ(χ). Then, for all θ ∈ Θρ, (g, θ) |= χ iff ĝ(χ) ∧ ρ is satisfiable.

9

Note that ĝ(χ) ∧ ρ is an observation-free DL formula and that checking it for
satisfiability is exactly what we assume an SMT solver be able to do.

4.2 Constraint Trees

We next introduce constraint trees, a data structure storing the configurations
of a set of instances of some symbolic monitor. It maintains sets of valuations
Θ ⊆ DV represented by constraints and stores for each such set a monitor state.
The desired property regarding the use in our monitoring algorithm is that the
sets of constraints induce a partition of the valuation space.

Definition 6 (Constraint tree). Let MΣ be a symbolic monitor with states Q
and DL a data logic. A constraint tree is a tuple T = (I, L, S1, S2, C, λI , λL) such
that (I ∪ L, S1, S2) is a finite, non-empty binary tree with internal nodes I, leaf
nodes L and successor relations S1, S2 ⊆ I × (I ∪ L), C is a set of observation-
independent DL formulae called constraints, λI : I → C labels internal nodes
with constraints and λL : L→ Q labels leaf nodes with monitor states.

Let the DL formula ρ(v0. . . vi) be the conjunction over all constraints along
the path v0. . . vi−1, where all S2-successors are negated and ρ(v0) = true. A path
constraint in T is a DL formula ρ(v0. . . vn) such that v0. . . vn is a maximal path
in T . A constraint tree T is consistent if the set of all path constraints in T
induces a partition of DV . The set of all constraint trees is denoted T .

In a constraint tree T , each inner node represents a constraint that is used
to separate the valuation space DV . S1-branches represent the parts where the
particular constraint holds while in the S2-branches it does not.

Constraint trees T = (I, L,E,C, λI , λL) will be used to represent mappings
t : DV → Q assigning a monitor state q ∈ Q to each valuation θ ∈ DV . If T is
consistent, every valuation θ satisfies exactly one path constraint ρ in T which
in turn corresponds to a unique path ending in some leaf node v ∈ L. The
mapping is thereby defined as t(θ) = λL(v). Note that t would not be necessarily
well-defined for constraint trees that are not consistent. Where convenient, we
may identify a path constraint ρ with the set Θρ of valuations satisfying it and
write, e.g., θ ∈ ρ if some valuation θ ∈ Θρ satisfies ρ.

4.3 Symbolic Monitor Execution

In the following we present an algorithm incrementally processing a sequence
of observations in order to compute the semantics of some TDL formula ϕ. It
maintainings a consistent constraint tree as a finite representation of a mapping
of valuations to states of the symbolic monitor MΣ = (Q,Σ, δ, q0, λ,S) for ϕ.

The algorithm starts on the trivial constraint tree consisting only of one leaf
node labeled by the initial state q0. This means that the monitor instances for
all valuations are in state q0. Intuitively, for an input word γ ∈ Γ the algorithm
executes one monitor instance for each valuation θ ∈ DV on the respective
projection πθ(γ). For the empty word γ = ε, all projections are equal and all
instances are in the same state. When reading a new observation g ∈ Γ which
is, for all valuations, projected to the same symbolic letter a ∈ Σ, all monitor
instances read the same projection and their state changes equally to δ(q0, a).
Otherwise, if g is mapped to different symbolic letters for different valuations,
the so far uniformly handled valuation space is split.

Consider two valuations θ, θ′ ∈ DV and an input symbol g ∈ Γ such that their
projections a = πθ(g) 6= b = πθ′(g) are different. Then there is some proposition

10

〈χ〉 ∈ AP that distinguishes a and b, e.g., let 〈χ〉 ∈ a and 〈χ〉 6∈ b. In general,
the behaviour of all monitor instances reading a letter including 〈χ〉 may diverge
from those reading a letter not including 〈χ〉. Therefore, the algorithm records
this fact by splitting the valuation space in two parts, one for which χ holds
under observation g and another for which it does not. A new node is added to
the tree, labeled by the constraint ĝ(χ) precisely distinguishing the two parts.

A part may be split up further in the same way in case other propositions again
distinguish valuations from it. Additional nodes are created in the constraint
tree accordingly and so the path constraint ρ on the path to a leaf node v ∈ L
characterizes exactly the set of valuations Θρ for which the projection of the
observation g is equal and thus the state of all corresponding monitor instances.
This process is continued when reading further observations. For each part Θρ
represented in the constraint tree, a new observation h ∈ Γ is processed by
checking for each proposition 〈χ〉 ∈ AP if there are valuations in Θρ that observe

a projection including 〈χ〉 by checking satisfiability of ρ ∧ ĥ(χ) and if there are
others observing a projection not including 〈χ〉 by checking the satisfiability of

ρ ∧ ¬ĥ(χ). If one of the formulae is empty, meaning that one of the hypothetical
new parts Θρ∧ĥ(χ) = Θρ ∩Θĥ(χ) and Θρ∧¬ĥ(χ) = Θρ ∩Θĥ(χ) is empty, the new

observation h is projected equally wrt. 〈χ〉 for all valuations in the part which is

thus not split by ĥ(χ). Only if both new parts are non-empty, the part is split

by adding a new node to the constraint tree labeled by ĥ(χ). Once all necessary
splits are performed for an observation, all propositions are evaluated yielding
the projections for each (possibly new) part. According to those, the leaf nodes
are updated using the transition function of the symbolic monitor.

The procedure described above is listed explicitly as Algorithm 1. There, for the
set of all constraint trees T , we use constructors InnerCTree : FO[S]×T ×T → T
and LeafCTree : Q→ T for sub-trees and leafs, respectively, where FO[S] is the
set of observation-independent DL formulae. For T = LeafCTree(q) we assume
that T consists of a single node v ∈ L that is labeled by λL(v) = q and for
T = InnerCTree(ϕ, T1, T2) we assume that T has at least three nodes v, v1, v2
such that v is the root of T labeled by λI(v) = ϕ, v1, v2 are the roots of T1 and
T2, respectively, and (v, v1) ∈ S1 and (v, v2) ∈ S2.

Based on constraint trees as data structure and the algorithm for modifying
constraint trees regarding a new observation we can now define the data monitor
for a TDL formula, where, as before, the data logic DL is defined over observations
Γ and the temporal logic TL uses truth values S.

Definition 7 (Data monitor). Let ϕ be a TDL formula, Σ = 2AP the symbolic
alphabet and MΣ = (Q,Σ, δ, q0, λQ,S) the symbolic monitor for ϕ.

The data monitor for ϕ is a Moore machine MΓ = (T , Γ, step, T0, λT ,S)
using constraint trees T as states.

The transition function step : T × Γ → T is given by Algorithm 1 and the
initial tree T0 consists of a single leaf node labeled with the initial state q0 of
MΣ. For a constraint tree T ∈ T where the leaf nodes L are labeled by λL, the
monitor output is defined by λT : T → S with λ(T) =

d
v∈L λΣ(λL(v)).

11

Algorithm 1 Split constraints and simulate monitor steps
1 function split =
2 // recursively process subtrees , accumulate constraints
3 case (P , ρ, a, InnerCTree(ϕ, t0, t1), g) then
4 InnerCTree(ϕ,split(P, ρ ∧ ¬ϕ, a, t0, g),split(P, ρ ∧ ϕ, a, t1, g))

6 // evaluate propositions , split partition if necessary
7 case ({〈χ〉} ∪ P , ρ, a, LeafCTree(s), g) then
8 T0 = if SAT(ρ ∧ ¬ĝ(χ)) then
9 split(P , ρ ∧ ¬ĝ(χ), a, LeafCTree(s), g)

10 else Empty
11 T1 = if SAT(ρ ∧ ĝ(χ)) then
12 split(P , ρ ∧ ĝ(χ), a ∪ {〈χ〉}, LeafCTree(s), g)
13 else Empty
14 if (t0 = Empty) then t1
15 else if (t1 = Empty) then t0
16 else InnerCTree(ĝ(χ), t0, t1)

18 //store new state
19 case (∅, ρ, a, LeafCTree(s), g) then
20 LeafCTree(δ(s, a))

22 function step(t: CTree , g ∈ Γ): CTree =
23 split(AP, true, ∅, t, g)

4.4 Correctness

Proposition 4 (Termination). On a constraint tree T , the function step in
Algorithm 1 terminates and has a running time in O(|T | · |Σ|) where |T | is the
number of nodes in T and |Σ| = 2|AP| is the number of abstract symbols.

The monitoring procedure presented above is correct in that the data monitor
MΓ for a TDL formula ϕ computes the correct semantics for all input words.

Theorem 1 (Correctness). Let ϕ be a TDL formula andMΓ the data monitor
for ϕ. Then, for all γ ∈ Γ ∗, MΓ (γ) = JϕKTDL(γ).

In order to prove correctness, we first settle some observations. Recall that the se-
mantics JϕKTDL can be represented as the conjunction

d
θ∈DV JϕKTL(psAP)(πpsθ (γ))

over projections πpsθ (γ) (Proposition 1). We fix the data logic DL for this section
and write πθ for πpsθ in the following.

Despite the conjunction above is infinite, given a finite word γ ∈ Γ ∗, the valua-
tion space DV can be partitioned into finitely many equivalence classes Θ1, . . . , Θn
such that the projection of γ is unique for each class Θi, i.e., ∀θ,θ′∈Θi : πθ(γ) =
πθ′(γ). It therefore suffices to maintain this set of equivalence classes which can
in turn be finitely represented by constraints ρi. Let wi = πθ(γ) ∈ Σ∗ for θ ∈ Θi
be the projection of γ for the class Θi (i ∈ {1, . . . , n}). The semantics can then
be computed as the finite conjunction JϕKTDL(γ) =

dn
i=1 JϕKTL(psAP)(wi).

It remains to reason that this partition exists which we do by showing that it
is in fact computed by the monitoring algorithm. More precisely, we show that
the constraint tree T that is the configuration of the monitor MΓ after reading
a word γ is consistent. That is, the path constraints ρ represented by T cover
the whole valuation space and are disjoint. Moreover, for all valuations θ ∈ ρ of
such an equivalence class ρ, the symbolic monitor MΣ behaves the same on all
corresponding projections πθ(γ).

Lemma 1. Let MΓ = (T , Γ, δΓ , t0, λΓ) and MΣ = (Q,Σ, δΣ , q0, λΣ) be the
data monitor and the symbolic monitor, respectively, for some TDL formula

12

ϕ. Let for γ ∈ Γ ∗ be T = δΓ (T0, γ) and RT the set of path constraints in
T . If T is consistent, T (ρ) denote for ρ ∈ RT the unique label of the leaf
in T corresponding to ρ. Then, (i) {Θρ | ρ ∈ RT } is a partition of DV and
(ii) ∀ρ∈RT ∀θ∈Θρ : T (ρ) = δΣ(q0, πθ(γ)).

We can now proof that the data monitor computes the correct semantics.

Proof (Theorem 1).
Let T = δΓ (T0, γ). We have, using Lemma 1 (i) and (ii),

MΓ (γ) = λΓ (T) =
l

v∈L
λΣ(λL(v))

(i)
=

l

ρ∈RT

λΣ(T (ρ))
(ii)
=

l

ρ∈RT

l

θ∈ρ

δΣ(q0, πθ(γ))

(i)
=

l

θ∈DV

δΣ(q0, πθ(γ)) =
l

θ∈DV

JϕKTL(psAP)(πθ(γ)) = JϕKTDL(γ)

ut

4.5 Remarks and Optimizations

Impartiality and anticipation. An impartial semantics distinguishes between
preliminary and final verdicts. A final verdict for some word indicates that it
will not change for any continuation. Impartiality is desirable as monitoring
can be stopped as a soon as a final verdict is encountered (c.f. [14, 6]). In the
context of our framework this gains even more importance. When the underlying
monitor is impartial, a branch already yielding a final verdict can be pruned. This
immensely improves runtime performance. If the symbolic monitor is impartial,
the data monitor (partially) inherits this property in the typical cases. Another
desired property is anticipation, i.e., evaluating to a final verdict as early as
possible. While in general not transfered from the symbolic to the data monitor,
this may still lead to better performance.

Dedicated theories as first-class citizens. The monitoring framework is also flexible
in the sense that one can trade efficiency for generality. When the properties
intended to monitor are simple enough it is reasonable to extend the algorithm
to directly evaluate constraints. As we show in the experiments this works well,
in particular for properties concerning only object IDs.

5 Experimental Results

We implemented our framework based on jUnitRV [1], a tool for monitoring
temporal properties for applications running on the Java Virtual Machine. The
previous version of jUnitRV supported classical LTL specifications referring to,
e.g., the invocation of a method of some class. With the approach proposed here
it is now possible, for example, to specify properties that relate to individual
objects and their evolution in time. The implementation is based on a generic
interface to an SMT solver. We present benchmarks using the SMT solver Z3 [15].
For comparison, we additionally implemented a dedicated solver for the theory
of IDs (i.e., conjunctions of equality constraints on natural numbers). For the
benchmarks, we have chosen representative properties from Table 1. The property
mutex is a typical example for interaction patterns in object-oriented systems.
It was evaluated on a program with resource objects and user objects randomly
accessing them. The iterator example was evaluated on a simple program using

13

0 0.2 0.4 0.6 0.8 1

·104

0

100

200

300

400

·102

steps

ti
m

e
in

m
s

0 0.2 0.4 0.6 0.8 1

·104

0

0.5

1

·102

steps

Counter EQ Mutex EQ Server2 EQ Iterator EQ Counter Z3

Mutex Z3 Server2 Z3 Iterator Z3 Velocity Z3 Server Z3

Fig. 1. Experimental results

randomly one of two iterator objects for traversing a list. Third, we evaluated
a typical client-server response pattern (server) on a program simulating a
number of server threads that receive requests and responses. For handling
existential quantification, we rely on Z3. For comparison, we also evaluate the
property G(〈request(t, x)〉 → F 〈response(x, t)〉) (server2) as a variation that can
be handled by our simple solver. The counter property covers the counting of
natural numbers which is a very elementary aspect in computer programs and
uses an unbounded number of different data values. A property involving a rather
complex theory is velocity. The free variables refer to real numbers as data values
and the constraints that have to be checked are multi-dimensional.

In our experiments we measured the execution time of a program with an
integrated monitor over the number of monitoring steps. The measurements
were taken up to 104 steps. Very simple programs were used, since the measured
runtime is thereby essentially the runtime of the monitoring algorithm. The linear
graphs obtained for every example show that the execution time for a monitoring
step is constant. The most complex properties, velocity and server induce the most
overhead due to a higher computational cost by the SMT solver. However, even the
performance for velocity of 4.2 ms/step is acceptable for many applications. Thus,
employing an SMT solver is viable whenever performance is not a main concern,
for instance in case a monitoring step is not expected to happen frequently wrt.
to the overall computation steps. Our dedicated implementation is much faster
(by factor 100) and hence can only be distinguished in the right-hand diagram.
These results demonstrate, that performance can be improved for specific settings
and the approach can still be employed when performance is more critical. As
mentioned before, the number of calls to the SMT solver is linear in the size
of the constraint tree. Hence, the overhead may increase up to linearly in the
number of runtime objects that need to be tracked. In our example the maximal
size of the constraint tree was six. All experiments were carried out on an Intel
i5 (750) CPU.

14

6 Conclusion

With the combination of propositional temporal logics and first-order theories,
the framework we propose in this paper allows for a precise, yet high-level and
universal formulation of behavioural properties. This helps the user to avoid
modeling errors by formulating specifications describing a system on a higher
level of abstraction than required for an actual implementation.

The clear separation of the aspects of time and data allows for efficient run-
time verification as the different aspects are handled separately in terms of a
symbolic monitor construction and solving satisfiability for first-order theories.
The independent application of techniques from monitoring and SMT solving
benefits from improvements in both fields.

Our implementation and the experimental evaluation show that the approach
is applicable in the setting of object-oriented systems and that the runtime
overhead is reasonably small. Note that this is despite the properties expressible
in our framework are hard to analyze. The satisfiability problem, for example,
is already undecidable for the combination of LTL and the very basic theory of
identities.

References

1. Decker, N., Leucker, M., Thoma, D.: jUnitRV-Adding Runtime Verification to jUnit.
In: NASA Formal Methods. LNCS, Springer (2013)

2. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: TACAS. LNCS, Springer (2004)

3. Stolz, V., Bodden, E.: Temporal assertions using aspectj. Electr. Notes Theor.
Comput. Sci. (2006)

4. Goldberg, A., Havelund, K.: Automated runtime verification with eagle. In:
MSVVEIS, INSTICC Press (2005)

5. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time monitoring:
From eagleto ruler. In: RV. LNCS, Springer (2007)

6. Dong, W., Leucker, M., Schallhart, C.: Impartial anticipation in runtime-verification.
In: ATVA. LNCS, Springer (2008)

7. Biere, A., Clarke, E.M., Raimi, R., Zhu, Y.: Verifiying safety properties of a power
pc microprocessor using symbolic model checking without bdds. In: CAV. LNCS,
Springer (1999)

8. Chen, F., Rosu, G.: Parametric trace slicing and monitoring. In: TACAS. LNCS,
Springer (2009)

9. Bauer, A., Küster, J.C., Vegliach, G.: From propositional to first-order monitoring.
In: RV. LNCS, Springer (2013)

10. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:
FSTTCS. LNCS, Springer (2006)

11. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for ltl and tltl. ACM
Trans. Softw. Eng. Methodol. (2011)

12. Leucker, M., Sánchez, C.: Regular linear temporal logic. In: ICTAC. LNCS, Springer
(2007)

13. Decker, N., Leucker, M., Thoma, D.: Impartiality and anticipation for monitoring
of visibly context-free properties. In: RV. LNCS, Springer (2013)

14. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how
ugly is ugly? In: RV. LNCS, Springer (2007)

15. de Moura, L.M., Bjørner, N.: Z3: An efficient smt solver. In: TACAS. LNCS,
Springer (2008)

15

