q

Check for
updates

TeSSLa — An Ecosystem for Runtime
Verification

Hannes Kallwies'(®) Martin Leucker!, Malte Schmitz', Albert Schulz?,
Daniel Thoma!, and Alexander Weiss?

! Institute for Software Engineering and Programming Languages,
University of Liibeck, Liibeck, Germany
{kallwies, leucker,schmitz, thoma}@isp.uni-luebeck.de
2 Accemic Technologies GmbH, Kiefersfelden, Germany
{aschulz,aweiss}@accemic.com

Abstract. Runtime verification deals with checking correctness proper-
ties on the runs of a system under scrutiny. To achieve this, it addresses
a variety of sub-problems related to monitoring of systems: These range
from the appropriate design of a specification language over efficient
monitor generation as hardware and software monitors to solutions for
instrumenting the monitored system, preferably in a non-intrusive way.
Further aspects play a role for the usability of a runtime verification
toolchain, e.g. availability, sufficient documentation and the existence of
a developer community. In this paper we present the TeSSLa ecosystem,
a runtime verification framework built around the stream runtime ver-
ification language TeSSLa: It provides a rich toolchain of mostly freely
available compilers for monitor generation on different hardware and soft-
ware backends, as well as instrumentation mechanisms for various run-
time verification requirements. Additionally, we highlight how the online
resources and supporting tools of the community-driven project enable
the productive usage of stream runtime verification.

1 Introduction

Runtime verification is the discipline of computer science that develops methods
for verifying whether a system behavior adheres to its specification. To this extent
the given specification in some specification language is typically translated into a
monitor that analyzes the behavior in question. The analysis may be performed
online, while the system is executing, or it may be analyzed offline when for
example the trace is pre-recorded [1].

While the heart of a runtime verification framework consequently consists
of the specification language itself and its synthesizers deriving monitors from
given specifications, a practically viable tool suite has to support in many further
aspects. One of the main challenges is how to get the observation of the system

© The Author(s) 2022
T. Dang and V. Stolz (Eds.): RV 2022, LNCS 13498, pp. 314-324, 2022.
https://doi.org/10.1007,/978-3-031-17196-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17196-3_20&domain=pdf
https://doi.org/10.1007/978-3-031-17196-3_20

TeSSLa — An Ecosystem for Runtime Verification 315

under consideration. Most often, observing a system may slow it down or, more
generally, may affect its timing. Even more, the monitor may affect the timing
of the overall system. This may lead to both false positive and false negative
verdicts which should of course be avoided.

Another aspect is the concrete application scenario. Runtime verification
may be used as a form of debugging, for finding errors in a given system, or
for showing (statistically) that the system is indeed correct. Depending on the
application scenario, supporting tools either have to provide a quick turnaround
time (i.e. the time to observing a new execution of the system once the spec-
ification has changed), or, have to be extremely efficient to support long-term
observations. Finally, runtime verification may also be used for life-long super-
vision of the underlying system (and enforcing correctness of the system) such
that the whole runtime verification machinery becomes a part of the system
which, again, requires different properties to be fulfilled. An overview of the gen-
eral stream runtime verification architecture with the required components and
involved configuration documents, which are subject to these considerations is
shown in Fig. 1.

However for practical applications, it is not only important to get the system
right but likewise to get the specifications right. As such, supporting tools for
writing meaningful specifications are helpful. Last but not least, a vivid commu-
nity and open-source tools are a further plus when using runtime verification in
industrial settings.

H—=—B

Source Event Specification
Code Declaration g

* Events A Verdict
2 A

Executable Observer Monitor

Fig. 1. General architecture of stream runtime verification.

Altogether we see that from a theoretical point of view runtime verification is
often simplified to synthesizing monitors for your specification formalism, while
a practically viable runtime verification framework has to meet a variety of
different requirements and needs a variety of supporting tools.

In the following we focus on stream runtime verification (SRV) which has
been pioneered by the specification language LOLA [2]. Later on RTLola [3],
Striver [4] and TeSSLa [5,6] emerged. In this paper we will present TeSSLa’s dif-
ferent compiler backends and supporting tools to meet the various requirements
of the runtime verification process discussed above. While the TeSSLa language

316 H. Kallwies et al.

itself [5,6] and some of its synthesizers [7,8] have been described before, this
paper describes mainly the TeSSLa tool suite as a whole, which aims supporting
software engineers and testers to achieve efficient and powerful verification.

This paper is organized as follows: In Sect.2 we briefly recall the TeSSLa
language by providing a specification that can be used for monitor synthesis. In
Sect. 3 we give a broad overview of the backends such monitors may be compiled
to. Section 4 presents the different instrumentation approaches that are compat-
ible with the TeSSLa framework. In Sect.5 we finally give an overview about
additional tools and aspects connected to the TeSSLa ecosystem. We conclude
the paper in Sect. 6.

2 The TeSSLa Specification Language

This section presents the TeSSLa language on the basis of an example to give a
rough impression of the language features supported there: The specification in
Listing 1.1, used as running example throughout the paper, checks that the time
that passes between the activation of brakes of an automotive system and the
reading of the brake sensors (which are used to supervise the braking process)
is less than or equal to 4 ms.

Inputs
@InstFunctionCall ("read brake sensor™)
in read brake sensor: Events|[Unit]
@InstFunctionCall ("activate brakes")
in activate brakes: Events[Unit]

Trace Processing
def latency = measureLatency(read brake sensor, activate brakes)
def error = latency > 4ms
def high = filter (latency, error) — 4ms
def is_critical = count(high) > 10
def critical = filter (high, is_critical)

Output
@VisDots out high
@VisEvents out critical

Macro
def measureLatency[A, B](a: Events[A], b: Events[B]) =
time(b) — last (time(a), b)

Listing 1.1. TeSSLa specification for the Brake Sensor example.

The specification does so by defining two input streams read_brake_sensor
and activate_brakes. The type of the events carried by these streams is Unit,
i.e. they have no value, as they only represent calls to functions. The input
streams are preceded by @InstFunctionCall annotations. During the following
monitoring process, these annotations are extracted from the stream specifica-
tion and passed to connected tools of the tool chain. In this specific case these
annotations are meant for the instrumenter who is instructed to raise an event on
the input streams, always when in the supervised system a call of the functions
read_brake_sensor and activate_brakes happens. In the following lines five fur-
ther streams are defined. The first one latency is defined as a call of the macro

TeSSLa — An Ecosystem for Runtime Verification 317

measurelLatency. This macro receives two streams a and b of generic types A, B
and produces a new stream of events. It is defined at the end of the specification
using two operators: time(x) provides access to the timestamps of the events
on stream x and last(y, z) provides the last event on y for every event on z.
The expression time(b) - last(time(a), b) calculates the difference between
the timestamp of the current event on stream b and the timestamp of the last
event on stream a. As a consequence the stream latency in our example always
carries the latency between a call of activate_brakes and the subsequent call
of read_brake_sensor. The other streams are defined based on this latency and
via macros from the TeSSLa standard library. The stream error is true if the
measured latency is higher than 4ms. If error is true then high contains the
value by which amount the 4ms are surpassed. Stream is_critical counts the
number of events on stream high, i.e. the number of breaches of the property
and gets true if this number exceeds 10. critical finally filters the events of
high if critical is true. In the third part the specification eventually defines
which streams shall be printed out by the monitor (high and critical). Again
these streams contain annotations which are passed to subsequent tools. In this
case @VisDots and @VisEvents which indicate the graphical representation of
the streams in a monitor GUL

Note that the TeSSLa language, from a theoretical point of view, as presented
in [6], only consists of six core operators. In practice, however, it provides several
additional features, like annotations, macro definitions and access to macros from
a standard library, which do not make the language more expressive, but are
necessary for a comfortable usage of the tool chain and the language itself.

3 TeSSLa Compilers and Backends

The TeSSLa tool suite addresses different compilation targets for TeSSLa spec-
ifications. It comes with an interpreter that evaluates a TeSSLa specification
on the JVM without compilation, compilers that synthesize the specification
into software monitors that can be executed on different target platform, and a
compiler for specialized event processing hardware.

The interpreter is written in Scala and available as a runnable Jar archive.
It follows a straightforward evaluation strategy and serves as a reference imple-
mentation for TeSSLa, but is significantly slower than other backends (see mea-
surements in Fig.3). Still, it is a ready-to-use tool for simple experiments, e.g.
when exploring the TeSSLa language. The interpreter provides results without
compilation overhead, while the other software compilers translate TeSSLa to
imperative languages first, which are then further compiled to binaries. The
interpreter’s direct evaluation supports the interactive process of writing new
specifications and checking them on sample inputs. It also provides an API that
can be used to integrate it with custom tools and trace sources.

The software compilers generate Scala or Rust code. The Scala code is com-
piled into a Jar which can be executed platform-independent on any JVM.
Complex data structures like maps, sets and lists are implemented using the

318 H. Kallwies et al.

immutable data structures provided by the Scala standard library. Additional
Scala and Java data structures and functions can be used via native externs: They
allow the declaration and utilization of TeSSLa functions that are implemented
natively in the target language of the compilation. The Rust code is compiled
into a native binary for all targets supported by the LLVM project. Complex
data structures are implemented using immutable data structures for Rust pro-
vided by the library rust-im! and additional data structures and native externs
are supported, too. Both software compilers generate a monitoring library and
an exemplary command line application.

The TeSSLa framework also supports a specialized event processing hardware,
Accemic’s embedded processing units (EPUs) [8-13]. EPUs are implemented on
an FPGAand allow data flow processing while maintaining short reconfigura-
tion cycles: The EPUs are programmed by writing special commands into their
memory. They can be reconfigured entirely without the need for a new FPGA
synthesis. The TeSSLa EPU compiler generates such an EPU configuration which
can be directly uploaded to EPU hardware. The maximal processing speed of
the EPUs is 100 MEVent/s (million events per second).

The TeSSLa language is designed to be modular such that the requirements
of different target platforms can be considered. For example, the EPUs do not
support complex data structures to the same extent as the software compilers.
The interpreter, the software compilers and the EPU compiler rely on the same
compiler frontend, which compiles a TeSSLa specification into so-called TeSSLa
Core. TeSSLa Core is a special form of a TeSSLa specification, representing the
data flow graph of the TeSSLa specification. In TeSSLa Core every stream and
every function has type annotations, and all macros are expanded. The compiler
frontend can either print TeSSLa Core using the syntax for TeSSLa specifications,
or provide the object graph as a data structure to compiler backends so that they
do not need to parse it again.

The compiler frontend consists of an ANTLR-based parser, a type checker
and a constant folder, which operates on macros and functions on statically
known values and simplifies the translation for the further backends. The fron-
tend is written in Scala and available as a library packaged as a Jar archive
that the backends can use, for example as a Maven dependency. This makes it
possible to extend the tool suite with further specialized synthesizer backends.

4 Observation and Instrumentation

The TeSSLa tool suite provides utilities for the entire runtime verification work-
flow: The previous section introduced several monitoring syntheses; this section
discusses approaches to observe events from the system under test (SUT).

As already pointed out in the introduction, the requirements for the mecha-
nism to do this are diverse and depend on the specific application scenario. While
for some settings a powerful and highly customizable software instrumentation is

! https://docs.rs/im/latest /im/.

https://docs.rs/im/latest/im/

TeSSLa — An Ecosystem for Runtime Verification 319

the desired mechanism, other scenarios may require a fully non-intrusive obser-
vation generation strategy, which has no interference with the SUT. Depending
on the monitoring target (hardware or software) the TeSSLa tool chain is com-
patible with/offers different instrumentation utilities.

The software monitors can be used for online and offline monitoring. They
can process trace data from text-based or binary files recorded earlier. In com-
bination with instrumentation tools like AspectJ [14,15] they can be used for
online monitoring, too: The instrumented executable sends a stream of events
to the compiled monitor running as a separate process in order to reduce the
influence of the monitoring on the SUT. The upper part of Fig.2 shows this
approach.

Processor
Probes
0* , ? 0 Events A Verdict
* Interference
Executable Instrumentation Complled
Monitor
Processor CEDAR Hardware

0 . Probes ¢ Events A Verdict

Trace Monitor

185z ezl lis Reconstruction on EPUs

Fig. 2. Architecture of runtime verification with instrumented binary and compiled
monitor (top) in comparison with dedicated CEDAR hardware for non-intrusive mon-
itoring with the embedded tracing unit (ETU) of the processor (bottom).

The TeSSLa tool suite also comes with its own instrumentation tool for C
code using the clang compiler tool chain. Instrumenting source code instead of
binaries has the advantage that the instrumented source code is still human-
readable and can manually be customized after the instrumentation by the user
according to his needs and then be compiled with the existing compilation tool
chain.

The C-Code instrumenter is available as a native binary that is integrated
into the TeSSLa Jar package. It uses the information about the specification’s
input streams and annotations (e.g. @InstFunctionCall in Listing 1.1) to add
dedicated calls to a logging library into the source code of the SUT. The log-
ging library is also part of the TeSSLa tool suite. It uses multi-producer multi-
consumer channels for message passing to allow multiple threads of the SUT to
send messages to the monitor without any locking.

320 H. Kallwies et al.

In contrast to the intrusive software monitoring approach, the TeSSLa tool
suite also supports non-intrusive monitoring using Accemic’s CEDAR hard-
ware [8,11-13,16,17]. The lower part of Fig.2 shows how non-intrusive moni-
toring utilises the processor’s embedded tracing unit (ETU). The unmodified
executable runs on the processor and the ETU provides a debugging trace. This
trace contains information about the program counter, i.e. which instructions are
currently executed by the processor. The ETU’s trace is encoded: From time to
time it contains absolute program counter addresses, but most of the time it only
indicates if a conditional jump was taken or not. The trace reconstruction of the
CEDAR hardware decodes the current program counter address online from the
ETU’s trace. Again, annotations in the TeSSLa specification are used to declare
points of interest. If the program reaches such a point, the trace reconstruction
adds an event into the event stream processed by the EPUs which were config-
ured with the TeSSLa specification. A video demonstration of the usage of the
TeSSLa tool suite non-intrusive monitoring using Accemic’s CEDAR hardware
with the specification from Listing 1.1 is available online.?

Figure 3 shows some exemplary throughputs of the specification Brake Sen-
sor from Listing 1.1 and another specification Scheduling using complex data
structures that are not supported on the EPUs. Both specifications are available
in the playground in the menu item RV Ezamples.? One can clearly see that the
interpreter is orders of magnitude slower than the compiled Scala program. The
compiled Rust program and the EPUs are again an order of magnitude faster
than the compiled Scala program.

—_

O N OO

7.85

5.4

0.63 I 48 0.69
0.07 0.02 0.48 0.69

Brake Sensor Scheduling

throughput
[MEvents/s]

Fig. 3. Exemplary throughput of B the interpreter, B the compiled Scala monitor,
B the compiled Rust monitor, and E the EPUs. (Color figure online)

5 The TeSSLa Ecosystem

The TeSSLa tool suite provides the necessary components for online and offline
runtime verification: Instrumentation, logging, and monitor synthesis. However,
the TeSSLa ecosystem goes beyond these software tools and covers further
aspects that supports the practical application of runtime verification:

2 www.youtube.com/watch?v=3AYVWEK-X9nw.
3 https://play.tessla.io/.

www.youtube.com/watch?v=3AYVWK-X9nw
https://play.tessla.io/

TeSSLa — An Ecosystem for Runtime Verification 321

Playground. The TeSSLa website* contains an interactive playground (see Foot-
note 3) intended for a first exploration of the TeSSLa language and the runtime
verification tools. TeSSLa specifications can be interpreted and C code can be
instrumented and executed in a sand-boxed environment. Further, the stream
visualizer provides a graphical intuition for TeSSLa streams. It helps to rec-
ognize event patterns and assists users with the interactive process of writing
and testing TeSSLa specifications. The playground is shown in Fig. 4: Note how
the annotations @VisDots and @VisEvents on the output stream declarations in
Listing 1.1 determine the representation of the streams in the visualizer.

Documentation. Further, the TeSSLa website contains material on the formal
semantics of the language, introductions and tutorials on writing TeSSLa spec-
ifications and using the instrumentation for runtime verification. The language
specification precisely describes the syntax and semantics of the language. We
developed TeSSLadoc to support documentation of TeSSLa specifications. The
tool is inspired by Javadoc and used e.g. for the documentation of the standard
library. The documentation includes examples which are graphically represented
using the stream visualizer.

eoe M - 0 play.tessla.io @ © M + =8

@ About [5) TeSSL: amples ¥ [RV Examples ¥ ## Settings B

Trace C Code @ Specification E]

26 void run_task()

27 {

28 /% Sample Brake Sensor */

float brake_angle = read_brake_sensor();

Inputs
@InstFunctionCall("read_brake_sensor")
in read_brake_sensor: Events[Unit]
@InstFunctionCall("activate_brakes")
in activate_brakes: Events[Unit]

oU s WN R

il /% Process */
int strength; 7 # Trace Processing
strength = calculate_brake_strengh_for_angle(brake def latency = measureLatency(read_brake_sensor, activi
34 9 def error = latency > 4ms

int motor_control; def high = filter(latency, error) - 4ms
36 motar contral = calculate mator control valuelstr daf Sc critieal — cauntlhichl ~ 10

Status and Compiler Output @ TeSSLa Output TeSSLa Visualization @E]

| STATUS verifying spec.tessla and instrumenting C codc
g 10,000,000,000 20,000,000,000 30,000,000,000 40,000,000
2 STATUS compiling C code... L | i i !

3 STATUS starting /tmp/bin/main... 30771608745: 261155

| Jmito Tl

critical F

wwwN

Fig. 4. The TeSSLa playground is a web-based IDE that can interpret TeSSLa specifi-
cations on instrumented C code or manually entered input traces. Output traces can
be graphically visualized in the interactive stream visualizer.

1 www.tessla.io.

www.tessla.io

322 H. Kallwies et al.

Libraries. TeSSLa’s macro system supports modular extensions for special appli-
cation domains. There are currently libraries for AUTOSAR Timex [18,19], past-
time LTL and timed dyadic deontic logic [20]. These documented user libraries
are available for download on the TeSSLa website® and are contributed and
maintained by the community.

Scientific Publications. TeSSLa itself is presented, analyzed and discussed in
several publications [5,6,8,12,13,21-23] and used to implement and analyze
advanced concepts for stream runtime verification like for example monitor-
ing streams with partial information using ideas of abstraction [24] and new
approaches to the aggregate update problem for multi-clocked data flow lan-
guages [7]. The application of TeSSLa for race detection is described in [25].

Community. The TeSSLa language, the language specification, the compiler
frontend and several backends are available under a free license. TeSSLa is main-
tained and developed further by the TeSSLa community. It is used in several
projects and the open source licensing allows all TeSSLa users to share their
contributions with the growing community.

6 Conclusion

This paper provided an overview of the TeSSLa tool suite for runtime verifica-
tion. We discussed typical challenges that come with the practical application of
runtime verification and presented their solutions within the TeSSLa framework.
We demonstrated how the main components work and how they can be used.
Finally we sketched further accompanying aspects of the TeSSLa ecosystem and
argued how they support the verification process further.

References

1. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293-303 (2009)

2. D’Angelo, B., et al.: LOLA: runtime monitoring of synchronous systems. In: 12th
International Symposium on Temporal Representation and Reasoning (TIME), pp.
166-174. IEEE Computer Society (2005)

3. Faymonville, P.; et al.: StreamLAB: stream-based monitoring of cyber-physical
systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 421-431.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 24

4. Gorostiaga, F., Sanchez, C.: Striver: stream runtime verification for real-time event-
streams. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 282—
298. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 16

5. Leucker, M., Sanchez, C., Scheffel, T., Schmitz, M., Schramm, A.: Tessla: runtime
verification of non-synchronized real-time streams. In: SAC, ACM, pp. 1925-1933
(2018)

5 www.tessla.io/usrLibs/overview /.

https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.1007/978-3-030-03769-7_16
www.tessla.io/usrLibs/overview/

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

TeSSLa — An Ecosystem for Runtime Verification 323

Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.:
TeSSLa: temporal stream-based specification language. In: Massoni, T., Mousavi,
M.R. (eds.) SBMF 2018. LNCS, vol. 11254, pp. 144-162. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03044-5 10

Kallwies, H., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.: Aggregate update
problem for multi-clocked dataflow languages. In: Symposium on Code Generation
and Optimization (CGO), pp. 79-91. IEEE (2022)

Decker, N., et al.: Rapidly adjustable non-intrusive online monitoring for multi-core
systems. In: Cavalheiro, S., Fiadeiro, J. (eds.) SBMF 2017. LNCS, vol. 10623, pp.
179-196. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70848-5 12
Weiss, A.: Event Processing US 2021081145 A1, March 18 (2021)

Weiss, A.: Event Processing EP 3792767 Al, March 17 (2021)

Weiss, A., et al.: Understanding and fixing complex faults in embedded cyberphys-
ical systems. Computer 54(1), 49-60 (2021)

Decker, N., et al.: Online analysis of debug trace data for embedded systems. In:
DATE, pp. 851-856. IEEE (2018)

Convent, L., Hungerecker, S., Scheffel, T., Schmitz, M., Thoma, D., Weiss, A.:
Hardware-based runtime verification with embedded tracing units and stream pro-
cessing. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 43-63.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 5

Hilsdale, E., Hugunin, J., Kersten, M., Kiczales, G., Lopes, C.V., Palm, J.: AspectJ:
the language and support tools. In: OOPSLA Addendum, ACM, p.163 (2000)
Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Knudsen, J. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327-354. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45337-7 18
Weiss, A., Lange, A.: Trace-Data Processing and Profiling Device EP 2873983 Al,
May 20 (2015)

Weiss, A., Lange, A.: Trace-Data Processing and Profiling Device US 9286186 B2,
March 15 (2016)

Friese, M.J., Kallwies, H., Leucker, M., Sachenbacher, M., Streichhahn, H., Thoma,
D.: Runtime verification of AUTOSAR timing extensions. In: International Con-
ference on Real-Time Networks and Systems (RTNS), ACM, pp. 173-183 (2022)
Partnership, A.D.: Specification of timing extensions, version 1.0.0, release 4.0.1
Kharraz, K.Y., Leucker, M., Schneider, G.: Timed dyadic deontic logic. In: JURIX,
Volume 346 of Frontiers in Artificial Intelligence and Applications, pp. 197-204.
IOS Press (2021)

Leucker, M., Sanchez, C., Scheffel, T., Schmitz, M., Schramm, A.: Runtime veri-
fication of real-time event streams under non-synchronized arrival. Software Qual.
J. 28(2), 745-787 (2020). https://doi.org/10.1007/s11219-019-09493-y

Kallwies, H., Leucker, M., Prilop, M., Schmitz, M.: Optimizing trans-compilers in
runtime verification makes sense - sometimes. In: Ameur, Y. et al. (eds.) Theoret-
ical Aspects of Software Engineering. TASE 2022. LNCS, vol. 13299, pp. 197-204.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10363-6 14
Kauffman, S.: nfer — a tool for event stream abstraction. In: Calinescu, R., Pasére-
anu, C.S. (eds.) SEFM 2021. LNCS, vol. 13085, pp. 103-109. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-92124-8 6

Leucker, M., Sanchez, C., Scheffel, T., Schmitz, M., Thoma, D.: Runtime verifica-
tion for timed event streams with partial information. In: Finkbeiner, B., Mariani,
L. (eds.) RV 2019. LNCS, vol. 11757, pp. 273-291. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-32079-9 16

https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1007/978-3-319-70848-5_12
https://doi.org/10.1007/978-3-030-03769-7_5
https://doi.org/10.1007/3-540-45337-7_18
https://doi.org/10.1007/s11219-019-09493-y
https://doi.org/10.1007/978-3-031-10363-6_14
https://doi.org/10.1007/978-3-030-92124-8_6
https://doi.org/10.1007/978-3-030-32079-9_16
https://doi.org/10.1007/978-3-030-32079-9_16

324 H. Kallwies et al.

25. Ahishakiye, F., Jarabo, J.L.R., Pun, V., Stolz, V.: Hardware-assisted online data
race detection. In: Bartocci, E., Falcone, Y., Leucker, M. (eds.) Formal Methods
in Outer Space. LNCS, vol. 13065, pp. 108-126. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-87348-6_6

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-87348-6_6
https://doi.org/10.1007/978-3-030-87348-6_6
http://creativecommons.org/licenses/by/4.0/

	TeSSLa – An Ecosystem for Runtime Verification
	1 Introduction
	2 The TeSSLa Specification Language
	3 TeSSLa Compilers and Backends
	4 Observation and Instrumentation
	5 The TeSSLa Ecosystem
	6 Conclusion
	References

