
Software Tools for Technology Transfer (accepted manuscript)

Monitoring Modulo Theories

Normann Decker, Martin Leucker and Daniel Thoma

Institute for Software Engineering and Programming Languages
University of Lübeck, Germany

{decker, leucker, thoma}@isp.uni-luebeck.de

Abstract. This paper considers a generic approach to
runtime verification of temporal properties over first-
order theories. This allows especially for the verification
of multi-threaded, object-oriented systems. It presents a
general framework lifting monitor synthesis procedures
for propositional temporal logics to a temporal logic over
structures within some first-order theory. To evaluate
such specifications SMT solving and classical monitoring
of propositional temporal properties are combined. The
monitoring procedure was implemented for linear-time
temporal logic (LTL) based on the Z3 SMT solver and
evaluated regarding runtime performance.

1 Introduction

Modern software systems are increasingly complex and
exhibit a highly dynamic behaviour, for example due to
an object-oriented design and multi-threaded execution.
The analysis of such systems is therefore an important
task that is difficult to achieve statically. Important infor-
mation on a program’s execution is often only available
at runtime, for example when it depends heavily on its
execution environment or when third party code is used.

Runtime Verification is therefore concerned with tech-
niques for efficient and precise monitoring of concrete
system executions. Rather than considering the whole
possible behaviour of the system under scrutiny the aim
is to check whether a particular run satisfies or violates
a given correctness property. Runtime verification can
be considered as a a lightweight verification technique
complementing others such as model checking [CGP01]
and testing [BJK+05].

The major challenge is to provide intuitive and expres-
sive specification formalisms that can yet be translated
into an operational model, called a monitor, allowing

for efficient execution in order to verify the property on
a given input. Monitoring can be performed based on
log-files or on-the-fly and in the latter case an additional
issue is the observation of relevant system events with
minimal interference.

Various concepts and implementations have been pro-
posed that approach these goals with different strategies.
Monitors can be specified directly in a rather program-
matic fashion in terms of automata [CPS09,BFH+12]
thereby omitting complex synthesis procedures. Most
frameworks [CR05,BRH07,BLS11,BKM10] implement
monitor synthesis procedures for high-level, declarative
specification formalisms based on temporal logic or gram-
mars. Regarding synthesis, there is an inherent trade-off
between expressiveness of the specification formalism and
efficiency of the evaluation. In particular for very expres-
sive formalisms generation and optimisation of monitors
is conceptually challenging and represents a central re-
search question in the field of runtime verification. For a
survey on different monitoring approaches see [LS09].

The integration of monitors for on-line monitoring is
typically accomplished using instrumentation frameworks
[CR05,DLT13b]. However, monitor execution can also
be performed exterior to the system by independent
components [DKT14] or even on dedicated hardware
[BHW+13], which makes observation of the system less
intrusive.

Monitoring and Data. In recent years, various monitor
synthesis algorithms have been developed that differ in
the expressiveness of the underlying specification formal-
ism and the resulting monitoring approach. Within the
setting of multiple, in general arbitrarily many instances
of program parts, for example in terms of threads or
objects, a software engineer is naturally interested in
verifying that the interaction of individual instances fol-
lows general rules. The ability of taking into account the
dynamics of process IDs, individual objects and data

2 Normann Decker, Martin Leucker and Daniel Thoma: Monitoring Modulo Theories

structures and values in general is a desirable feature
for specification and verification approaches. As such,
the expressiveness of plain propositional temporal logics
such as LTL does not suffice, as they do not allow for
specifying complex properties on the data processed in a
system.

On the other hand, substantial theoretical and techni-
cal advances have been achieved in automatic reasoning
in first-order logic. Today’s SMT solvers are highly opti-
mised tools that can check the satisfiability of formulae
over a variety of first-order theories such as arithmetic,
arrays, lists and uninterpreted functions. They allow for
reasoning on a large class of data structures used in mod-
ern software systems. These advances have already led
to significant improvements in verification technology
[dMB11].

Outline. In this article we enhance traditional runtime
verification techniques for propositional temporal logics
by first-order theories for reasoning about data, based
on SMT solvers. The proposed framework provides a
powerful tool for verifying complex properties at run-
time which exceeds the expressiveness and generality of
previous approaches.

Regarding specification, a combination of temporal
logic and first-order logic is used that is formally defined
in Section 3. Both parts are generic and the monitor con-
struction for the combination is reduced to that of the
temporal logic alone. This way the user can choose a suit-
able temporal logic and reuse any corresponding monitor
construction. Independently of the temporal logic, data
is handled by the first-order logic part and any first-order
theory can be chosen for which an SMT solver is avail-
able. The approach hence can benefit from independent
advances in both fields. A selection of example properties
shows the specific strength of the framework in terms of
expressiveness.

The monitoring algorithm takes observations from
the system as input and executes a monitor incrementally.
The details are presented in Section 4 where we also rea-
son about correctness based on the formal semantics of
the logic. The monitor output provides the information
on whether the specification is violated on the observed
execution trace. An evaluation procedure refines this in-
formation. It is presented in Section 5 where we also prove
that the computed verdict coincides with the semantics
of the specification. Figure 1 shows a schematic view on
the monitoring approach.

To provide evidence that the framework is suitable
for practical applications Section 6 reports on its im-
plementation in our runtime verification tool jUnitRV

[DLT13b]. Benchmarks for monitoring Java programs
show that specifications can be monitored efficiently. For
an extensive case study in the context of medical devices
we also refer the reader to [DKT14].

System

Observation

Specification FO theory

Synthesis

Monitor

SMT
Verdict

evaluation
Verdict

Fig. 1. Schematic overview of the monitoring approach.

1.1 Combining Monitoring and SMT

In the following we outline the idea of our approach by
means of an example. Consider a mutual exclusion prop-
erty where a resource must not be accessed while it is
locked, stated in LTL as G(lock→ ¬accessU unlock). If
there are several resource objects available at runtime,
this is too restrictive and one might specifically limit
foreign access to locked resources. Using variables r and
p, p′, intended to represent resources and processes, re-
spectively, and suitable predicates, the property can be
stated as

∀p∀r G(lock(p, r)→
(∀p′ 6= p : ¬access(p′, r)) U unlock(p, r)).

(1)

The variables r and p are quantified globally whereas
the quantification of p′ is local meaning that temporal
behaviour is not relevant. Formally, all variables range
over some universe that is fixed by the application. In
our example, this could be the set of object identifiers in
a particular Java program.

Data theories. To define a formal semantics for expres-
sions as those above we note that we essentially use an
LTL formula and exchanged propositions by first-order
formulae. In LTL, propositions are evaluated at a posi-
tion in some word, i.e. a letter. To evaluate first-order
formulae, such a letter must now be a first-order structure
describing a system state. In the example we fixed the
universe to object IDs and used a binary predicate “=”
indicating equality. This is covered by the first-order the-
ory of natural numbers with equality and can be handled
by essentially all SMT solvers. It is possible to use more
powerful theories, e.g., with linear order or arithmetics.
Section 3.4 provides more examples.

What remains are the predicates that are not part
of the theory. These specifically characterise the current
system state or, more accurately, are interpreted by the
current system state in terms of the current observation.
We call them observation predicates, in the example we
use binary predicates lock, unlock and access. Inspecting

Normann Decker, Martin Leucker and Daniel Thoma: Monitoring Modulo Theories 3

the program states, we obtain, at any time, an observation
g that interprets all observation predicates in terms of
relations on the universe.

The first-order formulae reason about the data struc-
tures under a specific observation. We therefore refer to
this logic as data logic. Data logic formulae may have free
variables, such as p and r in the example. Summing up,
we can define the semantics of a data logic formula in
terms of (1) an observation interpreting the observation
predicates (and possibly observation functions), (2) a
theory that fixes the interpretation of all other predicates
and functions and (3) a valuation that assigns a value
from the universe to each free variable.

Temporal data logic. In the example, the data logic re-
places the propositional part that LTL is based on. To
the logic expressing the temporal aspect, we generically
refer to as the temporal logic. Our assumptions on the
temporal logic must be that it is linear (defined on words)
and that it only uses atomic propositions to “access” the
word. For example, the semantics of some temporal oper-
ator must not depend on the current letter directly but
only on the semantics of some proposition. We formally
define that requirement in Section 3 but for now only
remark that typical temporal logics like LTL, the lin-
ear µ-calculus or the temporal logic of calls and returns
(CaRet) [AEM04] fit into that schema.

Given a suitable temporal logic and data logic we can
define the formalism we aim at. Taking the temporal logic
and replacing the atomic propositions by data formulae,
we obtain what we call a temporal data logic. The theory
and universe is fixed by the data logic and the semantics
of temporal data logic formulae can thus be defined over a
sequence of observations. If the global variables are bound
universally the formula is evaluated over the observation
sequence for all possible valuations. The semantics of
the formula is then the conjunction (more precisely, the
infimum—or meet) of these results. In general, alternating
global quantifiers correspond to nested meet and join
operations over the valuation space.

Monitor construction. Assuming a monitor construction
for the (propositional) temporal logic, we can evaluate
a sequence of observations on-the-fly. The idea is to
construct a symbolic monitor that deals atomically with
data formulae. In the example formula (Formula 1) we
treat lock(p, r), ∀p′ 6= p : ¬access(p′, r) and unlock(p, r)
as three atomic propositions, say χ1, χ2 and χ3. We
obtain a temporal logic formula G(χ1 → χ2 Uχ3) over a
set of atomic propositions AP = {χ1, χ2, χ3}. A monitor
can then be constructed that reads words over the finite
symbolic alphabet Σ := 2AP.

The free variables in these formulae are p and r and
range over the universe of natural numbers N. Given a
valuation θ : {p, r} → N for those, mapping, e.g., p to
θ(p) = 1 and r to θ(r) = 2, we can map an observation
g to the letter a ∈ Σ that contains all formulae that

are satisfied by g. For example, say g interprets the
observation predicates as lockg = {(1, 2), (10, 7)} and
accessg = unlockg = ∅ (because objects 1 and 10 happen
to lock the resources 2 and 7, respectively, and otherwise
nothing happened in the current execution step of the
program). Then, under θ, g is mapped to a = {χ1, χ2} ∈
Σ since χ1 and χ2 hold but χ3 does not. The observation
g might be mapped to some other symbolic letter for
another valuation θ′. If, for example, θ′(p) = 2 then χ1

does not hold and g is projected to a′ = {χ2} ∈ Σ.
We present a monitoring algorithm that maintains a

copy of the symbolic monitor for each valuation. For a
new observation, the algorithm simulates the individual
transition for each copy by projecting the observation
under the specific valuation. As the universe is in general
infinite, the number of monitor instances is infinite as
well but the algorithm uses a data structure to finitely
represent the state of all monitor instances.

Global quantification over all monitor instances can
be evaluated using this finite representation. In the case
of only universal quantifiers, this amounts to computing
the meet over a finite set of representatives for all moni-
tor instances. For the general case, a refinement step is
needed for each quantifier alternation.

1.2 Related work

In runtime verification, handling data values to reason
about the computation of a system more precisely has
always been a concern. Most approaches extend some
specification formalism towards data values. Mainly, two
classes of specification formalisms can be distinguished:
declarative formalisms like temporal logics and more
operational models like automata.

Data values for runtime verification were already con-
sidered in [AAC+05]. They use a simple expression lan-
guage based on the instrumentation framework AspectJ
that allows for free variables that are bound to values
occurring in the observed trace.

One of the first works extending LTL by parameters
is by Stolz and Bodden [SB06]. Binding of parameters
of propositions takes place in a Prolog-style fashion
and the resulting approach is reasonable for the intended
applications. However, no precise denotational semantics
is given.

The works on Eagle [BGHS04] and RuleR [BRH07]
consider first-order safety properties. The corresponding
systems come with a rewriting-based semantics and are
well-suited for specifying properties of especially finite,
yet perhaps expanding traces. A comparable approach
is implemented in the tool LogFire [Hav15] using the
Rete algorithm [For82] known from artificial intelligence
to evaluate rule systems.

In [DLS08] a runtime verification approach for the
temporal evaluation of integer-modulo-constraints was
presented. The underlying logic has a decidable satisfia-
bility problem and the overall approach is anticipatory.

4 Normann Decker, Martin Leucker and Daniel Thoma: Monitoring Modulo Theories

However, only limited computations can be followed. To
reason about the temporal evolution of data values along
some computation, some form of bounded unrolling like
in bounded model checking [BCRZ99] can be used. For
runtime verification, however, such an approach is not
suitable, as the observed trace cannot be bounded.

An extension of LTL with a special binding operator
has been studied in [Sto10]. It allows for binding a vari-
able to a data value appearing at the current position in
a trace.

Basin et al. [BKM10] consider a safety fragment of
metric first-order temporal logic where temporal real-time
properties can be expressed over first-order constraints.
Quantification is, however, restricted and temporal oper-
ators are bounded.

Closely related to our work is that of Chen and Rosu
[CR09,MJG+12]. It considers the setting of sequences of
actions which are parameterised by identifiers (IDs). The
main idea is to divide the sequence of a program into
sub-sequences, called slices, containing only a single ID.
The slices are then monitored independently. Hence, in
contrast to our approach, no interdependencies between
the different slices can be checked. Moreover, our mon-
itoring approach is not limited to plain IDs but allows
the user to reason more generally over data in terms
of arbitrary (decidable) first-order theories. The work
considers a dedicated temporal logic (LTL) together with
the dedicated notion of parameters, whereas in our frame-
work an arbitrary linear temporal logic can be extended
by a first-order theory.

Quantified Event Automata (QEA) [BFH+12] are sim-
ilar to the concept of slicing but are more expressive since
a single monitor instance can be associated with mul-
tiple IDs and thus observe actions from multiple slices.
Quantification is limited to finite domains and relies on
automata being used as specification formalism. QEA
can be encoded into our formalism using the theory of
IDs and a sufficiently expressive temporal formalism such
as linear µ-calculus or regular extensions of LTL. A Scala
DSL based on similar ideas as has been presented in
[Hav14].

Recently, Bauer et al. [BKV13] presented an approach
combining LTL with a variant of first-order logic for
runtime verification. However, their approach restricts
quantification to finite sets always determined in advance
by the system observation. This allows for finitely instan-
tiating quantifiers during monitor execution, but also
profoundly limits the expressiveness of first-order logic.
Basically, it is only possible to evaluate first-order formu-
lae over finite system observations, and not to express
properties in a declarative manner.

In summary, the ability of using arbitrary first-order
theories to reason on data in combination with rich tempo-
ral logics makes our framework exceed the expressiveness
of previous approaches. Clearly, this needs to come at the
cost of efficiency but the framework’s flexibility allows
the user to freely choose a suitable trade-off. Whilst we

do not consider real-time constraints as first-class citizens
here such properties can be expressed using a suitable
first-order theory.

The present article is an extension of [DLT14] where
global quantification was restricted to be only universal.

2 Preliminaries

First-order logic. A signature S = (P, F, ar) consists
of finite sets P , F of predicate and function symbols,
respectively, each of some arity defined by ar : P∪F → N.
An extension of S is a signature T = (P ′, F ′, ar′) such
that P ⊆ P ′, F ⊆ F ′ and ar ⊆ ar′.

The syntax of first-order formulae over the signature
S is defined in the usual way (see, for example, [EFT94])
using operators ∨ (or), ∧ (and), ¬ (negation), variables
x0, x1, . . . , predicate and function symbols p ∈ P , f ∈ F ,
quantifiers ∀ (universal), ∃ (existential). Free variables
are not in the scope of some quantifier and are assumed to
come from some set V . The set of all first-order formulae
over a signature S is denoted FO[S]. We consider con-
stants as function symbols f with ar(f) = 0. A sentence
is a formula without free variables.

An S-structure is a tuple s = (U , s) comprising a
non-empty universe U and a function s mapping each
predicate symbol p ∈ P to a relation ps ⊆ Un of arity
n = ar(p) and each function symbol f ∈ F to a function
fs : Um → U of arity m = ar(f). A T -structure t = (T , t)
is an extension of s if T is an extension of S, T = U and
s(r) = t(r) for all symbols r ∈ P ∪ F .

A valuation is a mapping θ : V → U of free variables
to values. The set of all such mappings may be denoted
UV . The semantics of first-order formulae is defined as
usual. We write (s, θ) |= χ if a formula χ is satisfied
for some structure s and valuation θ. For sentences, we
refer to a sole satisfying structure as a model, omitting a
valuation. The theory T of an S-structure s is the set of
all sentences χ such that s is a model for χ.

Temporal specifications. We use AP to denote a finite
set of atomic propositions and Σ := 2AP for the finite
alphabet over AP . For arbitrary, possibly infinite alpha-
bets we mostly use Γ . A word over some alphabet Γ is a
sequence of letters from Γ and Γ ∗, Γω denote the sets of
finite and infinite words over Γ , respectively.

Monitor. A monitor M = (Q,Γ, δ, q0, λ, Λ) for a tem-
poral property is a state machine with output where Q
is a possibly infinite set of states, Γ is a possibly infi-
nite input alphabet, δ : Q × Γ → Q is a deterministic
transition function and λ : Q→ Λ is a labelling function
mapping states to labels from the set Λ. The operational
semantics is defined in the usual way in the fashion of
Moore machines. For transition functions δ : Q× Γ → Q
we define the common extension δ∗ : Q × Γ ∗ → Q to
words by δ∗(q, ε) := q and δ∗(q, γg) := δ(δ∗(q, γ), g) for
γ ∈ Γ ∗, g ∈ Γ .

Normann Decker, Martin Leucker and Daniel Thoma: Monitoring Modulo Theories 5

Trees. A binary tree is a tuple (V, S1, S2) consisting of
a set V of vertices, or nodes, and two anti-symmetric,
irreflexive successor relations S1, S2 ⊆ V × V such that
for all nodes v ∈ V there is at most one S1-successor and
one S2-successor and there is a unique root node r ∈ V
that does not have a predecessor. A binary tree is full
if every node has either both, an S1-successor and an
S2-successor or none. We depict and refer to S1 and S2

as left and right side, respectively.

3 Temporal Data Logic

The aim of the framework is to enable the user to specify
and check complex properties of execution traces. As
described above we consider two aspects, time and data.
Note that we refer to discrete time, as opposed to con-
tinuous notions like in timed automata. In this section
we therefore formalise how and under which assumptions
two logics considering time (temporal logic) and data
(data logic) can be combined to a specification formalism
(temporal data logic) that can express the timely be-
haviour of a system with respect to the data it processes.
The clear separation of the aspects will give rise to a
monitoring procedure.

3.1 Temporal Logic

The notion of a temporal logic (TL) that we consider for
our monitoring framework is inspired by the intuition
for LTL which is widely used for behavioural specifi-
cations, in particular in runtime verification. However,
our monitoring approach does only rely on some specific
properties that are shared by other, also more expressive
logics. In the following we identify the required features
of a suitable temporal logic for our framework.

We require the desired temporal behaviour to be
specified in a finitary, linear logic, that is, the semantics
is defined on finite words over some alphabet Γ . The truth
values of the semantics need to come from a complete
lattice (S,u,t) since we will handle multiple monitor
instances and combine individual verdicts.

Second, there must be a monitor construction for
the logic in question since our framework is intended
to generically lift such a construction for handling data.
We assume that such a construction turns a TL formula
ϕ into a Moore machine Mϕ with output Mϕ(w) =
JϕK(w) for w ∈ Γ ∗. The restriction to Moore machines is
not essential, our constructions are applicable to similar
models, including Mealy machines and we do not rely on
a finite state space.

As we aim at replacing atomic propositions, we re-
quire that the semantics of the temporal logic can only
distinguish letters by means of the semantics of such
propositions. This allows for lifting the semantics from a
propositional to a complex alphabet where letters have
more internal structure.

Proposition semantics. We formalise the distinction of
positional and temporal aspects of a temporal logic for-
mula using a proposition semantics ps : AP→ 2Γ map-
ping propositions p ∈ AP to the set of letters ps(p) ⊆ Γ
that satisfy the proposition. Given, that the semantics of
some propositional temporal logic can be defined by only
referring to letters using a proposition semantics, it can
be substituted without influencing the temporal aspect.

We refer to the canonical semantics for Γ = Σ = 2AP

as psAP : AP → 2Σ , with psAP(p) := {a ⊆ AP | p ∈ a}.
It is the “sharpest” in the sense that it distinguishes
maximally many letters by means of combinations of
propositions.

Symbolic abstraction. For an alphabet Γ , atomic propo-
sitions AP and a proposition semantics ps : AP → 2Γ ,
let πps : Γ → Σ be a projection with πps(g) := {p ∈
AP | g ∈ ps(p)}, mapping a letter g ∈ Γ to the set of
propositions that hold for it. For convenience, we lift the
projection to words g1. . . gn (gi ∈ Γ) by πps(g1. . . gn) :=
πps(g1). . . πps(gn). Using πps, we consider the letters from
Σ as symbolic abstractions of Γ with respect to AP and
ps in the sense that πps maintains all the structure of Γ
that is relevant for evaluating (Boolean combinations of)
propositions from AP .

As argued above, for the purpose of lifting a temporal
logic over atomic propositions to propositions carrying
data, i.e., structure, it is essential that the semantics of
propositions can be encapsulated and exchanged without
influencing the temporal aspect. We can formalise this
requirement on a temporal logic TL using the symbolic
abstraction. We assume the semantics of a TL formula
ϕ to be a mapping that takes linear sequences from
Γ ∗ and assigns a truth value from the complete lattice
S. If the semantics satisfies our criterion we can make
the proposition semantics ps : AP → 2Γ an explicit
parameter and assume the semantics of a formula ϕ is
given by a mapping JϕK(ps) : Γ ∗ → S, or, generally,
JϕK : (AP→ 2Γ)→ (Γ ∗ → S). Moreover, projecting the
input word to a symbolic word and evaluating JϕK(psAP)
on it must not change the result.

Definition 1 (Propositional semantics). Let AP be
a set of atomic propositions and Γ an alphabet. A se-
mantics JϕK : (AP→ 2Γ)→ (Γ ∗ → S) is propositional iff
for all proposition semantics ps : AP→ 2Γ and all words
γ ∈ Γ ∗

JϕK(ps)(γ) = JϕK(psAP)(πps(γ)).

Based on that notion of propositional semantics we
can summarise the formal criteria for a temporal logic to
be suitable for our monitoring framework.

Definition 2 (Temporal logic). A temporal logic is a
specification formalism TL over a set of atomic proposi-
tions AP that enjoys the following properties.
1. The semantics of formulae ϕ is given for finite words

over an input alphabet Γ by a mapping

JϕKTL : (AP→ 2Γ)→ (Γ ∗ → S)

6 Normann Decker, Martin Leucker and Daniel Thoma: Monitoring Modulo Theories

where (S,u) is a complete lattice.
2. The semantics is propositional.
3. A monitor construction is available that turns a for-

mula ϕ into a deterministic monitorMϕ with output
Mϕ(w) = JϕKTL(psAP)(w) for w ∈ Σ∗.

3.2 Data logic

To reason about data values our framework can use a so
called data logic DL based on any first-order theory for
which satisfiability is decidable. We assume the theory
is represented by some structure which can be extended
by additional predicate and function symbols that will
represent observations from the system that shall be
monitored.

Definition 3 (Data logic). Let T = (P, F, ar) be a
signature, t = (D, a) some T -structure and P ′, F ′ be
additional predicate and function symbols with arity
defined by ar′ : P ′ ∪ F ′ → N, called observation symbols.

A data logic DL is a tuple (t, G,V,D) such that G =
(P ∪ P ′, F ∪ F ′, ar ∪ ar′) is an extension of T and V is a
finite set of first-order variables.

A DL formula is a first-order formula over the signa-
ture G and possibly free variables from V . A DL formula
is called observation-independent, if it does not contain
observation symbols. An observation is a G-structure
g = (D, g) that is an extension of t. The set of all obser-
vations is denoted Γ .

The semantics of a DL formula is defined over tu-
ples (g, θ) ∈ Γ ×DV consisting of an observation and a
valuation θ : V → D of free variables in the usual way.

For an instance of the monitoring framework the struc-
ture t representing the theory is fixed. An observation-
independent DL formula ϕ with free variables from the
set V can be evaluated just with respect to t, with-
out considering an observation. A decision procedure
for the theory of t can thus be applied directly. Fur-
ther, ϕ can be interpreted as a constraint on the do-
main of variable valuations DV by considering the set
Θϕ := {θ ∈ DV | (t, θ) |= ϕ}.

3.3 Temporal data logic

Given a temporal and a data logic as described above,
we can now define their combination, the temporal data
logic TDL. In TDL formulae we use brackets 〈 and 〉 to
clarify which parts come from the data logic.

Syntax. Let TL be a temporal logic, DL = (t, G,V,D)
be a data logic and AP be a finite set {〈χ1〉, . . . , 〈χn〉}
where χ1, . . . , χn are DL formulae possibly with free
variables from V. A TDL formula ϕ consists of a core
formula ψ which is a TL formula over AP and a number
of preceding global first-order quantifiers binding free

variables in ψ. Formally, the syntax of TDL formulae ϕ
is defined according to the grammar

ϕ ::= ∃xϕ | ∀xϕ | ψ

where x ∈ V is a variable and ψ is a TL formula over AP .
If there are no free variables in ϕ, the formula is called a
sentence.

Semantics. A structured word is a finite sequence γ ∈ Γ ∗
of DL observations. For a valuation θ ∈ DV let the
proposition semantics psθ : AP→ 2Γ be defined by

psθ(〈χ〉) := {g ∈ Γ | (g, θ) |= χ}

where 〈χ〉 ∈ AP. The semantics of a TDL formula ϕ is
defined with respect to a valuation θ : V → D. It is a
mapping JϕKθTDL : Γ ∗ → S defined for γ ∈ Γ ∗ as

J∃xϕ′KθTDL(γ) :=
⊔
d∈D

Jϕ′Kθ[x7→d]TDL (γ),

J∀xϕ′KθTDL(γ) :=
l

d∈D

Jϕ′Kθ[x7→d]TDL (γ),

JψKθTDL(γ) := JψKTL(psθ)(γ)

where ψ is a TL formula. If ϕ is a sentence, that is, it
does not contain any free variable, we omit to annotate
a specific valuation θ and write JϕKTDL for its semantics.
This is well-defined since valuations of variables that do
not occur freely in ϕ do not affect its semantics.

Recall that for psθ we obtain a projection πpsθ : Γ ∗ →
Σ∗ from structured to symbolic words. In the following
we abbreviate πpsθ by πθ. From the semantics of TDL
formulae without quantifiers it immediately follows that
we can evaluate the semantics symbolically by projecting
the observation to propositional letters and then evaluat-
ing the temporal formula according to the propositional
semantics. This is an essential step in lifting a monitor
construction for TL to the data setting.

Proposition 1. Let ψ be a TL formula over AP =
{〈χ1〉, . . . , 〈χn〉} where χ1, . . . , χn are DL formulae with
free variables from V. For a valuation θ ∈ DV and a
sequence of observations γ ∈ Γ ∗

JψKθTDL(γ) = JψKTL(psAP)(πθ(γ)).

Hence, the semantics of quantified formulae can be
characterised similarly by meet and join operations over
the symbolic semantics.

3.4 LTL and CaRet with Data

We now exemplify the instantiation of our framework by
means of LTL. More precisely, we show that the finitary,
three-valued LTL3 semantics JϕK3 : Σ∗ → B3 can be
formulated to comply with Definition 2.

The syntax of linear-time temporal logic (LTL) is
defined in the usual way over atomic propositions AP

Normann Decker, Martin Leucker and Daniel Thoma: Monitoring Modulo Theories 7

mutex No foreign access while locked
∀f∀t G(〈lock(f, t)〉 → 〈∀t′ 6= t : ¬access(f, t′)〉U〈unlock(f, t)〉)

access Access only open resources
∀x(〈open(x)〉R¬〈access(x)〉) ∧G(〈close(x)〉 → G¬〈access(x)〉)

iterator Check iterator for next element
∀i G((〈iterator(i)〉 ∨ 〈next(i)〉)→ X(〈hasNext(i, true)〉R¬〈next(i)〉))

modified Do not reuse old iterator after modifying collection
∀c∀i G(〈iterator(c, i)〉 → G(〈add(c)〉 → (¬〈next(i)〉U〈finalize(i)〉)))

server Each request is served by somebody
∀t∀x G(〈request(t, x)〉 → F〈∃t′ : response(t′, x, t)〉)

response Response within time limit
∀t∀x G(〈request(t)〉 ∧ 〈x = time〉 → (〈time < x+ 100〉U〈response(t)〉))

counter c is a counter
∀x G(〈c = x〉 → X〈c = x+ 1〉)

velocity Average speed since last observation does not exceed limit
∀x∀y G(〈s = x ∧ t = y〉 → X〈s− x < vmax · (t− y)〉)

matching Matching open and closing tags with same name
∀x G((〈call〉 ∧ 〈printOpen(x)〉)→ Xa〈printClose(x)〉)

bound Value of each opening node is upper bound on nesting depth
∀x∀y G(〈open(x)〉 → X(¬〈ret〉 → Ga(〈open(y)〉 → 〈x > y〉)))

depth Value of each opening node is exact nesting depth of one direct child node
∀x G(〈open(x)〉 → X((¬〈ret〉 ∧ Fa〈open(x− 1)〉) ∨ (〈ret〉 ∧ 〈x = 0〉))

controller All processes communicate only with a central controller process
∃c∀p G〈∀p′ request(p, p′)→ c = p′〉

observer All process are observed by some other process, i.e. they send messages regularly to that process
∀p∃o G F〈request(p, o)〉

mediator For every process there is a mediator that relays every request r to the controller
∃c∀p∃m∀r G〈request(p, r,m)〉 → F〈request(m, r, c)〉

Table 1. Example properties using LTL and CaRet with data.

using negation, Boolean connectives and temporal op-
erators X (next), U (until), R (release), G (globally)
and F (eventually). We refer to the standard LTL se-
mantics over infinite words w ∈ Σω as LTLω given
for an LTL formula ϕ by a mapping JϕKω : Σω → B
where B = {>,⊥} denotes the two-valued Boolean lattice.
The finitary three-valued LTL semantics LTL3 [BLS06],
is given for ϕ by a mapping JϕK3 : Σ∗ → B3 where
B3 = {>, ?,⊥} denotes the three-valued Boolean lat-
tice ordered > > ? > ⊥. It is defined for w ∈ Σ∗ as
JϕK3(w) := > if ∀u ∈ Σω : JϕKω(wu) = >, JϕK3(w) := ⊥
if ∀u ∈ Σω : JϕKω(wu) = ⊥ and JϕK3(w) := ? otherwise.

The three-valued LTL3 semantics JϕK3 : Σ∗ → B3

is defined over Σ = 2AP based on the infinitary LTLω
semantics. The inductive definition of LTLω only refers
to letters for atomic propositions. This can be easily re-
formulated in terms of an arbitrary proposition semantics
ps : AP→ 2Γ over an arbitrary alphabet Γ . Instead of
defining JpKω(w) = > iff p ∈ w0, we let JpKω(ps)(γ) := >
if γ0 ∈ ps(p) and JpKω(ps)(γ) := ⊥ otherwise, for γ ∈ Γω.
The rest of the definition remains untouched. The defini-
tion of the three-valued semantics JϕK3 does not at all
refer to letters directly but only to LTLω. With these
simple modifications LTL3 fits to the notion of tempo-
ral logic in the sense of Definition 2. The corresponding
monitor construction proposed in [BLS06,BLS11] can be
applied.

Proposition 2. LTL3 is a suitable temporal logic in the
sense of Definition 2.

The mutual exclusion property presented earlier is one
example for a specification based on LTL and the theory
of IDs. Other common examples of temporal properties
are the correct use of iterators or global request/response
properties. In the propositional versions of such properties
the objects in question, iterators, resources or requests,
are assumed to be unique. Adding data in terms of IDs,
for example, allows for a much more realistic formulation.
Table 1 lists formulations of these properties and also
others that cannot be expressed without distinguishing
at least identities. The property modified requires that
an iterator must not be used after the collection it corre-
sponds to has been changed. Further, counting (counter)
or arithmetic constraints (response, velocity), also on real
numbers, are valuable features for a realistic specifica-
tion. Examples controller, observer and mediator show
properties that require alternating quantifiers.

RLTL and CaRet: Regular and nesting properties. Reg-
ular LTL [LS07] is an extension of LTL based on regular
expressions. CaRet [AEM04] is a temporal logic with
calls and returns expressing non-regular properties. In
addition to the LTL operators, CaRet allows for abstract
temporal operators such as Xa and Ga, moving forward
by jumping on a word from a calling position to match-

8 Normann Decker, Martin Leucker and Daniel Thoma: Monitoring Modulo Theories

ing return position, reflecting the intuition of procedure
calls. For RLTL and CaRet monitor constructions have
been proposed [DLS08,DLT13a]. Despite both are more
complex the same arguments as for LTL apply. Example
properties are listed in Table 1 and express matching call-
and return values and nesting-depth bounds.

4 Monitoring

In this section we present our monitoring procedure for
TDL formulae. It relies on the observation made in Propo-
sition 1, namely that the TDL semantics for an input
word γ ∈ Γ ∗ is characterised by the TL semantics for
projections of γ.

Any TDL formula can be interpreted as TL formula
when stripping first-order quantifiers and considering all
occurring data logic formulae as individual symbols. With
this interpretation we can employ the monitor construc-
tion for TL to obtain a monitor over a finite alphabet
constructed from these symbols.

Definition 4 (Symbolic monitor). Let ϕ be a TDL
formula with core formula ψ. Let χ1, . . . , χn be the data
logic formulae occurring in ϕ and AP = {〈χ1〉, . . . , 〈χn〉}.
The symbolic alphabet for ϕ is the finite setΣ := 2AP. The
symbolic monitor for ϕ is the monitor MΣ constructed
from its core formula ψ interpreted as TL formula over
AP .

The symbolic monitorMΣ for a TDL formula ϕ incre-
mentally computes the semantics JψKTL(psAP) : Σ∗ → S.
Following Proposition 1, what remains is to maintain
a monitor for each valuation θ ∈ DV and to individ-
ually compute the corresponding projection πθ on the
input. The individual verdicts then need to be combined
according to the quantifiers preceding ψ in ϕ.

Within this section we present an algorithm for ef-
ficiently maintaining these, in general infinitely many,
monitor instances. It uses a data structure, called con-
straint tree, that represents finitely many equivalence
classes of symbolic monitors. The constraint tree also
allows for alternating the computation of infima and
suprema over sets of outputs of monitor instances accord-
ing to the universal and existential quantification of free
variables, respectively. This yields the semantics of the
property on the input trace read so far.

4.1 Representing and Evaluating Observations

While observations are formally defined as first-order
structures, we want to use them algorithmically and must
therefore choose a representation. An actual implementa-
tion of an SMT solver already fixes how to represent all
objects essential for handling a certain theory, such as
first-order formulae, predicates and function symbols. We
have defined observations to be extensions of a structure

representing the theory and want to handle them prac-
tically using an SMT solver. Consequently, we assume
them to be extensions of the structure that the tool uses
to represent and handle a theory. For the purpose of the
implementation, it is a reasonable assumption that the
semantics of observation symbols be expressible or, more
precisely, expressed within the considered data theory.

Formally, for DL = (t, G,V,D) where t is a T -struc-
ture, we assume that any observation g ∈ Γ induces a
mapping ĝ : FO[G]→ FO[T] s.t. for all DL formulae χ
and all valuations θ ∈ DV we have

(g, θ) |= χ ⇔ (t, θ) |= ĝ(χ).

Note that this can be realised by substituting observa-
tion predicates by some observation-independent formula
that characterises its semantics with respect to g. Func-
tion symbols f can be replaced using existential sub-
stitution replacing expressions of the form e(f(e′)) by
∃z : e(z)∧ξf (e′, z) where an observation-free DL formula
ξf characterises the semantics of f with respect to g.

As noted earlier, we can also employ observation-free
formulae ρ to describe sets of valuations Θρ ⊆ DV . While
this does not allow for representing any arbitrary set of
valuations, the expressiveness of the data theory suffices
to express any relevant set.

Proposition 3. Let χ be a DL formula, g ∈ Γ an ob-
servation and ρ be an observation-free DL formula such
that for all θ1, θ2 ∈ Θρ we have

(t, θ1) |= ĝ(χ) ⇔ (t, θ2) |= ĝ(χ).

Then for all θ ∈ Θρ
(g, θ) |= χ ⇔ ĝ(χ) ∧ ρ is satisfiable.

Intuitively, if either every valuation θ ∈ Θρ or none of
them satisfies a formula ĝ(χ) then ρ represents an equiva-
lence class of valuations with respect to ĝ(χ). Hence,
for all these valuations, (t, θ) |= ĝ(χ) if and only if
(t, θ′) |= ĝ(χ) ∧ ρ for any valuation θ′ ∈ DV since ρ
already restricts to the set Θρ. Note that ĝ(χ) ∧ ρ is
an observation-free DL formula and that checking it for
satisfiability is exactly what we assume an SMT solver
be able to do.

4.2 Constraint Trees

We next introduce constraint trees, a data structure
that is capable of storing the configurations of a set of
instances of some symbolic monitor. It maintains sets of
valuations Θ ⊆ DV represented by constraints and stores
for each such set a monitor state. The desired property
regarding the use in our monitoring algorithm is that
the sets of constraints induce a partition of the valuation
space.

Definition 5 (Constraint tree). Let M be a set of
labels and DL a data logic. A constraint tree over M is
a tuple τ = (I, L, S1, S2, C, λI ,M, λL) such that

Normann Decker, Martin Leucker and Daniel Thoma: Monitoring Modulo Theories 9

– (I ∪ L, S1, S2) is a finite, non-empty and full binary
tree with internal nodes I and leaf nodes L,

– C is a set of observation-independent DL formulae
called constraints,

– λI : I → C labels internal nodes by constraints and
– λL : L→M labels leaf nodes by elements from M .

Let v0 ∈ I ∪ L be the root of τ , i.e., the unique node
without predecessor. For a node v ∈ I ∪ L in τ let ρ(v)
be the DL formula defined inductively by ρ(v0) = true
and for v 6= v0

ρ(v) =

{
ρ(v′) ∧ λI(v′) if (v′, v) ∈ S1

ρ(v′) ∧ ¬λI(v′) if (v′, v) ∈ S2.

For a leaf l ∈ L, the formula ρ(l) is called a path constraint
in τ . The set of all constraint trees over M is denoted by
TM .

Note that path constraints are well-defined because
each node v in a tree that is not the root has a unique
predecessor v′ such that either (v′, v) ∈ S1 or (v′, v) ∈
S2. In a constraint tree τ , each inner node represents a
constraint that is used to separate the valuation space
DV . S1-branches represent the parts where the particular
constraint holds while in the S2-branches it does not.
Where convenient, we may identify a path constraint ρ
with the set Θρ of valuations satisfying it and write, e.g.,
θ ∈ ρ if some valuation θ ∈ Θρ satisfies ρ in the given
theory.

Proposition 4. The set of path constraints in a con-
straint tree τ = (I, L, S1, S2, C, λI ,M, λL) induces a par-
tition {Θρ(l) ⊆ DV | l ∈ L} of the valuation space DV .

Each internal node v ∈ I splits the set Θρ(v) into those
valuations satisfying λI(v) and those that do not. Every
particular valuation θ ∈ DV hence satisfies exactly one
path constraint ρ(lθ) in τ for a particular leaf node lθ ∈ L.
A constraint tree τ ∈ TM therefore represents a well-
defined, total function τ : DV →M with τ(θ) = λL(lθ).

We will use constraint trees τ ∈ TQ for maintain-
ing instances of a symbolic monitor MΣ with states Q.
Figure 2 shows an example of a constraint tree for the
valuation space of two integer variables using constraints
from a first order theory with order and equality.

4.3 Symbolic Monitor Execution

In the following we present an algorithm incrementally
processing a sequence of observations in order to compute
the semantics of some TDL formula ϕ. It maintains a
constraint tree as a finite representation of a mapping
of valuations to states of the symbolic monitor MΣ =
(Q,Σ, δ, q0, λ,S) for ϕ.

The algorithm starts on the trivial constraint tree
consisting only of one leaf node labelled by the initial
state q0. This means that the monitor instances for all

(x > 6)

q0 (x = 2) ∨ (y > x)

q1 q0

¬

¬

Fig. 2. Constraint tree partitioning the set of valuations θ :
{x, y} → Z by integer constraints. To each partition one of the
states q0 and q1 is associated.

valuations are in state q0. Intuitively, for an input word
γ ∈ Γ the algorithm executes one monitor instance for
each valuation θ ∈ DV on the respective projection πθ(γ).
For the empty word γ = ε, all projections are equal and
all instances are in the same state. When reading a new
observation g ∈ Γ which is, for all valuations, projected
to the same symbolic letter a ∈ Σ, all monitor instances
read the same projection and their state changes equally
to δ(q0, a). Otherwise, if g is mapped to different sym-
bolic letters for different valuations, the so far uniformly
handled valuation space is split.

Consider two valuations θ, θ′ ∈ DV and an input
symbol g ∈ Γ such that their projections a = πθ(g) 6=
b = πθ′(g) are different. Then there is some proposition
〈χ〉 ∈ AP that distinguishes a and b, e.g., let 〈χ〉 ∈ a
and 〈χ〉 6∈ b. Note that this is because (g, θ) |= χ and
(g, θ′) 6|= χ. In general, the behaviour of all monitor in-
stances reading a letter including 〈χ〉 may diverge from
those reading a letter not including 〈χ〉. Therefore, the
algorithm records this fact by splitting the valuation
space in two parts, one for which χ holds under obser-
vation g and another for which it does not. A new node
is added to the tree, labelled by the constraint ĝ(χ) pre-
cisely distinguishing the two parts. A part may be split
up further in the same way in case other propositions
again distinguish valuations from it. Additional nodes
are created in the constraint tree accordingly and so the
path constraint ρ on the path to a leaf node v ∈ L char-
acterises exactly the set of valuations Θρ for which the
projection of the observation g is equal and is thus the
state of all corresponding monitor instances. This process
is continued when reading further observations. For each
part Θρ represented in the constraint tree, a new observa-
tion h ∈ Γ is processed by checking for each proposition
〈χ〉 ∈ AP if there are valuations in Θρ that observe
a projection including 〈χ〉 by checking satisfiability of

ρ ∧ ĥ(χ) and if there are others observing a projection

not including 〈χ〉 by checking satisfiability of ρ ∧ ¬ĥ(χ).
If one of the formulae is unsatisfiable, meaning that one
of the hypothetical new parts Θρ∧ĥ(χ) = Θρ ∩Θĥ(χ) and

Θρ∧¬ĥ(χ) = Θρ ∩Θĥ(χ) is empty, the new observation h

is projected equally with respect to 〈χ〉 for all valuations

10 Normann Decker, Martin Leucker and Daniel Thoma: Monitoring Modulo Theories

in the part which is thus not split by ĥ(χ). Only if both
new parts are non-empty, the part is split by adding a
new node to the constraint tree labelled by ĥ(χ). Once
all necessary splits are performed for an observation, all
propositions are evaluated yielding the projections for
each (possibly new) part. According to those, the leaf
nodes are updated using the transition function of the
symbolic monitor.

The procedure described above is listed explicitly
as Algorithm 1. There, for the set TQ of all constraint
trees over states Q, we use constructors InnerCTree :
FO[S] × TQ × TQ → TQ and LeafCTree : Q → TQ for
sub-trees and leafs, respectively, where FO[S] is the set
of observation-independent DL formulae. A (sub-)tree
τ = LeafCTree(q) represents a single node v ∈ L that is
labelled by λL(v) = q. In case τ = InnerCTree(ξ, τ1, τ2)
for some formula ξ, the represented (sub-)tree τ has at
least three nodes v, v1, v2 such that v is the root of τ
labelled by λI(v) = ξ, v1, v2 are the roots of τ1 and τ2,
respectively, and (v, v1) ∈ S1 and (v, v2) ∈ S2.

Notice that the presentation of Algorithm 1 is not
deterministic. We can however easily determinise the
algorithm by choosing an arbitrary precedence for the
elements of AP and therefore assume the procedure to
be deterministic. Then, we denote the usual extension
of step to sequences of input letters by step∗(τ, γg) =
step(step∗(τ, γ), g) for γ ∈ Γ ∗, g ∈ Γ .

Proposition 5 (Termination of step). On a con-
straint tree τ ∈ TQ, the function step in Algorithm 1
terminates and has a running time in O(|τ | · |Σ|) where
|τ | is the number of nodes in τ and |Σ| = 2|AP| is the
number of abstract symbols.

Proof. The algorithm does not contain a loop and to see
that recursion stops consider the following well-ordering
argument. Whenever the procedure is called with a tree
τ and a set P as arguments and recursively calls itself
with parameters τ ′ and P ′ then τ ′ is a sub-tree of τ and
P ′ ⊆ P . Moreover, either τ ′ is a proper sub-tree or P ′

is a proper subset. In the former case, the procedure
calls itself once for each subtree. In the latter case, the
procedure calls itself at most twice for each proposition.
The number of recursive calls on a tree τ is hence bound
by |τ | · 2|AP |. �

Based on constraint trees as data structure and the
algorithm for modifying constraint trees regarding a new
observation we can now define the data monitor for a
TDL formula, where, as before, the data logic DL is
defined over observations Γ and the temporal logic TL
uses truth values S.

Definition 6 (Data monitor). Let ϕ be a TDL for-
mula with core formula ψ, Σ = 2AP the symbolic al-
phabet and MΣ = (Q,Σ, δ, q0, λQ,S) the symbolic mon-
itor for ϕ. The data monitor for ϕ is a Moore machine
MΓ = (TQ, Γ, step, τ0, λT) where the transition func-
tion step : TQ × Γ → TQ is given by Algorithm 1. The

initial state τ0 ∈ TQ is the constraint tree consisting of a
single leaf node labelled with the initial state q0 of MΣ .

For a state τ = (I, L, S1, S2, C, λI , Q, λL) ∈ TQ, the
output of MΓ is defined by the function λT : TQ →
TS with λT (τ) := (I, L, S1, S2, C, λI ,S, λQ ◦ λL) where
(λQ ◦ λL)(l) = λQ(λL(l)) for l ∈ L. The output of MΓ

on a word γ ∈ Γ ∗ is defined as

MΓ (γ) := λT (step∗(τ0, γ)).

The output of the data monitor is not the typical sin-
gle, explicit verdict but a constraint tree that represents
a function from from variable valuations to verdicts. As
we will show, it precisely characterises the semantics of
the core formula of ϕ.

That way the monitor output provides all informa-
tion needed to compute the actual semantics of ϕ on the
observed input. Moreover, it allows us to separate the
actual monitoring procedure and the process of evalu-
ating the verdict. In fact, the information provided by
the monitor allows for computing the semantics for any
quantification of free variables in the core formula.

Evaluating the verdict for TDL formulae where global
quantification is either only universal or only existential
amounts to simply compute the meet or the join, respec-
tively, over the leafs of the output tree. The general case
of arbitrary alternation is more involved and, most im-
portantly, computationally harder. Due to the separation
of monitoring and evaluation, however, a more expensive
verdict evaluation can be implemented and even exe-
cuted independently of the monitoring procedure, e.g.,
by delegating it to dedicated time frames or hardware.

4.4 Correctness

In this section we settle the correctness of the monitoring
procedure presented above by showing that the output of
the data monitorMΓ for a TDL formula ϕ is a constraint
tree representing the semantics of the core formula of ϕ
with respect to all input words and all variable valuations.

For the following we fix the data logic DL and write πθ
for πpsθ . Recall that by Proposition 1 the TDL semantics
of ψ can be represented in terms of its TL semantics over
the symbolic abstraction πθ(γ) of γ by

JψKθTDL(γ) = JψKTL(psAP)(πθ(γ)).

The semantics of ψ depends on valuations from an
infinite domain. However, given a finite word γ ∈ Γ ∗,
the valuation space DV can be partitioned into finitely
many equivalence classes Θ1, . . . , Θn ⊆ DV such that the
projection of γ is unique for each class Θi, i.e.,

∀θ,θ′∈Θi : πθ(γ) = πθ′(γ).

Thus, also the semantics of ψ is equal for all valuations
from the same class. This partition exists and is in fact
represented by the constraint tree computed by the mon-
itoring algorithm.

Normann Decker, Martin Leucker and Daniel Thoma: Monitoring Modulo Theories 11

Algorithm 1 Split constraints and simulate monitor steps

1 function split: 2AP × FO[T]×Σ × TQ × Γ → TQ

3 function split =

4 // recursively process subtrees and accumulate constraints

5 case (P, ρ, a, InnerCTree(ϕ, τ1, τ2), g) then
6 InnerCTree(ϕ, split(P, ρ ∧ ϕ, a, τ1, g), split(P, ρ ∧ ¬ϕ, a, τ2, g))

8 // evaluate propositions, split partition if necessary

9 case ({〈χ〉} ∪ P, ρ, a, LeafCTree(s), g) then
10 τ1 := if SAT(ρ ∧ ĝ(χ)) then split(P, ρ ∧ ĝ(χ), a ∪ {〈χ〉}, LeafCTree(s), g)
11 else Empty

13 τ2 := if SAT(ρ ∧ ¬ĝ(χ)) then split(P, ρ ∧ ¬ĝ(χ), a, LeafCTree(s), g)
14 else Empty

16 if (τ1 = Empty) then τ2
17 else if (τ2 = Empty) then τ1
18 else InnerCTree(ĝ(χ), τ1, τ2)

20 // store new state

21 case (∅, ρ, a, LeafCTree(s), g) then LeafCTree(δ(s, a))

23 function step(τ ∈ TQ, g ∈ Γ): TQ = split(AP, true, ∅, τ, g)

Lemma 1. Let MΓ = (TQ, Γ, δΓ , τ0, λΓ) and MΣ =
(Q,Σ, δΣ , q0, λΣ) be the data monitor and the symbolic
monitor, respectively, for some TDL formula ϕ. For an
input word γ ∈ Γ ∗ let τγ := step∗(τ0, γ). Then, for all
valuations θ ∈ DV ,

τγ(θ) = δ∗Σ(q0, πθ(γ)).

Proof. We prove the lemma by induction on the length
of γ. For γ = ε, θ ∈ DV and τε = step∗(τ0, ε)

τε(θ) = τ0(θ) = q0 = δ∗Σ(q0, ε) = δ∗Σ(q0, πθ(ε)).

Now, consider a word γg ∈ Γ+ for g ∈ Γ , of length
at least 1. The monitor proceeds letter-wise, so τγg =
δ∗Γ (τ0, γg) = δΓ (δ∗Γ (τ0, γ), g).

Let τγ = step∗(τ0, γ) = (I, L, S1, S2, C, λI , Q, λL)
and q := τγ(θ). Then there is a leaf l ∈ L with label
λL(l) = q and (t, θ) |= ρ(l). Let a := πθ(g) be the
projection of g under θ. By definition of πθ we have also
(t, θ) |= â for

â :=
(∧
〈χ〉∈a

ĝ(χ)
)
∧

∧
〈χ〉∈AP\a

¬ĝ(χ)

and hence (t, θ) |= ρ(l)∧ â. This means in particular that
ρ(l) ∧ â is satisfiable. It follows that in τγg = step(τγ , g)
there is a leaf l′ with ρ(l′) ≡ ρ(l) ∧ ĝ(a) because the
algorithm substitutes the leaf l in τγ by a tree that has
a branch for each combination of formulae from AP that
is satisfiable in combination with ρ(l).

The algorithm moreover explicitly computes a when
constructing the corresponding branch in the substitution
for l and stores δΣ(q, a) as the label of the new leaf

l′. By induction q = τγ(θ) = δ∗Σ(q0, πθ(γ)) and since
(t, θ) |= ρ(l′) the valuation θ is mapped to

τγg(θ) = δΣ(q, a) = δΣ(δ∗Σ(q0, πθ(γ)), πθ(g))

= δ∗Σ(q0, πθ(γg)).

�

Given, that the monitor indeed maintains all instances
of the symbolic monitor it immediately follows that the
output of MΓ represents the semantics of the core for-
mula ψ.

Theorem 1 (Monitoring correctness). Let ϕ be a
TDL formula with core formula ψ and MΓ the data
monitor for ϕ. For all γ ∈ Γ ∗ and all θ ∈ DV we have

MΓ (γ)(θ) = JψKθTDL(γ).

Proof. For τγ = step∗(τ0, γ) we have

MΓ (γ)(θ) = λΓ (τγ)(θ) = λΣ(τγ(θ))
Lem. 1

= λΣ(δ∗Σ(g0, πθ(γ))) =MΣ(πθ(γ))
Def. 4

= JψKTL(psAP)(πθ(γ))
Prop. 1

= JψKθTDL(γ)

�

5 Verdict Evaluation

The monitoring approach presented above computes the
semantics of core formulae in terms of a constraint tree.
To obtain the actual verdict for a TDL property on a

12 Normann Decker, Martin Leucker and Daniel Thoma: Monitoring Modulo Theories

sequence of observations this tree needs to be evaluated
according to the global quantification.

To provide an intuition for the evaluation scheme
we propose, this section starts with an example before
explaining the algorithmic details. After these considera-
tions we investigate the algorithm more formally in order
to prove its correctness.

Consider the TDL formula

ϕ = ∀x2∃x1 G〈P (x2)〉 → F〈Q(x1, x2)〉.

The semantics of ϕ is defined over the semantics of its
core formula ψ = G〈P (x2)〉 → F〈Q(x1, x2)〉 by

JϕKTDL =
l

d2∈D

⊔
d1∈D

JψK{x1 7→d1,x2 7→d2}
TDL .

For G〈P (x2)〉 → F〈Q(x1, x2)〉 we employ a monitor
construction for the underlying temporal logic, LTL in
this case, to construct a symbolic monitor MΣ where
Σ = 2{〈P (x2)〉,〈Q(x1,x2)〉}. From our considerations in the
previous section we know that using the data monitor
MΓ for ϕ we can maintain the information how the sym-
bolic monitor behaves with respect to all valuations of the
free variables x1 and x2. This effectively computes the
semantics of that core formula in terms of a constraint
tree so that

JϕKTDL(γ) =
l

d2∈D

⊔
d1∈D

MΓ (γ)({x1 7→ d1, x2 7→ d2})

In this section we develop a procedure that allows
for evaluating the above meet and join operations over
the infinite domain D on an arbitrary constraint tree
τ , i.e., to compute

d
d2∈D

⊔
d1∈D τ({x1 7→ d1, x2 7→ d2})

and thereby the semantics of ϕ. More generally, we pro-
pose an algorithm that takes a sequence of quantifiers
u = Qnxn. . . Q1x1 ∈ ({∀,∃} × V)∗ and a constraint
tree τ ∈ TS representing a function τ : DV → S for
V = {x1, . . . , xn} and computes the verdict

eval(u, τ) = ⊗n
dn

. . . ⊗1
d1

τ({x1 7→ d1, . . . , xn 7→ dn})

where ⊗i =
d

if Qi = ∀ and ⊗i =
⊔

if Qi = ∃.

5.1 Uniform Quantification

In the case where n = 1, that is, if there is only a single
quantifier, the evaluation amounts to computing the meet
or join, respectively, over the leafs of τ . This is because
there are finitely many equivalence classes of valuations
and all valuations in the same class impose the same
behaviour of the monitor and thus yield the same verdict.
The meet and join operations are associative and idem-
potent and thus it suffices to consider one representative
for each class. For example we can characterise the meet
over an infinite domain D in terms of the finitely many

P (x1, x2)

v0 v1

¬

(a) A simple constraint
tree.

∀x1P (x1, x2)

v0 ∀x1¬P (x1, x2)

v1
⊔
{v0, v1}

¬

¬

(b) Reduced constraint tree.

Fig. 3. A constraint tree over V = {x1, x2} and its reduced version
where x1 is eliminated, i.e., does not occur freely anymore.

representative verdicts that occur in some constraint tree
τ over a single variable x by

l

d∈D

τ(θd) =
l
{v ∈ S | ∃d ∈ D : τ({x 7→ d}) = v}.

Note that this set of verdicts is simply the set of leafs in τ .
This does not change when considering several universally
quantified variables V . The constraint tree characterises a
finite partition of valuations DV and all of them are com-
bined by the associative meet operation. The analogue
applies for the join, i.e., existential quantification.

5.2 Alternating Quantification

To apply a similar scheme in presence of alternating
quantification we need, however, a more fine-grained
partition of the valuation space. We use a refinement
procedure based on the following idea.

Consider variables V = {x1, x2} and quantification
of the form ∀x2∃x1 that shall be evaluated over the con-
straint tree presented in Figure 3(a). Following the in-
tuition of a lazy evaluation of the predicate P we have
three classes D1,D2,D3 ⊆ D of values being assigned to
x2 by a valuation θ ∈ DV :

– Assigning x2 a value θ(x2) ∈ D1 already determines
that P (d, θ(x2)) holds, independently of the choice of
d ∈ D,

– for a value θ(x2) ∈ D2 it is already determined that
P (d, θ(x2)) does not hold for any d ∈ D and

– for θ(x2) ∈ D3 the evaluation of P (d, θ(x2)) strictly
depends on d, i.e., there are d, d′ ∈ D such that
P (d, θ(x2)) and ¬P (d′, θ(x2)) holds.

The sets D1,D2,D3 form a partition of D and the class
of the value θ(x2) determines the set {v ∈ S | ∃d∈D :

Normann Decker, Martin Leucker and Daniel Thoma: Monitoring Modulo Theories 13

τ(θ[x1 7→ d]) = v} of possible values of τ when fixing
θ(x2). The constraint tree maps by definition all valu-
ations θ with θ(x2) ∈ D1 or θ(x2) = D2 to v0 or v1,
respectively. On the other hand, among the valuations
assigning x2 to some d ∈ D3, there is always one that is
mapped to v0 and one mapped to v1 by τ .

Considering the task of computing, e.g.,
l

d2∈D

⊔
d1∈D

τ({x1 7→ d1, x2 7→ d2})

we conclude that the value of the inner operator only
depends on the class of d2. We can therefore construct
from τ the constraint tree τ̂ depicted in Figure 3(b) that
determines, for θ ∈ DV\{x1}, the class of θ(x2) and maps
θ to

τ̂(θ) =
⊔
d∈D

τ(θ[x1 7→ d]) =

⊔
{v0} for θ(x2) ∈ D1⊔
{v1} for θ(x2) ∈ D2⊔
{v0, v1} otherwise.

We then have
l

d2∈D

⊔
d1∈D

τ({x1 7→ d1, x2 7→ d2}) =
l

d2∈D

τ̂({x2 7→ d2})

and thus arrive at the case involving only a single operator
which can be evaluated over the set of leafs of τ̂ as above.

This idea can be generalised to arbitrary constraint
trees. Given a constraint tree τ ∈ TS over constraints with
free variables V = {x1, . . . , xn}, an operator ⊗ ∈ {

d
,
⊔
}

on subsets of S and a free variable x1 ∈ V to be eliminated
we construct a constraint tree τ̂ representing a mapping
τ̂ : DV\{x1} → S with

τ̂(θ) = ⊗
d1∈D

τ(θ[x1 7→ d1])

By iterating this reduction n = |V| times to construct
from τ a reduced tree τ̂1 and by reducing it further
τ̂2, . . . , τ̂n we can compute the value of a term

⊗n
dn

. . . ⊗1
d1

τ({x1 7→ d1, . . . , xn 7→ dn})

=⊗n
dn

. . . ⊗2
d2

τ̂1({x2 7→ d2, . . . , xn 7→ dn})

=
...

=⊗n
dn

τ̂n−1({xn 7→ dn}) = τ̂n

where τ̂n is a constant. The procedure is presented as
Algorithm 2 using a method reduce to perform the reduc-
tion. This method is discussed in detail in the following
section.

5.3 Reducing Constraint Trees

The algorithmic idea of how to eliminate a free variable
x ∈ V from a constraint tree τ : DV → TS is to compute
for each valuation θ ∈ DV\{x} the set of leafs in τ that
can be reached by extensions of θ.

Algorithm 2 Evaluates a constraint tree with respect
to variable quantification

1 function eval: ({∀,∃} × V)∗ × TS → TS ∪ S
2 function eval =

3 case (ε, LeafCTree(s)) then s
4 case (ε, InnerCTree(ϕ, τ0, τ1)) then
5 InnerCTree(ϕ, τ0, τ1)
6 case (u::(∀, x), τ) then
7 eval(u, reduce(

d
, x, τ))

8 case (u::(∃, x), τ) then
9 eval(u, reduce(

⊔
, x, τ))

More precisely, for values d, d′ ∈ D, extensions θ[x 7→
d], θ[x 7→ d′] ∈ DV of θ may satisfy different path con-
straints ρ(l), ρ(l′) leading to leafs l, l′ ∈ L in τ labelled
by verdicts v, v′. Thus, for the constraint tree

τ = (I, L, S1, S2, C, λI ,S, λL)

over DV a valuation θ ∈ DV\{x} induces a finite set of
verdicts

{v ∈ S | ∃d∈D∃l∈L : (t, θ[x 7→ d]) |= ρ(l)λL(l) = v}
= {τ(θ[x 7→ d]) | d ∈ D}.

Having computed this set allows for applying the intended
operator ⊗ ∈ {

d
,
⊔
} to it in order to evaluate

⊗
d∈D

τ(θ[x 7→ d]) = ⊗{τ(θ[x 7→ d]) | d ∈ D}. (2)

The idea of the algorithm is thus to identify that particu-
lar finite set for a given valuation θ and evaluate it using
the operator.

Notice that two valuations that induce the same sub-
set of leafs in τ necessarily evaluate to the same ver-
dict in the equation above. While there are infinitely
many valuations, there are only finitely many subsets of
leafs in τ and thus there are only finitely many equiva-
lence classes of valuations that need to be distinguished.
Bluntly speaking, it is therefore only a matter of choos-
ing and arranging constraints appropriately in order to
construct a constraint tree that expresses this distinction.

For a particular valuation θ, there are three distinct
cases for the set of leafs induced by θ: Either all leafs are
from the left (S1) subtree τ1 of τ , all leafs are from the
right (S2) one τ2 or there are leafs from both. This gener-
alises the three cases D1,D2,D3 from the example above.
The constraint of the root in τ is used to partitions the
valuations space DV\{x}. In the example we encountered
the special case of |V| = 2.

After having used the constraint of the root of τ to
split the valuation space we can descend to the subtrees
and recursively continue splitting. For the former two
cases, only a single subtree is relevant whereas in the third
case the leafs come from both subtrees of a node. There-
fore the recursive algorithm passes on a working set of
subtrees which are then processed to obtain a set of leafs.
This procedure, reduce, is presented as Algorithm 3.

14 Normann Decker, Martin Leucker and Daniel Thoma: Monitoring Modulo Theories

∀xψ → ξ

τ̂1

∀xψ → ¬ξ

τ̂21 τ̂22

¬

¬

Fig. 4. The constraint tree τ̂ constructed by reduce.

Every subtree in the working set carries an additional
guard ψ in terms of a formula. This guard characterises
the valuations that are relevant for the corresponding
subtree. Initially the guard is simply the formula true
since all valuations are relevant. Given that the input
tree is of the form

τ = InnerCTree(ξ, τ1, τ2),

reduce constructs a tree τ̂ as depicted in Figure 4 where
ψ = true. The three subtrees τ̂1, τ̂21 and τ̂22 are con-
structed recursively. Notice that the new tree is con-
structed using constraints from τ but the variable x is
always bound by some first-order quantifier and hence
does not occur freely anymore. The result is therefore a
constraint tree over V \ {x} as intended.

The algorithm maintains information about its cur-
rent position in the constructed tree τ̂ in terms of the
path constraint ρ. As soon as this path constraint be-
comes unsatisfiable, recursion stops simply meaning that
the corresponding branch in τ̂ is pruned. This is, how-
ever, not essential and could also be performed after the
tree is constructed or simply omitted. Branches in a con-
straint tree where the path constraint is not satisfiable
are irrelevant to its semantics in terms of a function.

Initially the algorithm is started on the working set
containing only τ but in later recursions the working set
may contain several (guarded) subtrees of τ . The general
scheme to construct the new left subtree τ̂1 is that the
algorithm replaces τ by τ1 in the current working set
and recursively calls reduce on that set. The subtree τ̂21
is constructed in the same way replacing τ by τ2. The
guards of τ1 and τ2 in the new respective working sets
are the same formula ψ that guards τ (and are thus true
on the first level of recursion).

The set of leafs of the subtree τ̂22 contains leafs from
both of the subtrees τ1 and τ2. Therefore, τ̂22 is obtained
by removing τ from the current working set and in turn
adding both, τ1 and τ2. Then the recursion continues
on this set. Here, the guards of τ1 and τ2 are strength-
ened. The constraint ξ that is attached to the root of
τ distinguishes the valuations concerning τ1 from those
concerning τ2. To maintain the information that τ1 cor-
responds to (only) the case where ξ holds the guard ξ is

added to the guard ψ of τ in the working set. Conversely,
the constraint ¬ξ is added to ψ to obtain the guard of
τ2. This restricts the valuations that are relevant for τ2
to those violating ξ. This information is necessary to
compute the correct set of leafs from the subtree in later
phases.

The parameters of the recursive procedure reduce as
it is presented in Algorithm 3 are therefore the following.

– ⊗ ∈ {
⊔
,
d
}: The operator used for quantification

– x ∈ V: The variable that is to be eliminated
– W ⊆ FO[T]×TS: A set of (sub-)trees that still need to

be processed guarded by constraints that characterise
the valuations relevant for the particular subtree

– ρ: The conjunction of the constraints in the new tree
from the root to the currently constructed nodes

The recursion of the algorithm stops when all trees in
the working set W have been entirely processed, meaning
that every tree in W consists of a single leaf. At this
point, intuitively, enough decisions were made such that
the valuations θ ∈ DV\{x} satisfying the corresponding
constraints can not be distinguished any further by the
input tree τ . The working set W is therefore precisely
the set of leafs in τ that are relevant to extensions of θ.

The intended value of τ̂(θ) for any such θ is hence
obtained by applying the operator ⊗ to the set of labels
of these leafs. The algorithm consequently creates a leaf
node with that label.

5.4 Correctness

In the following we provide the necessary arguments for
the correctness of the evaluation procedure. The key com-
ponent in this procedure is the elimination of some free
variable x from a constraint tree τ : DV → S. We show
that this elimination is sound, i.e., it computes a con-
straint tree that yields the exact outcome of quantifying
over x in τ . This is formally stated in the following theo-
rem which to prove is the main concern in this section.

Theorem 2 (Reduction). Let τ ∈ TS be a constraint
tree with τ : DV → S, x ∈ V and ⊗ ∈ {

d
,
⊔
}. The

reduced constraint tree τ̂ = reduce(⊗, x, τ) ∈ TS induces
the mapping τ̂ : DV\{x} → S with

τ̂(θ) = ⊗
d∈D

τ(θ[x 7→ d]).

For the following considerations we arbitrarily fix an
operator ⊗ ∈ {

d
,
⊔
} and a variable x ∈ V. Also we fix

the T-structure t representing the data theory and omit
it in writing θ |= ϕ instead of (t, θ) |= ϕ meaning that
some DL formula ϕ is satisfied by a valuation θ in the
theory of t. Given a valuation θ ∈ DV\{x} and a value
d ∈ D we define θd ∈ DV to be the mapping θ[x 7→ d]
that coincides with θ and maps x to d.

Rather than on a single constraint tree, the algorithm
works on a working set W ⊆ DL× TS of constraint trees

Normann Decker, Martin Leucker and Daniel Thoma: Monitoring Modulo Theories 15

Algorithm 3 Eliminates a free variable from a constraint tree

1 function reduce: {
⊔
,
d
} × V × 2FO[T]×TS × FO[T]→ T

2 function reduce =

3 // base case; working set contains only leafs

4 case (⊗, x, W ⊆ FO[T]×LeafCTree, ρ) then LeafCTree(⊗{l | (ψ, LeafCTree(l)) ∈W})

6 case (⊗, x, {(ψ, InnerCTree(ξ, τ1, τ2))} ∪̇M, ρ) then
7 // new (left) subtree for the universally positive class (tree is empty if class is empty)

8 τ̂1 := if SAT(ρ ∧ ∀xψ → ξ) then
9 reduce(⊗, x, M ∪ {(ψ, τ1)}, ρ ∧ ∀xψ → ξ)

10 else Empty

11 // new (right−left) subtree for the universally negative class (tree is empty if class is empty)

12 τ̂21 := if SAT(ρ ∧ ∀xψ → ¬ξ) then
13 reduce(⊗, x, M ∪ {(ψ, τ2)}, ρ ∧ ∀xψ → ¬ξ)
14 else Empty

15 // new (right−right) subtree for the existential class (tree is empty if class is empty)}
16 τ̂22 := if SAT(ρ ∧ (∃xψ ∧ ξ) ∧ (∃xψ ∧ ¬ξ)) then
17 reduce(⊗, x, M ∪ {(ψ ∧ ξ, τ1), (ψ ∧ ¬ξ, τ2)}, ρ ∧ (∃xψ ∧ ξ) ∧ (∃xψ ∧ ¬ξ))
18 else Empty

20 // At least one of τ̂1, τ̂21 and τ̂22 is non−empty.

21 τ̂2 := if (τ̂21 = Empty) then τ̂22
22 else if (τ̂22 = Empty) then τ̂21
23 else InnerCTree(∀xψ → ¬ξ, τ̂21, τ̂22)

25 if (τ̂1 = Empty) then τ̂2
26 else if (τ̂2 = Empty) then τ̂1
27 else InnerCTree(∀xψ → ξ, τ̂1, τ̂2)

29 function reduce: {
d
,
⊔
} × V × TS → TS

30 function reduce(⊗, x, τ) = reduce(⊗, x, {(true, τ)}, true)

that carry an additional guard. During execution, the
guarding DL formulae provide the context of subtrees in
the global construction. More precisely, they characterise
relevant implications of the (partial) path constraint in
τ̂ to the node that is currently processed. Let

ρ(W) :=
∧

(ψ,τ)∈W

∃xψ.

When processing a subtree of τ , only those valuations are
relevant to it that satisfy the constraints along the path
to it. The formula ρ(W) is satisfied by those valuations
θ ∈ DV\{x} for which each tree in W is relevant, meaning
that there is some value for the variable x such that the
corresponding guard is satisfied.

The intention is to start with the formula true as
initial guard, marking all valuations relevant. When de-
scending, the algorithm processes certain subtrees of the
original input tree and passes on the necessary infor-
mation about the path to the subtree in terms of the
guards.

As mentioned earlier, a valuation induces a set of
possible verdicts of a tree τ . For proving correctness of
the evaluation algorithm we define this set also more
generally for working sets. Let, for a set W ⊆ FO[T]×TS
and a valuation θ ∈ DV\{x}, denote

W (θ) := {τ(θd) | d ∈ D, (ψ, τ) ∈W, θd |= ψ}

the set of possible verdicts when applying the relevant
trees in W to extensions of θ. A tree in W is relevant for
θ if it is admitted by the corresponding formula ψ. Notice
that for W = W ′ ∪W ′′ we have W (θ) = W ′(θ) ∪W ′′(θ)
for all θ ∈ DV\{x}.

To prove Theorem 2 we need to consider all the infor-
mation that is passed on by the recursive algorithm. We
rely on the following generalisation of Equation 2 above.

Lemma 2. Let W ⊆ FO[T] × TS be set of constraint
trees over valuations DV guarded by DL formulae over
free variables V. Let τ̂ = reduce(⊗, x,W, ρ) for some
DL formula ρ with ρ⇒ ρ(W). Then, for all valuations
θ ∈ DV\{x} with θ |= ρ,

τ̂(θ) = ⊗W (θ).

Proof. We use (well-founded) induction on the structure
of W . For example, we can well-order such sets using the
number and heights of the contained trees.

For the proof we ignore the satisfiability checks. It
is easy to see that the propagated formula ρ is always
at least as restrictive as the partial path constraint to
the node that is currently processed. That is, if ρ is
not satisfiable, the path constraint is not either and the
semantics of the constraint tree will ignore this branch
of the tree. In fact, starting the procedure with ρ =

16 Normann Decker, Martin Leucker and Daniel Thoma: Monitoring Modulo Theories

true causes the algorithm to pass on precisely the path
constraints.

Second, we assume ρ to be as weak as it can be which
means ρ ≡ ρ(W). That way the result can only become
stronger since weakening ρ makes the lemma apply for
even more valuations. For better readability, we then
omit ρ and also the fixed operator ⊗ and variable x in
the signature of reduce.

Base case. Assume that W contains only constraint trees
consisting of a single leaf and let θ ∈ DV\{x} be a valua-
tion with θ |= ρ(W). Then

⊗W (θ) = ⊗{v | d ∈ D, (ψ, LeafCTree(v)) ∈W, θd |= ψ}
= ⊗{v | (ψ, LeafCTree(v)) ∈W}

since for each guard ψ there is some value d for x such
that θd |= ψ because θ |= ρ(W) implies that θ |= ∃xψ.
This is, moreover, precisely what reduce computes on W .

Induction. Now assume W = W ′ ∪ M where W ′ =
{(ψ, τ)} contains a proper tree τ = InnerCTree(ξ, τ1, τ2).
The algorithm selects one proper tree from W and w.l.o.g.
we assume this be (ψ, τ).

The procedure reduce(W) uses the sets

W1 = {(ψ, τ1)} ∪M,

W2 = {(ψ, τ2)} ∪M, and

W3 = {(ψ ∧ ξ, τ1), (ψ ∧ ¬ξ, τ2)} ∪M.

to construct a tree τ̂ as depicted in Figure 4 with

τ̂1 = reduce(W1),

τ̂21 = reduce(W2) and

τ̂22 = reduce(W3).

Let θ ∈ DV\{x} with θ |= ρ(W). We show that
⊗W (θ) = reduce(W)(θ) by analysing the three (exhaus-
tive) cases for θ distinguished by τ̂ .

Assume θ |= ∀xψ → ξ and W ′1 := {(ψ, τ1)}.We have
for all θd satisfying ψ that τ(θd) = τ1(θd) and hence

W (θ) = W ′(θ) ∪M(θ)

= {τ(θd) | d ∈ D, θd |= ψ} ∪M(θ)

= {τ1(θd) | d ∈ D, θd |= ψ} ∪M(θ)

= W ′1(θ) ∪M(θ) = W1(θ)

Also, θ |= ρ(W1) since ρ(W) = ρ(W1) and thus by induc-
tion

τ̂(θ) = τ̂1(θ) = ⊗W1(θ) = ⊗W (θ).

The case for W2 where we assume θ |= ∀xψ → ¬ξ follows
analogously.

For the remaining case assume now that

θ |= (∃xψ ∧ ξ) ∧ (∃xψ ∧ ¬ξ)

and let W ′3 := {(ψ ∧ ξ, τ1)} and W ′′3 := {(ψ ∧ ¬ξ, τ2)}.
For d ∈ D we have

τ(θd) = τ1(θd) if θd |= ξ,

τ(θd) = τ2(θd) if θd |= ¬ξ.

Therefore, similar to the case above,

W (θ) = W ′(θ) ∪M(θ)

= {τ(θd) | d ∈ D, θd |= ψ} ∪M(θ)

= {τ(θd) | d ∈ D, θd |= ψ ∧ c}
∪ {τ(θd) | d ∈ D, θd |= ψ ∧ ¬c} ∪M(θ)

= {τ1(θd) | d ∈ D, θd |= ψ ∧ c}
∪ {τ2(θd) | d ∈ D, θd |= ψ ∧ ¬c} ∪M(θ)

= W ′3(θ) ∪W ′′3 (θ) ∪M(θ) = W3(θ)

Also, θ |= (∃xψ ∧ ξ) ∧ (∃xψ ∧ ¬ξ) and θ |= ρ(W) =
ρ(W ′) ∧ ρ(M) implies that

θ |= (∃xψ ∧ ξ) ∧ (∃xψ ∧ ¬ξ) ∧ ρ(M) = ρ(W3).

Using the induction hypothesis we can hence conclude
that

τ̂(θ) = τ̂22(θ) = ⊗W3(θ) = ⊗W (θ)

which completes the proof. �

We obtain Theorem 2 directly by applying Lemma 2
to the call of reduce. Applying the algorithm to a con-
straint tree τ yields, for W0 := {(true, τ)} and θ ∈
DV\{x},

reduce(⊗, x, τ)(θ) = reduce(⊗, x,W0, true)(θ)

= ⊗W0(θ) = ⊗{τ(θd) | d ∈ D}.

As argued before, an immediate consequence of Theo-
rem 2 is that iterating the reduction computes the value
of a term

⊗n
dn

. . . ⊗1
d1

τ(θ(d1,. . . ,dn)).

Taking τ to be the output of a data monitor Mϕ for
some TDL formula ϕ on an observation sequence γ ∈ Γ ∗
and ⊗n, . . . ,⊗n to be the operators corresponding to the
global quantifiers in ϕ we obtain by Theorem 1 the TDL
semantics of ϕ.

Theorem 3 (Evaluation correctness). For a TDL
sentence ϕ = Qnxn. . .Q1x1ψ with core formula ψ let
Mϕ be the data monitor for ϕ and γ ∈ Γ ∗ an observation
sequence. Then

eval(Qnxn. . .Q1x1,Mϕ(γ)) = JϕKTDL(γ).

Normann Decker, Martin Leucker and Daniel Thoma: Monitoring Modulo Theories 17

5.5 Remarks and Optimizations

To improve runtime performance in common special cases,
several optimisations to the algorithms described above
can be considered. In order to make our approach viable
in practice, unnecessary information has to be eliminated
to keep the size of the constraint tree small. To this end
an inner node InnerCTree(ϕ, τ1, τ2) can be replaced by
τ2 if ∀θ∈DV (θ |= ϕ⇒ τ1(θ) = τ2(θ)) or conversely by τ1
if ∀θ∈DV (θ |= ¬ϕ ⇒ τ1(θ) = τ2(θ)). In our experiments
presented in Section 6 it proved to be sufficient to enforce
this property only for the special case where at least one
subtree, τ1 or τ2, is a leaf node.

Impartiality and anticipation. An impartial semantics
distinguishes between preliminary and final verdicts. A
final verdict for some word indicates that it will not
change for any continuation. Impartiality is desirable as
monitoring can be stopped as a soon as a final verdict
is encountered (cf. [BLS07,DLS08]). In the context of
our framework this gains even more importance. When
the underlying monitor is impartial, a branch already
yielding a final verdict can be pruned. This immensely
improves runtime performance. Another desired property
is anticipation, i.e., evaluating to a final verdict as early
as possible. While in general not transferred from the
symbolic to the data monitor, this may still lead to better
performance.

Dedicated theories as first-class citizens. The monitoring
framework is also flexible in the sense that one can trade
efficiency for generality. When the properties intended
to monitor are simple enough it is reasonable to extend
the algorithm to directly evaluate constraints. As we
show in the experiments this works well, in particular for
properties concerning only object IDs.

Satisfiability checks for monitor evaluation. The compu-
tation of the monitor output becomes much more com-
plex when alternated universal and existential quantifiers
are used. Algorithm 3 then generates new constraints
containing universal quantifiers. Deciding satisfiability
of first-order formulae containing universal quantifiers is
usually much more expensive and even renders some com-
mon first-order theories undecidable. Fortunately, these
constraints do not have to be checked in the special case,
where a constraint does only contain a single variable.
Consider the constraints ∀xψ → ξ and ∀xψ → ¬ξ gener-
ated by the algorithm. Assuming that in the constraint
tree unsatisfiable branches are pruned, we already know
that ψ → ξ and ψ → ¬ξ are satisfiable since ψ describes
a path and ξ is the constraint of the node reached by that
path. If ξ does not contain x, ∀xψ → ξ and ∀xψ → ¬ξ
have to be satisfiable. If ξ does contain only x as free
variable, ∀xψ → ξ and ∀xψ → ¬ξ can not be satisfiable
at the same time. Thus, the satisfiability checks in this
case can be completely eliminated. This optimisation

can be generalised even further. When a constraint ξ
contains multiple variables, the constraint ∀xψ → ξ (and
∀xψ → ¬ξ, respectively) can be simplified by removing
those constraints from ψ that do not influence ξ, i.e. they
do not contain a variable contained in ξ or some other
constraint influencing ξ.

Delayed monitor evaluation. It can be observed that the
execution of a monitor is completely independent from the
computation of its output. Therefore, this computation
does not have to be carried out in every step. It can, e.g.,
be moved to a separate thread or carried out on demand
or in larger time intervals. This is especially interesting
for log-file analysis where it can be sufficient to compute
a result after analysing the complete log-file.

Dynamic monitor evaluation. When the monitor pro-
gresses the modifications to the constraint tree represent-
ing its state are usually minor and often limited to the
leaf nodes. Algorithm 3 can be implemented in a more
dynamic fashion where the previous result tree is kept.
Only subtrees depending on modified parts of the input
tree have to be recomputed.

6 Experimental Results

We implemented the presented framework as part of
jUnitRV [DLT13b]1. This tool allows for monitoring ap-
plications running on the Java Virtual Machine with
respect to temporal properties. Our implementation is
limited to the fragment where all global quantifiers, i.e.
the quantifiers in front of the temporal formula, are uni-
versal. The previous version of jUnitRV supported classi-
cal LTL specifications referring to, e.g., the invocation of
a method of some class. With the approach proposed here
it is now possible, for example, to specify properties that
relate to individual objects and their evolution in time.
The implementation is based on a generic interface to
an SMT solver. We present benchmarks using the SMT
solver Z3 [dMB08]. We relied on the Java Native Access
API (JNA) to integrate Z3. It provides a convenient way
to invoke APIs of native libraries without writing any na-
tive code. For comparison, we additionally implemented
a dedicated solver for the theory of IDs (i.e., conjunctions
of equality constraints on natural numbers).

For the benchmarks2, we have chosen representative
properties from Table 1. The property mutex is a typi-
cal example for interaction patterns in object-oriented
systems. It was evaluated on a program with resource
objects and user objects randomly accessing them. The
iterator example was evaluated on a simple program
using randomly one of two iterator objects for travers-
ing a list. Third, we evaluated a typical client-server

1 Project page: www.isp.uni-luebeck.de/junitrv
2 The benchmarks and corresponding implementation are avail-

able at www.isp.uni-luebeck.de/~thoma/junitrv-sttt14.zip

18 Normann Decker, Martin Leucker and Daniel Thoma: Monitoring Modulo Theories

0 0.2 0.4 0.6 0.8 1

·104

0

100

200

300

400

·102

steps

ti
m

e
in

m
s

0 0.2 0.4 0.6 0.8 1

·104

0

0.5

1

·102

steps

Counter EQ Mutex EQ Server2 EQ Iterator EQ Counter Z3

Mutex Z3 Server2 Z3 Iterator Z3 Velocity Z3 Server Z3

Fig. 5. Experimental results

response pattern (server) on a program simulating a
number of server threads that receive requests and re-
sponses. For handling existential quantification, we rely
on Z3. For comparison, we also evaluate the property
∀t∀x G(〈request(t, x)〉 → F 〈response(x, t)〉) (server2) as
a variation without existential quantification that can
therefore be handled by our simple solver. The counter
property covers the counting of natural numbers which
is a very elementary aspect in computer programs and
uses an unbounded number of different data values. A
property involving a rather complex theory is velocity.
The free variables refer to real numbers as data values
and the constraints that have to be checked are multi-
dimensional.

In our experiments we measured the execution time
of a program with an integrated monitor over the number
of monitoring steps. The measurements were taken up
to 104 steps. Very simple programs were used, since the
measured runtime is thereby essentially the runtime of
the monitoring algorithm. The linear graphs obtained
for every example show that the execution time for a
monitoring step is constant. The most complex proper-
ties, velocity and server induce the most overhead due
to a higher computational cost by the SMT solver. How-
ever, even the performance for velocity of 4.2 ms/step
is acceptable for many applications. Thus, employing
an SMT solver is viable whenever performance is not a
main concern, for instance in case a monitoring step is
not expected to happen frequently with respect to the
overall computation steps. Our dedicated implementa-
tion is much faster (by factor 100) and hence can only
be distinguished in the right-hand diagram. These re-
sults demonstrate, that performance can be improved for
specific settings and the approach can still be employed
when performance is more critical. The gain of perfor-
mance is due to several reasons. Firstly, the limitation
to only very simple constraints over IDs allows us to
use a very fast decision procedure relying on hash sets.

Secondly, our monitoring procedure only modifies con-
straints slightly in each step. Our solver allows to reuse
previous computation results to check these constraints
for satisfiability. While common SMT solvers as Z3 offer
similar functionality their API is too limited to avoid
recomputations in our setting. Thirdly, our solver being
written in Java avoids any overhead that might come
from using JNA for executing native calls.

As mentioned before, the number of calls to the SMT
solver is linear in the size of the constraint tree. Hence,
the overhead may increase up to linearly in the number
of runtime objects that need to be tracked. In our exam-
ples the maximal size of the constraint tree was six. All
experiments were carried out on an Intel i5 (750) CPU.

7 Conclusion

The presented framework addresses a central issue in
runtime monitoring: convenient specification and effi-
cient verification of system executions. The combination
of propositional temporal logics and first-order theories
allows for a precise, yet high-level and universal formula-
tion of behavioural properties. The ability to formulate
declarative specifications at a higher level of abstraction
than that of an actual implementation helps the user to
avoid modelling errors.

The specification formalism exceeds the expressive-
ness of previous approaches which clearly comes at the
cost of runtime overhead. However, the framework’s flexi-
bility allows the user to freely choose a suitable trade-off
in terms of a theory to reason about data and a temporal
logic for expressing temporal behaviour. Common special
cases such as reasoning only on data in terms of IDs
can be handled by dedicated decision routines directly
integrated into the monitoring system.

Additionally, the formal basis provides a conceptual
presentation that does not depend on a particular imple-
mentation, making it easier to develop extensions and

Normann Decker, Martin Leucker and Daniel Thoma: Monitoring Modulo Theories 19

optimisations. For example, while real-time constraints
can in principle be expressed using an appropriate theory,
this is not taken into account in the monitor synthesis
procedure. Integrating timing constraint as first-class
citizens in the temporal logic could allow for applying
corresponding optimisations [BLS11] during monitor syn-
thesis. Apart from such dedicated efforts, the monitoring
approach can take advantage from independent improve-
ments in SMT solving and monitor synthesis.

The evaluation of concrete verdicts can become com-
putationally expensive for properties relying on extensive
alternation of global quantifiers. Here the separation of
the monitoring and evaluation procedures allows for their
independent execution as there is no conceptual need to
perform it continuously, synchronously or even within
the same execution environment.

Although we believe that the great flexibility is valu-
able to deal with special situations the universal fragment
appears to be the most relevant for online monitoring.
Global existential quantification is useful to express prop-
erties like controller, observer and mediator presented in
Section 3.4, Table 1. Consider, for example, the controller
property. In case of a real system a controller thread
would typically be marked with a special attribute and
thus the property can be reformulated using only univer-
sal quantification ∀p G〈∀p′request(p, p′)→ controller(p′)〉.
Existential quantification can, however, be useful when
monitoring or log-file analysis is used in a more investiga-
tive manner. For example, it might be unknown whether
the system is organised using a controller thread and how
the controller thread can be recognised. Then existential
quantification still allows the user to formulate and check
the property as a hypothesis.

Our implementation and the experimental evaluation
show that the approach is applicable in the setting of
object-oriented systems and that the runtime overhead is
reasonably small. Note that this is although the properties
expressible in our framework are hard to analyse. The
satisfiability problem, for example, is already undecidable
for the combination of LTL and the very basic theory of
identities.

References

AAC+05. Chris Allan, Pavel Avgustinov, Aske Simon Chris-
tensen, Laurie J. Hendren, Sascha Kuzins, Ondrej
Lhoták, Oege de Moor, Damien Sereni, Ganesh
Sittampalam, and Julian Tibble. Adding trace
matching with free variables to aspectj. In Ralph E.
Johnson and Richard P. Gabriel, editors, Proceed-
ings of the 20th Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2005, Oc-
tober 16-20, 2005, San Diego, CA, USA, pages
345–364. ACM, 2005. 3

AEM04. Rajeev Alur, Kousha Etessami, and P. Madhusu-
dan. A temporal logic of nested calls and returns.

In Kurt Jensen and Andreas Podelski, editors,
Tools and Algorithms for the Construction and
Analysis of Systems, 10th International Confer-
ence, TACAS 2004, Held as Part of the Joint
European Conferences on Theory and Practice of
Software, ETAPS 2004, Barcelona, Spain, March
29 - April 2, 2004, Proceedings, volume 2988 of
Lecture Notes in Computer Science, pages 467–481.
Springer, 2004. 3, 7

BCRZ99. Armin Biere, Edmund M. Clarke, Richard Raimi,
and Yunshan Zhu. Verifiying safety properties of
a power PC microprocessor using symbolic model
checking without bdds. In Nicolas Halbwachs and
Doron Peled, editors, Computer Aided Verification,
11th International Conference, CAV ’99, Trento,
Italy, July 6-10, 1999, Proceedings, volume 1633 of
Lecture Notes in Computer Science, pages 60–71.
Springer, 1999. 4

BFH+12. Howard Barringer, Yliès Falcone, Klaus Havelund,
Giles Reger, and David E. Rydeheard. Quantified
event automata: Towards expressive and efficient
runtime monitors. In Dimitra Giannakopoulou
and Dominique Méry, editors, FM 2012: Formal
Methods - 18th International Symposium, Paris,
France, August 27-31, 2012. Proceedings, volume
7436 of Lecture Notes in Computer Science, pages
68–84. Springer, 2012. 1, 4

BGHS04. Howard Barringer, Allen Goldberg, Klaus
Havelund, and Koushik Sen. Rule-based run-
time verification. In Bernhard Steffen and Giorgio
Levi, editors, Verification, Model Checking, and
Abstract Interpretation, 5th International Confer-
ence, VMCAI 2004, Venice, January 11-13, 2004,
Proceedings, volume 2937 of Lecture Notes in Com-
puter Science, pages 44–57. Springer, 2004. 3

BHW+13. Rico Backasch, Christian Hochberger, Alexan-
der Weiss, Martin Leucker, and Richard Lasslop.
Runtime verification for multicore soc with high-
quality trace data. ACM Trans. Design Autom.
Electr. Syst., 18(2):18, 2013. 1

BJK+05. Manfred Broy, Bengt Jonsson, Joost-Pieter Ka-
toen, Martin Leucker, and Alexander Pretschner,
editors. Model-Based Testing of Reactive Systems,
Advanced Lectures [The volume is the outcome of a
research seminar that was held in Schloss Dagstuhl
in January 2004], volume 3472 of Lecture Notes
in Computer Science. Springer, 2005. 1

BKM10. David A. Basin, Felix Klaedtke, and Samuel
Müller. Policy monitoring in first-order tempo-
ral logic. In Tayssir Touili, Byron Cook, and
Paul Jackson, editors, Computer Aided Verifica-
tion, 22nd International Conference, CAV 2010,
Edinburgh, UK, July 15-19, 2010. Proceedings, vol-
ume 6174 of Lecture Notes in Computer Science,
pages 1–18. Springer, 2010. 1, 4

BKV13. Andreas Bauer, Jan-Christoph Küster, and Gil
Vegliach. From propositional to first-order mon-
itoring. In Axel Legay and Saddek Bensalem,
editors, Runtime Verification - 4th International
Conference, RV 2013, Rennes, France, September
24-27, 2013. Proceedings, volume 8174 of Lecture

20 Normann Decker, Martin Leucker and Daniel Thoma: Monitoring Modulo Theories

Notes in Computer Science, pages 59–75. Springer,
2013. 4

BLS06. Andreas Bauer, Martin Leucker, and Christian
Schallhart. Monitoring of real-time properties.
In S. Arun-Kumar and Naveen Garg, editors,
FSTTCS 2006: Foundations of Software Tech-
nology and Theoretical Computer Science, 26th
International Conference, Kolkata, India, Decem-
ber 13-15, 2006, Proceedings, volume 4337 of Lec-
ture Notes in Computer Science, pages 260–272.
Springer, 2006. 7

BLS07. Andreas Bauer, Martin Leucker, and Christian
Schallhart. The good, the bad, and the ugly, but
how ugly is ugly? In Oleg Sokolsky and Serdar
Tasiran, editors, Runtime Verification, 7th Inter-
national Workshop, RV 2007, Vancouver, Canada,
March 13, 2007, Revised Selected Papers, volume
4839 of Lecture Notes in Computer Science, pages
126–138. Springer, 2007. 17

BLS11. Andreas Bauer, Martin Leucker, and Christian
Schallhart. Runtime verification for LTL and
TLTL. ACM Trans. Softw. Eng. Methodol.,
20(4):14, 2011. 1, 7, 19

BRH07. Howard Barringer, David E. Rydeheard, and
Klaus Havelund. Rule systems for run-time mon-
itoring: From eagleto ruler. In Oleg Sokolsky
and Serdar Tasiran, editors, Runtime Verification,
7th International Workshop, RV 2007, Vancouver,
Canada, March 13, 2007, Revised Selected Papers,
volume 4839 of Lecture Notes in Computer Sci-
ence, pages 111–125. Springer, 2007. 1, 3

CGP01. Edmund M. Clarke, Orna Grumberg, and Doron
Peled. Model checking. MIT Press, 2001. 1

CPS09. Christian Colombo, Gordon J. Pace, and Gerardo
Schneider. LARVA — safer monitoring of real-
time java programs (tool paper). In Dang Van
Hung and Padmanabhan Krishnan, editors, Sev-
enth IEEE International Conference on Software
Engineering and Formal Methods, SEFM 2009,
Hanoi, Vietnam, 23-27 November 2009, pages 33–
37. IEEE Computer Society, 2009. 1

CR05. Feng Chen and Grigore Rosu. Java-mop: A moni-
toring oriented programming environment for java.
In Nicolas Halbwachs and Lenore D. Zuck, edi-
tors, Tools and Algorithms for the Construction
and Analysis of Systems, 11th International Con-
ference, TACAS 2005, Held as Part of the Joint
European Conferences on Theory and Practice of
Software, ETAPS 2005, Edinburgh, UK, April 4-8,
2005, Proceedings, volume 3440 of Lecture Notes in
Computer Science, pages 546–550. Springer, 2005.
1

CR09. Feng Chen and Grigore Rosu. Parametric trace
slicing and monitoring. In Stefan Kowalewski and
Anna Philippou, editors, Tools and Algorithms for
the Construction and Analysis of Systems, 15th
International Conference, TACAS 2009, Held as
Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2009, York, UK,
March 22-29, 2009. Proceedings, volume 5505 of
Lecture Notes in Computer Science, pages 246–261.
Springer, 2009. 4

DKT14. Normann Decker, Franziska Kühn, and Daniel
Thoma. Runtime verification of web services for
interconnected medical devices. In 25th IEEE
International Symposium on Software Reliability
Engineering, ISSRE 2014, Naples, Italy, November
3-6, 2014, pages 235–244. IEEE, 2014. 1, 2

DLS08. Wei Dong, Martin Leucker, and Christian
Schallhart. Impartial anticipation in runtime-
verification. In Sung Deok Cha, Jin-Young
Choi, Moonzoo Kim, Insup Lee, and Mahesh
Viswanathan, editors, Automated Technology for
Verification and Analysis, 6th International Sym-
posium, ATVA 2008, Seoul, Korea, October 20-23,
2008. Proceedings, volume 5311 of Lecture Notes in
Computer Science, pages 386–396. Springer, 2008.
3, 8, 17

DLT13a. Normann Decker, Martin Leucker, and Daniel
Thoma. Impartiality and anticipation for moni-
toring of visibly context-free properties. In Axel
Legay and Saddek Bensalem, editors, Runtime
Verification - 4th International Conference, RV
2013, Rennes, France, September 24-27, 2013. Pro-
ceedings, volume 8174 of Lecture Notes in Com-
puter Science, pages 183–200. Springer, 2013. 8

DLT13b. Normann Decker, Martin Leucker, and Daniel
Thoma. junitrv-adding runtime verification to ju-
nit. In Guillaume Brat, Neha Rungta, and Arnaud
Venet, editors, NASA Formal Methods, 5th Inter-
national Symposium, NFM 2013, Moffett Field,
CA, USA, May 14-16, 2013. Proceedings, volume
7871 of Lecture Notes in Computer Science, pages
459–464. Springer, 2013. 1, 2, 17

DLT14. Normann Decker, Martin Leucker, and Daniel
Thoma. Monitoring modulo theories. In Erika
Ábrahám and Klaus Havelund, editors, Tools and
Algorithms for the Construction and Analysis of
Systems - 20th International Conference, TACAS
2014, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014. Proceed-
ings, volume 8413 of Lecture Notes in Computer
Science, pages 341–356. Springer, 2014. 4

dMB08. Leonardo Mendonça de Moura and Nikolaj
Bjørner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools
and Algorithms for the Construction and Anal-
ysis of Systems, 14th International Conference,
TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software,
ETAPS 2008, Budapest, Hungary, March 29-April
6, 2008. Proceedings, volume 4963 of Lecture Notes
in Computer Science, pages 337–340. Springer,
2008. 17

dMB11. Leonardo Mendonça de Moura and Nikolaj
Bjørner. Satisfiability modulo theories: introduc-
tion and applications. Commun. ACM, 54(9):69–
77, 2011. 2

EFT94. Heinz-Dieter Ebbinghaus, Jörg Flum, and Wolf-
gang Thomas. Mathematical logic (2. ed.). Un-
dergraduate texts in mathematics. Springer, 1994.
4

Normann Decker, Martin Leucker and Daniel Thoma: Monitoring Modulo Theories 21

For82. Charles Forgy. Rete: A fast algorithm for the
many patterns/many objects match problem. Ar-
tif. Intell., 19(1):17–37, 1982. 3

Hav14. Klaus Havelund. Monitoring with data automata.
In Tiziana Margaria and Bernhard Steffen, edi-
tors, Leveraging Applications of Formal Methods,
Verification and Validation. Specialized Techniques
and Applications - 6th International Symposium,
ISoLA 2014, Imperial, Corfu, Greece, October 8-
11, 2014, Proceedings, Part II, volume 8803 of
Lecture Notes in Computer Science, pages 254–
273. Springer, 2014. 4

Hav15. Klaus Havelund. Rule-based runtime verification
revisited. STTT, 17(2):143–170, 2015. 3

LS07. Martin Leucker and César Sánchez. Regular linear
temporal logic. In Cliff B. Jones, Zhiming Liu,
and Jim Woodcock, editors, Theoretical Aspects of
Computing - ICTAC 2007, 4th International Col-
loquium, Macau, China, September 26-28, 2007,
Proceedings, volume 4711 of Lecture Notes in Com-
puter Science, pages 291–305. Springer, 2007. 7

LS09. Martin Leucker and Christian Schallhart. A brief
account of runtime verification. J. Log. Algebr.
Program., 78(5):293–303, 2009. 1

MJG+12. Patrick O’Neil Meredith, Dongyun Jin, Dennis
Griffith, Feng Chen, and Grigore Rosu. An
overview of the MOP runtime verification frame-
work. STTT, 14(3):249–289, 2012. 4

SB06. Volker Stolz and Eric Bodden. Temporal asser-
tions using aspectj. Electr. Notes Theor. Comput.
Sci., 144(4):109–124, 2006. 3

Sto10. Volker Stolz. Temporal assertions with
parametrized propositions. J. Log. Comput.,
20(3):743–757, 2010. 4

	Introduction
	Preliminaries
	Temporal Data Logic
	Monitoring
	Verdict Evaluation
	Experimental Results
	Conclusion

