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Abstract

The boolean satisfiability problem (SAT) belongs to set of NP-complete
problems. Nevertheless the advent of SAT solvers which are fast for
many practical problem instances made reduction to SAT practical for
different problems in a large number of areas. Besides the commonly
used complete SAT solvers based on the DPLL procedure there also
exists Stålmarck’s method which received comparatively little attention
in the literature. A recent work by Thakur and Reps “A Generalization
of Stålmarck’s Method” combines Stålmarck’s method with concepts
of abstract interpretation, thereby creating a new variant of Stålmarck’s
method. This thesis extends upon this work by introducing two new
modifications to the generalized variant of Stålmarck’s method. The
first modification provides additional flexibility for heuristics when
using a set of constraints as an abstract domain. The other modification
allows for new exploration strategies of the search space. A prototype
implementation is described including the design choices made. This
prototype is evaluated and compared to existing DPLL based SAT
solvers.





Zusammenfassung

Das Erfüllbarkeitsproblem der Aussagenlogik (SAT) gehört zu den
NP-vollständigen Problemen. Dennoch hat das Aufkommen von SAT-
Solvern, die das Problem in vielen in der Praxis auftretenden Fällen
effizient lösen können, dafür gesorgt, dass Reduktion auf SAT für viele
Probleme aus zahlreichen Bereichen praktikabel geworden ist. Neben
den üblicherweise verwendeten SAT-Solvern die auf der DPLL Proze-
dur basieren existiert außerdem die Methode von Stålmarck welche,
in der Literatur vergleichsweise wenig Beachtung gefunden hat. Eine
kürzlich erschienene Veröffentlichung von Thakur und Reps „A Gen-
eralization of Stålmarck’s Method“ verknüpft die Methode von Stål-
marck mit Konzepten der abstrakten Interpretation und beschreibt
eine daraus entstehende Variante der Methode von Stålmarck. Diese
Arbeit baut darauf auf und erweitert diese Methode durch zwei neue
Erweiterungen. Die erste Erweiterung ermöglicht zusätzliche Flex-
ibilität für Heuristiken bei der Verwendung von Constraintmengen
als abstrakte Domäne. Die zweite Erweiterung erlaubt neue Erkun-
dungsstrategien des Suchraums. Eine Prototypimplementation mit
den dazugehörigen Entwurfsentscheidungen wird beschrieben. Dieser
Prototyp wird ausgewertet und mit bestehenden, DPLL-basierten SAT-
Solvern verglichen.
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
Introduction

High performance solvers for the boolean satisfiability problem (SAT) have
evolved into versatile tools in a large number of areas. SAT is one of the
prototypical NP-complete problems and it admits efficient and direct
encodings for a large number of different problems. Apart from the
theoretical usefulness this turned out to be of great practical utility.

Reduction of problems to a SAT instance which is then solved has
become a standard process in various areas of hardware and software
verification, planning and scheduling, and combinatorial design [].
SAT solvers have also been used as a tool for cryptanalysis [], for theo-
rem proving and as a base for further decision and search procedures
as in satisfiability modulo theories (SMT) [] or answer set program-
ming (ASP) [].

The field of competitive SAT solvers has converged to three differ-
ent families of algorithms [], []. These families are the two complete
approaches conflict driven clause learning (CDCL), look-ahead search and
the family of incomplete methods based on local search []. For appli-
cation and combinatorial problem instances all winners of the SAT
competition  belong to the CDCL family of algorithms [], [].
This thesis will focus on complete methods, which are required for
many applications, and thus will omit the details of local search based
procedures.

The success of CDCL based solvers naturally places them in the
focus of research for improving the performance of SAT solvers. And
while there is no sign that the possible improvements to CDCL solvers
are exhausted, it is worthwhile to explore alternatives, as there can be
specific problem classes where they are superior to CDCL solvers, as
is the case with look-ahead solvers for random SAT instances.

To compare the relative performance of different methods it is im-
portant to have optimized implementations. CDCL solvers have very
sophisticated implementations that have been improved continously
for over a decade. Competing methods that did not receive as much at-
tention thus are at a disadvantage. Therefore it is important to carefully
analyze and improve the methods with a focus on the implementation
to enable a fair comparision.

This thesis aims to present the work needed to implement a SAT
solver, not based on CDCL, from scratch. Stålmarck’s method was
chosen because recent work by Thakur and Reps [] opens up many



 development of a sat solver

ways to improve the basic method which itself saw successful industrial
use. In addition this thesis presents some new techniques for extending
Stålmarck’s method.

Apart from developing a solver that can be used to compare variants
of Stålmarck’s method to CDCL based and other solvers, it can serve as
a guideline of the steps needed to implement SAT solvers using even
different techniques.

. Related work

There is a large amount of literature available in the field of SAT solv-
ing. The “Handbook of Satisfiability” edited by Biere et al. [] provides
an extensive overview of the area. Many current SAT solvers are based
on variants of the DPLL [] procedure which is a modification of the
DPP method []. This includes lookahead solvers []–[] and con-
flict driven clause learning solvers []–[]. A different algorithm is
Stålmarck’s method [], [] which is the basis for the algorithm im-
plemented as part of this thesis. A short summary of these methods is
given in chapter  of this thesis. Recent work has explored the combi-
nation of classic SAT solving techniques with abstract interpretation
[], a technique developed for static program analysis. There has been
independent work on applying abstract interpretation to CDCL meth-
ods [] and to Stålmarck’s method [], []. This thesis builds on the
work combining abstract interpretation with Stålmarck’s method.

. Structure of the Thesis

The remainder of the Thesis is structured as follows:
Chapter  gives a brief overview of complete SAT solving meth-

ods. This includes the commonly used DPLL techniques as well as
Stålmarck’s method, the basis for this work.

Chapter  presents a generalization of Stålmarck’s method as de-
scribed by Thakur and Reps [], []. It includes a brief summary of
the used order theory and abstract interpretation basics.

Chapter  extends the method described in the previous chapter
with a framework for handling arbitrary constraints and a framework
for different search space exploration strategies.

Chapter  describes an attempt of implementing the extended
method using reduced ordered binary decision diagrams (BDDs) to
represent constraints. This attempt did not succeed in producing a
usable SAT solver. Nevertheless part of the work done for this imple-
mentation, namely a conversion from a formula in conjunctive normal
form (CNF) to a smaller set of BDD constraints, was successful and is
evaluated.

Chapter  describes a different implementation of the extended
method. This time simpler constraints are used to avoid the problems
that occurred for the implementation described in chapter . The ar-
chitecture and implementation details of the SAT solver are described.

Chapter  evaluates the implementation described in chapter  and
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compares it to solvers that implement other methods.
The final chapter  summarizes the results obtained and gives an

outlook of possible enhancements to the presented method and its
implementation.






An Overview of Satisfiability Solver Algorithms

. Boolean Satisfiability

The boolean satisfiability problem (SAT) asks whether a formula of propo-
sitional logic has a satisfying model. A propositional formula, or Grammar of a propositional formula:

𝜙 ∶∶= t ∣ f ∣ 𝑣𝑖 ∣ 𝜙1 ∧𝜙2 ∣ 𝜙1 ∨𝜙2

∣ 𝜙1 → 𝜙2 ∣ 𝜙1 ↔ 𝜙2 ∣ ¬𝜙

boolean expression, can be inductively defined as a variable, a constant
truth value (t or f), the negation of a formula (¬), or the connection of
two formulas using a connective (∧,∨,→ or ↔).

Given a variable assignment 𝛽, a function that maps every variable
to a truth value, it is possible to recursively define a function 𝛽̂ that
assigns a matching truth value to any propositional formula.

A variable assignment 𝛽 that assigns t to a formula 𝜙, e.g. 𝛽̂(𝜙) = t,
is called a model of𝜙. In this case we write 𝛽 ⊨ 𝜙. If all possible variable
assignments are a model of 𝜙, so that 𝜙 is a tautology, we write ⊨ 𝜙.
Satisfiability can then be defined as the existence of a model ∃𝛽 ∶ 𝛽 ⊨ 𝜙.
As ⊨ 𝜙 ⇔ ¬∃𝛽 ∶ 𝛽 ⊨ 𝜙 a tautology is exactly a formula which has an
unsatisfiable negation.

In addition to deciding whether a model exists, a SAT solvers task
usually includes finding a concrete model in the case of satisfiability.
There are also SAT solvers that are able to output an unsatisfiability
proof or an unsatisfiable core, a minimal subset of clauses that are
unsatisfiable. An extensive account of satisfiability and its history is
given in [].

. Conjunctive Normal Form

While the grammar of propositional logic is suited for manual formula
manipulation, a simpler structure is advantageous for algorithmic ma-
nipulation. The most common choice for SAT solving is the conjunctive
normal form (CNF). Grammar of a formula in CNF:

𝜙𝐶𝑁𝐹 ∶∶= t ∣ 𝐶 ∣ 𝐶 ∧𝜙𝐶𝑁𝐹

𝐶 ∶∶= f ∣ 𝐿 ∣ 𝐿 ∨ 𝐶
𝐿 ∶∶= 𝑣𝑖 ∣ ¬𝑣𝑖

The usefulness of the conjunctive normal form for SAT solving was
first highlighted by Davis and Putnam in []. A formula in conjunctive
normal form consists of a conjunction of clauses. A clause in turn is a
disjunction of literals and a literal is a variable or its negation. This The set representation of

𝐴∧ (𝐵 ∨¬𝐶) ∧ f

is
{{𝐴}, {𝐵, ¬𝐶}, ∅}

allows a simple representation as a set of sets of literals.
While any propositional formula can be converted to an equivalent

formula in conjunctive normal form by applying simple rewrite rules,
this causes some formulas to grow exponentially in length. An example
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for a family of such formulas is (𝐴1 ∧ 𝐵1) ∨ (𝐴2 ∧ 𝐵2) ∨ … ∨ (𝐴𝑛 ∧ 𝐵𝑛)
which has a corresponding CNF with 2𝑛 clauses. For SAT solving
though it is not necessary to use an equivalent formula. Using a weaker
notion, an equisatisfiable formula, is sufficient. Equisatisfiability allows Splitting the clause

(𝐴 ∨ 𝐵 ∨𝐶∨𝐷)

into two clauses

(𝐴 ∨ 𝐵 ∨𝑋) ∧ (𝐶 ∨𝐷∨¬𝑋)

where 𝑋 is a fresh variable is an
example of a transform that preserves
satisfiability but not equivalence.

introduction of new variables. For CNF conversion the new variables
are usually constrained to take the value of a sub-formula. This enables
a conversion with the output length polynomially bounded by the
input length [].

. The DPLL Procedure

There are several methods in the literature that form the basis for most
SAT solver implementations. The first described satisfiability testing
procedure that can be seen as a predecessor to modern SAT solvers
is the Davis-Putnam procedure (DPP) [], which also introduced the
conjunctive normal form into satisfiability testing []. DPP consists of
three rules, which modify a set of CNF clauses without changing its
satisfiability. Repetitive application reduces the set to either the empty
set, if satisfiable, or to a set containing an empty clause, if unsatisfiable.
These rules are:

The names of the rules given here are
as used in recent literature and differ
from the names given in the original
publication.

Unit-Clause Rule When a clause consists of a single literal, that literal
must be true to satisfy the formula. Assuming true for the literal’s
value, all clauses containing that literal are satisfied and can be
removed. All clauses containing the literal’s negation are modified
by removing the negated literal, which cannot make a clause’s value
become true. Unit-Clause Example:

{𝐀}
{𝐀, ¬𝐵}
{¬𝐀,¬𝐶}
{¬𝐵, 𝐶,𝐷}

⇒ {¬𝐶}
{¬𝐵, 𝐶,𝐷}

Pure-Literal Example:

{𝐀, 𝐵, ¬𝐷}
{¬𝐶,𝐷}
{𝐀, ¬𝐵}
{¬𝐵, 𝐶}

⇒ {¬𝐶,¬𝐷}
{¬𝐵, 𝐶}

Resolution Example:

{𝐀, 𝐵, ¬𝐶}
{𝐀, ¬𝐵, 𝐶}
{¬𝐀,¬𝐷}
{¬𝐀, 𝐸}

{𝐵, 𝐶,𝐷, ¬𝐸}

⇒

{𝐵, ¬𝐶, ¬𝐷}
{¬𝐵, 𝐶, ¬𝐷}
{𝐵, ¬𝐶, 𝐸}
{¬𝐵, 𝐶, 𝐸}

{𝐵, 𝐶,𝐷, ¬𝐸}

Pure-Literal Rule When a literal is present but there are no clauses
containing its negation it is safe to assume the literal’s value is true,
as this cannot cause any clauses to become unsatisfied. All clauses
containing this literal can thus be removed.

Resolution Rule This rule can be used to eliminate a variable from the
set of clauses. All clauses containing the variable are grouped into
the set of literals with a positive occurrence and with a negative
occurrence. All those clauses are then replaced with the disjunction
of both sets. When this disjunction is converted back into the con-
junctive normal form it becomes the set of all disjunctions formed
by taking a clause of either set.

The resolution rule is problematic as it generates a large number of
clauses, quickly exhausting the available amount of memory. This
prompted Loveland and Logemann to replace it with a splitting rule
that successively explores the conclusion of assuming a variable to be
true or false, thereby creating a recursive algorithm []. This is the
DPLL procedure which still forms the basis for most recent complete
SAT solvers.

The split rule on a variable 𝑣 is implemented by recursively invoking
the DPLL procedure twice, once with the variable assumed true and
once assumed false. This is equivalent to adding a unit clause with the
literal 𝑣 or¬𝑣, which will trigger the unit-clause rule in the recursive call.
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The resulting structure of the DPLL procedure is shown in pseudocode
below:

: procedure DPLL(𝜙)
: 𝜙 ← Propagate(𝜙)
: if 𝜙 = ∅ then
: return sat
: else if ∅ ∈ 𝜙 then
: return unsat
: Choose 𝑣 ∈ Vars(𝜙)
: 𝑠t ← DPLL(𝜙[𝑣 = t])
: if 𝑠t = sat then

: return sat
: 𝑠f ← DPLL(𝜙[𝑣 = f])
: return 𝑠f

Algorithm .: DPLL Procedure

Propagate is a function that applies the
unit-clause and pure-literal rules

{𝐴, 𝐵, 𝐶}1
{¬𝐴, 𝐵}2
{¬𝐴,𝐶}3
{¬𝐵, ¬𝐶}4
{𝐴, 𝐶,𝐷}5
{¬𝐵, ¬𝐶, 𝐸}6
{𝐴, ¬𝐷, 𝐸}7
{𝐴, 𝐶, ¬𝐷}8

{𝐴, 𝐵, 𝐶}1
{¬𝐴, 𝐵}2
{¬𝐴,𝐶}3
{¬𝐵, ¬𝐶}4
{𝐴, 𝐶,𝐷}5
{𝐴, 𝐶, ¬𝐷}8

Pure-Literal
𝐸 = t

{𝐵}2
{𝐶}3

{¬𝐵, ¬𝐶}4

Split
𝐴 = t

{𝐶}3
{¬𝐶}4

Unit-Clause 𝐵 = t

{}4

Unit-Clause 𝐶 = t

Conflict

{𝐵, 𝐶}1
{¬𝐵, ¬𝐶}4
{𝐶,𝐷}5
{𝐶, ¬𝐷}8

Split
𝐴 = f

{¬𝐶}4
{𝐶,𝐷}5
{𝐶, ¬𝐷}8

Split
𝐵 = t

{𝐷}1
{¬𝐷}8

Unit-Clause 𝐶 = f

{}8

Unit-Clause 𝐷 = t

Conflict

{𝐶}1
{𝐶,𝐷}5
{𝐶, ¬𝐷}8

Split
𝐵 = f

Empty
Satisfiable

Unit-Clause 𝐶 = t

Figure .: Example of execution
flow and rules used during the DPLL
execution

. Lookahead

The DPLL procedure does not specify on which variable to branch.
The choice of the decision variable has a substantial influence on the
overall performance of the procedure. Lookahead solvers try to make
good choices here by exploring the consequences of branching on a
variable. This is realized by a lookahead procedure which invokes
the propagate procedure for both possible assignments of a variable.
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The variables are then ranked by a score computed from the resulting
CNF formulas. If a conflict occurs while assuming a literal during the
lookahead procedure, a so called failed literal, the assumed variable
must have the negated value. []

: procedure DPLL(𝜙)
: 𝜙 ← Propagate(𝜙)
: 𝜙, 𝑣 ← Lookahead(𝜙)
: if 𝜙 = ∅ then
: return sat
: else if ∅ ∈ 𝜙 then
: return unsat

: 𝑏 ← DirectionHeuristic(𝜙, 𝑣)
: 𝑠𝑏 ← DPLL(𝜙[𝑣 = 𝑏])

: if 𝑠b = sat then
: return sat
: 𝑠¬𝑏 ← DPLL(𝜙[𝑣 = ¬𝑏])
: return 𝑠¬𝑏
: procedure Lookahead(𝜙)
: choose a set of variables 𝑃
: for each 𝑣 ∈ 𝑃 do
: 𝜙t ← Propagate(𝜙[𝑣 = t])
: if ∅ ∈ 𝜙t then
: 𝜙 ← Propagate(𝜙[𝑣 = f])
: continue
: 𝜙f ← Propagate(𝜙[𝑣 = f])
: if ∅ ∈ 𝜙f then
: 𝜙 ← Propagate(𝜙[𝑣 = t])
: continue
: 𝐻𝑣 ← DecisionHeuristic(𝜙,𝜙t, 𝜙f)
: return 𝜙, argmax𝑣𝐻𝑣

Algorithm .: DPLL with Lookahead

DecisionHeuristic estimates how much
the formula is simplified by branching
on a variable. DirectionHeuristic
estimates the most likely assignment
for a variable.

The first SAT solver using this method, developed in , was posit
[]. Current implementations using lookahead are the variants of the
march solver [], [] which are competitive for random SAT instances.

. Conflict Driven Clause Learning

Another way to improve the DPLL procedure is by dynamically adding
new clauses to the formula to guide the search to a solution. This is
done by analyzing conflicts during the recursion and adding clauses
that avoid the reason for the conflict in the future. This approach is
called conflict driven clause learning (CDCL). []

To find a clause that avoids the reason for an occurred conflict an
implication graph is used. The implication graph is a directed graph of
all literals considered true under the current assumptions. Whenever
the unit-clause rule is applied, new edges pointing to the literal of the
unit clause are added from each negated literal of the original clause
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that became unit.

{𝐴, 𝐵, 𝐶}
{¬𝐵, 𝐶}
{¬𝐂}

{𝐴, 𝐵,C}
{¬𝐁,C}

{𝐀, B,C}

¬𝐶 ¬𝐶

¬𝐵

¬𝐶

¬𝐵

𝐴

⇒ ⇒

⇒ ⇒

Clauses

Implication
Graph

Figure .: Example for building an
implication graph

A conflict occurs when the negation of every literal of a clause is
present in the implication graph. To find a clause that avoids this
conflict in the future, a graph cut between the assumed literals and the
literals causing the conflict is chosen. A clause containing all negated
literals of nodes with an outgoing edge crossing the cut is then added to
the formula. This makes sure that at most all but one of the reasons for
the conflict occur simultaneously in the future. The choice of the graph
cut is made heuristically. The implication graph can be represented
implicitly by recording the clause that implies a literal.

When such a clause is added to the formula, without backtracking
all its literals are false. Depending on the graph cut used, it is necessary
to backtrack multiple levels until the new clause becomes unit. The
new clause can be unit for multiple levels and in practice backtracking
to the lowest level where the clause is unit, known as non-chronological
backtracking or backjumping has been shown to be effective [].

As backtracking is done multiple levels at the same time CDCL is
often implemented iteratively with an explicit stack of assumed literals.
This results in the structure shown in the pseudocode of algorithm ..

The first SAT solver that introduced this method, along with non-
chronological backtracking, was GRASP []. Another notable solver
is Chaff [] as it introduced a very efficient data structure for unit-
propagation called watched literals. A complete walk-through for the
development of a CDCL solver is given in [], which describes the
successful solver minisat.

. Stålmarck’s Method

Another SAT solver procedure is Stålmarck’s method. While a prelim-
inary version was patented in  [] and later refined, it received
little attention compared to DPLL based procedures. Nevertheless it
was industrially successful [] and received new attention when the
patent expired []. A complete description is given in [].

Like DPLL Stålmarck’s method keeps track of a current formula
and information deduced about the variables. While DPLL uses a
partial assignment, Stålmarck’s method as described in [] goes one
step further and uses an equivalence relation on the literals and the
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: procedure CDCL(𝜙)
: 𝑙𝑒𝑣𝑒𝑙 ← 0
: loop
: if 𝜙[𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑠] = ∅ then
: return sat
: else if ∅ ∈ 𝜙[𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑠] then
: if 𝑙𝑒𝑣𝑒𝑙 = 0 then
: return unsat
: 𝑐 ← AnalyzeConflict(𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑠, 𝑟𝑒𝑎𝑠𝑜𝑛𝑠)

: 𝜙 ← 𝜙∪ {𝑐}
: backtrack to smallest 𝑙𝑒𝑣𝑒𝑙 so that |𝑐[𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑠]| = 1
: else if 𝑐 ∈ 𝜙 with 𝑐[𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑠] = {𝑙} then
: 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑠𝑙𝑒𝑣𝑒𝑙 ← 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑠𝑙𝑒𝑣𝑒𝑙 ∪ {𝑙}
: 𝑟𝑒𝑎𝑠𝑜𝑛𝑠𝑙 ← 𝑐
: else
: 𝑙𝑒𝑣𝑒𝑙 ← 𝑙𝑒𝑣𝑒𝑙 + 1
: chose unassigned literal 𝑙
: 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑠𝑙𝑒𝑣𝑒𝑙 ← 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑠𝑙𝑒𝑣𝑒𝑙 ∪ {𝑙}

Algorithm .: CDCL

AnalyzeConflict computes a conflict
avoiding clause from the implication
graph.

constant values t and f. Another difference is in the representation of
the formula, where Stålmarck’s method uses a conjunction of terms of
the form 𝑥 ↔ (𝑦 → 𝑧), called triplets.

The procedure works by simplifying the current formula, thereby
refining the equivalence relation on the literals, until either a contra-
diction is reached or until the current formula becomes the empty
conjunction. This is realized by a set of simple rules, which apply local
reasoning on the triplets, and a dilemma rule which is used to build a
recursive search procedure.

The simple rules apply to a single triplet and all equivalences between
the literals of its variables. If a new equivalence follows from that, it is
added to the relation. The rules are shown in figure .. The form of
the triplets ensures that once a basic rule can be applied, the resulting
equivalences completely constrain the variables to satisfy the triplet.
This means that a triplet can be removed once it triggered a rule.

Figure .: Simple rules of Stålmarck’s
method

R:

R:

R:

R:

R:

R:

R:

f ↔ (𝑦 → 𝑧) ⇒ 𝑦 ≡ t, 𝑧 ≡ f

𝑥 ↔ (𝑦 → t) ⇒ 𝑥 ≡ t

𝑥 ↔ (f → 𝑧) ⇒ 𝑥 ≡ t

𝑥 ↔ (t → 𝑧) ⇒ 𝑥 ≡ 𝑧

𝑥 ↔ (𝑦 → f) ⇒ 𝑥 ≡ ¬𝑦

𝑥 ↔ (𝑥 → 𝑧) ⇒ 𝑥 ≡ t, 𝑧 ≡ t

𝑥 ↔ (𝑦 → 𝑦) ⇒ 𝑥 ≡ t

While the formula representation is different from the CNF repre-
sentation used by DPLL, these basic rules can be adopted to work with
conjunctions of any kind of terms.

The essential innovation of Stålmarck’s method is the dilemma rule.
The dilemma rule allows branching on a variable (or possibly on an
equivalence of two variables). Unlike the basic DPLL procedure’s
splitting rule, the dilemma rule reconciles the two considered cases.
The rule branches on the variable, by assuming an equivalence for one
case and its negation for the other, and deducing more equivalences
for both cases. It continues by combining the equivalence relations
from both branches. An example is shown in figure .. If we view
the relations as a set of tuples, they are combined by computing their
intersection. This is equivalent to the disjunction of the equivalences.
The dilemma rule is consistent as everything deduced is an equivalence
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that holds in all cases. A conflict will result in an equivalence relation
with a single equivalence class containing all literals. Thus in case of
a conflict in one branch, the dilemma rule simply continues with the
other.

∅

𝐴 ≡ 𝐵,𝐶 ≡ t

𝐴 ≡ t, 𝐵 ≡ t, 𝐶 ≡ t 𝐴 ≡ f, 𝐵 ≡ f, 𝐶 ≡ t

𝐴 ≡ t, 𝐵 ≡ t, 𝐶 ≡ t,
𝐷 ≡ t, 𝐸 ≡ f, 𝐹 ≡ f

𝐴 ≡ f, 𝐵 ≡ f, 𝐶 ≡ t,
𝐷 ≡ t, 𝐸 ≡ t

𝐴 ≡ 𝐵,𝐶 ≡ t, 𝐷 ≡ t,
𝐴 ≡ ¬𝐸, 𝐵 ≡ ¬𝐸

Simple Rules

𝐴 ≡ t 𝐴 ≡ f

Simple Rules Simple Rules

Dilemma Rule
Split

Dilemma Rule
Intersection

Figure .: Dilemma Rule Example

Stålmarck’s method tries to find a shallow sequence of dilemma rule
applications that leads to a contradiction or empty formula. The shal-
lowest sequence does not use the dilemma rule at all. This means that
only the simple rules are applied until no further application is possible.
This is done by a procedure called 0-Saturation. (𝑘 + 1)-Saturation is
then defined as applying the dilemma rule repeatedly, cycling through
all variables, until no more progress is made. The two cases of the
dilemma rule are processed with 𝑘-Saturation. Stålmarck’s method is
then defined as trying 0-Saturation, 1-Saturation, and so on, until a
solution or conflict is found. This is a complete method as with 𝑘 set
to the number of variables present in the formula, 𝑘-Saturation will
exhaustively try all possible assignments.
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: procedure Stålmarck(𝜙)
: 𝑘 ← 0
: 𝑅 ← ∅
: loop
: 𝜙,𝑅 ← 𝑘-Saturation(𝜙, 𝑅)
: if t ≡ f ∈ 𝑅 then
: return unsat

: 𝑘 ← 𝑘 + 1
: procedure 0-Saturation(𝜙, 𝑅)

: for all 𝑡 ∈ 𝜙 matching a simple rule 𝑟 given 𝑅 do
: 𝜙 ← 𝜙 ⧵ {𝑡}
: 𝑅 ← (𝑅 ∪ 𝑟(𝑡, 𝑅))≡

: if t ≡ f ∈ 𝑅 then
: return ∅, {t ≡ f}
: else if 𝑣 ≡ t or 𝑣 ≡ f for all variables 𝑣 then
: return sat from procedure Stålmarck
: return 𝜙, 𝑅
: procedure (𝑘 + 1)-Saturation(𝜙, 𝑅)
: repeat
: 𝑅′ ← 𝑅
: for variable 𝑣 with 𝑣 ≡ t ∉ 𝑅 and 𝑣 ≡ f ∉ 𝑅 do
: 𝜙f, 𝑅f ← 𝑘-Saturation(𝜙, (𝑅 ∪ {𝑣 ≡ f})≡)
: 𝜙t, 𝑅t ← 𝑘-Saturation(𝜙, (𝑅 ∪ {𝑣 ≡ t})≡)
: 𝑅 ← 𝑅f ∩ 𝑅t

: 𝜙 ← 𝜙f ∪ 𝜙t

: until 𝑅′ = 𝑅
: return 𝜙, 𝑅

Algorithm .: Stålmarck’s Method

𝑋≡ is the reflexive transitive symmetric
closure of X, i.e. the smallest equiva-
lence relation containing 𝑋.




The Generalized Method of Stålmarck

Recent work of Thakur and Reps explores the possibilities of general-
izing Stålmarck’s method, and describes the theoretical foundations
for doing so []. They reformulate the method in the terminology of
abstract interpretation. Different variants of the generalized method
can then be obtained by switching out one abstract domain for another.
They also made an extended technical report available [], containing
proofs omitted in [].

Abstract domains are an order theoretic tool for working with ap-
proximate knowledge to simplify otherwise prohibitively large compu-
tations. The key observation made by Thakur and Reps is that the use
of an equivalence relation as an approximation of the possible satis-
fying assignments is an abstract domain. This implies that different
methods can be realized by choosing different abstract domains. In-
deed the preliminary variant of Stålmarck’s method described in the
patent [] does not use an equivalence relation but instead a partial
assignment, which, in the formulation of Thakur and Reps, is simply
the use of a different abstract domain.

. Order Theory and Abstract Interpretation

Abstract interpretation uses approximation to reduce computational
costs. Nevertheless it produces sound results and can be used to derive
accurate bounds or even exact results. To ensure soundness abstract
interpretation makes careful use of over- or under-approximations.
This is formalized using order theory. This section summarizes the basic
order theory needed in this thesis. An introduction to order theory is
given in [].

The essential construction of order theory is that of a partially ordered
set or poset. A partial order is a a reflexive, antisymmetric and transitive
relation and a poset (𝑃, ⊑) is a set 𝑃 together with a partial order ⊑ over
its elements.

Given a poset (𝑃, ⊑) and a subset of its elements 𝑆 ⊆ 𝑃 an element
𝑙 ∈ 𝑃 is called lower bound if ∀𝑠 ∈ 𝑆 ∶ 𝑙 ⊑ 𝑠. The dual notion, an upper
bound, is an an element 𝑢 ∈ 𝑃 so that ∀𝑠 ∈ 𝑆 ∶ 𝑠 ⊑ 𝑢. A subset can have
many, one or no upper or lower bounds. If an upper bound of a subset
𝑆 is a lower bound for the set of all upper bounds of 𝑆 it is called the
least upper bound or join and written ⨆𝑆. If a subset has a least upper
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bound, it is unique. The dual notion is called the greatest lower bound
or meet, written ⨅𝑆.

If a poset contains an upper bound for all its elements it is called the
greatest element or top, written ⊤. The least element or bottom, written
⊥ is defined dually.

If every pair of elements of a poset has a join (or dually meet), also
written 𝑎 ⊔ 𝑏 instead of ⨆{𝑎, 𝑏}, the poset is called a join-semilattice (or
meet-semilattice). If a poset is a join- and meet-semilattice it is called
a lattice. If the least and greatest element exist, it is called a bounded
lattice. The poset together with the binary meet and join operations
define an algebraic structure. Both operations are commutative, asso-
ciative and idempotent. In addition to that, both operations are con-
nected through an absoprtion law 𝑎 ⊔ (𝑎 ⊓ 𝑏) = 𝑎 and 𝑎 ⊓ (𝑎 ⊔ 𝑏) = 𝑎. If
the lattice is bounded an additional identity law holds 𝑎 ⊔⊥ = 𝑎 and
𝑎 ⊓⊤ = 𝑎.

For every set 𝑆 there exists a power set lattice (𝒫(𝑆), ⊆) with ∪ as join
and ∩ as meet operation. This lattice is bounded and has ⊤ = 𝑆 and
⊥ = ∅.

For every lattice (𝑃, ⊑) there is an order dual lattice (𝑃, ⊒) with meet
and join, ⊤ and ⊥, etc. exchanged.

If every subset of a lattice has a meet and join it is called a complete
lattice. This implies boundedness, as the meet and join of all elements
are the least and greatest element. Every finite lattice is trivially com-
plete as it is possible to construct the meet or join of a finite subset from
the corresponding binary operation.

For the task of SAT solving, we are only concerned with finite lattices,
and thus will limit the description of abstract domains to complete
lattices.

Given two posets (𝑃, ⊑) and (𝑄, ⪯) and a function 𝑓 ∶ 𝑃 → 𝑄, we call
𝑓 monotone, isotone or order-preserving when ∀𝑥, 𝑦 ∈ 𝑃 ∶ 𝑥 ⊑ 𝑦 ⇒ 𝑓(𝑥) ⪯
𝑓(𝑦).

Given a poset (𝑃, ⊑) and an arbitrary set 𝑋 the functions from 𝑋 to
𝑃 have a partial order ⊑, where 𝑓 ⊑ 𝑔 iff ∀𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) ⊑ 𝑔(𝑥).

A function 𝑓 ∶ 𝑃 → 𝑃 is called reductive if 𝑓 ⊑ id𝑃, i.e. its output is
bounded above by the input. A function 𝑔 ∶ 𝑃 → 𝑃 is called extensive
if id𝑃 ⊑ 𝑔, i.e. its output is bounded below by the input.

For any fixed 𝑥 ∈ 𝑃 the function 𝑓(𝑦) = 𝑦 ⊓ 𝑥 is reductive and 𝑔(𝑦) =
𝑦 ⊔ 𝑥 is extensive.

A function which is monotone, reductive and idempotent is called a
lower closure operator and a function which is monotone, extensive and
idempotent is called an upper closure operator.

Given a complete lattice (𝑃, ⊑) and a closure operator 𝑓 ∶ 𝑃 → 𝑃
the image of the lattice under the closure operator (𝑓[𝑃], ⊑) is also a
complete lattice [, Proposition .].

Two posets (𝑃, ⊑) and (𝑄, ⪯)with two monotone functions 𝛼 ∶ 𝑃 → 𝑄
and 𝛾 ∶ 𝑄 → 𝑃 so that ∀𝑝 ∈ 𝑃, 𝑞 ∈ 𝑄 ∶ 𝛼(𝑝) ⪯ 𝑞 ⇔ 𝑝 ⊑ 𝛾(𝑞) form a Galois
connection. This is written (𝑃, ⊑) −−−→←−−−𝛼

𝛾
(𝑄, ⪯) where 𝛼 and 𝛾 are called

lower and upper adjoint respectively.
Galois connections can be composed by composing the upper and
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lower adjoints, i.e. when (𝑃, ⊑) −−−−→←−−−−
𝛼1

𝛾1
(𝑄, ⪯) and (𝑄, ⪯) −−−−→←−−−−

𝛼2

𝛾2
(𝑅, ≤) then

(𝑃, ⊑) −−−−−−−→←−−−−−−−
𝛼2∘𝛼1

𝛾1∘𝛾2
(𝑅, ≤).

For a Galois connection (𝑃, ⊑) −−−→←−−−𝛼
𝛾

(𝑄, ⪯) the functions 𝛼 ∘ 𝛾 ∶ 𝑃 → 𝑃
and 𝛾 ∘ 𝛼 ∶ 𝑄 → 𝑄 are respectively lower and upper closure operators
[, Corollary . on p., , Corollary ...].

The composition of the lower adjoint with the upper closure operator
𝛼 ∘ (𝛾 ∘ 𝛼) is equal to the lower adjoint 𝛼 and dually 𝛾 ∘ (𝛼 ∘ 𝛾) = 𝛾 [,
Lemma . on p.].

Given an ordered set (𝑃, ⊑) and an upper closure operator 𝑓 ∶ 𝑃 → 𝑃

there is a Galois connection (𝑓[𝑃], ⊑) −−−−→←−−−−
id

𝑓
(𝑃, ⊑) [, Corollary .

on p.]. Dually, given a lower closure operator 𝑔 ∶ 𝑃 → 𝑃 there is a
Galois connection (𝑃, ⊑) −−−−→←−−−−

𝑔
id

(𝑔[𝑃], ⊑).
We can use a Galois connection between lattices to define an abstract

domain []. When (𝑃, ⊑) is a so called concrete set that is part of the
problem to solve with abstract interpretation, (𝑄, ⪯) is called the abstract
set and is usually chosen to have a computationally simpler structure
than 𝑃. The function 𝛼 ∶ 𝑃 → 𝑄 is called the abstraction function and the
function 𝛾 ∶ 𝑄 → 𝑃 the concretization function.

These functions can be used to approximate operations on the con-
crete set using functions on the abstract set. Given a function 𝑓 ∶ 𝑃 → 𝑃
the function ̂𝑓 ∶ 𝑄 → 𝑄 is a correct or sound upper approximation iff
∀𝑥 ∈ 𝑄 ∶ 𝛼(𝑓(𝛾(𝑥))) ⪯ ̂𝑓(𝑥) [, Theorem ...] The best or most precise
approximation is 𝛼 ∘ 𝑓 ∘ 𝛾, which is monotone [, Corollary ...].

For a SAT solver an interesting concrete set is the power set lattice of
boolean assignments 𝓒 = (𝒫(𝑉 → {t, f}), ⊆). Its elements can repre-
sent the set of all assignments satisfying either the complete formula or
satisfying a part of it. Directly using this representation to compute the
set of all satisfying assignments is equivalent to an exhaustive search
of the solution space. What DPLL and the preliminary variant of Stål-
marck’s method instead use is a partial assignment. Together with
the special value bottom ⊥ this happens to be an abstract domain for
the family of sets of boolean assignments, namely the Cartesian domain.
The abstraction function produces a partial assignment where only
those variables are assigned, which have the same value in all concrete
assignments. The concretization function returns a set of all assign-
ments where the variables agree to those assigned in the partial assign-
ment. A special case occurs for the empty set of assignments, i.e. a
conflicting input formula, which is corresponds to⊥ for the abstraction
and concretization function.

. Applying Abstract Interpretation to Stålmarck’s Method

An essential part of Stålmarck’s method is the equivalence relation
constraining the set of assignments considered in the search for a sat-
isfying assignment. Similarly to the partial assignment, this also is
an abstract domain for the concrete domain 𝓒 = (𝒫(𝑉 → {t, f}), ⊆).
For each single assignment of the concrete set there is an equivalence
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relation over the literals and the constants t and f with two equiva-
lence classes containing all literals set to t and to f respectively. The
intersection of all these equivalence relation is the corresponding ab-
stract set. The concrete set for a given equivalence relation contains an
assignment for each possible way to map the equivalence classes to
{t, f}, so that the equivalence classes containing the constants t and f
are mapped to the contained constant. A special case is when a literal
and its negation are in the same equivalence class, which represents
a conflict. For the abstract set all conflicting equivalence relations are
considered to be equal and to be the bottom element ⊥.

The observation that an abstract domain is at the core of Stålmarck’s
method, prompted Thakur and Reps to generalize it to use different
abstract domains. For this they describe a corresponding abstract
interpretation operation for each step of Stålmarck’s method [].

The simple rules of Stålmarck’s method used for the 0-Saturation
update the equivalence relation to eliminate more assignments which
cannot satisfy the given triples. The corresponding operation on a
concrete set would directly eliminate all assignments violating the
constraints defined by the triples. This is a lower closure operator and
as such can be lifted to a lower closure operator in the abstract domain
using the concretization and abstraction functions [, Theorem ].
This has to be approximated in an efficiently implementable way. The
technique used is local decreasing iterations, introduced in []. Local
decreasing iterations approximate a lower closure operator using a set
of reductive operators that approximate the closure operator. These
operators are repeatedly applied sequentially until a fixed point or an-
other termination criteria is reached. All elements of this sequence are
sound approximations of the closure operator’s result [, Theorem ].
The set of reductive operators is built from the set of constraints. For
each constraint a reductive operator is defined that approximates the
effect of the single constraint in isolation.

When an equivalence relation is used as abstract domain and triplets
as constraints the usual simple rules would be a suitable set of reduc-
tive operators. The iteration until a fixed point is reached is exactly
equivalent to 0-Saturation in this case. For the Cartesian domain and
a CNF formula the one-literal-rule of the DPLL procedure would fit
this framework. Furthermore Thakur and Reps describe a way to me-
chanically derive reductive operators for arbitrary abstract domains
and constraint types by considering only a fixed number of variables
simultaneously.

The remaining missing piece is the dilemma rule. The dilemma rule
requires splitting the search space into two branches. It also needs a
way to extract the common information of both branches. Splitting the
search space in the abstract domain is realized by defining an acceptable
splitting set and computing meets with the elements. An acceptable
splitting set contains abstract elements satisfying two conditions. Each
splitting element 𝑎 has a companion 𝑏, with 𝛾(𝑎) ∪ 𝛾(𝑏) = 𝛾(⊤), so that
two branches, each with a meet of them, explore the complete search
space. The second condition is that for each concrete element which is
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a singleton set 𝑋 = {𝑥}, there is a set of splitting elements 𝑀𝑥, called
the cover of 𝑥, so that their meet has the singleton set as concretization
𝛾(⨅𝑀𝑥) = 𝑋 . This ensures that nested application of the splitting rule
can explore every single assignment of the search space. While not
explicitly stated by Thakur and Reps we also require 0-Saturation of
⨅𝑀𝑥 to return ⊥ if 𝑥 is not a valid assignment.

When the abstract domain is as expressive as the Cartesian domain,
which means that it has an abstract element for each element of the
Cartesian domain so that both have the same concretization, the single
variable assignments form an acceptable splitting set.

A dilemma rule split then simply uses a splitting set element for one
branch and its companion for the other branch. Each branch then com-
putes the meet with the splitting set element. After the two branches
are completed a join operation is used to merge the branches. This
approximates a join operation in the concrete domain which would
remove exactly the assignments ruled out by both branches.

Where Stålmarck’s method iterates over all unassigned variables,
the generalized variant accomplishes the same by iterating over all
splitting set companion pairs 𝑎, 𝑏 so that 𝑎 ⋢ 𝐴 and 𝑏 ⋢ 𝐴 where 𝐴 is
the current abstract domain element. This completes the generalization
of Stålmarck’s method.

Stålmarck’s Method Generalized Variant

Equivalence relation Abstract domain element
Simple rules Sound reductive operators
0-Saturation Local decreasing iterations
Dilemma rule split Meet with two splitting set com-

panions in two branches
Dilemma rule intersection Join of the two branches

Table .: Summary of the generalized
variant of Stålmark’s method as
described by Thakur and Reps

Thakur and Reps have analyzed sufficient conditions for an ab-
stract domain to be suitable for their generalized variant of Stålmarck’s
method:

. There exists a Galois connection 𝓒 −−−→←−−−𝛼
𝛾

𝓐 between the concrete set
𝓒 = (𝒫 (𝑉 → {t, f}), ⊆) and the chosen abstract set 𝓐 = (𝐴, ⊑).

. The expressiveness of the abstract domain surpasses the Cartesian
domain, which means that for each 𝑥 of the Cartesian domain there
is a corresponding 𝑦 of the chosen abstract domain so that 𝛾𝐶𝑎𝑟𝑡(𝑥) =
𝛾𝓐(𝑦).

. The join operation of the chosen abstract set can be computed.

. The meet operation of the chosen abstract set can be computed.

. There exists an acceptable splitting set.
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: procedure Stålmarck(𝜙)
: 𝑘 ← 0
: 𝐴 ← ⊤
: loop
: 𝐴 ← 𝑘-Saturation(𝜙, 𝐴)
: if 𝐴 = ⊥ then
: return unsat

: 𝑘 ← 𝑘 + 1
: procedure 0-Saturation(𝜙, 𝐴)

: reduce 𝐴 ⊒ 𝛼(𝛾(𝐴) ∩ {𝛽 ∈ 𝑉 → {t, f} ∣ 𝛽 ⊨ 𝜙})
: if 𝐴 ⊑ 𝑀𝑥 for some 𝑥 with 𝑥 ⊨ 𝜙 then
: return sat from procedure Stålmarck
: return 𝐴
: procedure (𝑘 + 1)-Saturation(𝜙, 𝐴)
: repeat
: 𝐴′ ← 𝐴
: for each companions 𝑋, 𝑌 ∈ 𝑆 with 𝑋 ⋣ 𝐴 and 𝑌 ⋣ 𝐴 do
: 𝐴𝑋 ← 𝑘-Saturation(𝜙, 𝐴 ⊓ 𝑋 )
: 𝐴𝑌 ← 𝑘-Saturation(𝜙, 𝐴 ⊓ 𝑌 )
: 𝐴 ← 𝐴𝑋 ⊔ 𝐴𝑌

: until 𝐴′ = 𝐴
: return 𝐴

Algorithm .: Generalized Method of
Stålmarck




Extending Stålmarck’s Method

This chapter presents new work that builds upon the method by Thakur
and Reps described in the previous chapter. The goal is to develop
further extensions of the method to aid the practical implementation.

. Efficient Abstract Domains for Sets of Assignments

For implementing Stålmarck’s method using abstract domains it is im-
portant to use a domain with an efficient join operation and a meet
operation that is efficient for splitting elements. This gets more compli-
cated for more expressive abstract domains.

For the Cartesian domain even a naive join operation runs in lin-
ear time with respect to the number of variables, while a meet with a
splitting element takes constant time. This can be improved to linear
in the number of newly assigned variables by keeping track of the as-
signed variables for each branch. Equivalence relations can be handled
efficiently using a disjoint set data structure [] but are already more
expensive.

A framework which can guide the efficient implementation of differ-
ent abstract domains and allows combinations of different domains
is desirable. This section derives such a framework suitable for many
possible domains. This framework is the basis for the first implemen-
tation attempt described in chapter  as well as the implementation
described in chapter .

All abstract domains considered so far share the property that their
elements can be represented as a set of constraints, where each con-
straint limits a small subset of variables to a subset of their possible
assignments. Thakur and Reps also give implications (or inequalities)
and affine relations of three variables which fit into this pattern as ex-
amples. We can generalize this to allow arbitrary sets of constraints.

Let 𝑆 be the set of all single variable assignments {𝑣 ≡ 𝑏 ∣ 𝑣 ∈ 𝑉 , 𝑏 ∈
{t, f}} For a given set of constraints 𝐶 ⊇ 𝑆 we first consider the order
dual of its power set lattice as abstract domain 𝓐 = (𝒫 (𝐶), ⊑) with
⊑ = ⊇. It is necessary to use the inverse of the inclusion order, as more
constraints reduce the number of satisfying assignments. This lattice
has set union as meet operation and set intersection as join operation.

Lemma . The abstract domain 𝓒 −−−→←−−−𝛼
𝛾

(𝒫 (𝐶), ⊑) with 𝐶 ⊇ 𝑆 and 𝑆 as
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splitting set fulfills the conditions of the generalized Method of Stålmarck.

Proof. Both lattice operations are simple set operations and can be im-
plemented very efficiently, satisfying conditions  and . As the single
variable assignments are among the allowed constraints the resulting
abstract domain generalizes the Cartesian domain and satisfies condi-
tions  and .

We can also show the existence of a Galois connection 𝓒 −−−→←−−−𝛼
𝛾

𝓐
between the abstract and the concrete set, the remaining condition .
We define the concretization function 𝛾 to produce all assignments
satisfying all constraints, that is

𝛾(𝑋) = {𝑦 ∈ 𝒫 (𝑉 → {t, f}) ∣ ∀𝑥 ∈ 𝑋 ∶ 𝑥(𝑦)}.

This is equal to the intersection or concrete meet of the sets of all
assignments satisfying a single constraint

𝛾(𝑋) = 󰈝
𝑥∈𝑋

𝛾({𝑥}).

Also the abstract meet of two abstract elements is the union of their
constraints 𝐴 ⊓ 𝐵 = 𝐴 ∪ 𝐵. From this it follows that the concretization
function preserves meets, as the concretization of a meet and the meet
of concretizations are both the intersection of constraint satisfying
assignments of all involved constraints

𝛾(𝐴 ⊓ 𝐵) = 𝛾(𝐴 ∪ 𝐵) = 󰈝
𝑥∈𝐴∪𝐵

𝛾({𝑥})

= 󰈝
𝑥∈𝐴

𝛾({𝑥}) ∩󰈝
𝑥∈𝐵

𝛾({𝑥}) = 𝛾(𝐴) ∩ 𝛾(𝐵).

A meet preserving map between complete lattices is the upper adjoint
of a uniquely defined Galois connection [, Proposition .]. The
corresponding lower adjoint, which is the matching abstraction func-
tion, is the meet of all elements which have a concretization bounded
below by the concrete element:

𝛼(𝑌) = 󰈒{𝑋 ∣ 𝑌 ⊆ 𝛾(𝑋)}.

In this case it is the union (abstract meet) of all constraint sets which do
not rule out any assignment of the concrete element. This is exactly the
set of constraints satisfied by all assignments of the concrete element

𝛼(𝑌) = {𝑥 ∈ 𝐶|𝑥(𝑌)}.

The problem with this approach is that all interaction between con-
straints is ignored. With equivalences as constraints this would mean
that {𝑥 ≡ 𝑦, 𝑦 ≡ 𝑧} ⊔ {𝑥 ≡ 𝑧} = ∅. This is clearly unsatisfactory. For
the examples given by Thakur and Reps they define a meet operation
that for each input set adds all constraints implied by the other con-
straints in the set. We can formalize this for arbitrary constraints by
using the image of the previously described abstract lattice under its
Galois connection’s lower closure operator (𝛼 ∘ 𝛾[𝒫 (𝐶)], ⊑).
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Lemma . The abstract domain 𝓒 −−−→←−−−𝛼
𝛾

(𝛼 ∘ 𝛾[𝒫 (𝐶)], ⊑) with 𝐶 ⊇ 𝑆 and
𝑆′ = 𝛼 ∘ 𝛾[𝑆] as the splitting set fulfills the conditions of the generalized
Method of Stålmarck.

Proof. The meet operation is still the intersection of constraints, sat-
isfying condition . The join operation requires computation of all
implied constraints. While not practical, a possible algorithm is to com-
pute the join in the concrete domain, thus satisfying condition . As
𝛾(𝛼 ∘ 𝛾(𝐴)) = 𝛾(𝐴) the splitting set contains an element correspond-
ing to each element of the Cartesian domain, satisfying conditions 
and .

The Galois connection, needed for the remaining condition , is
constructed by composing

𝓒 −−−→←−−−𝛼
𝛾

(𝒫 (𝐶), ⊑)

and
(𝒫 (𝐶), ⊑) −−−−−→←−−−−−

id

𝛼∘𝛾
(𝛼 ∘ 𝛾[𝒫 (𝐶)], ⊑)

obtaining

𝓒 −−−−−−−−→←−−−−−−−−
id∘𝛼

𝛾∘(𝛼∘𝛾)
(𝛼 ∘ 𝛾[𝒫 (𝐶)], ⊑)

which can be simplified to

𝓒 −−−→←−−−𝛼
𝛾

(𝛼 ∘ 𝛾[𝒫 (𝐶)], ⊑).

Even for some possible two-variable constraints, as in the case of
the equivalence relation, computing all implied constraints results in
quadratic runtime and storage requirements, suggesting that in general
this construction is not practical.

Nevertheless, the power set lattice (𝒫 (𝐶), ⊑) and its image under
the lower closure operator (𝛼 ∘ 𝛾[𝒫 (𝐶)], ⊑) define a useful upper
and lower bound. This allows for a trade off between complexity
and expressiveness by applying a function to the inputs of a meet
that computes only some implied constraints. Also when a set of
complex constraints is equivalent to a set of simpler constraints it can
be useful to not only add the simple constraints but also to remove the
complex constraints. Arbitrary heuristics, including consideration of
the other input set, can be used to guide the generation and removal
of constraints.

Algorithm . presents the resulting method as pseudocode. It is
an instantiation of algorithm . using the power set lattice with the
addition of calls for the heuristics that add or remove constraints.

Theorem . The generalized method of Stålmarck with the abstract domain
𝓒 −−−→←−−−𝛼

𝛾
(𝒫 (𝐶), ⊑) extended with addition of some implied constraint and

removal of some non splitting set constraints is sound and complete.

Proof. We can prove the soundness of this algorithm by showing that
𝑘-Saturation𝑒𝑥𝑡 of this variant is always bounded below by 𝑘-Saturation
using the domain 𝓒 −−−→←−−−𝛼

𝛾
(𝛼 ∘ 𝛾[𝒫 (𝐶)], ⊑) and the best approximation

for 0-Saturation, which by lemma  is sound. To avoid confusion we
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: procedure Stålmarck𝑒𝑥𝑡(𝜙)
: 𝑘 ← 0
: 𝐴 ← {}
: loop
: 𝐴 ← 𝑘-Saturation(𝜙, 𝐴)
: if 𝐴 = ⊥ then
: return unsat

: 𝑘 ← 𝑘 + 1
: procedure 0-Saturation𝑒𝑥𝑡(𝜙, 𝐴)

: reduce 𝐴 ⊆ 𝛼(𝛾(𝐴) ∩ {𝛽 ∈ 𝑉 → {t, f} ∣ 𝛽 ⊨ 𝜙})
: if 𝐴 ⊇ 𝑀𝑥 for some 𝑥 with 𝑥 ⊨ 𝜙 then
: return sat from procedure Stålmarck
: return ConstraintHeuristic(𝐴)
: procedure (𝑘 + 1)-Saturation𝑒𝑥𝑡(𝜙, 𝐴)
: repeat
: 𝐴′ ← 𝐴
: for each companions 𝑋, 𝑌 ∈ 𝑆 with 𝑋 ⊈ 𝐴 and 𝑌 ⊈ 𝐴 do
: 𝐴𝑋 ← 𝑘-Saturation𝑒𝑥𝑡(𝜙, 𝐴 ∪ 𝑋 )
: 𝐴𝑌 ← 𝑘-Saturation𝑒𝑥𝑡(𝜙, 𝐴 ∪ 𝑌 )
: 𝐴 ← MergeHeuristic(𝐴, 𝐴𝑋 , 𝐴𝑌 )
: until 𝐴′ = 𝐴
: return 𝐴

Algorithm .: Stålmarck’s Method us-
ing Constraint Sets with Heuristics for
Addition and Removal of Constraints

use 𝐴̂ for the solver state of 𝑘-Saturation and 𝐴 for the solver state of
𝑘-Saturation𝑒𝑥𝑡.

We can use induction on 𝑘 prove the soundness of 𝑘-Saturation𝑒𝑥𝑡.
For the base case 0-Saturation begins with

𝐴̂ ← 𝛼(𝛾(𝐴̂) ∩ {𝛽 ∈ 𝑉 → {t, f} ∣ 𝛽 ⊨ 𝜙}),

as we chose to use the best approximation for the bound. 0-Saturation𝑒𝑥𝑡
begins with

𝐴 ⊆ 𝛼(𝛾(𝐴) ∩ {𝛽 ∈ 𝑉 → {t, f} ∣ 𝛽 ⊨ 𝜙})

which in the lattice order is bounded below by 0-Saturation. The
procedure 0-Saturation𝑒𝑥𝑡 also invokes ConstraintHeuristic which can
add implied constraints or remove constraints. Removing constraints
is extensive and thus cannot violate the lower bound. Adding some
implied constraints is bounded below by 𝛼 ∘ 𝛾 which adds all implied
constraints. As 𝛼 ∘ 𝛾 is idempotent and order preserving and the bound
is the result of an application of 𝛼 ∘ 𝛾 the bound is also valid for the
result of ConstraintHeuristic.

For the inductive case we show that after every iteration of the loop
in (𝑘 + 1)-Saturation𝑒𝑥𝑡 the solver state𝐴 is bounded below by the solver
state of (𝑘 + 1)-Saturation assuming 𝑘-Saturation𝑒𝑥𝑡 is bounded below
by 𝑘-Saturation. The requirement for MergeHeuristic is to compute
𝐴 ∪ (𝐴𝑋 ∩ 𝐴𝑌 ) followed by possible addition of implied and removal
of constraints. In the case of (𝑘 + 1)-Saturation constraints are never
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removed, thus 𝐴̂𝑋 ∩ 𝐴̂𝑌 ⊇ 𝐴̂. Together with 𝐴̂𝑋 ⊔ 𝐴̂𝑌 = 𝛼 ∘ 𝛾(𝐴̂𝑋 ∩
𝐴̂𝑌 ) we obtain 𝐴̂ = 𝛼 ∘ 𝛾(𝐴̂ ∪ (𝐴̂𝑋 ∩ 𝐴̂𝑌 ). Again, here we use that 𝛼 ∘ 𝛾
is a lower bound for addition of implied constraints and obtain 𝐴̂ as
a lower bound for 𝐴 given that 𝐴̂𝑋 and 𝐴̂𝑌 are lower bounds for 𝐴𝑋
and 𝐴𝑌 .

The completeness of the generalized method of Stålmarck depends
only on the elements of the splitting set which ensure that every assign-
ment will eventually be considered. As neither ConstraintHeuristic
nor MergeHeuristic are allowed to remove constraints which are part
of the splitting set the same argument is still valid for this variant.

. Nonuniform Depth Search

A problem with Stålmarck’s method for difficult problem instances
is the exponential increase in solving time with search depth. This is
caused by an effectively breadth first exploration of the search space.
The other extreme is the depth first exploration approach taken by the
DPLL procedure. This leads to the question whether an exploration
strategy that lies in between those extremes is possible. The rationale
for using such an exploration strategy is the huge potential saving in
runtime when a problem instance can be solved in many different ways
using 𝑘 + 1 nested applications of the dilemma rule but not using 𝑘
nested applications.

To answer that, we will first show how a depth first exploration
equivalent to DPLL is possible using the framework provided by Stål-
marck’s method. The key observation is that in case of a conflict in
the first branch of the dilemma rule, it is equivalent to the DPLL pro-
cedure. When the dilemma rule is applied recursively without any
depth limit it will eventually find a solution or reach a conflicting state.
This means that ∞-Saturation is equivalent to DPLL.

To implement alternative exploration strategies we can replace the
iteratively increased depth limit with a more elaborate heuristic that
decides whether to continue applying the dilemma rule or not. Desir-
able properties of such a heuristic are the following:

• Every application of the dilemma rule explores related areas of the
search space.

• The computation needed for each recursive application of the dilemma
rule is cheap.

• It is possible to deepen the search with each iteration.

We suggest a framework to implement such a heuristic based on
a per-variable search depth. This per variable search depth can be
computed by a possibly expensive heuristic as it is only updated at
the outermost recursion level. This heuristic is implemented using the
NDS-Saturation procedure which takes a depth limit and a mapping
of variables to search depths as additional parameter. As a first step it
applies 0-Saturation and should the depth limit be zero it returns after
that. After that it repeatedly iterates over all variables which have a
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depth larger than or equal to the current depth limit and applies the
dilemma rule using the current variable until a fixed point is reached.
For the branches of the dilemma rule the NDS-Saturation procedure is
recursively invoked with a depth limit reduced by one. All variables
that come before the current variable in the fixed point iteration step as
well as the current variable are removed from the mapping passed to
the recursive invocation. This ensures that permutations of the same
assignments are only explored once. It is important that the initial
mapping contains consecutive depths as otherwise the recursion can
terminate without exploring the variables which have a small gap.

: procedure NDS-Saturation(𝜙, 𝐴, 𝑑, 𝛿)
: 𝐴 ← 0-Saturation(𝜙, 𝐴)
: if 𝑑 = 0 then
: return 𝐴
: repeat
: 𝐴′ ← 𝐴
: 𝛿′ ← 𝛿
: for each variable 𝑣 with (𝑣 ≡ t) ⋣ 𝐴 and (𝑣 ≡ f) ⋣ 𝐴 do
: 𝛿′(𝑣) ← 0

: if 𝛿(𝑣) ≥ 𝑑 then
: 𝐴t ← NDS-Saturation(𝜙, 𝐴 ⊓ (𝑣 ≡ t), 𝑑 − 1, 𝛿′)
: 𝐴f ← NDS-Saturation(𝜙, 𝐴 ⊓ (𝑣 ≡ f), 𝑑 − 1, 𝛿′)
: 𝐴 ← 𝐴t ⊔ 𝐴f

: until 𝐴′ = 𝐴
: return 𝐴

Algorithm .: The NDS-Saturation
procedure




Binary Decision Diagarams as Constraints

To use the general framework described in the last chapter different
abstract domains need to be implemented. Here a trade off between
simple domains and more complex domains can be made. On the
simple end there is the Cartesian domain, corresponding to partial
assignments, and the 2-BAR domain, corresponding to an equivalence
relation, as used in the classic variants of Stålmarck’s method. On the
complex end sets of arbitrary constraints are allowed.

. Processing of BDD Constraints

This chapter explores the possibility of implementing the generalized
method of Stålmarck using arbitrary constraints represented as binary
decision diagrams. Reduced, ordered binary decision diagrams, often
just called binary decision diagrams (BDD), are a compact and unique
representation of arbitrary multivariate boolean functions [], []. A
BDD is a directed acyclic graph where each node has an out-degree
of at most 2, thus we can measure the size of a BDD as the number of
nodes in the graph. There are polynomial time algorithms for common
operations including conjunction, disjunction, symmetric difference,
variable abstraction and many more. For the rest of this chapter we will
treat BDDs mostly as a black box, as we make use of the cudd library
[] that implements BDDs along with all related data structures and
algorithms needed.

A constraint over a set of variables can be represented as a boolean
function of the variables that is true iff the variables satisfy the con-
straint. Such a function can in turn be represented by a BDD.

With BDDs it is possible to directly encode an input formula in
CNF as a set of constraints. This means that from the beginning the
concretization of the set of constraints is exactly the set of satisfying
assignments. As the meet of the current constraint set with a cover of
an unsatisfying assignment is bottom in this case, it has the interesting
effect that 0-Saturation can be skipped.

Using more complex constraints allows the use of a smaller num-
ber of constraints as multiple smaller constraints can be combined by
replacing them with their conjunction. This is allowed as it results
in an equivalent set of constraints. Combining two constraints with
overlapping input variables can make new information available or
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even detect a conflict if the constraints were contradictory. Thus com-
bining of constraints should be performed regularly. In general though,
the size of BDDs grows exponentially with the number of variables
[, theorem U]. This means that constraints should only be combined
up to a certain limit. Without this limit combining the BDDs would
already be a complete but inefficient SAT solving procedure and the
generalized Stålmarck’s method would not be needed.

Constraints that are a single variable assignment are handled as
a special case. Fixing an input variable of a BDD can only make the
resulting BDD smaller. Thus it makes sense to have a separate partial
assignment to keep track of the single variable constraints and to always
substitute all assigned variables in all constraints. Again this operation
produces a set of constraints that is equivalent to the initial set of
constraints and is thus allowed.

The more complex the constraints the less likely it is that two dilemma
rule branches produce the same constraint. To still get progress even
when no branch was conflicting it is necessary to find common implied
constraints. Common implied constraints can be found by computing
the disjunction of two constraints, one of each branch. As the amount of
possible implied constraints is quadratic, only a subset of them should
be generated.

A possible heuristic is to not use constraints as input for the implied
constraint generation that were present before the dilemma rule ap-
plication or are otherwise present in both branches. Also, to avoid
generation of increasingly more complex constraints only disjunctions
that are not larger than the input constraints should be added.

: procedure MergeHeuristic(𝐴, 𝐴𝑋 , 𝐴𝑌 )
: 𝐴 ← 𝐴 ∪ (𝐴𝑋 ∩ 𝐴𝑌 )
: 𝐴𝑋 ← 𝐴𝑋 ⧵ 𝐴
: 𝐴𝑌 ← 𝐴𝑌 ⧵ 𝐴
: for each (𝑐𝑋 , 𝑐𝑌 ) ∈ 𝐴𝑋 × 𝐴𝑌 with |𝑣𝑎𝑟𝑠(𝑐𝑋 ) ∩ 𝑣𝑎𝑟𝑠(𝑐𝑌 )| ≥ 1 do
: 𝑐 ← 𝑐𝑋 ∨ 𝑐𝑌
: if |𝑐| ≤ max{|𝑐𝑋 |, |𝑐𝑌 |} then
: 𝐴 ← AddConstraint(𝐴, 𝑐)
: return 𝐴

: procedure AddConstraint(𝐴, 𝑘)
: for each 𝑐 ∈ 𝐴 with |𝑣𝑎𝑟𝑠(𝑘) ∩ 𝑣𝑎𝑟𝑠(𝑐)| ≥ 2 do
: 𝑘′ ← 𝑘 ∧ 𝑐
: if |𝑘′ | ≤ max{|𝑘|, |𝑐|} then
: return AddConstraint(𝐴 ⧵ {𝑐}, 𝑘′)
: return 𝐴 ∪ {𝑘}

Algorithm .: Dilemma Rule Merging
Heuristic for BDD Constraints

. Initial Clustering of CNF Clauses

The usual input format for a SAT solver is a formula in CNF. Thus it
is desirable to also support this input format for our implementation.
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A naive way to support this would be to turn every CNF clause into
a single BDD constraint. The problem with this approach is, that it
results in an unnecessarily large number of constraints.

As BDDs allow combining of constraints it is possible to reduce the
number of constraints. Typical CNF formulas have a number of clauses
from the few hundreds up to millions of clauses, thus an efficient
heuristic for the initial merging of constraints is necessary.

To devise such an efficient heuristic, criteria for merging clauses
have to be identified. As in general the size of a BDD grows expo-
nentially with the number of input variables it makes sense to merge
constraints that have an overlapping set of variables to minimize the
growth. Usually for each clause there is a large number of clauses that
have an overlapping set of variables. When merging two constraints a
new constraint, still overlapping with the other constraints, is created.
Thus the choice cannot be made in isolation when the total size of all
constraints should be minimized.

For the implementation this was solved by using divisive hierarchical
clustering []. The set of clauses is recursively partitioned into two
sets constrained to have a similar size while minimizing the number
of shared variables. The result of this process is a dendrogram, a tree
with the clauses as leaves. It is then possible to merge the clauses
along the tree in a bottom up order, stopping when a threshold in BDD
complexity is crossed.

While clustering makes only use of the number of variables, the
threshold for merging can use a more elaborate complexity measure.
The constraints in the final set should be small, measured in BDD
nodes, and have few variables. As merging of simple BDDs with
many variables can quickly build up large BDDs it makes sense to
heavily penalize the number of used variables. A complexity measure
that turned out to work well in practice is the number of BDD nodes
multiplied with a constant 𝛼 > 1 raised to the number of variables, i.e.
|𝑐| ⋅ 𝛼|𝑣𝑎𝑟𝑠(𝑐)|.

Partitioning of a set of clauses is realized using graph bipartitioning.
The set of clauses is represented as a bipartite graph with the clauses
and variables as nodes. There is an edge between a variable and a
clause exactly when the clause contains the variable. Each node in the
graph has two attributes, called size and weight. Variable nodes have
a size of 1 and a weight of 0 while clause nodes have a size of 0 and
a weight of 1. The graph partitioning library metis [], version .,
is used to partition the graph into two parts. The objective function is
chosen to minimize the total communication volume which is the sum
of sizes of the nodes which have at least one cut edge. In this case it is
the number of variables present in both parts. In addition to that the
sum of the node weights of both parts is constrained to be about the
same, so that the number of clauses is roughly balanced.
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. Performance Problems

A prototype of this method was implemented. While the conversion
from a CNF formula to a set of BDD constraints worked as intended, ap-
plying Stålmarck’s method to it did not. The prototype was evaluated
with a selection from the problems of the SAT Competition  and
the “Small, Difficult Satisfiability Benchmarks” suite []. Depending
on the heuristic used for generating implied constraints two runtime
behaviors could be observed. In the first case, when the heuristic gener-
ates few or only small constraints, the procedure quickly stops making
progress and no new common implied constraints are found when
dilemma branches are merged. In this case the method degenerates to
an exhaustive search that additionally does expensive computations
in each step. In the second case, when the heuristic generates more
constraints, the number of constraints, the size of constraints or both
grow too fast. This causes a slow down large enough that even for
small instances practically no progress is made. Even though it would
be possible for a heuristic to exist which does not show either behavior,
the attempts made to find such a heuristic were unsuccessful. Profiling
showed that most of the time is spent inside the cudd library, therefore
lack of optimizing the prototype did not cause the slow performance.
While there are multiple places in the cudd source code where spe-
cific optimizations could lead to small improvements of performance
for this use case, it does not explain the overall performance. Instead
a different approach using simpler constraints was chosen and is de-
scribed in the following chapter. Nevertheless to allow further analysis
or to develop other algorithms based on it the evaluation of the de-
scribed CNF to set of BDDs conversion is presented below.

. Evaluation of the CNF to Set of BDDs Conversion
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Figure .: Constraint Size and Timing
of the CNF to Set of BDDs Conversion

suite [] contains 4651 CNF formulas. The computer used for the
evaluation has an “Intel Core i-K” CPU clocked at 3.40GHz and
is equipped with 16GiB of DDR-1600 RAM using 9-9-9 timing. The
operating system used is Arch Linux 64-Bit with Linux kernel version
3.13.5. The parameters used are a threshold of 200 and 𝛼 = 1.8. A
timeout of 500 seconds per instance was used. 62 instances could not
be converted within this timeout. Another 225 instances caused the
conversion to exceed hard-coded limitations of the cudd library and
are thus excluded. The results for the other 4364 instances are shown
in figure . and ..

The diagrams of figure . shows the change of the instance size that
results from the conversion. In the left diagram the size is measured by
counting the smallest, constant sized elements of both representations:
literals for CNF and nodes for BDDs. It shows that the overall size is
only affected by a small constant factor near 1, i.e. stays mostly constant.
Whether a slight growth or reduction in size can be observed seems
to depend on the kind of instance used. The right diagram measures
the size in number of constraints: CNF-clauses and BDDs. Here, again
depending on the kind of instance, a reduction by a factor in the range
of about 2 up to 10 can be observed. Another important metric is the
number of variables for each individual constraint. The less variables a
constraint has the more likely a variable’s value or a contradiction can
be derived from it. The left diagram of figure . shows the increase
in the average number of variables per constraint depending on the
problem size. While the increase varies a lot, it is not dependent on the
problem size. If the increase would get larger with the problem size
it would make the conversion useless beyond a certain problem size.
The final diagram shows the time taken for the conversion. Excluding
the timeout at 500 seconds and the very small instance sizes it shows
a processing time mostly linear in the size of the problem.

This evaluation shows that the conversion is able to satisfy the
goals of an efficient and scalable initial reduction in the number of
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constraints.




Implementation

This chapter describes the implementation of the SAT solver miplono
based on an extension of Stålmarck’s method as described in chapter .
It implements a nonuniform depth search and uses an abstract domain
that is a set of constraints. As customary for SAT solvers, miplono
processes problem instances in CNF. It also uses CNF as an internal
formula representation. Currently it supports variable assignments and
equivalences as constraints. The single variable assignments are also
used as splitting set. The flexibility in adding implied and removing
redundant constraints means it is possible to add constraint types
to miplono by specifying the interaction with some of the existing
constraint types.

. Core Architecture

The core of miplono is the recursive search and the associated managing
of the current solver state. The dilemma rule makes it necessary to keep
the solver state of the first branch while exploring the second branch.
Also there can be multiple completed first branches with multiple
recursive invocations of the dilemma rule in the corresponding second
branches.

A naive implementation would simply duplicate the solver state
before computing the meets with the two companion splitting set el-
ements. As the mutations done to the solver state are often small
compared to the overall size of the state it is possible to do better
by engineering a persistent data structure for the state. [] One ap-
proach would be to use immutable data structures, which are inherently
persistent. A different approach, taken by miplono, is to have a mu-
table active version of the state together with state differences or deltas.
The different versions form a tree where the edges represent the state
deltas. Any mutation to the active state also updates the deltas belong-
ing to the edges connected to the active node. The currently active
version can be changed by rewinding the delta of an incoming edge
or by replaying the delta of an outgoing edge. Inactive leaf nodes can
be dropped along with their incoming edge. In addition to that an
inactive node connected with an outgoing edge of the active node can
be merged into the active node by replaying the delta of the outgoing
edge and recording the changes in the incoming edge.
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Besides, during the merging of dilemma rule branches all mutations
of the state are done on leaf nodes. This means that only deltas of
incoming edges have to be updated. The merging of dilemma rule
branches requires mutation of a state which has two leaf children.
Nevertheless the updating of deltas of outgoing edges can be avoided
as the children are dropped along with the deltas directly after the
dilemma rule merge. The only remaining challenge is that the merging
requires querying of the two inactive child states. In general the persis-
tence technique used would require activating each state before it can
be queried. This would result in poor performance for dilemma rule
merging as it would rapidly cycle the active state between the two chil-
dren and their parent. Fortunately the state deltas can be used to our
advantage to implement a dilemma rule merging that is more efficient
than it would be in the non-persistent setting. The key observation to
this is that the intersection of the child states’ constraint sets contains
many constraints that are already among the parent state’s constraints.
Thus only computing the intersection of the newly added constraints
can be cheaper. This amounts to rewriting 𝐴 ← 𝐴 ∪ (𝐴𝑋 ∩ 𝐴𝑌 ) to
𝐴 ← 𝐴 ∪ ((𝐴𝑋 ⧵ 𝐴) ∩ (𝐴𝑌 ⧵ 𝐴)) where 𝐴𝑋 ⧵ 𝐴 and 𝐴𝑌 ⧵ 𝐴 can be
queried directly from the state deltas.

During the recursive search the tree of state deltas always maintains
a structure invariant that allows an efficient representation. A non-leaf
node either has a single child, belonging to the first branch of the
dilemma rule or it has two children where the child belonging to the
first branch is a leaf child. This allows storing the state deltas on two
stacks where only the top can be accessed. One stack, the main stack
contains the deltas on the path of the active state to the root, with the
root at the bottom. The other stack, the side stack contains the deltas
to the remaining states, with the delta nearest to the active state at the
top. The only remaining information needed to reconstruct the tree,
whether a state has a single or two children, is tracked implicitly by
the execution flow of the algorithm.

. Variable Assignments

The single variable assignment constraints of the active state are stored
in a linear array with an entry for each variable of the formula. Each
entry has the value true, false or unassigned. The state delta simply
stores a list of assigned literals.

The unit-literal rule is used for 0-Saturation. To efficiently perform
unit propagation the watched literals technique, introduced by the SAT
solver Chaff [], is used. This technique was developed for the DPLL
procedure and is used by most CDCL solvers. The idea behind the
technique is to mark two non-false literals of every clause as watched.
For every possible literal there is also a list of clauses in which it is
watched. Whenever a variable is assigned only the clauses containing
the literal that becomes false need to be considered as the other clauses
possibly containing that literal have at least two other non-false literals.
The affected clauses are then updated to maintain this invariant. New
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variable assignments are performed for all clauses that became unit.
The implementation of watched literals directly follows the description
given in [].

For a dilemma rule merge a flag is set for all literals stored in the
delta of one branch. All literals in the other branch which have the flag
set are added to the parent state.

Rewinding simply sets all variables of the delta’s literals to unas-
signed. The watched literal data does not need to be updated as no
new literals can become false during rewinding. When a delta is re-
played the watched literal data is modified as it would be for any other
assignment.

. Nonuniform Depth

The solver implements the nonuniform depth search described in chap-
ter . There are many possible ways to construct a heuristic that assigns
a depth for each variable. It was observed that exploring some parts of
the search space to a larger depth is an improvement mostly indepen-
dent of which part is explored. Thus for the initial implementation a
simple heuristic that explores a random part of the search space was
chosen. This is done by selecting a depth level for each iteration. This
level is increased when no progress was made in the last two itera-
tions and decreased when there was progress for both of the last two
iterations. From the depth level a depth envelope is computed. This is
a sequence of depths, where each element has the same value or is
one less than its predecessor. The first element, i.e. the largest depth,
increases with the depth level, thereby guaranteeing that eventually
the complete search space will be explored. The shape of the envelope
is computed in a way that there are many elements with a small depth
and only few with a large depth.

The variable depths are then determined by choosing a sequence of
variables and assigning the depth of the matching element in the enve-
lope. The first variable is picked randomly from a uniform distribution
of all variables. The following variables are picked by a distribution
with probabilities proportional to the reciprocal distance in the graph
containing clauses and variables, thereby giving higher weight to vari-
ables likely to interact with the already chosen variables.

. Equivalences

Equivalence constraints are implemented using a variant of the disjoint
set data structure []. This data structure represents a partition of
a set into equivalence classes as a forest where each class is a tree.
Each non-root element points to a parent element and a root element
points to itself. The root element is the representative of class and the
representative for the class of each element can be found by following
the parent pointers. An equivalence can be added that joins two classes
into one. The operations update the parent pointers and an additional
rank variable in a way that ensures that the representative can be found
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efficiently.
As equivalences are between literals and not variables and there

is a certain symmetry as 𝑙1 = 𝑙2 implies ¬𝑙1 = ¬𝑙2. To accommodate
this, the data structure is slightly modified. The variables are used as
set elements but the representative is a literal. The operations of the
disjoint set structure are then modified to keep track of negations.

In addition to the parent pointer all elements of a class are kept in a
cyclic singly linked list. This is necessary allow efficient iteration over
all members of a class. Again the next pointer of a variable is a literal
to handle equivalences between a positive and a negative literal. When
an equivalence between previously non-equivalent literals is added
the linked list can be updated by exchanging the next pointers and
possibly negating them.

To allow rewinding all changes to the parent pointer, the next pointer
and the rank variable are recorded. To allow replaying all added equiv-
alences between the literals that were previously non-equivalent are
also recorded.

There is no direct interaction between the formula and equivalence
constraints. Instead equivalence constraints are created during the
dilemma rule merge from equivalences implied by the variable assign-
ments and conversely new variable assignments are created from the
equivalence constraints when a member of a class is assigned. Equiva-
lences between assigned variables are not explicitly tracked and their
disjoint set and linked list data ignored.

During a dilemma rule merge all literals that are assigned true in
one branch and false in the other are placed in the same equivalence
class. Also the intersection of all new equivalence classes are added as
equivalences.

Additionally the dilemma rule merge procedure for single variable
assignments is modified to only consider variables that are representa-
tives in the parent state. The result is a possible speedup linear in the
size of the equivalence classes. This is valid as any assignment inside
a branch would assign the same value to all literals in the class and a
single resulting constraint is also enough to assign all these literals in
the parent state.
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Evaluation

This chapter presents an initial evaluation of the SAT solver miplono,
described in the previous chapter. The evaluation is done on the in-
stances of the “Small, Difficult Satisfiability Benchmarks” suite [].
This benchmark contains 3608 formulas in CNF. Again, the computer
used for the evaluation has an “Intel Core i-K” CPU clocked
at 3.40GHz and is equipped with 16GiB of DDR-1600 RAM using
9-9-9 timing. The operating system used is Arch Linux 64-Bit with
Linux kernel version 3.13.5. A timeout of 100 seconds per instance is
used. For comparision the CDCL solver minisat [] in version ..
and the lookahead solver march [] in verison march_dl (--)
are used.
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Figure .: Number of instances solved
by miplono, minisat and march within
a given time limitThe overall performance of each solver can be seen in figure .. It

shows the commulative number of instances which individually can be
solved within a given time limit for each solver. We can see that miplono
solves more easy instances at the beginning than minisat. After that
it slightly falls behind and also solves fewer instances in the total time
limit of  seconds. The initial head start of miplono does not imply
an advantage of its method, as a possible explanation is that miplono
does not do any initial analysis or optimization of the CNF formula,
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while minisat does. Nevertheless compared to a state of the art CDCL
solver this prototype implementation shows promising performance.
Compared to march there is a significant performance advantage and
miplono is always ahead.
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Figure .: Comparision of miplono
solving times to minisat and marchThe relative performance on a per instance basis can be seen in

figure .. Here we can see that, apart from some instances solved
very quickly by both, minisat is always faster than miplono. There are
instances along the complete range where miplono is only 10 times
slower than minisat, i.e. there is no sign that the relative performance
gap generally increases with more difficult problems. The factor be-
tween the runtimes seems to vary more with the type of the instance
than with the difficulty of the problem, indicating that the performance
characteristics of this method and CDCL are simply different.

Comparing miplono to march we can see that there is a large number
of instances that miplono solves very quickly, that take a long time for
march to solve. In contrast, the problems that also take a long time for
miplono to solve are solved faster by march. For these problems the
performance gap is larger than it was the case in the comparison to
minisat. Not only is the performance gap larger, it increases for more
difficult problems. This indicates that there is a class of problems where
march has superior asymptotic performance compared to miplono,
which we did not see in the comparison to minisat.

The data analyzed so far indicates different relative performances
dependent on the type of problem. Partitioning the benchmark results
by instance type gives a better view of this behavior. The SDSB bench-
mark contains instances of 14 different types. (The number of instances
per type varies.) Figure . shows a box plot of the solver runtimes for
the 14 types and 3 solvers benchmarked and clearly shows different
relative performance for the different instance types.
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
Conclusion and Outlook

This thesis presented the development of a SAT solving method based
on the preceding work by Thakur and Reps [], [] which in turn is
based on Stålmarck’s method. The method extends existing work by
providing a framework for using arbitrary constraints and arbitrary
heuristic reasoning between constraints as well as a more flexible search
strategy. To test the feasibility of the described approach two attempts
at a prototype implementation were made. The first attempt uses
binary decision diagrams to represent complex constraints. While
this attempt was unsuccessful a conversion of CNF formulas to sets
of BDDs was developed as part of it and is evaluated. As a second
prototype implementation the solver miplono was developed which
uses simple constraints to avoid the problems of the first prototype.

This implementation consists of a flexible core architecture which
can accommodate any kind of constraints representable using persis-
tent data structures supporting certain described operations. The data
structures needed for single variable assignments and equivalences be-
tween literals are described. A comparison to state of the art methods
shows some potential, especially considering the prototype state of the
implementation.

There are many areas in which improvement of the method itself as
well as on the implementation are possible.

The implementation of data structures used in the prototype is
not fully optimized to reduce memory allocation. Performing such
optimizations as well as other low level optimizations could possibly
improve the solving time by a significant constant factor.

So far only two kind of constraints are implemented. Candidates
for other kinds are implications, linear equations, quasi boolean con-
straints or binary arithmetic. Data structures to represent them and
heuristics for constraint addition and removal are necessary for this.
The heuristics also need to handle the interaction between different
kinds of constraints.

The heuristics used in the prototype were chosen mainly for their
simplicity. A careful evaluation and benchmarking of different heuris-
tics, especially when more complex constraints are added, is important.

The dilemma rule provides a natural opportunity for parallelization
as it evaluates two branches independently. The core architecture could
be extended to handle distribution of work and synchronization of the
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solver state by distributing messages containing state deltas.
The use of CNF as formula representation makes a combination of

CDCL and this variant of Stålmarck’s method possible. Nothing would
prevent the addition of learned clauses for the conflicts that naturally
occur during the recursive search. Whether this provides an advantage
over either method can be evaluated.

The input format can be extended from CNF formulas to a conjunc-
tion of constraints other than disjunctive clauses. This can lead to more
efficient descriptions of some problem instances which in turn can lead
to a faster solving of these instances.

All this also requires a more thorough evaluation performed on a
cluster with a larger set of instances and a larger timeout.

We have seen promising initial results of a new variant of Stålmarck’s
method described in this thesis and outlined several possibilities to
improve on it. It remains to be seen if the remaining performance gap
to state of the art methods can be closed.
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