
Time Series Database (TSDB) Query Languages
Philipp Bende

philipp.bende@student.uni-luebeck.de

Abstract—Time series data becomes became more and
more relevant since the so called 4th industrial revolution.
A large amount of sensors are continuously measuring
data, so called time series data. This paper aims to
explain what time series data is and why it is relevant.
It goes into detail of storing large amounts of time series
data and the problems with conventional relational SQL-
style databases. Further, so called time series databases
(TSDBs), which are databases specialized for handling
large quantities of time series data, are introduced. Re-
quirements for designing an efficient TSDB, as well as
different TSDB designs are presented. Finally a choice of
multiple TSDBs is introduced, emphasizing on their design
and how queries for data are performed on the example
of OpenTSDB.

I. TIME SERIES DATA

In this section we give the reader an overview of
what time series data is, where and why one might
be interested in it and a few real world example use
cases of where time series data is accumulated and used.

Time series data plays a more and more important
role in many areas such as finances, statistics or mon-
itoring. One could for example want to observe many
temperature, pressure, humidity, etc. sensors in a factory
environment to control a production line. An other very
common use case is monitoring servers by gathering data
from their processor or network load.

Data gathered from these use cases often comes in the
form of timestamp-value pairs. Such timestamp-value
pair data, that is measured from the same sensors
continuously or multiple times within a certain time
window is called time series data.

Time series data often is high precision data, which
is stored for long times to be later evaluated to calculate
trends or to figure out which sensors might be correlated
with a later discovered error by checking all sensor data
for irregularities.

One can define time series data by the following rules:

Time series data
• is a sequence of numbers representing the measure-

ments of a variable at equal time intervals.
• can be identified by a source name or id and a metric

name or id.
• consists of {timestamp , value} tuples, ordered by

timestamp where the timestamp is a high precision
Unix timestamp (or comparable) and the value is a
float most of the times, but can be any datatype.

II. DIFFERENCE BETWEEN TSDB AND

CONVENTIONAL DATABASES

After explaining what time series data is in the previ-
ous chapter, this chapter focuses on illustrating the dif-
ference between conventional databases (read relational
SQL databases) and specialized time series databases and
how a TSDB concept might be specified in order to be
realizable as a efficient database for handling time series
data.

Time series data as described in the previous chapter
can be stored in a conventional database. One would
for example have a SQL-based relational database table
with 3 columns for the sensor ID, the timestamp and
the value as illustrated below.

s id time value
s01 00:00:00 3.14
s02 00:00:00 42.23
s01 00:00:10 4.14

...
s01 23:59:50 3.25

Table I
SQL TABLE EXAMPLE ON HOW TIME SERIES DATA CAN BE

STORED

As one can see in Table I measuring something once
every 10 seconds, which is low for many time series
applications, one day worth of measurements created
8640 rows in the table for every sensor.

It is not hard to imagine a setting where hundreds or
thousands of sensors are observed in intervals as low
as a few milliseconds. A conventional SQL table with
millions to billions rows would be required.

Performing operations like Joins or Merges on on
tables of that magnitude can cause mayor performance
problems, especially if these operations need to be
repeated when new data enters a table.

Another approach is to store time series data
as binary large objects (BLOBs) in a conventional
relational database. This means not creating an entry for
each and every value, but to combine all values from a
certain time period into a BLOB which is then stored
as a single entry in the database. Storing blobs instead
of single values cuts the required size of the database
by a factor depending on how many single values are
combined into each BLOB.
Using BLOBs of course requires the database supporting
the entry of BLOBs.

Database joins across multiple sets of time series data
BLOBs are only possible, if the time frame represented
by each entry spans the same time for each BLOB in
the database.

This can lead to problems, since not every sensor
is observed in the same time interval. To be able to
perform joins, the less frequently observed sensor data
must be up-sampled or padded with zeros, which in turn
can lead to more problems e.g. calculating averages or
finding the exact point when a sensor value reached a
certain threshold.

Time series databases on the other hand impose a
model for handling immense amounts of time series data
efficiently.
A TSDB typically consists of a data store back-end and
a front-end providing the query capabilities and graph-
ical representation. The back-end usually is a NoSQL
database configured to handle huge amounts of data,
while the front-end is specific for each TSDB. The front-
end typically provides options not only to query for data,
but also to display multiple time series in a easy to read
way, such as graphs and trends.

As such a system it can be defined as follows:

A TSDB is a software system that is optimized for
handling arrays of numbers indexed by time, datetime
or datetime range. Since within a TSDB are multiple
time series, which in turn consist of arrays of indexed
values, the above mentioned optimizations allow a TSDB
to handle time series data efficiently.

To design and build such a specialized system, it is
paramount to know what kind of workload is expected
to occur and which features are required to handle time
series data efficiently.

Characteristic workload patterns for TSDBs are as
follows:

The TSDB will mostly encounter writing transactions.
It is common, that 95% to 99% of all workload consists
of write operations.

These writes are almost always sequential appends to
the end of the current array.

Writes to the distant past or distant future are ex-
tremely rare due to the nature of time series data. The
Same is true for updates to already existing entries.

Deleting operations usually occur in bulk, meaning
that when a delete happens, it usually does not delete
single entries, but many consecutive arrays of values at
once.

Reading transactions on the other hand happen rarely.
When a read does happen, the requested data is usually
much larger then the memory. This results in little or no
useful caching options for read data.

Multiple reading transactions are usually sequential
ascending or descending and reads of multiple series as
well as concurrent reads are fairly common.

As time series data by default consists of large
quantities of values, the scaling of a TSDB is important.
For that a TSDB should be a distributed system, as such
systems have better scalability then monolithic systems.
Further the concept of “sending the query to the data”
should be implemented in a TSDB, because of the high
network load that transmitting large amounts of time
series data to the query processor.

Table II shows how a TSDB design with wide tables
might look like. Contrary to the SQL table shown in
Table I, the TSDB table does not need to have a row
for each measurement of each sensor, but only one for

s id start time t+1 t+2 t+3 ...
s01 00:00:00 3 1 4 ...
s02 00:00:00 42 23 1337 ...
s01 01:00:00 4 2 5 ...
s01 02:00:00

...
s01 23:00:00

Table II
SCHEMA OF A TSDB DESIGN WITH WIDE TABLES

each time period per sensor.
Each row stores not a single, but a whole range of
values. These are ordered in columns labeled with an
offset equal to the measuring interval from a starting
time. The starting time intervals are much larger then the
measuring intervals. For example a starting time interval
might be an hour or a day, while the measuring interval
is a few milliseconds to seconds. Thus a single row in the
database table can store hundreds or thousands of values.

One might question what use a TSDB has, if all it
does differently then a conventional database is storing
fewer but much larger rows in the database. The reason
this is an improvement is, that it is much cheaper
in terms of time and processing power to query for
one row of a table and then continue reading lots of
data, then finding and starting to read many rows, thus
reducing the retrieval overhead by large amounts. The
same is true for other common operations, such as joins,
merges and deletes.

This is due to TSDBs storing data not as highly
redundant time-value-pairs, but rather as single values in
many columns that takes just one entry in the database
per time frame. In the example TSDB table Table II,
this time frame is one hour. This approach only needs
24 entries in the Database per day and sensor, which is
much less than the multiple thousand entries required in
a conventional database. Further measuring and storing
more values per time frame does not increase the number
of rows, that need to be inserted into the database. The
value array would simply get larger in that scenario.

A further refined design option is displayed in Table
III.

The hybrid design consists of a the wide row design
displayed in Table II with an additional column. This
additional column is reserved for compressed data.
After a starting time interval lies in the past and it is
highly unlikely that values in that interval will need to

s id start time t+1 t+2 +t3 ... compressed
s01 00:00:00 {...}
s02 00:00:00 {...}
s01 01:00:00 {...}

...
s01 22:00:00 42 23 1337 ...
s01 23:00:00 3 1 4 ...

Table III
SCHEMA OF A TSDB DESIGN WITH HYBRID TABLES

change, all values from that row can be compressed
into a single BLOB as explained at the beginning of
this chapter.

This compression of data into a BLOB has two major
advantages over the wide row TSDB design. Firstly
storing data in a compressed way takes less disk space
and secondly it makes retrieval of data even faster then
the wide table design, since only 1 column needs to be
retrieved instead of a whole row that might consist of
thousands of columns.
The compression itself does of course take processing
time, but that is more then equalized by the reduced
retrieval times and since time series data, that lies in
the past is normally never changed or updated, there is
no need to recrompress the data ever again.

After retrieval the data usually will be decompressed,
but retrieval firstly happens rarely, and when it happens,
one will likely want to retrieve whole rows anyways
since single points of time series data are rarely useful.
Further one can choose a compression method for the
TSDB that takes only a small fraction of the time
used for compression to decompress the data, since
the compression only ever happens once, while the
decompression can happen multiple times.

A third design option is the so called “Direct Blob
Insertion” where each row consists only of three
columns for sensor id, starting timestamp and value
blob respectively, see Table IV.

Similarly to the Hybrid design, the data values of each
time period is compressed and stored as a binary large
object in the table. The difference is, that the single
values are not stored in the database, but accumulated in
memory and only compressed inserted into the database
after the allotted time frame has passed. This has the
advantages of smaller and thus easier to handle database
tables and the same fast data retrieval as the hybrid

s id start time values
s01 00:00:00 {...}
s02 00:00:00 {...}
s01 01:00:00 {...}

...
s01 22:00:00 {...}
s01 23:00:00 {...}

Table IV
SCHEMA OF A TSDB DESIGN DIRECT BLOB INSERTION

design. The disadvantage is, that the data must be
accumulated in memory. This obviously requires large
enough memory space, so that all values of one time
frame fit in memory or small enough and thus more time
frames so that fewer values belong to each time frame.

The main reason for the “Direct Blob Insertion” design
is, that in a wide row, or hybrid design, each insertion
of a data point requires a row update operation on the
database table. By having only one insertion operation
per row, the data insertion rate can be increased up to
thousand fold.

III. COMMONLY USED TSDBS

Quite a few ready-made TSDBs exist today. This
paper focuses mostly on open-source variants. In this
chapter a few choices for TSDBs are briefly introduced.

A. OpenTSDB

OpenTSDB is a open source Time series database
which uses HBase as back-end data storage.

Figure 1. Visualization of the OpenTSDB architecture

Figure I shows a schematic representation of the
OpenTSDB architecture.
The servers are being monitored by some statistics
application. This data is send to a Time Series Daemon
(TSD in Figure I). The time series data is send to the

TSDs from the collectors (small Cs on the servers)
where it is compressed and stored in the database,
represented by the red HBase bubble, which acts solely
as background storage. The TSDs are also responsible
for accepting queries and retrieving data from the
database.

OpenTSDB follows the design philosophy of “Direct
Blob Insertion” as described in Chapter II, thus the
back-end tables of HBase can be used and need to only
very few columns as can be seen in the “Direct Blob
Insertion” example in Table IV.

OpenTSDB offers the user a REST API and a Telnet
interface for accessing the database. Both allow for the
following actions in addition to the usual GET, POST,
PUT and DELETE:

• SELECT by the sensor (called metric) name, time
or values

• GROUP BY over multiple series by any selected
property

• DOWN-SAMPLING it is common to have much
higher precision data stored then it would be useful
to visualize, thus one can retrieve a down sampled
set of the time series data

• AGGREGATE functions like average, sum, min,
max, etc

• INTERPOLATE the final results in desired inter-
vals

Queries are usually including the following
components:

• Start Time the earliest timestamp which is of
interest

• End Time the latest timestamp which is of interest
• Metric the metric, or sensor name from which time

series data is to be queried
• Aggregation Function possibly a function, what to

do, or how to fetch the data
• Tag a tag that can further identify groups of relevant

values
• Downsampler a mode to downsample the data if

that is requested
• Rate the rate of which the values are supposed to

be downsampled

Once a query reaches a TSD, the following steps are
performed:

1) The query is parsed to check for syntax errors
and that all metrics (sensor names), tag names and
values exist.

2) The TSD sets up a scanner for the undelying
storage.

3) If the query has no tags or tag values, then all
rows fitting the requested metric and time stamp
are fetched.
If the query does have tags, only rows that match
the tag in addition to the timestamp and metric are
fetched.

4) The fetched data is organized into groups, if the
GROUP BY fuction is requested.

5) Then the downsampling (if requested) of the data
is performed.

6) Each group of data is aggregated by the requested
aggregation function.

7) If a rate was set, the aggregates are adjusted to
match the requested rate.

8) Finally the results are returned to the caller.

To insert data into OpenTSDB one would access the
database via HTTP-API or Telnet as follows:

p u t <m e t r i c> <t imes tamp> <va lue>
<t a g 1 = t a g v 1 [t a g 2 = t a g v 2 . . . tagN=tagvN]>

For example:

p u t s y s . cpu . u s e r 123456 4 2 . 5
h o s t = webse rve r01 cpu =0

To get from the database, one could send the following
query in the format:

que ry START−DATE [END−DATE]
<a g g r e g a t o r > <m e t r i c> <t a g 1 = t a g v 1 [. . .] >

And as a concrete example:

que ry 24h−ago now
avg s y s . cpu . u s e r cpu =0

which would return the average value of cpu0 data of
the last 24 hours.

Additionally to the REST API it is possible to access
the database directly via the HBase API, but one should
be mindful that the BLOB format of the data can make
it more difficult to use conventional SQL-based tools.

Installing OpenTSDB requires the installation of
HBase since OpenTSDB is built upon HBase. To visual-
ize the results the results of queries it is advised to install
a time series display tool like Grafana which works for
multiple TSDBs.

B. InfluxDB

InfluxDB is a TSDB with no external dependencies,
meaning one can put a precompiled binary file on a
server and run it without having to install or configure
anything else. InfluxDB is developed by InfluxData,
Inc. Tho advertised as open-source, only the monolithic
design of InfluxDB source code can be publicly
accessed. The distributed and thus highly scaling
cluster version of InfluxDB is closed-source commercial
software.

Unlike OpenTSDB InfluxDB used to utilize the
Google developed LevelDB as storage back-end but
switched to a custom LSM-tree based approach.

Just like OpenTSDB InfluxDB offers a HTTP REST
API for queries. It’s language is the very SQL-like
“Influx Query Language” which is basically SQL with
a few extra query options like GroupBy and TopN.
In addition InfluxDB accepts many TSDB protocols
like the Graphite- or OpenTSDB-Protocol. Further it
has multiple client libraries in many popular languages
including Python, Java, Javascript or Ruby.

C. Gorilla

Gorilla is the TSDB behind Facebook. It is adver-
tised as a fast, scalable in-memory TSDB. Unlike other
TSDBs Gorilla aims to not write time series data to a
storage, but to keep it in memory for faster queries and
evaluation of the data.

In order to be able to store huge amounts of time series
data in memory, Gorilla’s main aim is to compress the
data as much as possible. Of course it is not possible to
continuously store time series data in memory. For that,
Gorilla has a HBase based long term storage, where time
series data older then 26 hours is moved.

By being able to store 26 hours worth of time series
data in memory, the authors of “Gorilla: A Fast, Scalable,

In-Memory Time Series Database” [4] claim to be able
to reduce query latency by a factor of 73 and query
throughput by a factor 14, compared to other HBase
based TSDBs.

D. Graphite

Graphite is a non-distributed TSDB that stores time
series data on a local disk in a Round Robin Database
style called Whisper. The size of the database of Graphite
is predetermined which does not allow to accumulate
more and more data over an unlimited time span. It stores
each time series in a separate file and overwrites old files
after a certain amount of time. Further data is expected
to be time-stamped in regular intervals thus does not
support jittered time series data.

This makes Graphite less disk space consuming than
for example OpenTSDB which stores time series ad
infinitum, making Graphite a good solution for time
series data, where only the recent past is relevant.

An other popular feature of Graphite is the availability
of superb graphing tools, that allow for a fast and
easy visualization of stored time series data. Grafana,
primarily developed for Graphite, allows for graphing
and analyzing of time series data.

IV. CONCLUSION

In this paper time series data was introduced pairs of
timestamp-value. Such pairs are called time series if the
timestamp continuously grows in set intervals.

Storing time series data in conventional relational
databases can lead to problem in performance due to the
high volume of values that would require large tables
and high insertion rates.

Time series databases (TSDBs) are (usually) NoSQL
databases specialized for handling large amounts of
time series data by allowing very high insertion rates as
well as storing the data in such a way, that it is easy to
query and work with the time series data.

There are multiple solutions for TSDBs ready-made,
both commercially sold and open-source versions. All
of those specialize in different aspects of handling
time series data, but are all able to handle very high
(thousands to millions per second per machine) of
write-transactions and the efficient storage of time series
data.

Just as conventional relation databases are not opti-
mized for time series data, query languages like SQL
are not optimal for querying time series data.

Specialized query languages for TSDBs add new func-
tionality to SQL or SQL like query languages, allowing
the efficient handling and querying of time series data.

Aggregate functions like downsampling or top n%
as well as various visualization tools make it possible
for a user to work efficiently with clearly arranged
representations of billions of data points.

REFERENCES

[1] Minsam Kim and Jiho Park Time-series Databases http://
www.cse.ust.hk/∼dimitris/5311/P2-TS.pdf Dec.2016

[2] Andreas Bader Comparison of Time Series Databases University
of Stuttgart 2016-01-13 ftp://ftp.informatik.uni-stuttgart.de/pub/
library/medoc.ustuttgart fi/DIP-3729/DIP-3729.pdf Dec.2016

[3] InfluxData, Inc InfluxDB Version 1.1 Documentation https:
//docs.influxdata.com/influxdb/v1.1/concepts/key concepts/
Dec.2016

[4] Tuomas Pelkone et al. Facebook, Inc. Gorilla: A Fast, Scalable,
In-Memory Time Series Database http://www.vldb.org/pvldb/
vol8/p1816-teller.pdf Dec. 2016

[5] Netsil Inc. A Comparison of Time Series Databases and Netsil’s
Use of Druid https://blog.netsil.com/a-comparison-of-time-
series-databases-and-netsils-use-of-druid-db805d471206 Dec.
2016

[6] Chris Davis Graphite http://www.aosabook.org/en/graphite.html
Dec. 2016

http://www.cse.ust.hk/~dimitris/5311/P2-TS.pdf
http://www.cse.ust.hk/~dimitris/5311/P2-TS.pdf
ftp://ftp.informatik.uni-stuttgart.de/pub/library/medoc.ustuttgart_fi/DIP-3729/DIP-3729.pdf
ftp://ftp.informatik.uni-stuttgart.de/pub/library/medoc.ustuttgart_fi/DIP-3729/DIP-3729.pdf
https://docs.influxdata.com/influxdb/v1.1/concepts/key_concepts/
https://docs.influxdata.com/influxdb/v1.1/concepts/key_concepts/
http://www.vldb.org/pvldb/vol8/p1816-teller.pdf
http://www.vldb.org/pvldb/vol8/p1816-teller.pdf
https://blog.netsil.com/a-comparison-of-time-series-databases-and-netsils-use-of-druid-db805d471206
https://blog.netsil.com/a-comparison-of-time-series-databases-and-netsils-use-of-druid-db805d471206
http://www.aosabook.org/en/graphite.html

	Time series data
	Difference between TSDB and conventional databases
	Commonly used TSDBs
	OpenTSDB
	InfluxDB
	Gorilla
	Graphite

	Conclusion
	References

