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Abstract. Software product line engineering deals with the combined
development of a family of similar software systems. These systems pro-
vide a similar set of features and should therefore share a large number
of common components. We study the user perspective of features and
the engineering perspective of components and present a formal notion
of features, component-based product families and their interaction. We
then demonstrate using Milner’s CCS how our formalism can be applied
to extend an arbitrary modelling formalism with support for product
lines. To verify that certain products indeed realize certain features, we
propose µ-calculus model-checking for multi-valued Kripke-structures.
The model checking result in that case no longer is a simple truth-value,
but a set of products, conforming to a certain property.

1 Introduction

The vast majority of electronic devices with which we interact is mainly con-
trolled by software—in fact, software-intensive systems pervade our daily life.
Typically, not only a single software-intensive system is constructed but rather
a family of similar systems that share certain commonalities. Prominent exam-
ples of such families of software-intensive systems can be found in a multitude of
different application domains, comprising embedded as well as business informa-
tion systems. For example the model variants of the same model series of a car
manufacturer, e.g. the variants of the 7-series BMW, or the various variants of
an operating system, e.g. the various editions of the operating system Microsoft
Windows 7, constitute such families. Typical commonalities for such systems can
be found for example in their (conceptual) functionality, their architectural com-
ponent structure, or code. To enhance the efficiency of the software development
and maintenance process, the integrated development of a family of software-
intensive systems by explicitly making use of (reusing) their commonalities in a
strategic and planned way seems a promising approach. This is the subject of
software product family engineering.

Despite its obvious motivation, the way of constructing a family of systems
by taking advantage of commonalities is not sufficiently explored—in particular
with respect to its theoretical foundation. How can reuse based on commonalities
between system variants take place in a systematic way? What are the funda-
mental concepts behind commonalities and differences of related systems, and
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how can we formally represent them? How can commonalities between family
members be determined and even schematically computed? How can the rela-
tion between family members be modelled, and how are commonalities integrated
into the construction of the individual family members? How can we verify cor-
rectness properties of a whole software product family instead of looking at the
properties of each family member individually?

In this paper we address these questions from a formal point of view and
provide an axiomatization of product family concepts using the language of al-
gebraic specification [Wir90]. The axiomatization formalizes the key character-
istics of any software product family, where the concept of commonality and the
ability to compute the commonalities of an arbitrary subset of family members
is the most important aspect for us.

The formal specification may be used as a guidance when defining explicit
formalisms supporting the concept of software product families. In this paper, we
recall (and slightly simplify) the account of [GLS08] which extends Milner’s CCS
by a variant operator yielding the product-line aware calculus PL-CCS. With
the help of the specification, we can check that PL-CCS is indeed a reasonable
product family extension of CCS.

Finally, to make this overview paper self-contained, we recall the model check-
ing approach for PL-CCS that allows to check a whole family of systems with
respect to µ-calculus specifications.

2 Related Work

Most of the related approaches which deal with modelling of software product
families are found in the area of Feature Oriented Software Development (FOSD)
[CE00]. FOSD deals with the construction of variable software systems. A com-
mon specification technique for software product lines in FOSD are so-called
feature models [KHNP90]. Feature models are used to model optional, manda-
tory and variable features, and in particular their dependencies. In that way a
feature model allows to restrict the set of possible configurations of a product
line, but in general it does not incorporate the information of how to construct
the family members, nor does it allow to compute common parts of a given sub-
set of family members. Thus, a feature model serves the same purpose as our
dependency model, but does not represent a product family in our sense, i.e.
as a construction blueprint that shows how the family members can actually
be constructed from the common and variable parts, or how the members are
related with respect to reusing common parts. Moreover, feature models usu-
ally lack a precise semantics which impedes to reason about features or feature
combinations using formal methods.

To make these issues more precise, we recall the concept of features in the
next section.

Regarding the algebraic treatment of software product families, there are
some approaches which also unify common concepts, techniques and methods
of feature-oriented approaches by providing an abstract, common, formal basis.
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In this context, we consider especially the approaches [HKM06,HKM11,BO92]
to be of interest.

The closest to our axiomatization of a software product family is an approach
by Höfner et al. [HKM06,HKM11], introducing the notion of a feature algebra,
and a product family, respectively, which describes the features of a family of
products, and their typical operations from a semi-ring, algebraic perspective.
The elements of a feature algebra are called product families. A product family
corresponds to a set of products, where individual products are considered to be
flat collections of features. In general, the structure of a feature algebra largely
agrees with the structure of a software product family of type Spfα, as it can
be built using the constructors (cf. Section 4) only. While Höfner et al. nicely
characterize the structure of a product line from an algebraic point of view,
they do not include operations that describe the manipulation or alteration of
product families into their algebraic components. For example, Höfner et al.
do not explicitly express the notion of configuration. In contrast, our approach
defines functions that characterize how to manipulate and work with a product
family, e.g. the functions selL and selR that formalize the act of configuring a
product family, or the function is mand that formalizes the notion of mandatory
parts. In our opinion these additional operations are as essential as the basic
constructors in order to formalize the notion of a product family.

The first work on verifying software product families via model checking is,
to best of our knowledge, in [GLS08]. A slightly different verification approach
is given in [CHSL11].

3 Features

Intuitively, a product family subsumes a number of products with similar func-
tionality. From an engineering perspective, organizing products in product fam-
ilies is beneficial, as it allows for a single development process, and eases the
identification of common components. While product variants sometimes evolve
over time for technical reasons, they are often specifically developed out of mar-
keting concerns or to meet similar but different customer needs. In the latter
case, a product family is first designed from an external, user perspective in
terms of features without considering their technical structure. A feature in this
context is the ability of a product to cover a certain use case or meet a certain
customer need. Thus, it is frequently impossible to map features independently
to certain technical properties.

An established method to design and structure the feature domain of a prod-
uct family is the use of feature diagrams [KHNP90]. Feature diagrams do not
describe the meaning of different features, since at that stage no common for-
malism to describe such properties and product behaviour is applicable. Instead
they define the compositional structure and dependencies between features from
a user perspective.

We use a product family for a fictional windscreen wiper system as running
example. Figure 1 shows the corresponding feature diagram. The variants of our
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WiperSystem

manual mode interval mode

semi-automated fully automated

1..1

Fig. 1. Feature diagram for a product family of a windscreen wiper system

wiper systems may have a manual mode. They are required to have an interval
mode controlled by a rain sensor. This mode can either be semi-automated and
control only some operation modi of the wiper or fully automated. Thus, from
our feature diagram we can derive four different feature combinations.

There are a lot of different variations of feature diagrams. All of them allow
to express the compositional structure and optional, mandatory and alternative
features. For most types the semantics can be given by translation into proposi-
tional logic with features as atomic propositions [SHT06].

Feature diagrams only describe possible combinations of features. To be able
to express statements about products and their technical structure, we need to
bind features to products.

Definition 1. F : P → 2F is a feature function, mapping products p ∈ P to the
features f ∈ F they have.

Since feature diagrams only describe feature dependencies from a user or product
designer perspective, some possible feature combinations might not actually be
feasible, i.e. it is impossible for technological reasons to combine those features.

Definition 2. The set F ⊆ F is a feasible feature combination if ∃p ∈ P : F ⊆
F(p).

Conversely, feasible feature combinations may not be possible with respect to a
feature diagram as feasible combinations might be undesirable.

4 Specification of Product Lines

At a technological level, different feature combinations have to be realized by
different products. To be able to manage complexity, products are usually de-
scribed and built in a compositional manner. Consequently, sets of products
are usually specified by introducing variation points at different levels of their
compositional structure. A concrete product can be derived from such a descrip-
tion by selecting one alternative at each variation point. Widespread instances
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of these concepts for software development are source code preprocessors and
dependency injection frameworks.

Consider again the wiper system introduced above. To specify a certain wiper
system, we would compose a wiper and a sensor component into one system.

wiper‖sensor

To realize the different feature combinations, we would use different variations
of those components. To do so, we introduce variation points.

wiper := wiper1 ⊕1 wiper2; wiper := sensor1 ⊕2 sensor2

To support product families in an arbitrary specification formalism, we intro-
duce several generic operators. As we want to define product families following
the compositional structure of the underlying formalism, we need an operator
asset(A), that converts an atomic product into a product family. To express
shifting operators from products to product families in a generic way, we need
an operator op ◦ arg, that applies an operator op (partially) to all products de-
scribed by arg. In the case of the binary operator ‖, we would write (‖ ◦A) ◦B,
to express that ‖ is shifted to product families by applying it to all products
described by A using its first parameter. The resulting unary operator is then
applied to each product from B.

Using these three operators, it is possible to lift the semantics of any product
specification formalism to product families.

We can now add choice points in the same manner as in our example above.
A choice operator A ⊕i B describes the product family, where a left choice for
i results in the products from A, and a right choice in the products from B.
As the choice between left and right variants is bound to the index i, for every
occurrence of an operator with the same index the same choice has to be made.
It is thus possible to express dependencies between different choice points in a
system.

It is usually the case that not all possible configurations of a product family
describe a system that is technologically feasible. Thus, we introduce the empty
product family ⊥, containing no products. Using ⊥, dependencies on choices
may be expressed. For example, we could write A⊕i ⊥ to express, that at some
point in our product family specification, only a left choice may be made for
i. To ease notation of these dependencies, we introduce a dependency operator
(i1, L/R), . . . , (ik, L/R) ↪→ A, meaning A requires left or right choices for certain
i1, . . . ik.

Using the operators described so far a product family can be completely
described. To derive products from such descriptions we only need the oper-
ator conf(A), returning all possible products annotated with the choices lead-
ing to them. For convenience we further introduce operators products(A) and
choices(A), yielding the set of all products and choices, respectively.

A further common mechanism observed in product line development is the
instantiation of components. Considering our wiper system example, a car might
use separate systems to control front and rear wipers, which can be different
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variants of the same product. Thus, we introduce a renaming operator A[f ],
which renames all choice indices i in A by applying function f . Consider the
description of the above wiper system. To compose two of them in one system
allowing independent choices for each, we could write:

wipersys‖ wipersys [1/3, 2/4]

We give a formal definition of all those operators in Figure 2. We use higher
order functions to define the operator ◦ and most signatures are defined using a
type variable α known from polymorphic function types.

Given our formal notion of both the user and engineering perspective on
product families, we are now able to precisely describe their connection.

Definition 3. The technologically feasible configurations for a product famliy P
providing a set of features F with respect to a feature function F is given by

CP,F,F = {c | (c, p) ∈ conf(P ),F(p) ⊆ F}

There usually is a multitude of possible product family specifications, where the
same products can be derived using the same configuration. This observation
warrants the following equivalence relation between product family specifica-
tions.

Definition 4. Product family specifications P and Q are called configuration-
equivalent

P ≡c Q iff conf (P ) ≡ conf(Q)

Using that equivalence and the axioms from Figure 2 we can prove several laws
that facilitate restructuring product family specifications and identifying com-
mon parts in different variants.

The operator for lifting operators from an underlying formalism to product
families ◦ is (left and right) distributive over the choice operator ⊕i.

(P ◦Q)⊕i (P ◦R) ≡c P ◦ (Q ⊕i R)

(P ◦R)⊕i (Q ◦R) ≡c (P ⊕i Q) ◦R

Thus all operators of an underlying formalism are distributive over the choice
operators. We can therefore pull out common parts.

Choice operators with different index are distributive.

(P ⊕j Q)⊕i (P ⊕j R) ≡c P ⊕j (Q⊕i R) with i *= j

(P ⊕j R)⊕i (Q⊕j R) ≡c (P ⊕i Q)⊕j R with i *= j

It is thus possible to change the way choices are nested and to pull out common
choices.

Dependencies between choices can render certain parts of a specification inac-
cessible. When two dependent operators are directly nested, the following laws
can be applied to simplify the specification.

P ⊕i (Q ⊕i R) ≡c P ⊕i R

(P ⊕i Q)⊕i R ≡c P ⊕i R
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SPEC Softwareproductfamily = {

defines Spfα

based on Bool, Nat, Set, HOFunc

functions

⊥α : Spfα

assetα : α → Spfα

◦α,β : Spfβα × Spfα → Spfβ

⊕α : Spfα × N× Spfα → Spfα

[]α : Spfα × (NN)× N → Spfα

↪→α: 2N×{L,R} × Spfα → Spfα

confα : Spfα → 2 2N×{L,R}×α

products : Spfα → 2α

choices : Spfα → 2N

comp : 2N×{L,R} → 2 2N×{L,R}×α

confdα : {L,R}× Spfα → 2 2N×{L,R}×α

axioms

comp(C) =
∧

(i,d),(i,d′)∈C d = d′

confd(d, P ) = {({(i, d)} ∪ c, p) | (c, p) ∈ conf(P ), comp({(i, d)} ∪ c)}

conf(⊥) = ∅
conf(asset(a)) = (∅, a)

conf(apply(F, P )) =
⋃

(c1,f)∈conf(F ),(c2,p)∈conf(P ),comp(c1∪c2)
(c1 ∪ c2, f(p))

conf(P ⊕i Q) = confd(L,P ) ∪ confd(R,Q)

conf(P [f ]) = {(c′, p) | (c, p) ∈ conf(P ), c′ = {(f(i), d) | (i, d) ∈ c}, comp(c′)}

products(P ) =
⋃

(c,p)∈conf(P ){p}

choices(P ) =
⋃

(c,p)∈conf(P ),(i,d)∈c{i}

∅ ↪→ P = ⊥

({(i, L)} ∪ I) ↪→ P = P ⊕i (I ↪→ P )

({(i, R)} ∪ I) ↪→ P = (I ↪→ P )⊕i P

}

Fig. 2. Algebraic specification of a generic product line formalism
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Since the configuration of product family specifications is defined inductively
replacing a part by a configuration-equivalent expression yields a configuration-
equivalent specification.

P ≡c Q then R ≡c R[P/Q]

Note that in this case [P/Q] refers to the syntactic replacement of a sub-
expression.

The empty product family ⊥ can be used to prohibit certain configurations.
The laws involving ⊥ facilitate the simplification of product family specifica-
tions in certain cases. It is possible to reduce expressions without any choices
containing ⊥.

P ◦ ⊥ ≡c ⊥
⊥ ◦ P ≡c ⊥
⊥[f ] ≡c ⊥

It is further possible to eliminate choices yielding ⊥ for both the left and right
choice.

⊥⊕i ⊥ ≡c ⊥

When similar components are used at multiple locations in a system, it often
is beneficial to factor those components out into a single specification that can
then be instantiated appropriately. Using the following laws, renamings of choice
indices can be introduced bottom-up.

asset(a)[f ] ≡c asset(a)

(P ◦Q)[f ] ≡c P [f ] ◦Q[f ]

(P ⊕i Q)[f ] ≡c P [f ]⊕f(i) Q[f ]

In doing so, identical sub-expressions using different indices can be defined over
the same indices.

The laws discussed so far allow for refactorings of product family specifications
that preserve the possible configurations of a product family. Often changes to
the configurations are acceptable though, when they allow for more radical refac-
torings and the derivable products are still being preserved. That observation
gives rise to the follow, more relaxed equivalence relation.

Definition 5. Product family specifications P and Q are called product-equiva-
lent

P ≡p Q iff products (P ) ≡ products(Q)

Using this equivalence, we can prove some additional laws.
Obviously, two configuration-equivalent specifications are also product-equi-

valent.
P ≡c Q ⇒ P ≡p Q
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Leaving out a top level renaming does not change the set of products.

P ≡p P [f ]

Choices, resulting in the same set of products, may be left out.

P ⊕i P ≡p P

While it is possible to apply the laws for configuration-equivalence on any sub-
expression, this is no longer the case for product-equivalence as there might be
dependencies defined on certain configurations. It is still possible though when
respecting some side conditions.

If F ≡pF [P/Q] then

F ⊕i G ≡p F [P/Q]⊕i G with i *∈ choices(P,Q)

G⊕i F ≡p G⊕i F [P/Q] with i *∈ choices(P,Q)

F ◦G ≡p F [P/Q] ◦G with choices (P,Q) ∩ choices(G) = ∅
G ◦ F ≡p G ◦ F [P/Q] with choices (P,Q) ∩ choices(G) = ∅
F [f ] ≡p F [P/Q][f ] with i ∈ choices(P,Q) ⇒ i = f(i)

5 PL-CCS

In the previous section, we have worked out an algebraic specification for the
concept of product families. It is meant to serve as a meta model pointing out
the fundamental ideas of any formalism having a notion of families.

In this section, we present a concrete modelling formalism for product fami-
lies. We enrich Milner’s CCS by a variation operator. As the resulting calculus,
which we call PL-CCS, is a model of the algebraic specification given in the pre-
vious section, it is a valid realization of a product family concept. The approach
followed in this section is a slight simplification and extension of the account
presented in [GLS08]. The syntax of PL-CCS is given as follows:

Definition 6 (Syntax of PL-CCS)

e ::= Q | Nil | α.e | (e+ e) | (e ‖ e) | (e)[f ] | (e) \ L | µQ.e | (e⊕i e) | (e)[g]

Thus, we use a fixpoint-oriented account to CCS as in and enrich CCS by the
variant operator ⊕, which may cater for additional renaming.

The semantics of PL-CCS may now be given in several, as we will show equiv-
alent, ways. First, one might configure a PL-CCS specification in every possible
way to obtain a set of CCS specifications, which may act as the, here called flat,
semantics of a product family, which is basically a set of Kripke structures. To
this end, we recall the definition of a Kripke structure and the semantics of a
CCS process.
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Definition 7 (KS). A Kripke structure K is defined as

K = (S,R ⊆ S ×A× S, L ⊆ S × P)

where S is a set of states, R is a set of A-labelled transitions, and L labels states
by its set of valid propositions.

Next, we recall the definition of CCS. Due to space constraints, it is given
according to Figure 3, ignoring the product label ν in the SOS-rules shown.

Now, we are ready to define the notion of a flat semantics for a PL-CCS
family.

Definition 8 (Flat Semantics of PL-CCS)

!P "flat = {(c, !p") | (c, p) ∈ conf(P )}

Especially for verification purposes, it is, however, desirable, to provide a com-
prehensive semantics, which we do in terms of a multi-valued Kripke structure.

A lattice is a partially ordered set (L,.) where for each x, y ∈ L, there exists
(i) a unique greatest lower bound (glb), which is called the meet of x and y, and
is denoted by x/y, and (ii) a unique least upper bound (lub), which is called the
join of x and y, and is denoted by x0y. The definitions of glb and lub extend to
finite sets of elements A ⊆ L as expected, which are then denoted by

#
A and⊔

A, respectively. A lattice is called finite iff L is finite. Every finite lattice has
a least element, called bottom, denoted by ⊥, and a greatest element, called top,
denoted by 1. A lattice is distributive, iff x / (y 0 z) = (x / y) 0 (x / z), and,
dually, x0 (y / z) = (x0y)/ (x0 z). In a DeMorgan lattice, every element x has
a unique dual element ¬x, such that ¬¬x = x and x . y implies ¬y . ¬x. A
complete distributive lattice is called Boolean iff the x0¬x = 1 and x/¬x = ⊥.

While the developments to come do not require to have a Boolean lattice, we
will apply them only to the Boolean lattices given by the powerset of possible
configurations. In other words, given a set of possible configurations N , the
lattice considered is (2N ,⊆) where meet, join, and dual of elements, are given
by intersection, union, and complement of sets, respectively.

Definition 9 (MV-KS). A multi-valued Kripke structure K is defined as

K = (S,R : S ×A× S → L, L : S × P → L)

where S is a set of states, R is a set of A-labelled transitions, denoting for
which product the transition is possible, and L identifies in which state which
propositions hold for which product.

Based on this notion, we provide the so-called configured semantics of a PL-CCS
specification.

Definition 10 (Configured Semantics of PL-CCS). The configured seman-
tics of PL-CCS is given according to the SOS-rules shown in Figure 3.
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P
α,ν
−−→ P ′

µQ.P
α,ν
−−→ P ′[Q/µQ.P ]

(recursion)

α.P
α,2{R,L}n

−−−−−−−→ P
(prefix)

P
α,ν
−−→ P ′

P +Q
α,ν
−−→ P ′

(nondet. choice (1))

Q
α,ν
−−→ Q′

P +Q
α,ν
−−→ Q′

(nondet. choice (2))

P
α,ν
−−→ P ′

(P ‖ Q)
α,ν
−−→ (P ′ ‖ Q)

(par. comp. (1))

Q
α,ν
−−→ Q′

(P ‖ Q)
α,ν
−−→ (P ‖ Q′)

(par. comp. (2))

P
α,ν
−−→ P ′ Q

ᾱ,ν̄
−−→ Q′

(P ‖ Q)
τ,ν∩ν̄
−−−−→ (P ′ ‖ Q′)

(par. comp. (3))

P
α,ν
−−→ P ′

P [f ]
f(α),ν
−−−−→ P ′[f ]

(relabeling)

P
α,ν
−−→ P ′

(P \ L)
α,ν
−−→ (P ′ \ L)

, α /∈ L

(restriction)

P
α,ν
−−→ P ′

P ⊕i Q
α, ν|i/L
−−−−−→ P ′

(conf. sel. (1))

Q
α,ν
−−→ Q′

P ⊕i Q
α, ν|i/R
−−−−−→ Q′

(conf. sel. (2))

P
α,ν
−−→ P ′

P [g]
α,ν[g]
−−−−→ P ′[g]

(conf. relabeling)

Fig. 3. The inference rules for the semantics of PL-CCS (and CCS when ignoring the
second component of each transition label)

We conclude the introduction of PL-CCS stating that the flat semantics and
the configured semantics are equivalent, in the following sense:

Theorem 1 (Soundness of Configured Semantics)

{(c, p) | p = Πc(!P "conf)} = !P "flat

Here, Πc denotes the projection of a transition system to the respective config-
uration c, which is defined in the expected manner.

6 Model-Checking PL-CCS

In this section, we sketch a game-based and therefore on-the-fly model checking
approach for PL-CCS programs with respect to µ-calculus specifications.

We have chosen to develop our verification approach for specifications in the
µ-calculus as it subsumes linear-time temporal logic as well as computation-
tree logic as first shown in [EL86,Wol83] and nicely summarized in [Dam94].
Therefore we can use our approach also in combination with these logics, and in
particular have support for the language SALT [BLS06] used with our industrial
partners.
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Multi-valued modal µ-calculus combines Kozen’s modal µ-calculus
[Koz83] and multi-valued µ-calculus as defined by Grumberg and Shoham
[SG05] in a way suitable for specifying and checking properties of PL-CCS pro-
grams. More specifically, we extend the work of
[SG05], which only supports unlabelled diamond and box operators, by providing
also action-labelled versions of these operators, which is essential to formulate
properties of PL-CCS programs.1

Multi-valued modal µ-calculus. Let P be a set of propositional constants, and
A be a set of action names.2A multi-valued modal Kripke structure (MMKS)
is a tuple T = (S, {Rα( . , . ) | α ∈ A}, L) where S is a set of states, and
Rα( . , . ) : S × S → L for each α ∈ A is a valuation function for each pair
of states and action α ∈ A. Furthermore, L : S → LP is a function yielding
for every state a function from P to L, yielding a value for each state and
proposition. For PL-CCS programs, the idea is that Rα(s, s′) denotes the set
of configurations in which there is an α-transition from state s to s′. It is a
simple matter to translate (on-the-fly) the transition system obtained via the
configured-transitions semantics into a MMKS.

A Kripke structure in the usual sense can be regarded as a MMKS with values
over the two element lattice consisting of a bottom ⊥ and a top 1 element,
ordered in the expected manner. Value 1 then means that the property holds in
the considered state while⊥means that it does not hold. Similarly,Rα(s, s′) = 1
reads as there is a corresponding α-transition while Rα(s, s′) = ⊥ means there
is no α-transition.

Let V be a set of propositional variables. Formulae of the multi-valued modal
µ-calculus in positive normal form are given by

ϕ ::= true | false | q | ¬q | Z | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈α〉ϕ | [α]ϕ | µZ.ϕ | νZ.ϕ

where q ∈ P , α ∈ A, and Z ∈ V . Let mv -Lµ denote the set of closed formulae
generated by the above grammar, where the fixpoint quantifiers µ and ν are
variable binders. We will also write η for either µ or ν. Furthermore we assume
that formulae are well-named, i.e. no variable is bound more than once in any
formula. Thus, every variable Z identifies a unique sub-formula fp(Z) = ηZ.ψ
of ϕ, where the set Sub(ϕ) of sub-formulae of ϕ is defined in the usual way.

The semantics of a mv -Lµ formula is an element of LS—the functions from S
to L, yielding for the formula at hand and a given state the satisfaction value.
In our setting, this is the set of configurations for which the formula holds in the
given state.

Then the semantics [[ϕ]]Tρ of a mv -Lµ formula ϕ with respect to a MMKS

T = (S, {Rα( . , . ) | α ∈ A}, L) and an environment ρ : V → LS , which explains

1 Thus, strictly speaking, we define a multi-valued and multi-modal version of the
µ-calculus. However, we stick to a shorter name for simplicity.

2 So far, for PL-CCS programs, we do not need support for propositional constants.
As adding propositions only intricates the developments to come slightly, we show
the more general account in the following.
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[[true ]]ρ := λs.*
[[false]]ρ := λs.⊥

[[q]]ρ := λs.L(s)(q)

[[¬q]]ρ := λs.L(s)(q)
[[Z]]ρ := ρ(Z)

[[ϕ ∨ ψ]]ρ := [[ϕ]]ρ , [[ψ]]ρ
[[ϕ ∧ ψ]]ρ := [[ϕ]]ρ . [[ψ]]ρ
[[〈α〉ϕ]]ρ := λs.

⊔
{Rα(s, s′) . [[ϕ]]ρ(s

′)}
[[[α]ϕ]]ρ := λs.

!
{¬Rα(s, s

′) , [[ϕ]]ρ(s
′)}

[[µZ.ϕ]]ρ :=
!

{f | [[ϕ]]ρ[Z &→f ] 1 f}
[[νZ.ϕ]]ρ :=

⊔
{f | f 1 [[ϕ]]ρ[Z &→f ]}

Fig. 4. Semantics of mv -Lµ formulae

the meaning of free variables in ϕ, is an element of LS and is defined as shown
in Figure 4. We assume T to be fixed and do not mention it explicitly anymore.
With ρ[Z 6→ f ] we denote the environment that maps Z to f and agrees with
ρ on all other arguments. Later, when only closed formulae are considered, we
will also drop the environment from the semantic brackets.

The semantics is defined in a standard manner. The only operators deserving a
discussion are the ♦ and "-operators. Intuitively, 〈α〉ϕ is classically supposed to
hold in states that have an α-successor satisfying ϕ. In a multi-valued version,
we first consider the value of α-transitions and reduce it (meet it) with the
value of ϕ in the successor state. As there might be different α-transitions to
different successor states, we take the best value. For PL-CCS programs, this
meets exactly our intuition: A configuration in state s satisfies a formula 〈α〉ϕ
if it has an α-successor satisfying ϕ. Dually, [α]ϕ is classically supposed to hold
in states for which all α-successors satisfy ϕ. In a multi-valued version, we first
consider the value of α-transitions and increase it (join it) with the value of ϕ
in the successor state. As there might be several different α-successor states, we
take the worst value. Again, this meets our intuition for PL-CCS programs: A
configuration in state s satisfies a formula [α]ϕ if all α-successors satisfy ϕ.

The functionals λf.[[ϕ]]ρ[Z #→f ] : LS → LS are monotone wrt. . for any Z,ϕ
and S. According to [Tar55], least and greatest fixpoints of these functionals
exist.

Approximants ofmv -Lµ formulae are defined in the usual way: if fp(Z) = µZ.ϕ
then Z0 := λs.⊥, Zα+1 := [[ϕ]]ρ[Z #→Zα] for any ordinal α and any environment

ρ, and Zλ :=
#

α<λ Zα for a limit ordinal λ. Dually, if fp(Z) = νZ.ϕ then
Z0 := λs.1, Zα+1 := [[ϕ]]ρ[Z #→Zα], and Zλ :=

⊔
α<λ Zα.

Theorem 2 (Computation of Fixpoints, [Tar55]). For all MMKS T with
state set S there is an α ∈ Ord s.t. for all s ∈ S we have: if [[ηZ.ϕ]]ρ(s) = x
then Zα(s) = x.

The following theorem states that the multi-valued modal semantics of the µ-
calculus is indeed suitable for checking the different configurations of a PL-CCS
program.

Theorem 3 (Correctness of Model Checking). For all PL-CCS programs
P and formulae ϕ ∈ mv-Lµ, we have

(c,K) ∈ !P "flat with K |= ϕ iff c ∈ (!P "conf |= ϕ)
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The proof follows by structural induction on the formula.
While Theorem 2 also implies a way for computing the satisfaction value of an

mv -Lµ-formula and a given MMKS, this naive fixpoint computation is typically
expensive. Game-based approaches originating from the work by [EJS93] and
[Sti95] allow model checking in a so-called on-the-fly or local fashion. In the
context of multi-valued µ-calculus, the game-based setting becomes technically
more involved, as described in detail in [SG05]. Nevertheless, the essence of
the game-based approach of computing a satisfaction value based on the so-
called game graph is similar. For the multi-valued modal µ-calculus, a slight
adaptation of the approach taken in [SG05] yields a game-based approach for
the full multi-valued modal µ-calculus. Furthermore abstraction-techniques like
those presented in [CGLT09] may be applied.

Due to space limitations, we skip details of the game-based model checking
approach for the multi-valued modal µ-calculus.

7 Conclusion

In this paper, we have presented a formal foundation for product families, both
from a feature as well as a technical perspective and their connection. Based
on that foundation we have shown several equivalence laws, that allow for save
transformations between different product family specifications. Hence, they fa-
cilitate reliable refactorings.

We then applied our formal framework to the well-established, parallel spec-
ification formalism, CCS to derive Product-Line-CCS. We have further shown,
how PL-CSS can be used to model product lines and efficiently apply model
checking to verify properties of a whole product family at once.

We believe this combination of reliable refactorings and verifiable properties
yields a robust, formal framework to develop software product families in a safe
manner.
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