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Abstract. This paper is concerned with runtime verification of object-
oriented software system. We propose a novel algorithm for monitoring the
individual behaviour and interaction of an unbounded number of runtime
objects. This allows for evaluating complex correctness properties that
take runtime data in terms of object identities into account. In particular,
the underlying formal model can express hierarchical interdependencies
of individual objects. Currently, the most efficient monitoring approaches
for such properties are based on lookup tables. In contrast, the proposed
algorithm uses union-find data structures to manage individual instances
and thereby accomplishes a significant performance improvement. The
time complexity bounds of the very efficient operations on union-find
structures transfer to our monitoring algorithm: the execution time of
a single monitoring step is guaranteed logarithmic in the number of ob-
served objects. The amortised time is bound by an inverse of Ackermann’s
function. We have implemented the algorithm in our monitoring tool
Mufin. Benchmarks show that the targeted class of properties can be mon-
itored extremely efficient and runtime overhead is reduced substantially
compared to other tools.

1 Introduction
In practice, exhaustive verification of a system is often not an option because of
economical or practical reasons, when third-party libraries are used or code is
loaded dynamically at runtime from uncontrolled sources. In these cases, Runtime
Verification (RV) can provide a reasonable lightweight alternative. Instead of
analysing the whole behaviour of a system, RV focuses on techniques to observe
a program’s execution and evaluate correctness properties regarding this specific
run. They allow for balancing the verification effort regarding the targeted
correctness guarantees. For example, verification efforts can focus on specific,
feasible parts such as low-level primitives or protocol implementations while the
remaining parts are being monitored at runtime. Moreover, RV can be applied
during software testing and debugging to obtain concise and specific information.

In software systems, a monitoring process is typically executed in parallel to a
program under scrutiny. While this can provide a very detailed observation of the
system’s behaviour, it necessarily imposes runtime overhead for the whole system
in terms of memory and computing resources. It is one of the main concerns in
RV to keep this overhead as small as possible. This is particularly challenging for
object-oriented systems. They require to track an unbounded number of runtime
objects and evaluate their individual behaviour and interaction. Consider, for
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example, a Java collection object and iterator objects created for it. The number
of iterators can become arbitrarily large. Once the collection is modified none
of them is supposed to be used again, while iterators created for a different
collection or after the modification have still a valid state. Thus, for each object
some information, e.g. whether it is still valid to be used, may have to be stored
and updated upon some program event.

The currently most efficient tools for monitoring object-oriented systems
are JavaMOP [17] and MarQ [18]. They use data structures based on lookup
tables, implemented as hash maps, to store this mapping of objects to their
individual state. Unfortunately, this approach can quickly become infeasible since
the number of table entries increases linearly with the number of maintained
objects. A program event may affect all of them and thus require an update
of the corresponding entries. Hence the cost of a single monitoring step can
increase linearly with the length of the observed execution trace. Considering the
example above, using many iterators quickly increases the lookup table. Every
modification of the collection requires iterating through the table to update the
entries of all derived iterator objects.

Contribution. We address this problem and propose a novel monitoring algo-
rithm that uses union-find data structures to store the state of program objects.
The essential idea is to store a mapping c : ∆→ Q from object (identifiers) ∆
to monitoring information (states) Q in terms of sets ∆q ⊆ ∆ of objects for
each state q ∈ Q. Then, changing the state of all objects in some state q to
some state q′ can be done by merging ∆q into ∆q′ . On union-find structures
this is a constant-time operation, independent of the size of the sets. Further,
our data structure allows for selecting and updating more specific subsets of
program objects. The user can provide a tree-like hierarchy for the program
objects and refer to it in the specification. For example, every iterator object
can be filed as a direct child of its corresponding collection. The data structure
then provides efficient access to the set of, e.g., all children or ancestors of a
particular object. Hence, upon the modification of a collection, all corresponding
valid iterator objects can be marked invalid at once. Tree-like object relations are
ubiquitous in programming and employed in many algorithms, data structures
and architectures. For correctness properties expressed with respect to such a
hierarchy, our algorithm provides extremely efficient runtime evaluation.

Outline. In the following Section 2 we define an operational model that allows
for expressing the behaviour and hierarchical dependencies between individual
objects. This model provides the conceptual basis for our monitoring approach
and thus characterises formally the addressed type of correctness properties. To
provide a better understanding of the properties, we also identify a corresponding
fragment of first-order temporal logic. Based on the operational model, we describe
our data structure in Section 3. Our algorithm for efficiently processing runtime
events and updating the data structure is presented in Section 4. We discuss the
performance of our approach first by providing bounds for the time complexity
of a monitoring step. Then, Section 5 is concerned with our implementation.
We present benchmarks for a collection of properties providing evidence that
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our approach performs well in practice and in particular in comparison with the
state-of-the-art tools JavaMOP and MarQ.
Related work. A monitoring approach for object-oriented systems, where the
instrumentation framework AspectJ is extended by a simple expression language,
was already considered in [1]. It allows for matching observed events against
patterns with free variables that are bound to values provided by the observation.
Data in general, of which object IDs form a special case, was intensively studied for
runtime verification leading to various approaches based on different specification
formalisms and execution schemes [4–7, 12, 13, 15, 19, 20]. Regarding efficient
monitoring for object-oriented systems the influencial work by Chen and Rosu [19]
on the parametric trace slicing technique is tailored specifically towards handling
events carrying data in terms of object identifiers. It is implemented in the system
JavaMOP [17] which is considered one of the best performing runtime verification
tools. The trace slicing approach has been generalised to the concept of quantified
event automata (QEA) [4] in order to increase expressiveness while still allowing
for efficient evaluation. The tool MarQ [18] is based on QEA and can compete
performance-wise even with JavaMOP. The essential idea of these frameworks is to
evaluate a symbolic property on a set of projections of an input trace. Trace slicing
specifically considers sequences of events which are parameterised by identifiers.
A sequence is divided into sub-sequences, called slices, where all positions share
common parameter values. The slices are then monitored independently. In
contrast to our approach, only limited interdependencies between the different
slices can be checked.

2 Projection Automata
The essential characteristics of an object are its state and identity. We therefore
use a model that reflects both but provides a reasonable abstraction. Finite word
automata are an established concept that is well suited for runtime verification
because it naturally operates on sequences of inputs. Regarding identity, we
employ the framework of data words to model observations that relate to a
particular object. In this setting, an object is reduced to its mere identity and
represented in terms of a so-called data value. Formally, we consider an infinite
set ∆ of such values in order to represent an arbitrary number of different objects.
A finite set Σ of symbols represents the type of observations, e.g., a call to a
particular method or the access to a variable. A data word is now a finite sequence
w = (a1, d1)(a2, d2). . . (an, dn) ∈ (Σ×∆)∗ of letters consisting of a symbol a ∈ Σ
and a value d ∈ ∆.

For representing the hierarchical relation between objects we impose additional
structure on ∆ in terms of a tree-ordering relation ≤. It models the relation
between all possibly occurring objects as a forest. A tree-ordering is a partial
ordering where every strictly descending chain d1 > d2 > . . . is finite and such
that for every non-minimal element d ∈ ∆ the largest element d′ < d is unique.
We call d′ the parent of d, written par(d). The level of a value d ∈ ∆ is defined
as lvl(d) = 1 if d is minimal and otherwise lvl(d) = lvl(par(d)) + 1. We call (∆,≤)
of depth ` if there are longest strictly descending chains of length `. Additionally,
we assume that (∆,≤) contains infinitely many minimal elements and that every
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non-minimal element d ∈ ∆ has an infinite number of siblings d 6= d′ ∈ ∆ with
par(d′) = par(d).

Definition 1 (Projection Automata). A projection automaton (PA) is a
tuple A = (Q,Σ, δ, q0, λ) where Q is a finite set of states, Σ is a finite alphabet,
δ : Q × Σ × {<,=, >, ‖} → Q is the transition function, q0 ∈ Q is the initial
state and λ : Q→ S is the output labelling for some semi-lattice (S,u).

The operational semantics of PA is given in terms of configurations c :
∆ → Q that map data values to states. The run of A on a data word w =
(a1, d1). . . (an, dn) is a sequence of configurations ρw = c0. . . cn such that the
initial configuration is the constant function c0 : ∆→ {q0} and for all positions
0 ≤ i < n and all data values d ∈ ∆ we have ci+1(d) = δ(ci(d), (ai+1, 1))
where 1 ∈ {<,=, >, ‖} and di+1 1 d. The output of A for the data word w is
A(w) :=

d
d∈∆ λ(cn(d)).

Syntactically, a PA is a finite automaton with output (i.e., a Moore machine)
over the input alphabet Σ × {<,=, >, ‖} and the output alphabet S. Intuitively,
to every data value d ∈ ∆, an instance of the automaton is associated that
reads, instead of an input letter (a, d′) ∈ Σ × ∆, the symbol a ∈ Σ and the
information how the observed value d′ relates to itself, in terms of one of the
symbols from {<,=, >, ‖}. The output of all instances is then aggregated to a
single verdict, hence the semi-lattice. Note that the restriction to a deterministic
transition function is not essential since non-determinism (even alternation) can
be eliminated by standard constructions.
Example. Recall the property that modifying a collection invalidates iterators
previously created for it. The data values ∆ can model these two types of objects
by choosing an ordering ≤ with two levels: collection IDs are minimal (roots)
and the iterator IDs dI ∈ ∆ created for a collection with ID dC ∈ ∆ are direct
children of dC < dI . Given this structure on ∆, the PA in Figure 1 (Iterator)
expresses the property. Initially, all objects remain in state q0. Upon the creation
(c) of an iterator with ID dI ∈ ∆, this new iterator receives the letter (c,=) and
changes its state to q1. The corresponding collection receives (c, >) and all others
receive (c, ‖), thus staying in q0. Upon the modification of some collection (m),
all iterators for it receive (m, <) (the observed ID is strictly smaller) and if they
happen to be in state q1 move to state q2. Finally, when next() is called on some
iterator, this one reads the letter (n,=) and only if it happens to be in state q2 it
moves to the failure state. Figure 1 shows further examples to be discussed in
Section 5.

Projection automata are closely related to class automata [11] that feature
an additional transducer but use only equality on the data domain. It can easily
be shown that PA (like class automata) can simulate Minsky machines.
A logical perspective. Projection automata characterise precisely the proper-
ties that our monitoring algorithm can verify since it is based on their operational
semantics. On the other hand, first-order extensions of temporal logics, in partic-
ular linear-time temporal logic (LTL), received much attention in RV [8–10,13]
because they provide a very generic framework for specifying properties in a
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Fig. 1. Example properties formulated as PA with outputs > (white states) and ⊥
(grey states). Missing edges are self-loops.

declarative fashion. In the following, we therefore discuss briefly how PA relate to
temporal logic with first-order constraints. We identify a fragment of first-order
logic that can be translated to PA and thus allows for using the very efficient
algorithm presented in Sections 3 and 4 instead of generic techniques.

The fragment consists of a logical language that uses a single variable x and
a single constant d as well as zero-ary predicates (propositions) Pa, for a ∈ Σ,
and a binary predicate ≤. Formulae of that language have the form ∀xϕ where ϕ
is defined by the grammar ϕ ::= Pa | ϕ∧ϕ | ¬ϕ | Xϕ | ϕUϕ | t ≤ t where a ∈ Σ
and t ∈ {x, d} is either the variable or the constant.

Each letter (a, d) ∈ Σ ×∆ in a data word can be considered as a structure
s over the signature above with universe ∆. Such a structure s interprets the
constant d as the value d ∈ ∆, the proposition Pa as true, the propositions Pb,
for b 6= a, as false and the binary predicate ≤ as the tree-order relation on ∆.
For simplicity, however, let us define the semantics directly over data words as
follows. The semantics of the terms d and x is given for an interpretation d ∈ ∆
and a valuation dx ∈ ∆ as JdK(d, dx) = d and JxK(d, dx) = dx. For data words
w ∈ (Σ ×∆)∗, letters (a, d) ∈ Σ ×∆ and values dx we let

(w, dx) |= ∀xϕ iff (w, d′x) |= ϕ for all d′x ∈ ∆
((a, d)w, dx) |= Pa
((a, d)w, dx) |= t1 ≤ t2 iff Jt1K(d, dx) ≤ Jt2K(d, dx)
((a, d)w, dx) |= Xϕ iff (w, dx) |= ϕ

(w, dx) |= ϕ1 Uϕ2 iff (w, dx) |= ϕ2 ∨ (ϕ1 ∧X(ϕ1 Uϕ2))

The semantics of Boolean operators is defined as usual. To stay close to PA we
include the empty word ε, e.g., (ε, dx) 6|= Pa and (ε, dx) |= ϕ1 U(¬Pa).

From formulae ϕ as defined in Equation 2 we can now construct a PA
Aϕ = (Q,Σ, δ, q0, λ) with outputs from the Boolean lattice B = {⊥,>} such
that Aϕ(w) = > if and only if (w, dx) |= ∀xϕ for some (hence every) dx ∈ ∆.
Interpreting subformulae of the form Pa and t1 ≤ t2 as atomic propositions we
can apply standard automata construction techniques (see, e.g., [21]) and obtain
a finite automaton B over the alphabet Γ = 2AP for AP = {Pa, t1 ≤ t2 | a ∈
Σ, t1, t2 ∈ {x, d}}. Due to the subset construction, the automaton B reads letters
that cannot occur in our setting. For example, there is no letter (a, d) ∈ Σ ×∆
that induces a structure where Pa and Pb holds for a 6= b or where t ≤ t does
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not hold for t ∈ {x, d}. We remove these letters and corresponding edges in B,
keeping thus only letters of the form gaM = {Pa, x ≤ x, d ≤ d} ∪M ∈ Γ where
M ⊆ {x ≤ d, d ≤ x} and a ∈ Σ. These have a unique correspondence to the
symbols from Σ × {<,=, >, ‖} and we thus obtain Aϕ by renaming each such
gaM to (a,=) if M = {x ≤ d, d ≤ x}, to (a,<) if M = {d ≤ x}, to (a,>) if
M = {x ≤ d} and to (a, ‖) if M = ∅.

Note that this is essentially the generic construction presented in [13] instanti-
ated for the temporal logic LTL defined accordingly and the theory of letters from
(Σ ×∆). Technically, removing edges with inconsistent labels can be considered
as an optimisation step that is possible given the simple structure of the letters
in a data word. We use LTL here due to its popularity in RV but can replace it
by other logics that translate to finite automata.

3 Data structure
Our monitoring algorithm is based on simulating the operational semantics of
a given PA A = (Q,Σ, δ, q0, λ). It therefore operates on a data structure to
represent configurations c of A that we describe in this section. The essential
idea underlying our data structure is to store such a mapping c : ∆ → Q by
partitioning ∆ into subsets of data values with the same state assigned. At the
same time, this partition should also reflect the ordering relation between values.
Then, updating a configuration amounts only to a few operations on subsets of ∆
and we organise our data structure such that these can be performed efficiently.

When processing a letter (a, d) ∈ Σ ×∆ the successive configuration c′ maps
every value e ∈ ∆ to a state δ(c(e), (a, 1)), i.e., depending on the previous state
c(e) and the relation 1 between d and e. Our data structure therefore provides
efficient access to the subsets ∆q = {d ∈ ∆ | c(d) = q}, ∆d1 = {e ∈ ∆ | d 1 e}
and ∆d1,q = ∆q ∩∆d1 for 1 ∈ {<,=, >, ‖}. Then, (∆d1,q)q∈Q,1∈{<,=,>,‖} is a
partition of ∆ that reflects the ordering and represents the mapping c. It allows
for characterising the partition (∆′d1,q)q∈Q,1∈{<,=,>,‖} representing c′ by

∆′d1,q =
⋃

q′|q=δ(q′,(a,1))

∆d1,q′ .

Intuitively, the input letter (a, d) can be dispatched as symbol (a, 1) to every part
∆d1, for each 1 ∈ {<,=, >, ‖} and then, within ∆d1, the subsets ∆d1,q ⊆ ∆d1
for q ∈ Q are relabelled and merged according to how the letter (a, 1) changes the
states q in A. This is the abstract view of how our algorithm processes events.

Based on the ordering on ∆ and the subsets ∆d<,q and ∆d=,q we can already
describe the sets ∆d>,q and ∆d‖,q as

∆d>,q =
lvl(d)−1⋃
i=1

∆pari(d)=,q and ∆d‖,q = ∆q \ (∆d>,q ∪∆d<,q ∪∆d=,q).

Therefore it suffices to store only ∆q, ∆d<,q and ∆d=,q for every d ∈ ∆ in our data
structure. We next describe a concise representation of this (infinite) collection
of subsets that allows for performing the necessary operations efficiently.
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Fig. 2. Example for the shape of the data structure to represent PA configurations.
Part objects are linked to the representative of their associated object collection (black
and grey arrows). Non-representative elements of a collection have an uplink pointer
(blue arrows) to the representative or another element. The data structure is divided
into levels (indicated by colour saturation) that are only connected by the pointers
between representatives and Part instances. Note, there is no directed connection from
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Components. We identify data values d ∈ ∆ with program objects and hence
use the latter directly in our data structure to represent data values. The only
assumption that we need to make is that we can attach additional information
to every object, if needed. We represent this information in terms of a class
PObject that provides the three fields part, uplink and table to store reference
pointers to other objects. Technically, we assume every program object in the
system to extend this class. In practice, this can be accomplished, e.g., by means
of program instrumentation. In the following we therefore regard any program
object simply as instance of PObject. Additionally, our data structure for storing
a PA configuration uses the classes Part and Table. An instance of Table will
be used to represent a partition (∆d<,q)q∈Q of ∆d< for some particular value
d ∈ ∆. These partitions can be thought of as a (one-dimensional) table indexed
by Q where each cell contains a part ∆d<,q of the partition. An instance of Part
will in turn represent such a part.

Based on these components we store the subsets of ∆ in a hierarchical fashion
as depicted in Figure 2. To every PObject corresponding to some data value d we
associate a Table instance that holds a Part object representing the subset ∆d<,q

for every state q ∈ Q. A Part object now maintains a collection of objects that
represent subsets of ∆d<,q. The collection can contain both instances of Part
and of PObject representing subsets ∆d′<,q and ∆d′=,q, respectively, for direct
children d′ of d. While the former in turn represent a possibly empty collection
of objects, the latter indicate that the set ∆d′=,q is non-empty, i.e. c(d′) = q.
Every PObject in the collection again carries a table pointing to subsets one level
deeper in the data structure and every Part object is associated with a possibly
empty collection of objects.

At the top of the data structure there is one designated Table instance that
we refer to as globalTable. It represents the partition (∆q)q∈Q and hence maps
every state q ∈ Q to a Part object representing the part ∆q. The collection of
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these Part objects now contain the program objects with minimal IDs d and
corresponding sup-parts ∆d<,q.
Unobserved values. A configuration assigns a state to all (infinitely many) data
values whereas only finitely many objects are actually observed during execution.
We consider an object (ID) observed if it is associated to some event that occurred
or it has a smaller smaller ID (wrt. (∆,≤)) than an observed object. The mapping
of unobserved values to states is stored symbolically: every Table object holds a
default field storing a state q ∈ Q. An unobserved ID is mapped to the default
state of the table attached to its larges ancestor. Note that all unobserved values
with the same largest observed ancestor cannot be distinguished because they
always fell into the same projection class along a run.
Union-Find. The object collections attached to Part instances are maintained
using a nesting of union-find data structures. This is the most crucial aspect
regarding the performance of the monitoring algorithm. It allows for efficiently
performing all operations that are necessary to update a configuration: computing
the union of two parts, to insert and delete elements and to identify (find) the
Part object that holds a given element.

Recall that a union-find structure represents disjoint sets of objects organised
as a tree. One element (if any) of each set is appointed representative and used as
root while all others carry a reference to one other member of the same set. For
convenience we consider objects that can be inserted into a union-find structure
as Findable. We assume that Part as well as PObject extend this class providing
the references uplink and part. The former links an element to its parent in the
union-find tree but we use the term uplink to avoid confusion. The part field is
only used by the representative to point to the Part object that holds the set.

Classically, the operations find and insert operate on representatives of a
set but since we are mostly interested in the associated Part object we assume
operations with signatures

fun find(obj: Findable): Part
proc insert(target: Part, obj: Findable)

where find returns the content of the part field of the representative and insert
adds an object to the collection attached to a Part object. For the same reason
we use the operation

proc moveAll(target: Part, source: Part)
that is derived from the basic operation union and moves all elements from the
collection attached to source to the collection attached to target. Moreover, we
assume the union-find structure provides an operation

proc delete(obj: Findable)
which can be implemented in different ways while maintaining the worst-case
complexity of the other operations [3, 16].
Helper functions. To facilitate the presentation of the algorithm we employ
the helper functions

fun part(table: Table, state: Q): Part
fun state(table: Table, part: Part): Q
fun createTable(parentTable: Table, default: Q): Table
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that can easily be implemented based on the information present in the data
structure. The function part returns the Part object that the given state is
mapped to by the given table. Conversely, state returns the state that the given
table maps to the given Part object. It is assumed that the latter is indeed
referenced by the table and that the state is unique. The function createTable
creates a new Table object with the given default state. For every table index
q ∈ Q a new Part object is created and moreover inserted into the part for q
in parentTable. The object collection attached to itself is initially empty. Our
algorithm accesses the ordering on ∆ by means of par and the functions

fun hasParent(obj: PObject): Boolean
fun parentTable(obj: PObject): Table

where hasParent(obj) is true if the ID of obj is not minimal. For every program
object parentTable returns the Table object associated with its parent or
globalTable if it is minimal. It is assumed that the object and, if existent, its
parent object have already been registered in the data structure as described
below in Section 4. Note that the ordering is not represented in the data structure
as described above. In Section 5 we discuss how the ordering information can be
made available in our setting.
Output. Considering the output v of the PA A in configuration c we observe
that v =

d
d∈∆ λ(c(d)) =

d
q|c−1(q)6=∅ λ(q) where c−1(q) = {d ∈ ∆ | c(d) = q} is

the inverse of c. It hence suffices to evaluate which of the sets ∆q are non-empty.
Since evaluating every Part object in the data structure is not an option—in
fact, Part objects are not necessarily reachable—we track the number of objects
in a field counter attached to every Part object. When performing a specific
operation, the local counters can easily be updated. By propagating local counter
changes upwards the tree structure the counters for the parts ∆q can invariantly
provide the number of program objects mapped to a specific state.

Recall that the part corresponding to the default state q in a table virtually
contains unobserved objects. These cannot be distinguished and we therefore
treat them as a single one and add one to the counter value of that part.

4 Monitor execution algorithm
Based on the data structure described in the previous section we now present
an algorithm that simulates one step of the operational semantics of some PA
A = (Q,Σ, δ, q0, λ). The main procedure step of the algorithm is shown in
Listing 2. It takes an event name a ∈ Σ and a PObject instance and updates
the data structure such that it represents the successor configuration of A after
reading a letter (a, d) ∈ Σ×∆ where d represents the object’s ID. In the following,
we identify PObject instances with data values from ∆ representing their ID.
Moreover, we identify Part objects with the subset of ∆ they represent. The
procedure step essentially dispatches the input letter (a, d) to the parts ∆d<,
∆d=, ∆d> and ∆d‖ as symbols (a,<), (a,=), (a,>) and (a, ‖), respectively.
Assume the data structure encodes a configuration c of A.
Updating ∆d=. Updating the part ∆d= requires only to change the state q = c(d)
of the object d to another state q′ = δ(q, (a,=)). This is implemented by the
procedure changeState depicted in Listing 1. It removes the object d from
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Listing 1 Procedures operating on the data structure
1 proc changeState(obj: PObject, q: Q) {
2 updateCounter(find(obj), -1)
3 delete(obj)
4 setState(obj, q) }

6 proc setState(obj: PObject, target: Q) {
7 val targetP =
8 part(parentTable(obj), target)
9 insert(targetP, obj)

10 updateCounter(targetP, 1) }

12 proc updateCounter(startP: Part,
13 delta: Int) {
14 if (startP == null) return
15 startP.counter += delta
16 updateCounter(find(startP), delta) }

18 proc changeStatesIncomp(obj: PObject,
19 anchor: PObject, map: Q→ Q) {
20 val state = state(parentTable(obj),
21 find(obj))
22 if (hasParent(obj)) {
23 changeStatesIncomp(
24 par(obj), anchor, map)
25 } else {
26 globalTable =
27 applyMap(globalTable, map)
28 if (hasParent(anchor)) {
29 pullUpdates(par(anchor)) } }
30 changeState(obj, state) }

32 proc pullUpdates(obj: PObject) {
33 if (hasParent(obj)) pullUpdates(par(obj))
34 fun map(q: Q): Q = state(
35 parentTable(obj),
36 find(part(obj.table, q)))
37 obj.table = applyMap(obj.table, map) }

38 proc changeStates(obj: PObject, map: Q→ Q) {
39 val oldTab = obj.table
40 obj.table = applyMap(oldTab, map)
41 foreach q in Q {
42 updateCounter(part(parentTable(obj), q),
43 part(obj.table, q).counter
44 - part(oldTab, q).counter) } }

46 fun applyMap(tab: Table, map: Q→ Q): Table = {
47 val newTab = createTable(tab, map(tab.default))
48 foreach q in Q {
49 val source = part(tab, q)
50 val target = part(newTab, map(q))
51 moveAll(target, source)
52 target.counter += source.counter }
53 return newTab }

55 proc register(obj: PObject) {
56 if (obj.table != null) return
57 if (hasParent(obj)) register(par(obj))
58 val default = parentTable(obj).default
59 obj.table =
60 createTable(parentTable(obj), default)
61 updateCounter(part(obj.table, default), 1)
62 setState(obj, default) }

64 proc dismissUpdates(obj: PObject) {
65 foreach q in Q {
66 val displaced = part(obj.table,q)
67 delete(displaced)
68 insert(part(parentTable(obj), q),
69 displaced)
70 }}

its current part ∆par(d)<,q and inserts it into the part ∆par(d)<,q′ . Removing d
amounts to deleting d from the union-find structure associated with the Part
object ∆par(d)<,q and consequently decrementing its counter. Subsequently, the
procedure setState inserts d into the (collection associated with the) target
part ∆par(d)<,q′ and increments its counter to update the size information. As
our data structure maintains nested parts, changing the size of a part requires
to propagate this change to all enclosing parts. The procedure updateCounter
realises this functionality. It calls find recursively to determine all enclosing
parts until a top most part ∆q is reached and updated.

Updating ∆d<. All elements from the part ∆d< need to be updated according to
the symbol (a,<) upon reading (a, d). How this symbol changes the states of these
can simply be described by the mapping map : Q→ Q with map(q) = δ(q, (a,<)).
As we aim to be efficient we must not explicitly handle every element below the
Part object ∆d< in the data structure. Instead, we rearrange only the Table
object associated to d: depending on map, the parts ∆d<,q are joined or moved,
i.e., new Part objects ∆′d<,q :=

⋃
q′|map(q′)=q∆q′ are created for every state q ∈.

The function applyMap creates these new parts and computes their counters
based on the counters of the original parts. After applying the mapping, it only
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Listing 2 Main procedure
1 proc step(obj: PObject, event: Σ) {
2 register(obj)
3 pullUpdates(obj)

5 fun mapGT(q: Q): Q = δ(q, (event, <))
6 changeStates(obj, mapGT)

8 changeState(obj,
9 δ(state(parentTable(obj), find(obj)),

10 (event,=)))

11 var obj2 = obj
12 while (hasParent(obj2)) {
13 obj2 = par(obj2)
14 changeState(obj2,
15 δ(state(parentTable(obj2), find(obj2)),
16 (event, >))) }
17 fun mapIC(q: Q): Q = δ(q,(event, ‖))
18 changeStatesIncomp(obj, obj, mapIC)
19 dismissUpdates(obj)
20 }

remains to propagate the counter changes upwards in the data structure to all
enclosing parts.

Notice that this way, the data structure becomes inconsistent since the
changes are not automatically propagated downward the data structure to all
larger objects. In a consistent state (cf. Figure 2) every part object ∆e<,q is
contained in the collection of the part object ∆par(e)<,q for the same state q.
Applying the map may, e.g., effectively relabel some ∆par(e)<,q to ∆par(e)<,q′
and then ∆e<,q is enclosed by the part ∆par(e)<,q′ , although not being a subset.
However, this inconsistency only means that the parts ∆e<,q did not yet receive
the transition from q to q′. We can recover the correct state by determining the
out-most enclosing part and consulting the global table for its state. The procedure
pullUpdates in Listing 1 implements this functionality. We will, however, only
use it if necessary, meaning propagation of such changes is lazy. Note that, in
contrast to setStates no counter updates must be propagated.
Updating ∆d‖. The essential idea for updating ∆d‖ is to save the state of d
and all the ancestors e < d of d, apply the update for (a, ‖) to the global table,
i.e., to all objects, and then restore the saved states of the ancestors and d.
That way precisely all incomparable objects are affected. Most of this process is
implemented by the recursive procedure changeStatesIncomp shown in Listing 1.
Notice, that before restoring the states of d and its ancestors, the changes made
to the global table need to be propagated to d. Otherwise restoring would not
have an effect and upon the next update the unintended modifications would still
be applied. It remains to restore the state of the larger elements in the part ∆d<

afterwards. This is implemented independently in the procedure dismissUpdates.
This procedure deletes for every q the part associated with q in the table of d
from its current enclosing part and inserts it into the part associated with q in
the parent table. Thus it corrects the inconsistency based on the information
in the local table instead of the information in the global table, as done by
pullUpdates.
Procedure step. Consider the main procedure step in Listing 2 called for an event
a ∈ Σ and object d ∈ ∆. It first calls register to ensure d has been properly
registered with our data structure. Notice that when creating a new table for
the object, all parts are, technically, empty. However, the part corresponding to
the default state in the table above virtually contains unobserved objects. We
therefore increment its counter by one. Then, pullUpdates is used to ensure that
the table associated with the observed object d is consistent with respect to the
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global table. In lines 5–6 and 8–10 of Listing 2 the parts ∆d< and ∆d= are updated,
respectively, as described above. The lines 11–16 update the part ∆d> of smaller
objects according to the symbol (a,>). This case can be handled by determining
all affected objects explicitly using function par. Then the corresponding target
state is computed and assigned similarly as in the case of ∆d=. Finally, lines 17–
19 handle ∆d‖. As before a function mapIC is defined mapping source to target
states for transitions labelled by (a, ‖) and the procedure changeStatesIncomp
is called, followed by the restore operation as described above.
Complexity. It is crucial to know how the performance of a monitoring algorithm
depends on the behaviour of the monitored program. For the following analysis,
we fix a PA A with s control states and assume that the data domain (∆,≤) is
of bounded depth `. Let Ak(i) be Ackermann’s function defined as A0(i) := i+ 1
and Ak+1(i) := Ai+1

k (i) where f j(x) is the function f iterated j times on x.
Following [2], we define the inverse of Ackermann’s function as α(i, j) := min{k ≥
2 | Ak(i) > j} and α(i) := α(i, i). We observe that the execution time of step is
dominated by the calls to operations on union-find data structures and that it
causes O(s·`+`2) calls to find and O(s·`) calls to union- and delete-operations.
If our data structure contains n program objects, the size of every union-find
structure in it is bound by s · n. Then, the find-operations can be realised in
O(log(s ·n)) worst-case time and O(α(s ·n)) amortised time; all other operations
can be realised in constant time [2]. Hence, for fixed s and `, the worst-case and
amortiseed execution time of step on a data structure containing n program
objects is in O(log(n)) and in O(α(n)), respectively.

Note, that our data structure only requires space linear in the number of
observed objects. Furthermore, the factor `2 for the number of find-calls arises
only from the update of the set ∆d> in lines 11–16 and ∆d‖ in lines 17–19 of
Listing 2. There, setState is called at most ` times which causes in turn up
to ` find-calls to adjust the counters. Updating the counters for ` consecutive
setState-calls could be implemented accumulatively with only ` find-calls
instead. An optimised implementation of step therefore provides a worst-case
and amortised time complexity in O(s · ` · log(n)) and O(s · ` ·α(n)), respectively.

5 Implementation and Evaluation
We have implemented our approach in Java as the tool Mufin. Properties are
specified in Java by defining automata using a simple Java API. In addition
the required tree-ordering on data values and the mapping of program events
to unary logical events has to be provided. We use AspectJ intercept program
events, such as method invokations, and dispatch them to Mufin.

In the presentation of the algorithm in Section 4 we assumed direct access to
the tree-ordering on data values and used the function par to obtain the parent
of a program object. An implemented of such a function depends on the setting
as the order used for the specification may not be directly represented in the
monitored program or might be hard to access. Mufin uses special events from
which this order can be observed. Consider again the example from Section 1.
When a new iterator is created the implementation can access both, the iterator
and the corresponding collection. As the collection has to be the parent of the
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iterator the implementation can store this information, e.g. using a pointer from
the iterator to the collection. Since our monitoring algorithm requires that all
smaller objects are known when an event occurs, we also require these special
events to occur on an object before any other events. The implementation detects
when an event occurs on an object where the parent object is not yet known or
when a special event occurs that conflicts with a previously observed event.

While we assumed to use program objects directly in the conceptual presen-
tation, our implementation adds only one additional field to program objects
that points to auxiliary objects actually contained in the data-structure. As pro-
gram objects are not referenced from inside the union-find structure, they can be
garbage collected as soon as they are no longer referenced by the original program.
Also, the delete operation simply marks these auxiliary objects as deleted and
they are only cleaned up during find-operations. The obvious consequence is
that unnecessary auxiliary objects might pile up within a union-find structure.
However, this does not happen as long as events occur regularly involving every
observed program object. The assumption that almost all program objects, that
are not ready for garbage collection, will always occur in some future event seems
to be reasonable for many applications. The advantage of this approach is that
garbage collection does not require any additional consideration. Classical union-
find structures only require upward references in direction of the representative
element of a part. Efficient implementations of the delete-operation also require
further references in the reverse direction. Assuming that find-operations are
performed regularly on most elements, most elements will not be referenced by
any other element. Once they are no longer reference by a program object they
will thus be garbage collected. Using an implementation with efficient deletes
would require to use the API of the Java garbage collector in order to trace when
some observed program object is garbage collected which would come with some
performance overhead on its own. While this is an option when requiring strict
guarantees, our benchmarks show that our simpler approach works well.

Instrumenting the elementary object class requires to modify the Java Virtual
Machine (JVM). To avoid this, Mufin can also use a hash table to map program
objects to auxiliary objects instead of a reference. This variation, called Mufin
Light, has a notable impact on runtime and memory overhead, however, the
advantage of our algorithm remains as our benchmarks show.
Evaluation. Mufin took part in the Java track of the recent 2nd Competition
on Runtime Verification [14]. We selected the seven benchmarks with properties
expressible in our formalism of the 14 submitted to the competition. All bench-
marks comprise a property and a small program generating a sequence of events.
Monitoring the given property involves keeping track of nearly all the objects
of the program. Therefore, the benchmarks are very well suited to compare the
performance of different tools. For real-world applications a far smaller overhead
can be expected as usually only a fraction of objects and events will be observed.
Projection automata for the benchmarks are depicted in Figure 1.
Benchmarks. The first group of benchmarks comprises Iterator, already described
in Section 1, and three variations: SafeIterator uses the same property but
instantiates far more objects (several millions instead of about ten). MapIterator
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Fig. 3. Relative time and memory overhead of the tools Mufin, JavaMOP and MarQ
while monitoring the given properties on the benchmark programs. A relative time
overhead of 1 means that the absolute monitoring overhead is equal to the execution
time of the non-instrumented program. (The difference between the instrumented and
non-instrumented benchmark is the absolute overhead.)

enforces a similar property where iterators are created for key sets of a map and
modifications occur on the map, thereby requiring three instead of only two levels
of objects. It also creates several millions of objects. DelayedIterator is a variation
of Iterator where the next-method may be called one time after a modification
of the collection without failing. These benchmarks are very common for the
evaluation of online monitoring tools, e.g. in [19] only properties of this kind
are considered. Multiplexer aims to show the effect of a property requiring more
control states. It models a multiplexer with four channels where an arbitrary
number of clients is connected to each channel. New clients can be attached to
the active channel (c), removed (r) and used (u) and the active channel can be
switched (n). Using a client attached to an inactive channel violates the property.
Toggle is designed to demonstrate the effect of a global action affecting a large
number of objects. Objects can be created (c) and the state of all existing objects
can be toggled (t). Objects may only be processed (p) if they are in one of their
two internal states. Tree provides a scenario were the maximal level of observed
objects is not known in advance. Objects are created as inner nodes (ci) or leafs
(cl) of a tree. Messages sent (s) on any node are dispatched to corresponding leafs
with an input buffer of size one and processed (p) there. Conversely, a reset (r)
clears the buffer of corresponding leafs. A critical send operation (sc) requires
the buffer of all receiving leafs to be empty. Finally, any node can be invalidated
(i) effectively removing it from the tree.

Results. We executed the benchmarks with Mufin, Mufin Light, JavaMOP and
MarQ and measured execution time and memory consumption of the complete
JVM process. Figure 3 shows relative time and memory overhead, i.e. additional
time and memory consumption divided by that of the unmonitored program.
Mufin (in both variants) is always multiple, often more than ten, times faster than
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JavaMOP and MarQ while consuming far less memory. Comparing Mufin with
Mufin Light shows a notable impact of the global hash table but the performance
benefit of our approach clearly persists. Comparing Iterator, DelayedIterator
and Multiplexer shows that the number of states in a specification has only a
small effect on the overhead of Mufin. Comparing SafeIterator and MapIterator
shows that the impact of an addition level is small as well. The measurements
for SafeIterator and MapIterator also show that Mufin handles large numbers
of instantiated objects far better than the other tools. The results for Toogle
demonstrate the massive impact of actions affecting many objects at once. In this
benchmark almost every step affects around 10 000 objects rendering the previous
approaches practically infeasible. The benchmark Tree can not be specified using
the formalisms of the other tools. It shows that the overhead of Mufin grows for
a greater depth of the ordering and thus of the data structure (in this case up to
7) but remains acceptable. The memory overhead of Mufin Light is significantly
larger than that of Mufin, the latter remaining very small (below 1) in all cases.
This is most likely due to hash tables that can only be filled up to a certain degree
without becoming extremely inefficient. Some variations in memory consumption
may be due to the allocation strategy of the JVM and the memory measurements
therefore only show a general tendency. Mufin is available for download1.

6 Conclusion
Our investigations on monitoring temporal properties of object-oriented systems
show that complex constraints, including hierarchical dependencies between
individual objects, can be evaluated efficiently at runtime. We demonstrated that
union-find data structures are a valuable algorithmic tool for runtime analysis. In
the proposed monitoring algorithm they provide strict guarantees on the execution
time of a monitoring step. This ensures that the accumulated runtime overhead
grows effectively only linear with the execution time of the monitored program.
Our benchmarks show that the conceptual benefits actually apply in practice and
can outperform the currently most efficient monitoring tools JavaMOP and MarQ.
Our formal model and logical characterisation provide a good understanding of the
class of properties our approach can be applied to. Since we exploit their inherent
hierarchical structure we clearly pay performance by expressiveness. However,
since hierarchical structures are ubiquitous in computing they still cover a wide
range of relevant specifications. The class of properties monitorable with our
approach can be further extended. For example, some iterator implementations
provide a remove method that deletes the current object from the underlying
collection. It invalidates all other iterators of the same collection. To handle such
constraints, further predicates are needed to address more types of subsets of
objects, in this case the set of all siblings of an object. Given our data structure,
the algorithm can be extended accordingly. Exploiting the ability to measure the
number of objects assigned to some state provides further a basis for evaluating
quantitative properties. The underlying model could easily be extended, e.g., by
constraints on the number of children of an object in a certain state.

1 http://www.isp.uni-luebeck.de/mufin

http://www.isp.uni-luebeck.de/mufin
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11. Bojańczyk, M., Lasota, S.: An extension of data automata that captures xpath.
Logical Methods in Computer Science 8(1) (2012)

12. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous
systems. In: Temporal Representation and Reasoning 2005, Proceedings. pp. 166–
174. IEEE Computer Society (2005)

13. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. International
Journal on Software Tools for Technology Transfer pp. 1–21 (2015)

14. Falcone, Y., Nickovic, D., Reger, G., Thoma, D.: Second international competition
on runtime verification CRV 2015. In: Runtime Verification 2015, Proceedings.
LNCS, vol. 9333, pp. 405–422. Springer (2015)

15. Havelund, K.: Rule-based runtime verification revisited. STTT 17(2), 143–170
(2015)

16. Kaplan, H., Shafrir, N., Tarjan, R.E.: Union-find with deletions. In: Symposium on
Discrete Algorithms 2002, Proceedings. pp. 19–28. ACM/SIAM (2002)

17. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the MOP
runtime verification framework. STTT 14(3), 249–289 (2012)

18. Reger, G., Cruz, H.C., Rydeheard, D.E.: MarQ: Monitoring at runtime with QEA.
In: Tools and Algorithms for the Construction and Analysis of Systems 2015,
Proceedings. LNCS, vol. 9035, pp. 596–610. Springer (2015)

19. Rosu, G., Chen, F.: Semantics and algorithms for parametric monitoring. Logical
Methods in Computer Science 8(1) (2012)



Runtime Monitoring with Union-Find Structures 17

20. Stolz, V., Bodden, E.: Temporal assertions using aspectj. Electr. Notes Theor.
Comput. Sci. 144(4), 109–124 (2006)

21. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency, LNCS, vol. 1043, pp. 238–266.
Springer Berlin Heidelberg (1996)


	Runtime Monitoring with Union-Find Structures-0.35cm

