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Abstract—Dataflow languages have, as well as functional
languages, immutable semantics, which is often implemented
by copying values. A common compiler optimization known from
functional languages involves analyzing which data structures
can be modified in-place instead of copying them. This paper
presents a novel algorithm to this so called Aggregate Update
Problem for multi-clocked dataflow languages, i.e. those that allow
streams to have events at disjoint timestamps, like e.g. Lucid,
Lustre and Signal. Unrestricted multi-clocked languages require a
static triggering analysis on how events and hence data values are
read, written and replicated. We use TeSSLa as a generic stream
transformation language with a small set of operators to develop
our ideas. We implemented the solution in a TeSSLa compiler
targeting the Java VM via Scala code generation which combines
persistent data structures and mutable data structures for those
data values which allow in-place editing. Our empirical evaluation
shows considerable speedup for use cases where queues, maps or
sets are dominant data structures.

I. INTRODUCTION

Dataflow programming [1], [2] is a programming paradigm
that is gaining popularity for concurrent and distributed
applications, e.g. log data analysis and runtime verification. It
aims at describing transformations from input to output data
streams. In dataflow languages one can, based on a set of
input streams, iteratively define new streams by applying basic
operations on other defined streams. Streams consist of events,
i.e. values at a certain timestamp. Operations on streams can be
simple function applications, e.g. for adding the current events
of two other streams, or an operator for retrieving the previous
event of another stream, which could for example be used for
aggregating data of a stream over time. During the execution
of a dataflow program, the events of the input streams arrive
successively and the events of the output streams are then one
by one calculated according to the operators by which they
were defined. Events may be of simple types like booleans or
numbers but also carry more complex data structures such as
sets or arrays.

Dataflow (and likewise functional) languages usually have
so called immutable semantics. This implies the execution
of functions is free of side effects: By modifying a value an
altered copy of the original value is created with the old one
preserved, i.e. the old value can be read or written again. This
copying is especially critical for aggregate data structures (like
arrays) as copying them is costly.

This work was funded in part by the projects ReNuBiL (https://renubil.de)
and DOING eBus.

Consider the example in Figure 1 using sets to aggregate
input events over time. (The example is given in TeSSLa [3]
which is used as a generic stream transformation language in
this paper. A detailed introduction follows in section II.)

Input i 1 2 1

last(merge(y, ∅), i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

Fig. 1. Simple TeSSLa specification with complex data structures.

Think of i to be an input stream of numbers. y is defined as
the stream resulting from adding (function setAdd) the current
value of i to yℓ’s current event. yℓ is the stream reproducing
the last event of y (or the empty set in case y had no previous
event) always when a new event on stream i arrives. Finally s

is the stream containing true or false dependent on whether
the number on i is already contained in the set from yℓ or not
(function contains).

In summary, this example aggregates the input events in a
set and checks whether the current event has already appeared
in the past. Semantically, every time a new input on stream i

occurs, the set on stream yℓ is copied and modified. The original
set on stream yℓ remains unchanged and is used again for
calculation of stream s - and a straight-forward implementation
would do so as well.

However, it is not efficient to implement a dataflow language
by copying a data structure every time it is written to avoid
side effects on the original data structure. Sometimes the old
structure is not needed anymore after the modification. If this
is the case the updates could directly be performed in-place
on the original data structure instead of copying. Such a kind
of update is then called destructive update, because the old
value of the data structure is destroyed with the modification.

In the example from Figure 1 one could first calculate s

and then update the set from yℓ destructively (i.e. in-place) to
receive y’s event.

Yet performing updates destructively is not always possible.
The general problem of the efficient implementation of updates
on complex data structures is known under the term Aggregate

Update Problem [4]. Several solutions to this problem exist,
mainly from the field of functional languages. Principally
the approaches can be categorized into the following three
groups [5]:
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1) The first group of solutions aims at using a type system
for ensuring data structures are only used once so they can be
modified in-place. The fundamental approach is the usage of
linear types [6]. In their basic form they are quite restrictive,
as it is for example forbidden to read a given variable twice,
but there are certain relaxations, which enforce the existence
of a single reference exclusively at the write.

2) The second approach deals with the problem at runtime
by using persistent data structures [7] which store only a
reference to a base data structure and the difference. However
this approach typically requires some kind of garbage collection
for the occurring orphaned objects. Even though these data
structures show quite good results they are still inferior to
in-place updates in most cases.

3) The third method is to perform a static code analysis to
determine when data structures can be modified in-place. In
functional as well as in dataflow languages it often depends
on the calculation order of certain variables or streams if an
update can be made in-place (see example in Figure 1). First
approaches in the field of functional languages assume a fixed
scheduling of the operations [8], [9], [10]. In [11] the benefit
of finding an optimizing schedule was described.

With approach 1) the programmer explicitly states which
variables should be implemented destructively. Note that in
stream languages (like TeSSLa) considerations about mutability
are always a matter of the schedule, which was chosen by the
compiler. This means the user has to think over all possible
schedules to decide if it is possible to choose a mutable
type for a certain variable. In this paper we show how a
combination of approaches 2) and 3) can be applied to dataflow
language implementations. The presented solution aims at
maximizing the number of mutable data structures without
manual intervention by the user.

In the field of dataflow languages one can distinguish
between single- or mono-clocked and multi-clocked ones [12],
[13]. While in single-clocked transformations every stream has
an event at every calculation step (imagine a single global
clock), in the multi-clocked case only some streams may have
an event at a certain calculation step (every stream has its own
clock indicating its events).

Working with multi-clocked stream transformations, it is
often desirable to access the last event of a certain stream if
it has no event at the current timestamp (event reproduction).
Most dataflow languages that support multi-clocked streams
bring operators for this use case (e.g. Lustre’s current or
TeSSLa’s last). However previous work on the Aggregate
Update Problem for dataflow languages did not handle such
an operator or was completely restricted to single-clocked
streams [14], [15], [5].

In this paper we provide an algorithm for the Aggregate
Update Problem. We implement our approach for the TeSSLa
language, mainly to explain the development. Since TeSSLa
is able to express every future-independent multi-clocked
stream transformation function [3], including those reproducing
events, the approach can be adapted to other common data

stream languages such as Lustre [16], Signal [17] and similar
specification languages such as Lola [18] and Striver [19].

For the development of the algorithm one has to take care
that data structures which were updated in-place are not reused
at future timestamps. Concerning stream languages this requires
a careful analysis of a stream’s triggering behavior (i.e. when
it has events) which is presented in this paper.

The concrete implementation of our algorithm translates
TeSSLa to Scala but the same scheme could also be used
for translation to other imperative languages, provided that
implementations of persistent data structures are available.

A. Related Work

The idea of translating dataflow languages to imperative
code has already been described for languages like Lustre,
Signal and similar [16], [20], [21]. The efficient combination
of calculation blocks according to their clock behavior is studied
in [20]. The immutable (a.k.a. functional) semantics of data
structures is a common property of dataflow languages but
also of functional languages. The arising problem of how such
persistent data structures can be implemented in an efficient
way, commonly known as Aggregate Update Problem [4],
has hence already been intensively studied for the field of
functional languages, but also for dataflow languages to some
degree. A good overview over approaches and related topics
in the field of functional languages can be found in [11]. In
general the three previously enumerated approaches for solving
this problem exist and have already partly been adjusted to
dataflow languages: [14] applies the idea of static analysis to
find out which data structures can be modified in-place to the
dataflow language LabView. [15] also presents an approach
in this direction, but in difference rejects compilation if a
perfect ordering so that every update is possible in-place
cannot be found. [5] also deals with the problem of copy
avoidance for arrays in a Lustre-like language. In contrast to
the other approaches they use a semilinear type system giving
the programmer the opportunity to decide which data structures
use which memory locations and hence are modified in-place.

B. Contribution

Our approach differs from the ones above in several aspects:
1) It automatically finds the optimal ordering of the stream

definitions such that the maximum number of data structures
can be implemented in a mutable way, according to our
mutability criterion. It does not require the user to define
the execution order nor to annotate which variables can be
implemented mutable.

2) It does not perform full copies but uses persistent data
structures if an in-place update is not always possible.

3) It is able to handle stream transformations which are not
restricted to a single clock and allow access to the last event
of a stream if it does not have an event at this timestamp.
Though in most dataflow languages such transformations can
be expressed (e.g. by Lustre’s current operator) the mentioned
publications are not able to detect mutability in connection
with such an operator or don’t support it at all.
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Hence, to the best of our knowledge we provide a more
general solution to the Aggregate Update Problem of dataflow
languages in the unrestricted case.

II. THE TESSLA SPECIFICATION LANGUAGE

In this section we will give a short informal introduction
to the TeSSLa language. A full definition of its syntax and
semantics can be found in [3]. In contrast to other datastream
languages like Lustre, TeSSLa operates on timed event streams.
This means there is no fixed grid of timestamps where events
can occur but every event has a timestamp attached which can
also be used for calculations. A timed event stream can be
seen as a function mapping a timestamp from a time domain
T to a value from the stream’s data domain D or ⊥ if the
stream has no event at the timestamp. For the set of all streams
over data domain D we write SD. A TeSSLa specification
defines a relation between input and output streams. Every
monotone, continuous and future-independent transformation
can be expressed by a TeSSLa specification [3]. A specification
φ consists of a set of equations assigning an expression to
every output stream name. Valid expressions are names of input
or output streams or one of the following six basic operators
applied to other expressions:

nil is the empty stream with no events. unit is a stream
that contains only a single event at timestamp 0 with the
unit value □. time(s) is a stream with an event at every
timestamp where s has an event, but with the timestamp as
value. lift(f)(s1, . . . , sn) is a stream which has an event with
value v = f(v1, . . . , vn) if v ̸= ⊥ and vi is the value of si

at this timestamp or ⊥ if si has no event. f(⊥, . . . , ⊥) = ⊥
must hold for all lifted functions. last(v, r) is a stream which
has an event every time r has one with the strictly last value
of v. If v is uninitialized (i.e. has no last value) when r has
an event the last expression also has no event. delay(d, r) is a
stream which has an event with the unit value □ t time units
after the last reset (event of r or the stream itself) if no further
resets occurred between this event and its reset and t is the
value of d at this timestamp.

Recursive definitions in the equation system are only allowed
if they go through the first parameter of a last or delay

expression, because the current value of streams defined by
one of these expressions is solely dependent on the previous
and not the current value of the streams used as their first
argument.

We further add the following syntactic sugar: A constant
value is implicitly converted to a stream with this constant value
at timestamp 0 and no other events. E.g. true equals the stream
with no events except one with value true at timestamp 0.

Using the basic operators we can also derive the util-
ity function merge: merge(x, y) := lift(fmerge)(x, y) with
fmerge(a ̸= ⊥, b) = a and fmerge(⊥, b) = b, which combines
events from two streams, prioritizing the first stream.

A TeSSLa specification is called flat, if only stream names
are used as sub-expressions inside the basic operators. Clearly,
every specification can be transformed into a flat one, by
introducing fresh identifiers for sub-expressions.

i1

i2

o

calculation
section

calculation
section

calculation
section

triggering
section

triggering
section

triggering
section

calculation
section

Fig. 2. Basic functionality of the generated monitor program: For each
timestamp where any stream bears an event the calculation section is processed.

For the example from Figure 1 the following specification re-
sults from desugaring and flattening: u = unit, ∅ = lift(f∅)(u),
m = lift(fmerge)(y, ∅), yl = last(m, i), y = lift(setAdd)(yl, i),
and s = lift(contains)(yl, i) with f∅(□) = ∅, f∅(⊥) = ⊥.

III. TRANSLATION TO AN IMPERATIVE LANGUAGE

In this section we describe how a TeSSLa specification
generally can be translated into an imperative program which
successively receives the values of input streams and cal-
culates the values of output streams. We call this kind of
program a monitor.

A TeSSLa specification defines a transformation between
input and output streams. This transformation is monotone: If
a set of input streams is related to a set of output streams,
then the extended input streams, i.e. those with the old input
streams as prefixes, are also related to extended output streams.

This behavior of TeSSLa specifications allows a monitor to
receive the input events of all input streams in a chronological
order and calculate the output events successively. Furthermore
TeSSLa allows us to calculate the events of output streams at
timestamp t, once all input events up to t have arrived, which
is called future-independent.

Therefore our generated code consists of two sections.
One for calculating the output events at a certain timestamp,
the calculation section, and one for subsequently calling the
calculation section for all timestamps, where any output stream
bares an event, we call it the triggering section.

As long as input events arrive, the triggering section
determines the next timestamp where any output stream may
carry an event and calls the calculation section to calculate the
output stream values at this timestamp and possibly print them
(see Figure 2).

In the first step the TeSSLa specification is flattened, i.e. an
equivalent specification is created where every operator does
only contain stream variables as sub-expressions. In the rest
of this paper we always refer to the flattened specification.

In our monitor program we successively calculate the current
value of all streams. Therefore we introduce a variable v for
every stream v. The type of v is the type of v.

Streams defined via a last or delay expression must store
additional information: For last expressions the value of the
last event of its first argument stream has to be stored, for
delay expressions the timestamp of the next potential event.
Therefore we introduce additional variables:

1) For every stream v used as first argument of a last

expression we introduce a variable vlast which has the type
of v and is always carrying the value of the last event of v.
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2) For every stream v defined via a delay expression we
introduce a variable vnextTs containing the next potential
timestamp of v. Its domain is T ∪ ¶⊥♢.

Every time the calculation section of our generated code
is called for a timestamp t, these variables are calculated
according to t. Every time a new input event arrives, the values
of the input stream are set accordingly, as well.

Since the calculation of variables depends on the current
value of other streams, i.e. the calculation of other variables,
it is necessary to follow a certain order in the determination
of the values. Consider again the example from Figure 1. The
current value of streams s and y at a certain timestamp t is
dependent on the current value of stream yℓ. yℓ on the other
hand is not dependent on the current value of y or s (but on
the last value of y). So our monitor has to calculate first the
value of variable yl and afterwards s and y.

For determining the order in which the stream values have
to be calculated, we use a graph-representation of the TeSSLa
specification, which will also play a role in further steps of
the translation.

Definition 1 (TeSSLa Usage Graph). Let φ be a flat TeSSLa

specification. The tuple (G, S), where G is a directed graph

G = (V, E) and S ⊆ E a set of special edges, is called usage
graph of φ, iff

– V is the set of all input and output streams of φ,

– (u, v) ∈ E, iff u is used in the expression defining v and

– (u, v) ∈ S, iff v is defined by a last or delay expression and

u is used as first parameter.

The TeSSLa usage graph of the example from Figure 1
is depicted in Figure 3. The special edges are drawn in a
dashed style. Note that for the graph generation the flattened
specification is used.

For the translation of the specification we need an order,
where all variables belonging to a certain stream are calculated
before they are used in another calculation. However, since
a last or delay expression is unaffected by the first stream’s
current event, this does not hold for streams which are used
as first argument in a last or delay (special edges). We can
define an order, matching these requirements:

yℓ y

is

m ∅ u
W

R
P P

L

Fig. 3. TeSSLa usage graph of the flattened specification from Figure 1 with
edge classification according to Definition 3.

Definition 2 (Translation Order). Let φ be a flat TeSSLa

specification with usage graph ((V, E), S). A total order (V, <)
is called translation order of φ, iff there is no (u, v) ∈ E\S

with v < u.

Such an order can easily be found by determining a
topological sorting of the graph. Such an order always exists,
since dependency cycles in a TeSSLa specification must, by

definition, go through the first argument of a last or delay

expression. However, the order is not necessarily unique.
Now, to generate the monitor program, there is code

appended to the triggering and calculation section for each
output stream following a previously defined translation order.
The concrete code is dependent on the type of expression which
is translated.

A. Calculation Section

For the calculation section the translation is straight-forward
for most operators. We give examples for lift, last and delay

in this section. Besides the already mentioned variables we
state ts to be the current timestamp for which the calculation
section is called. ⊥ is a special null value for variables. The
single operators are translated as follows:

s = lift(f)(s1, . . . , sn) is translated to
if

∨
i
si ̸= ⊥ then s := f(s1, . . . ,sn)

If any of the input streams of a lift expression has an event
at the current timestamp, the belonging function is calculated
on these streams. The result of the function application is used
for a new event on stream s. The translation of a lift expression
also requires a translation of the lifted function f to f which
is callable from the code and is done as expected.

s = last(v, t) is translated to if t ̸= ⊥ then s := vlast

If s is defined via a last expression, then stream s has the
same value as the last event of v, if t also has an event at the
current timestamp. This is done by assigning vlast to s if t
is different from ⊥.

s = delay(d, r) becomes if snextTs = ts then s := □
For all streams s which are defined by a delay expression,

the additional variable snextTs contains the timestamp where
s raises the next event; its value is calculated in the triggering
section. If the calculation section is passed at this timestamp,
s is set accordingly.

By subsequently adding up these code parts following
the determined translation order, one receives the calculation
section. With it, the current state of all output streams can be
determined for a certain timestamp t, provided that all input
stream variables represent the state at t and the slast and
snextTs variables are set correctly.

At the end of the calculation all slast variables are set for
the next calculation step: if s ̸= ⊥ then slast := s

Finally, for every stream s the variable s is reset for the
next timestamp: s := ⊥.

B. Triggering Section

The triggering section is accountable for calling the generated
calculation section for every timestamp, where any input or
output stream bears an event. In TeSSLa, streams may have
events at timestamps, where input streams also have events.
Events at other timestamps can exclusively be generated by
delay expressions. Note that this is a major difference to other
dataflow languages, where events may only occur at the ticks
of a base clock, so a dedicated triggering section is not needed
in their translation.
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In detail the triggering section works as follows: As long
as new (ordered) input events arrive at the monitor, their
timestamp, say t, is recorded and the events are stored to
the corresponding input stream variables. If the timestamp,
which has just arrived, is not equal but greater than the last
one t′, the calculation section is first triggered for t′. After
that for every delay expression in the TeSSLa specification a
timestamp ti, i ∈ ¶1, . . . , n♢, is calculated, where the delay’s
next event would occur, if no previous reset would take place.
The calculated values are then stored in the according xnextTs
variables. If min¶t1, . . . , tn♢ < t holds, the calculation section
is triggered again for min¶t1, . . . , tn♢, since one can be sure
there is no further event between t′ and min¶t1, . . . , tn♢ and
thus also no possibility to reset the corresponding delay. The
procedure is then repeated until min¶t1, . . . , tn♢ ≥ t, then the
monitor continues consuming input events. When receiving the
end of the input t is set to ∞.

By combining this triggering section with the calculation
section a TeSSLa monitor is obtained.

IV. AGGREGATE UPDATE OPTIMIZATION

As in the example from Figure 1 streams may sometimes
carry non-trivial data structures such as sets, arrays etc. When
functions that modify these data structures, such as setAdd

in the example, are lifted to such streams, the original event
on the argument stream remains unchanged. However a new,
independent event with the modified data structure arises on the
result stream. This behavior is called persistent (or functional)
semantics and is common for dataflow languages. To preserve
this semantics in the generated imperative program one might
copy these data structures before modifying them. As already
pointed out this is not necessary in the example from Figure 1
if the calculation of stream s takes place prior to the calculation
y, because in this case the modified event from stream yℓ is
not needed anymore and hence the modification can be done
in-place. This indicates that whether or not updates can be
done in-place is a matter of the chosen translation order.

Consider also the two examples from Figure 4 which are
slight modifications of our previous example. In the upper
example we have a second input stream i2. y accumulates all
events from the first input stream i1 in a set. y′ reproduces
the last event of y when a new event on i2 occurs. s finally
indicates whether the current event on i2 is contained in the set
from y′. Again all updates in this example can be done in-place
because the set from stream y is only modified to create a
new event on this stream. The old one is never accessed again
after this update, if the calculation of streams y′ and s is done
in advance. In contrast the update cannot be done in-place in
the lower example in Figure 4. There the stream s does not
only result from a read access to the set from y but from a
modification of it. After adding 4 to the set ¶1♢ exactly this set
is required again in the next timestamp to add 1. This makes a
direct modification of the set impossible. It has to be copied.

If every update of a data structure can be done in-place we
use mutable data structures in our generated code, otherwise
persistent ones. In the following we present our algorithm for

Input i1 1 2

Input i2 4 1

last(merge(y, ∅), i1) = yℓ ∅ {1}

lift(setAdd)(yℓ, i1) = y {1} {1,2}

last(y, i2) = y′ {1} {1}

lift(contains)(y′, i2) = s ff tt

Input i1 1 2

Input i2 4 1

last(merge(y, ∅), i1) = yℓ ∅ {1}

lift(setAdd)(yℓ, i1) = y {1} {1,2}

last(y, i2) = y′ {1} {1}

lift(setAdd)(y′, i2) = s {1,4} {1}

Fig. 4. Two TeSSLa specifications with complex data types.

determining which data structures can be implemented in a
mutable way and which not. The presentation of the algorithm
is structured as follows:

A. The foundation of the algorithm is the specification’s
usage graph. In the first step we introduce a classification of
the graph’s edges.

B. For our analysis it is crucial to know which streams may
carry the same data structure, therefore we define a notion of
aliased stream variables.

C. In order to do this it is necessary to statically know which
streams imply events on which other streams. We determine
boolean formulas for all streams indicating their triggering
behavior to reason about implications of these streams.

D. Based on this we give a criterion which variables may
be implemented mutable and which not.

E. Finally we present an algorithm to find the optimal
translation order (according to our criterion), i.e. the one with
the most variables implementable in a mutable way.

A. Edge Classification

We start with classifying the edges of the usage graph
(Definition 1) as follows. Note: we only do that for edges
passing complex data types e.g. sets, where we have to decide
over mutability. Other edges are not categorized.

Definition 3 (Edge Classes). Let (u, v) be an edge in the

TeSSLa usage graph. If the stream belonging to u has a complex

datatype, we call (u, v) a

– Write edge, if the expression which defines v performs a

write access to the current value of stream u.

– Read edge, if the expression which defines v performs a

read access to the current value of stream u.

– Last edge, if v is defined by a last expression, where u is

used as first argument.

– Pass edge, if the value of stream u may be passed to v

unchanged (e.g. by a merge expression).
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For an edge (u, v) we write u
W
−→ v, u

R
−→ v, u

L
−→ v,

u
P
−→ v to indicate these edge types.
For combination of edges we use regular expressions. E.g.

u
W +L
−−−→ v indicates a write or last edge. u

P ∗L
−−−→ v means a

path of arbitrary many pass edges followed by a single last

edge and u
W +

−−→ v a path of arbitrary many write edges but at
least one. An example of the edge classification can be found
in Figure 3.

B. Aliasing Analysis

The last expressions are able to reproduce the same event
more than once in the future. This is a problem if the reproduced
data structure gets modified after the first reproduction. See for
example the lower part of Figure 4. There stream y′ reproduces
the event from y twice though it is already modified after
the first reproduction (and hence cannot be mutable). We
call last expressions which may reproduce events from their
value stream more than once replicating lasts. In the following
we define the triggering behavior of streams, i.e. the set of
timestamps where the streams have events and based on this
replicating lasts.

Definition 4 (Triggering Behavior). Let φ be a specification

and S the set of all streams in φ. For a tuple of concrete input

streams I ∈ SD1
× · · · × SDn

, the function evI,φ : S → 2T

yields the set of all timestamps where stream s has an event:

t ∈ evI,φ(s) ⇐⇒ s(t) ̸= ⊥.

Definition 5 (Replicating Last). Stream s from specification

φ defined as s = last(v, t) is called replicating last, iff

∃I : evI,φ(s) ̸⊆ evI,φ(v).

That means we define a last as replicating if it may produce
an event without a new event arriving at its value stream. Based
on this classification we define a notion of aliasing variables.
First, two variables are considered as aliasing-safe if we can
prove they never carry the same event at the same timestamp:

Definition 6 (Aliasing-Safe Variables). Two variables u, v from

a specification φ are aliasing-safe, u ̸≃ v, if for all common

ancestors c and all paths pu and pv from c to u and v (either

pu from c to u and pv from c to v or pu from c to v and pv

from c to u) in the usage graph we can find

pu = c
(P ∗L)+

−−−−−→ u1
(P ∗L)+

−−−−−→ . . .
(P ∗L)+

−−−−−→ un
(P ∗L)+

−−−−−→ u and

pv = c
P ∗L
−−−→ v1

P ∗L
−−−→ . . .

P ∗L
−−−→ vn

P ∗

−−→ v such that

– ∀i∈¶1...n♢ : ∀I : evI,φ(ui) ⊆ evI,φ(vi) and

– all lasts from pv are non-replicating.

According to this definition, two variables u and v are
aliasing-safe if they either have no common ancestor or the
paths from their common ancestor are of different lengths
(counting the last nodes). If they have no common ancestor,
they can never carry the same event. If u and v have a common
ancestor c, but the path from c to u contains at least one more
last node, we can be sure the event from c always reaches u at
a later timestamp than v. For this consideration of course we
also have to make sure the triggering behavior of the last nodes

c

u1 u′

1 u′′

1
u2 u

v1 v

L
L

L
P L L L

Fig. 5. TeSSLa usage graph where v and u are aliasing safe. x⇝y indicates
∀I : evI,φ(x) ⊆ evI,φ(y)

from the two paths is not unrelated. n last nodes on the longer
path must imply triggering of the corresponding nodes on the
shorter path to make sure the events on the longer path cannot
outpace the ones on the shorter path. Therefore we check that
the set of timestamps when ui has an event (evI,φ(ui)) is a
subset of the timestamp set for vi (evI,φ(vi)) for all possible
inputs, evI,φ(ui) ⊆ evI,φ(vi).

See for example the usage graph from Figure 5. If the
event from c gets reproduced in u1 it is also reproduced in v1

because of the triggering implication: If u1 has an event then
also v1. The event from u1 could then be handed through to
u′′

1 without an event in v. However if it is further passed to
u2 the very same element must also be reproduced in v2 = v,
again because of the triggering implication. This means if an
event from c finally reaches u it has already been in v at a
previous timestamp. Because all the lasts on the path to v were
non-replicating this event may also not be reproduced again
and so v and u can never carry the same event at the same
timestamp. They are aliasing-safe.

If we cannot prove variables u, v to be aliasing-safe, we
consider them as potential aliases u ≃ v.

C. Static Approximation of the Aliasing Analysis

Determining evI,φ(v), i.e. the set of timestamps where
a certain stream has events is of course highly dependent
on the input data. Even reasonings about input-independent
containment of such sets are a semantic property of a TeSSLa
specification and the lifted functions and hence undecidable.
Thus for deciding which variables are potential aliases we use a
relaxation of this rule: We utilize an algorithm to determine an
over-approximation by calculating formulas ev′

φ(u), ev′
φ(v), s.t.

ev′
φ(u) → ev′

φ(v) ∈ TAUT ⇒ ∀I : evI,φ(u)\¶0♢ ⊆ evI,φ(v).
In the final algorithm this approximation may cause some
variables to be implemented with persistent data structures
while mutable ones would be possible. This approximation is
valid because usage of persistent data structures always leads
to a correct, although possibly slower, implementation. We
exclude 0 from the left set since we check the containment
exclusively for last streams on the left side, which never have
events at timestamp 0.

For the set of all stream names V the approximation
ev′

φ : V → B
+(V ) maps a stream name to a positive boolean

formula of stream names, i.e. a formula with conjunctions
and disjunctions of sub-formulas but without negations. This
formula expresses when stream v has an event in relation to
events on input streams and other streams where we are not
able to determine an exact formula describing when it has
events.
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ev′
φ(s) for a stream s ∈ V is determined as follows:

– ev′
φ(s) = false if s is defined as nil

– ev′
φ(s) = ev′

φ(x) if s is defined as time(x)
– ev′

φ(s) = ev′
φ(x1) ∧ · · · ∧ ev′

φ(xn) if s is defined as
lift(f)(x1, . . . , xn) and
f(v1, . . . , vn) ̸= ⊥ ⇐⇒ ∀vi : vi ̸= ⊥

– ev′
φ(s) = ev′

φ(x1) ∨ · · · ∨ ev′
φ(xn) if s is defined as

lift(f)(x1, . . . , xn) and
f(v1, . . . , vn) ̸= ⊥ ⇐⇒ ∃vi : vi ̸= ⊥

– ev′
φ(s) = ev′

φ(y) if s is defined as last(x, y) and x is always
initialized.

– ev′
φ(s) = s in all other cases

nil never has an event, hence its corresponding formula is
false. time(y) and last(x, y) always have an event, iff y has
one, though for last this only holds if we can be sure that the
stream x is always initialized, which is the standard case. It can
easily be checked by a simple graph analysis where it is tested
if every value parameter of a last node has a direct connection
to a unit node without a filtering operation in between.

For the lift we distinguish two cases:
1) An event is produced iff all of the inputs have an event.

This is the case for all basic operators (+, ∗, ...).
2) An event is produced iff any of the inputs has an event.

This is for example the case for fmerge from Section 2.
Most built-in functions correspond to one of these groups and
the correspondence is known a-priori. However the accuracy
of the approximation could be further extended by determining
general boolean formulas for arbitrary functions.

All other expressions, including input streams, delays etc.,
are not expressed as formulas of other streams but build atoms
of the formulas (see the last rule).

To check if an event on stream u implies an event on stream
v one can check if ev′

φ(u) → ev′
φ(v) is a tautology. In that

case v always has an event if u has one. The other direction
does not hold, this may lead to missed optimizations but not
to faulty behavior of the monitor, as we pointed out above.

Applying the function ev′
φ on the streams yℓ and m from

the example in Figure 1 (after flattening) we get ev′
φ(yℓ) =

ev′
φ(i) = i. And for m: ev′

φ(m) = ev′
φ(y) ∨ ev′

φ(∅) =
(ev′

φ(yℓ)∧i)∨ev′
φ(u) = (i∧i)∨u. The formula i → (i∧i)∨u

is a tautology, which means every time yℓ has an event the
same holds for m and so yℓ is a non-replicating last.

D. Mutability Criterion

Based on the notion of potentially aliasing variables we now
define a mutability set Mφ for a flat TeSSLa specification φ.
Such a set contains all variables which may be implemented
in a mutable way.

Definition 7 (Mutability Set). Let φ be a TeSSLa specification,

(G, S) with G = (V, E) the corresponding usage graph and

(V, <) a translation order. The set Mφ ⊆ V is called mutability
set for specification φ, if

1) There are no nodes s, s′, t, t′ with t ̸= t′, s ≃ s′ and

s
W
−→ t, s′ W +L

−−−→ t′ in G and s ∈ Mφ (no double

write/reproduction)

2) There are no nodes s, s′, t, t′ with s ≃ s′ and s
W
−→ t,

s′ R
−→ t′ with t < t′ in G and s ∈ Mφ (no read after

write)

3) There are no edges s
P +W +L
−−−−−−→ t with s ∈ Mφ ⇐⇒ t ̸∈

Mφ (consistent mutability)

s

∈ Mφ

s′

t t′

≃

̸=

W W + L

s

∈ Mφ

s′

t

t′

≃

<

W
R

s ∈ Mφ

t ̸∈ Mφ

P + W + L

1. double write/

reproduction
2. read

after write

3. inconsistent

mutability

Fig. 6. Forbidden patterns for a mutability set Mφ.

This criterion is straight forward: One may not write, read
or reproduce a mutable data structure at a later timestamp,
if it was already written. The last rule is included because
in our approach a conversion from mutable to persistent data
structures is very costly. So if one stream is implemented with
persistent type all streams which get an event passed from it
also have to be implemented in a persistent way. The three
rules are visualized in Figure 6.

We call a mutability set Mφ optimal, if there is no other
mutability set M ′

φ with ♣M ′
φ♣ > ♣Mφ♣. Note that such an

optimal mutability set is not necessarily unique.

E. Overall Algorithm

We now present an algorithm for finding the maximal set
of variables in our specification that can be implemented in a
mutable way. Finding the optimal mutability set depends on
the chosen translation order. For our example in Figure 1 two
possible translation orders yielding different mutability sets are
depicted in Figure 7. Since only rule 2 in Definition 7 depends
on the translation order, we first consider rules 1 and 3 and
then find an optimal translation order fulfilling rule 2.

The algorithm initializes an empty set P ⊆ V holding all
variables that have to be implemented in a persistent way and
fills this set throughout its execution. A simplified pseudo-code
representation can be found in Figure 8. Our algorithm is
divided into four major steps:

Step 1. According to rule 3 of Definition 7 (consistent
mutability) there are stream variables in the specification which
either have to be implemented persistent all together or mutable
to avoid type conversions in the generated code. So in the first
step we determine these variable families. For managing these
sets a Union-Find data structure is beneficial.

yℓ y s ∅ m
W

R P

P
L

yℓ s y ∅ m

W

R

P

P
L

Fig. 7. Two possible translation orders for the example from Figure 1 (left
to right, flattened). Left Mφ = ∅ because the read access of yℓ is after its
write, but right yields Mφ = ¶∅, m, y, yℓ♢. The dotted blue line indicates
a read-before-write constraint. For better readability nodes i and u are not
depicted.
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We iterate over all pass, write and last edges (u, v) and
union together their families. In the following steps we always
add whole variable families to P .

Step 2. In the second step we check rule 1 of Definition 7 (no
double write/reproduction). Therefore we iterate over all write
edges in our graph. For each write edge u

W
−→ v we follow

paths of last and pass edges leading to u in the inverse order
and from all nodes we traverse we follow last and pass edges
downwards again to find streams potentially carrying the same
data structure at the same timestamp. For this we apply the rules
for aliasing from Definition 6 using the over-approximation of
the set inclusion of the ticking behavior.

If during stepping down we reach another write or last edge
u′ W +L

−−−→ v′ with u ≃ u′ we include the variable family of u

to P due to violation of rule 1 from Definition 7.
Step 3. At last we also have to care about rule 2 of

Definition 7 (no read after write). We do this in the following
way: First for every write edge u

W
−→ v we again identify the

aliases u′ of u (In the pseudo-code we combined the alias
search of step 2 and step 3). Then, if an edge u′ R

−→ v′ with
u ≃ u′ exists, we memorize the read-before-write constraint
(v′, v) in a set E′, since the variable family of u can only be
mutable if the read operation from v′ is calculated prior the
write operation of v in the generated code.

Step 4. Finally, after the whole graph is traversed we add
the memorized read-before-write constraints (E′) as additional
edges to the usage graph (see blue edges in Figure 7). After
this, every cycle in the TeSSLa usage graph without last/delay
edges (S) runs through one of these added edges indicating
a read-before-write constraint. If the graph does not contain
cycles, a valid translation order can be found by a linear sorting
of the graph. We now want to extend our set P to P ′ with
as less variables as possible such that after removing all read-
before-write edges where the family of the written node is in
P ′ (persistent structures may be written before they are read)
the graph is cycle free.

To do this we combine the edges (v′
i, vi) where the writ-

ten/read variables belong to the same variable family, which is
the family of vi, to sets and weight every set according to the
number of variables contained in the family. Then we search
the set of edge sets with the lowest accumulated weight, such
that the graph is cycle-free after removing these edges. We
add the variable families that belong to the removed edges to
P and receive the minimal set P ′ this way. Finally we return
Mφ = V \P ′ with V being the set of all variables.

1) Correctness and Optimality: The given algorithm is
correct in the sense that the resulting mutability set Mφ suffices
Definition 7 and optimal as it yields the greatest possible
mutability set. Note that the greatest possible mutability
set according to Definition 7 not necessarily contains every
variable that can principally be implemented mutable. This is
undecidable in general.

Correctness follows from the following consideration. If the
resulting mutability set Mφ would not be correct, then at least
one rule of Definition 7 would have to be violated:

Input: TeSSLa usage graph ((V, E), S)
P ← ∅ /* persistent vars */ , E′ ← ∅ // edges from read/write constraints

F ← new UnionFind(V ) // families of variables for consistent mutability

for each u
W +P +L
−−−−−−→ v ∈ E do F .union(u,v) // Step 1

for each u
W
−−→ v ∈ E do // Traverse all write edges for Step 2 and 3

// Go up to all ancestors c and down to all descendants u
for each ancestor c of u reachable with P/L edges do

for each u′ ∈ V reachable from c with P/L edges do

pu = c
(P +L)∗

−−−−−→ u, pu′ = c
(P +L)∗

−−−−−→ u′

if u is potential alias of u′ then // Perform check by paths analysis

// Step 2: Add all variables from family of v′ to P

if ∃v′ ∈ V \¶v♢ : u′
W +L
−−−−→ v′ ∈ E then P ← P ∪ F (v′)

for each v′ ∈ V with u′
R
−→ v′ ∈ E do

E′ ← E′ ∪ ¶(v′, v)♢ // Step 3

Find minimal P ′ ⊇ P s.t. // Step 4

G′ = (V, (E ∪ E′)\(S ∪ ¶(u, v) ∈ E′ ♣ F (v) ⊆ P ′♢)) is cycle−free
Output: Mφ = V \P ′

Fig. 8. Pseudo-code of the combined algorithm.

In step 2 of the algorithm we iterate through every write
edge u

W
−→ v. Then we find all potential aliases u′ of u. Since

potential aliases are always connected by a common ancestor
(Definition 6) stepping up and down in the graph, as we do it
in our algorithm, will yield us all these aliases. If u′ is written
or reproduced by a last edge we add the variable family of u

and u′ to our set of persistent variables P , so they will not be
in Mφ and hence rule 1 of Definition 7 cannot be broken.

For every write edge u
W
−→ v we also identify potential

aliases u′ of u in step 3, where u′ is read by another node v′:
u′ R

−→ v′. For each of these read nodes v′ we add an additional
edge (v′, v) to our final graph in step 4. From step 4 we get
an ordering of the graph s.t. all read nodes can be ordered in
front of the corresponding write nodes if the accessed variable
is still in Mφ. Hence a breach of rule 2 is impossible as well.

Finally rule 3 cannot be violated since we only add whole
variable families to our sets P and P ′, and in step 1 of the
algorithm we union together all nodes connected by pass, write
and last edges to a variable family.

So we conclude our algorithm yields a valid mutability set
according to Definition 7. The returned set is also optimal:
In the algorithm we add the variable family of a variable to
the set of persistent variables P , if and only if this variable
violates rule 1 or 3. It is not possible to make any of these
variables mutable, no matter of the chosen ordering, since the
concerned rules 1 and 3 are independent of the ordering. So
these variables are never contained in any mutability set. In
the fourth step we also add variable families to the persistent
set P ′, where a read-before-write constraint is violated for
our chosen ordering. However we choose exactly the ordering
which implies as less as possible variables to be added to P ′

among all possible orders. Hence our set P ′ is as small as
possible, while the returned mutability set is as big as possible.

Summarizing, the algorithm yields a correct and minimal
mutability set according to Definition 7. Hence implementing
the data strucures from this set in a mutable way does not lead
to incorrect behavior of the generated monitor.
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2) Complexity: The individual steps of the algorithm
are located in different complexity classes. Those outside of
complexity class P are the implication check of two streams
used in the aliasing analysis in step 2,3 and finding the optimal
ordering in step 4.

The implication check of two streams reduces to the
implication check of two positive boolean formulae in our
algorithm. This problem is known to be CONP complete [22].
However the formulas may have an exponential size in terms
of the specification length in the worst case.

Finding the optimal ordering lies in NP since one can check
if a better solution than a given one exists by guessing a set of
edges to remove and checking if this yields a higher number of
mutable variables. The problem is further NP complete which
can be shown by reduction from the very similar Feedback-
Arc-Set problem [23].

V. EVALUATION

We have implemented the algorithm as described above
in a TeSSLa-to-Scala compiler. We use the standard Scala
mutable and persistent data structures. We have evaluated our
approach both on generic synthetic examples, where random
input data is produced directly by the generated monitor, and
in the second part on four real-world specifications and data.
We use the synthetic evaluation to examine which impact the
size of the data structures and length of the input trace have on
the speedup. The real-world scenarios are included to evaluate
the performance-gain in practice. Compilation took less than
half a minute for all mentioned specifications. We ran our
measurements on a 64-bit Linux with an Intel Core i7 with
manually fixed clock-rate of 2 GHz and 8 GB RAM.

In the following we compare the optimized monitors which
use mutable data structures with the unoptimized monitors
which use exclusively persistent data structures. Those can be
seen as baseline since they are the natural choice when no
dedicated optimization algorithm is used.

A. Evaluation on Synthetic Data

These typical use cases may need unbounded data structures:
Seen Set. A set keeps track of values that have occurred in

the past. If the new value is already contained in the set, it
is removed, if not it is added. Additionally the specification
prints out whether the element has already been contained.

Map Window. We store the last n data values which occurred
on a stream. In our implementation we use a map as a ring
buffer, depicting a position index to its value. Further we print
out the nth last value at every new input that arrives.

Queue Window. We implemented the same behavior as in
Map Window but with a queue data structure where every new
input event is enqueued at back and the first element of the
queue is printed and removed.

We use these specifications since they are standard use cases
of the mentioned data structures without additional code parts
that do not rely on data structures. Thus the results give an idea
of the maximal reachable speedup through the optimization
and how it differs among the supported data structures.

As one would expect, the runtime difference between the
optimized and the non-optimized monitor depends on how big
the data structures get. Therefore we examined three variations
of the upper specifications where the data structures only grow
up to a certain size: We used a variation for small (max.
10 elements), medium (max. 200 elements) and large (max.
10,000 elements) data structures for every specification. We
ran the examples for sample traces of length 104 to 109. For
the examples with small data structures even up to length 1010.
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Fig. 9. Comparison of the measured speedups for different specifications and
data structure sizes.

Figure 9 depicts the speedups of the optimized over the
non-optimized implementations.

As Scala is compiled to Java bytecode the generated monitor
is optimized during execution by the JVM’s JIT compiler. This
effects a non-linear development of the speedups with growing
execution time and trace size. Since the executions also contain
some non-deterministical influences, e.g. garbage collection,
we have taken the median of three runs for the calculation
of the speedup. Figure 9 show the speedup for the longest
evaluated trace length, where it has already quite stabilized.

In general one can see that the speedup is higher for
large data structures than for small ones. This is due to the
growing overhead of modifying big persistent data structures
in comparison to in-place modification of mutable ones. The
highest speedup can be reached for the Seen Set example
with almost 5 for large sets. For the other structures we reach
a maximum speedup of 3.3 (Map Window) and 1.8 (Queue
Window), again for the large data structures.

For medium and small data structure sizes the speedup is
lower. The one for medium ones lies between 1.5 and 3.9 while
for small data it is between 1.5 and 2.1. For all data structure
sizes the highest speedup is always achieved for the Seen Set
example, the lowest for the Queue Window.
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Fig. 10. Seen Set for small, medium and large set sizes (left to right) for the
optimized and the non-optimized case.

In Figure 10 the runtime of the optimized and non-optimized
Seen Set example is depicted over time. In all cases (small,
medium, large data sets) the speedup stabilizes around a trace
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length of 106. Furthermore one can observe that the runtime
of the optimized monitor is hardly influenced by the set size,
while in the non-optimized case it is. This explains why the
speedup is growing with the data structure sizes.

However, for the Queue Window example this effect is
weaker, which results in a more constant speedup for all
data structure sizes. This is caused by the different persistent
implementations of set and queue: The persistent queue is
realized as two lists, one is used for appending elements,
the other one for removing elements; if the list for removing
elements runs empty the other one is reverted. In difference to a
persistent set which is implemented as an adjusted Hash-Array
Mapped Trie (HAMT) [24], [25] this requires less restructuring
after a modification. Hence the persistent queues are more
efficient compared to their mutable counterpart than sets.

B. Evaluation on Real-World Scenarios

In the previous section we examined how the speedup alters
for different trace lengths and data set sizes on synthetic
specifications. In this section we show how big the speedup
of the optimized compiler is for real-world applications.

We examined four different specifications on two data
sets. The existing specifications were formalized in TeSSLa
specifically for this evaluation. The first two specifications
were executed on a 14 GB database log from the Runtime
Verification Competition 2014 [26], originally from [27]. The
log contains information about database operations performed
on a distributed database system (inserts, deletes, updates, script
executions etc.) in about one year. The data originates from
Nokia’s Lausanne Data Collection Campaign 2010 [28], [29].
The second two specifications belong to energy consumption
analysis of a university building that was monitored in the
ReNuBiL (https://renubil.de) project. Aim of this project is to
decide when unneeded power from the university net can be
fed into batteries of a car-sharing network or sourced from
there in case of a higher need. Since we only had log data of
about one month we extended the data to one year by repeating
the measured data points. The four specifications are defined
as follows:

DBTimeConstraint. Here we check the constraint from the
RV Competition [26]: If data was added to database db3 then
it had to be added to db2 during the last 60 seconds. We check
this by maintaining a map with the insertion times of db2.

DBAccessConstraint. This checks a typical database con-
straint: A record may not be accessed before it was inserted or
after it was deleted in a database. We use a set of all currently
inserted IDs to check this.

PeakDetection. In this specification we detect peaks in the
current power consumption data which may distort further
calculations on the data. Therefor we check if a value is 40 %
lower or higher than the medium of the values from a quarter
hour ago to a quarter hour in the future. For this we require a
queue to calculate the moving average.

SpectrumCalculation. Here we calculate a spectrum how
the values of the power consumption are distributed in a map

TABLE I
MEASURED RUNTIMES AND SPEEDUPS ON THE REAL-WORLD SCENARIOS

Specification Op. Non-op. Speedup

DBTimeCons. 171 s 216 s 1.3
DBAccessCons.(full) 233 s > 1 h > 15.5
DBAccessCons.(33 %) 59.2 s 127 s 2.1
PeakDetection 7.56 s 14.0 s 1.9
SpectrumCalc. 1.04 s 2.07 s 2.0

data structure which are in the end used to calculate how often
the measured power consumption is above a certain threshold.

Our measurements on these real-world scenarios are shown
in Table I (median over three runs). The measured speedups are
mostly smaller than the maximal speedups that were measured
in the synthetic setting but still significant. This is due to the
constant time which is required for reading from the hard drive
(70 s for the first two specifications) and a larger amount of
calculations which are not related to data structures. The input
format of the database log is more complex as it contains
record of varying type and size and requires more parsing than
the input data for the latter examples, which only consists of
timestamp and data value.

For the second specification DBAccessConstraint we ran
the specification also on 33 % of the trace to keep the data
structures smaller. For the optimized version it was no problem
to check the full trace, it terminates after 3.9 minutes. For the
unoptimized monitor, the memory consumption grew rapidly,
probably because of garbage collection trailing behind. The
operating system of our test environment started swapping and
the monitor did not terminate within one hour.

VI. CONCLUSION

In this paper we showed an optimization of code generated
from a TeSSLa specification by the usage of mutable data
structures where possible and persistent ones in the other cases.
By this we have combined two traditional approaches for the
Aggregate Update Problem: Static Analysis for finding data
structures that can be directly mutated and the use of persistent
ones. TeSSLa has, like other data flow languages, the possibility
to access past events more than once in future timestamps. This
has to be taken in account to avoid the access of data structures
after their modification. While traditional approaches restricted
the language to avoid such scenarios, we presented an algorithm
to check whether an event is replicated and written more than
once in the future.

Our algorithm is based on the analysis of the streams’
triggering behaviors and checking implications on them. Since
this is in general undecidable, we presented an approximation,
that is CONP-hard. Also the finding of a perfect translation
order is NP-complete. However for typical specifications our
implementation showed no unusual long compilation time. We
have implemented our optimized translation and evaluated it
on several examples where it showed a significant performance
gain. As such, we presented a viable compiler optimization
based on static analysis.
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ARTIFACT APPENDIX

A. Abstract

Our artifact is packaged as a Docker image for x86-64
architectures. It provides shell scripts to compile and execute
the synthetic as well as the real-world benchmarks described
in the paper. In case of the synthetic benchmarks the traces are
generated in memory during the benchmark’s execution. For
the real-world benchmarks the real-world traces are included
in the image. The artifact further contains the source code of
the implemented compiler phase and additional examples.

B. Artifact Check-List (Meta-Information)

• Algorithm: Code generation from TeSSLa specifications1,
Aggregate Update Problem

• Program: TeSSLa compiler

• Compilation: Scala compiler, sbt (contained in the
Docker image)

• Transformations: Optimization implemented as a
TeSSLa compiler phase

• Binary: Optimized TeSSLa compiler included as binary,
runtime environment provided as Docker image

• Data set: Synthetic data generated at runtime, Nokia (RV
competition) and ReNuBiL traces provided in the Docker
image

• Run-time environment: JVM in the Docker image

• Hardware: x86-64 architectures

• Execution: Shell scripts provided in the Docker image

• Output: Measured runtime and output is printed to stdout

• Experiments: Synthetic and real-world examples as
described in the paper.

• How much disk space required (approximately)?:

15 GB

• How much RAM required (approximately)?: Please
provide at least 10 GB RAM to the Docker image,
otherwise it might crash.

• How much time is needed to prepare workflow

(approximately)?: You need to install Docker and
download the provided Docker image.

• How much time is needed to complete experiments

(approximately)?: 10 hours

• Publicly available?: The Docker image is publicly avail-
able on Zenodo including the source code, the benchmark
scripts and the real-world trace data.

1https://www.tessla.io/

C. Description

1) How Delivered: Our artifact is packaged as a Docker
image for x86-64 architectures. It provides shell scripts to
compile and execute the synthetic as well as the real-world
benchmarks described in the paper.

2) Hardware Dependencies: Our artifact is packaged as a
Docker image for x86-64 architectures. As the image contains
the real-world trace data, it is approximately 15 GB large if
extracted. Please provide at least 10 GB RAM to the Docker
image, otherwise it might crash.

3) Software Dependencies: Our artifact is packaged as
a Docker image. Please ensure that you use at least Docker
version 20 or newer. The docker image contains all further
software dependencies and provides shell scripts to execute
the benchmarks.

4) Data Sets: For the synthetic benchmarks the traces are
generated in memory during the benchmark’s execution. For
the real-world benchmarks the traces are included in the image.
See section V of the paper for a discussion of the different
data sets of the synthetic and the real-world benchmarks.

D. Installation

1) Download the Docker image archive
aggregate_update_artifact_ubuntu.tar.gz

from https://zenodo.org/record/5710526#.YZagm3vMJgc.
2) Load the Docker image archive: docker load -i

aggregate_update_artifact_ubuntu.tar.gz

3) Ensure that Docker allocates sufficient memory: Please
provide at least 10 GB RAM to the Docker image,
otherwise it might crash.

4) Start the Docker image: docker run -ti

aggregate_update_artifact_ubuntu

E. Experiment Workflow

• The synthetic benchmarks Queue Window, Map

Window and Seen Set are provided in the directory
/app/art-benchmarks. The script runAll.sh

executes all benchmarks described in the paper. The
runtimes of the optimized and the non-optimized
executions for the different benchmarks, different trace
lengths and different data structure sizes (small, medium
and large) are subsequentially printed to stdout. The
TeSSLa monitors are provided pre-compiled in the Docker
image, but you can also use the script compileAll.sh
in the same directory to compile them manually from the
specifications.

• The Nokia benchmark (RV competition) is provided in the
directory /app/real-world-scenarios/Nokia.
The two subdirectories accessConstraint

and timeConstraint contain the benchmarks
DBAccessConstraint and DBTimeConstraint, respectively.
Each contains a script run.sh which compiles the
TeSSLa monitors from the TeSSLa specifications
and executes them on the traces contained in the
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directory, too. The runtimes of the optimized and the
non-optimized executions as well as the monitor outputs
are subsequentially printed to stdout. (Note: Make sure
for this experiment, Docker has access to about 10 GB
RAM)

• The ReNuBiL benchmark is provided in the directory
/app/real-world-scenarios/Renubil.
The two subdirectories PeakDetection and
Spectrum contain the benchmarks PeakDetection

and SpectrumCalculation, respectively. Each contains
a script run.sh working as described for the Nokia
benchmark above.

F. Evaluation and Expected Result

As described in the previous section the benchmarks measure
the runtime and print it to stdout. The speedups follow from the
runtime and should roughly match those discussed in section V
of the paper.

G. Experiment Customization

For all the benchmarks mentioned in the previous section the
TeSSLa source code is provided in the mentioned directories.
It can be tweaked and the monitor can be recompiled as
described above. Further example specifications with complex
data structures are located in the src/examples directory.

H. Notes

For further instructions on how to run the benchmarks, adjust
the experiments and compile the TeSSLa compiler phase from
scratch see the README.md provided in the Docker image.
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