UNIVERSITAT ZU LUBECK

SALTXT: An Xtext-based Extendable Temporal Lo-
gic Compiler

SALTXT: Bin auf Xtext basierender erweiterbarer Temporal-
logikcomprler
Bachelorarbeit

im Rahmen des Studiengangs
Informatik
der Universitat zu Liibeck

vorgelegt von
Sebastian Hungerecker

ausgegeben und betreut von
Prof. Dr. Martin Leucker

mit Unterstiitzung von
Normann Decker

Liibeck, den 20. August 2014

Abstract

SALT is a high-level temporal logical specification language that facilitates the writing
of specifications that describe the behavior of complex systems. This thesis describes the
implementation of SALTXT, a new compiler and Eclipse plug-in for SALT.

SALTXT is a new implementation of SALT that has been designed to be extendable and
easily deployable. It also includes an Eclipse plug-in that offers, for the first time, IDE
support for creating SALT specifications.

Kurzzusammenfassung

SALT ist eine high-level temporal-logische Spezifikationssprache, die das Schreiben
von Spezifikationen erleichtert, die komplexe Systeme spezifizieren. Diese Arbeit be-
schreibt die Implementierung von SALTXT, einem neuen Compiler und Eclipse-Plug-in
fiir SALT.

SALTXT ist eine neue Implementierung der SALT Sprache und wurde entworfen, um
erweiterbar und einfach zu installieren zu sein. Es enthélt auch ein Eclipse-Plug-in, das
IDE-Unterstiitzung dafiir bietet, um SALT-Spezifikationen zu schreiben — etwas, was es
bisher noch nicht gab.

iii

Declaration

I hereby declare that I produced this thesis without external assistance, and that no
other than the listed references have been used as sources of information.

Liibeck, August 20, 2014

Acknowledgements

I want to thank Normann Decker and Prof. Leucker. I also want to thank Timo
Brinkmann for helping me with the graphics and Lukas Schmidt for proofreading.

vil

Contents

1 Introduction 1
2 Compilers 7
2.1 Alternatives to Compilation L. 7
2.2 The Anatomy of a Compiler, 8
2.2.1 Compilation Stages 8

2.2.2 Benefits and Drawbacks of Multiple Stages 12

3 Integrated Development Environments 15
3.1 Features Commonly Found in IDEs 15
3.2 Well-FKnown IDEs 16

4 Xtext 17
4.1 Structure of an Xtext Project 17
4.2 Relation to ANTLR 18
4.3 Comparison to Other Tools 18

5 Smart Assertion Language for Temporal Logic 21
5.1 Operators and Atomic Propositions 22
5.2 Loops 25
5.3 Macros e 26
5.4 Composite Identifiers and Strings L. 27
5.5 Variable Declarations 27

6 The SALTXT Compiler 29
6.1 Structure of the SALTXT Compiler 29
6.2 Lexing and Parsing oo 30
6.3 Translation Plug-ins 31
6.3.1 The Translation Phase Interface 31

6.3.2 Putting It All Together 32

6.3.3 Implemented Translation Phases 34

6.4 Predicate Plug-in 35
6.4.1 The Predicate Interface 36

6.4.2 The AbstractPredicate class 36

6.4.3 Implemented Predicate Plug-ins 36

X

Contents

6.5 Domain Specification Plug-ins 0000 37
6.5.1 Extensions to SALT, 38

6.5.2 Writing Domain Specification Plug-ins 39

6.5.3 The AbstractValidator class 40

6.6 Changes to the SALT Language 40
6.6.1 MacroCallso 40

6.6.2 Higher-Order Macros 42

6.6.3 Recursive Macros o o 43

7 SALT IDE 45
7.1 Features e 45
7.2 Implementation 46

8 Conclusion 49
8.1 Future Work 49
8.1.1 Compiler 49

8.1.2 Eclipse Plug-in o 52

A SALT Syntax 53
Al Grammar 53
A.2 Rules for Identifiers 54

B List of SALT Operators 57
B.1 Prefix Operators 57
B.2 Infix Operators 58
B.3 Counted Operators 61
References 63

1 Introduction

Linear Temporal Logic

Linear temporal logic (LTL) [Pnueli, 1977] is a logic that extends propositional logic to
allow reasoning about time. LTL views time as a series of separate states — that is it
views time discretely, not fluently. As in most logics, formulas in LTL make statements
over a set of atomic propositions (“variables”). In LTL each atomic proposition can either
be true of false during any given state. So, given the atomic propositions a and b LTL
formulas can express statements like “a is true in the current state and b will be true in
the next state”.

In the following let w, i = ¢ mean that the temporal logical formula ¢ holds true for the
sequence of states w at the position i. We say that w satisfies ¢ iff ¢ is true for w at
position 1.

In addition to atomic propositions (the variables over which we make statements) LTL
consists of the constants T (true) and L (false) and the following operators (where ¢
and 1 stand for arbitrary LTL formulas):

Propositional Operators

The following operators are equivalent to the corresponding operators in propositional
logic.

S ("not") wyi e wi g
A (and”) w,i b o A & (w,i b @) A (w,i | 9)
V(o) wik Ve (i g) v (w,i 1)
 (implies”) w,i = = & (w,i @) V (w,i 1)

H) (“if and only if") w,il= @ < P& (w,il= @) A(w ik Y)V(w,ilE @) A(w,i
(&

1 Introduction

Future Operators

These operators make statements that are not just about the state ¢ (i.e. the “current”
or “present” state), but about states j > i (i.e. “future” states).

X (or O —"next”) w,iFXpsw,it+llEgp

U (until”) wiEFeUyp e Ti>i(w,jE0)AYEi<k<j:wklEe

F (or O —“eventually”) w,iEFp<o3j>i:w,jlEe

G (or O — “globally” or “always”) w,i=Gep&Vji>i:w,jE=p

W (“weak until”) w,il= Wy < w,iEeUipVGe

Past Operators

LTL can also be extended with past operators that are similar to the future operators,
but make statements about previous states rather than future states. Past operators
do not add expressive power to LTL, but allow writing some formulas more succinctly
[Gabbay et al., 1980].

Y (“previous”) w,iEYp<oi>0Aw,i—-1F¢p

S (“since”) w,iFEpSY eI <i:(w,jEY)AVEi>k>jwkEe

O (“once”) w,iFOQp<eJj<i:w,jEv

H (“historically”) w,iEHp & Vji<i:w,jE¢p

B (“weak since” or “back to”) w,il 9By < w,ilEpSYVHe

Smart Assertion Language for Temporal Logic

Linear temporal logic is a powerful tool to specify the properties of various types of
components — be they computer programs that are verified using runtime verification
tools or model checkers or hardware components that are checked using model checkers.
However linear temporal logic is a rather low-level way of writing specifications. It only
offers a small set of core operators and no means of abstraction that can be used to
structure large specifications or to avoid repetition. This can make it hard to write,
read, debug and maintain large specifications and easy to make mistakes in them.

It is therefore desirable to have a higher-level language that has the same expressive
power as linear temporal language and can be used with the same tools, but at the
same time offers a greater set of operators, a more easily readable syntax and means of
abstraction that make it possible to easily write large specifications that are still readable
and maintainable.

Some such languages (e.g. Sugar/PSL [Accellera, 2004] and For-Spec [Armoni et al., 2002|)
have been designed for the hardware domain, but are not applicable to other domains
because they have been designed with hardware verification in mind and as frontends
for proprietary verification tools.

SALT, which is short for “Smart Assertion Language for Temporal Logic”, is a general
purpose high-level temporal logic that has been inspired by Sugar/PSL, but can be
used to write specifications in any domain. It was proposed in [Bauer et al., 2006] and
first implemented by Jonathan Streit in [Streit, 2006]. It offers a greatly expanded set of
operators — all of which have English, rather than symbolic, names for greater readability
—and the ability to define one’s own operators to facilitate code reuse, maintainability and
readability. All temporal operators in SALT have past operator counter-parts that make
statements about the past rather than the future — like past operators for LTL.

It also offers looping constructs to make assertions over a set of expressions, further
facilitating code reuse and concise code. To enable SALT specifications to be used with
existing model checking and runtime verification tools, SALT can be compiled to the
linear temporal logic dialects supported by those tools.

A SALT specification might look like this:

-- sometimes_but_not_always(z) holds <f = holds at least
-- once at some point, but not always
define sometimes_but_not_always(x) :=

eventually x and not (always x)

assert x implies eventually y
assert sometimes_but_not_always =z
assert

allof enumerate [1..3] with i in
motor_i_used implies motor_i_has_power

1 Introduction

-- The event e may not happen more than 5 times
assert holding [<= 5] e

In LTL those assertions would be written like this:
ez —Fy
e FxN-Gzx

e (motor_1_used — motor_1_has_power)A(motor_2_used — motor_2_has_power)A
(motor_3_used — motor_3_has_power)

o ~(Fle A(X(F(en (X(F(en (X(F(eA (XF(en (X(Fe))))))))

The expressive power of SALT is equal to that of LTL, so SALT specifications can be
compiled to LTL-based formats that are understood by commonly used model checkers
and runtime verification tools.

Contribution

The first implementation of SALT, implemented by Jonathan Streit in [Streit, 2006], is a
Java application that, given a SALT specification, generates Haskell code that generates a
specification in the specified LTL-based output format, then compiles that Haskell code,
runs the resulting executable and produces the executable’s output as its result.

As a result of this approach the compiler needs a Haskell compiler and runtime environ-
ment to be installed in addition to a Java runtime environment. It also requires some
initial configuration to make the SALT compiler aware of where it can find the Haskell
compiler. Another complication is that the generated Haskell code requires old versions
of Haskell packages that are not compatible with the versions that ship with current
Haskell compilers. This means that a potential user of SALT would either have to find
and install an old Haskell compiler or expand some effort into installing old versions
of packages and making them work with a current compiler. This makes installing the
SALT compiler a rather complicated endeavour.

The SALT compiler has a web interface that requires no installation, so this is not as
much of an issue as it might otherwise be, but SALT users might still reasonably want
to install the compiler on their own PCs for offline access or to be able to use the SALT
compiler as part of a tool chain. For example a user might want to have a shell script
that invokes the SALT compiler to compile a SALT specification to an LTL specifica-
tion in SMV syntax and then feeds that specification into SMV. This cannot be done
using the web interface unless the user writes a web scraper to access the web interface
programmatically. Further the installation complications still apply when deploying the
compiler on the server whenever the web interface is moved to a new server.

There is also currently no tool support for SALT. That is no IDEs or text editors with any
kind of support for SALT; nor are there any other kinds of tools that help with writing,
navigating, debugging or refactoring SALT specifications. The only tools are the compiler
itself and the web interface. The web interface only offers a plain text box into which the
specification can be written without any SALT-specific features like syntax highlighting.
Since features like syntax highlighting, automatic completion of operator and variable
names and as-you-type error detection greatly improve programmer productivity, the
lack of any such features for SALT is a problem.

We therefore implemented the SALTXT compiler, which is a new compiler for the SALT
language. It is extendable through a flexible plug-in system. New output formats, opti-
mizations or new translation strategies for existing output formats can all be implemented
through translation phase plug-ins.

Translation phase plug-ins can also have arbitrary requirements. Translation phase plug-
ins with requirements can only be used when compiling a specification that meets those
requirements. For example some plug-ins may require that a specification only uses a
specific subset of features or that all used variables meet a given naming scheme. Any
decidable property of a specification can be used as such a requirement.

Additionally SALTXT also supports domain specification plug-ins that allow plug-in au-
thors to provide special support for writing specifications in a specific domain. Like
translation phase plug-ins, domain specification plug-ins also allow to express arbitrary
requirements on specifications, but unlike translation phase plug-ins, the plug-in will re-
port error messages (defined by the plug-in) when a requirement is not met, rather than
becoming unavailable. Thus domain specification plug-ins can use domain knowledge
to verify properties of a specification other than the specification just being a syntacti-
cally valid SALT specification. They can also be used to generate warnings, rather than
errors.

Domain specification plug-ins can also perform arbitrary transformations on a specifica-
tion before it is translated by the translation phase plug-ins. This allows plug-in writers
to create domain specific notations that simplify writing specifications for the given do-
main, but that would not make sense for specifications in any other domain.

The SALTXT compiler is written in Java and Xtend, a Java-like JVM language that
comes with the Xtext framework. It can be distributed as a single JAR file that has no
external dependencies other than a Java runtime environment.

SALTXT comes with an Eclipse plug-in, that provides many common IDE features for
writing SALT specifications. These features include syntax highlighting, automatic com-
pletion of operator and macro names, on the fly error detection, renaming macros, jump-
ing to macro definitions and integration of the compiler into the IDE.

1 Introduction

Outline

This thesis will first describe the fundamentals of compiler design in chapter 2 to pro-
vide the information needed to understand the workings of the SALTXT compiler. It
will then give an overview of existing integrated development environments and their
features in chapter 3 to motivate the choice to achieve tool support for SALT through an
Eclipse plug-in and to provide a context for evaluating the features of the SALTXT Eclipse
plug-in. Chaoter 4 will describe the Xtext framework that has been used to implement
SALTXT. Next, chapter 5 will summarize the syntax and semantics of the SALT lan-
guage. Chapter 6 will describe the design and implementation of the SALTXT compiler
and its plug-in system. It will also describe how to extend the compiler’s functionality
through the plug-in system. It will also describe some ways in which the SALT language
implemented by the SALTXT compiler differs from the SALT language as described in
[Streit, 2006] and [Bauer et al., 2006] and explain why those changes were made. Chapter
7 will describe the SALTXT Eclipse plug-in and the features it provides for writing SALT
specifications. Last, chapter 8 will summarize the contents of this thesis and suggest
future work that could be done to build on this thesis and further enhance the SALTXT
compiler and Eclipse plug-in. Additionally the appendices will give a continuous EBNF
grammar of the SALT language and a complete listing of the the SALT operators.

2 Compilers

Compilers are tools that translate code written in high-level languages into lower-level
representations with the same semantics. Compilers are generally used to translate pro-
gramming languages into machine code or bytecode that can be executed by a virtual
machine. However they can also be used to translate other kinds of languages into for-
mats that can be used by certain programs. For example the INXTEX compiler translates
code in the ITEX language into binary formats understood by document viewers. Like-
wise a compiler can translate a logical program specification written in a high-level logic
language like SALT into a lower-level format — like SPIN or SMV — that can be under-
stood by a model checker or runtime verification tool, which is, in fact, what the SALTXT
compiler does.

This chapter will explain the benefits and drawbacks of compilation compared to
other ways of implementing languages, describe how compilers work and explain
techniques that are often used in compilers. Those techniques are explained in de-
tail in [Aho et al., 1986] and used by real-world compilers such as [clang, 2013] or
[gee, 2013].

2.1 Alternatives to Compilation

When implementing a language, implementers have two choices: they can either write a
tool that understands the language directly or write a compiler to a lower-level language
for which tools already exist. In the case of programming language this means deciding
between an interpreter that executes the language directly and a compiler that translates
the language to machine code or another programming language for which implementa-
tions already exist. In case of logical specification languages the equivalent choice would
be between a model checker or runtime verifier that understands the language and a
compiler that translates into a format that is understood by existing model checkers or
runtime verifiers.

For programming languages the choice of writing an interpreter, rather than a compiler,
for a high-level language can be a viable option in some cases. However the situa-
tion is more clear-cut when implementing a high-level logical specification language like

SALT:

For such a language the equivalent of writing an interpreter, i.e. writing a tool that di-
rectly “executes” the source code, rather than just translating it to something else, would

2 Compilers

be to write a model checker or runtime verifier that directly accepts this format. Since
those are very complex tools, writing a compiler is a lot less effort than implementing a
full model checker or runtime verifier would be. It also has the benefit that SALT can
be used anywhere where LTL-based formats can be used, thus making SALT broadly
applicable. The compiler could also be extended to support non-LTL based formats,
broadening its applicability even more.

2.2 The Anatomy of a Compiler

2.2.1 Compilation Stages

The job of a compiler is to take a file written in a high-level language and translate it into
a lower-level language. This job is usually accomplished through multiple stages:

Tokenization Tokenization or lexical analysis is the process of taking a sequence of
characters and transforming it into a sequence of tokens. A token is an atomic sequence
of characters, that is a sequence of characters that, for the purposes of compilation, can
be considered as a single unit that cannot be taken apart any further. So for example an
identifier like name would be a single token because we wouldn’t need to ever examine
any substring of it individually. However a variable declaration like int x would not be
a single token because we need to be able to look at the type and the variable name
individually. Every token is associated with a token type. Usually there is a token type
for identifiers, one token type for each type of literal in the language (e.g. one token type
for string literals, another for integer literals and so on) and one token type for each
symbol and keyword in the language. Comments and whitespaces are generally removed
during tokenization. For example a code fragment like string s = "hello"; could be
tokenized into the token sequence: IDENTIFIER("string"), IDENTIFIER("s"), EQUALQOP,
STRING_LITERAL("hello"), SEMICOLON.

It should be noted that some languages, e.g. [Python, 2013] and [Haskell, 2013], have
significant indentation, that is the amount of whitespace at the beginning of a line can
affect the meaning of a program in those languages. In those languages whitespace — or
at least whitespace at the beginning of a line, i.e. indentation — will not be removed by
the tokenizer as it contains relevant information. Instead there will be a special token
type that represents indentation.

Token types can often be described through regular expressions and there are tools — for
example lex and its free clone flex — that can generate code to perform lexical analysis
from a list of regular expressions. The code generated by those tools will tokenize a
string by checking which of the given regular expressions matches the longest prefix of
the string, generating a token for that prefix using the token type to which the matched
regular expression belongs and then tokenizing the remaining string in the same way. If

2.2 The Anatomy of a Compiler

at any point none of the regular expressions match any prefix of the given string, an error
message will be produced.

It is not strictly necessary for compilers to have a tokenization stage — it is entirely
possible to perform the parsing stage on the input string directly. However separating
the stages tends to be simpler and more efficient [Aho et al., 1986]. Tokenization can
often be performed more efficiently than parsing: commonly used tokenization algorithms
run in linear time with very little constant overhead when used with the kind of regular
expressions that appear in practice (in the context of tokenization) — commonly used
parsing algorithms also run in linear time, but with significantly larger constant overhead.
There also exist algorithms that can perform tokenization in linear time for all regular
expressions [Reps, 1998|. Therefore it is often more efficient to first tokenize the input and
then perform the parsing stage on the tokenized input (which will contain less tokens than
the original string contained characters because whitespace and comments are stripped
and because each token generally corresponds to more than one character, thus decreasing
the input size for the parsing stage) and that is indeed what most compilers do.

Parsing Parsing is the process of taking a sequence of tokens, verifying that these tokens
make up a valid program (or specification, document etc.) in the given language, and
processing the code depending on the syntactic structure of the code. Often the parsing
code will generate a tree structure that represents the syntactic structure of the code.
This tree can then be further processed by the subsequent compiler stages. It is however
also possible for it to generate an intermediate representation of the code that is not a
tree — for example 3-address code or any other form of bytecode — or to directly produce
output in the target language without any intermediate stages (in which case the parsing
stage would be the last stage of the compiler).

Like tokenization parsing code is often generated by tools — so called parser generators.
Examples of such tools are YACC and ANTLR. These tools generate parsing code from
a grammar file that describes the syntax of the language using some variation of context
free grammars. FEach production of the grammar will be annotated with information that
tells the parser which code to execute when that production is used. This can be achieved
by directly writing the code to be executed into the grammar file or, when the parser
is used to build a tree structure, by simply annotating the productions with the type of
node that should be generated for them (or whether a node should be generated for that
production at all). Some tools even accept grammars without annotations and generate
a tree that has one node per used production where each node’s type is the name of the
production. The tree generated by such a tool is called a syntax tree. Since a syntax tree
generally contains a lot of redundant information, it is more useful to generate a so-called
abstract syntax tree that only contains as many types of node as necessary.

For example a grammar might have a production like expression ::= addition |
number. Using this production the parse tree of the expression 2 + 3 would be:

2 Compilers

Expression

Since abstract syntax trees are more compact and easier to use than parse trees, parse
trees will often be converted to abstract syntax trees right away when using a parser
generator that generates parse trees.

Desugaring Languages often contain syntactic constructs that could also be expressed
in terms of existing constructs. For example many programming languages allow pro-
grammers to write x += y instead of x = x + y. Such syntactic shortcuts are referred to
as “syntactic sugar”. They are useful to programmers as they allow them to write more
concise code. However they can complicate the job of the compiler:

Most stages of the compiler work by walking the tree structure representing the program
and then executing different actions depending on which type of node is currently being
visited. Adding new types of nodes will thus increase the number of cases that have
to be handled in each stage. Since most types of syntactic sugar are only useful to the
programmer and being able to distinguish between the shortcut and the expanded form
is not useful for the compiler, it would be best if introducing new types of syntactic sugar
would not add new types of nodes that have to be handled in each stage. In simple cases
this can be achieved by making the parser generate a tree in which the syntactic shortcuts
have already been replaced by their expanded forms. However in more complex cases it
can be useful to perform such replacements in a separate stage to preserve separation of
concerns. That is the parser would generate different nodes for syntactic shortcuts and
an extra stage that runs directly after the parser would replace all shortcut nodes with
nodes representing the expanded form. Subsequent stages would then no longer need
to handle the shortcut nodes. Since the sole purpose of such a stage is the removal of
syntactic sugar, such a stage is referred to as the “desugaring” stage.

10

2.2 The Anatomy of a Compiler

Type Checking A compiler for a statically typed language will have a type checking
stage. In this stage the compiler will verify that all expressions are valid according to
the language’s typing rules and will produce an error message when that is not the case.
In many cases the type checker will also annotate each expression’s node with the ex-
pression’s type, so that later stages can simply read that information to find out an
expression’s type without performing any type checking themselves. This is useful be-
cause in statically typed languages, typing information is often necessary in later stages of
compilation. For example the size of a variable can depend on its type in many languages
and the code generation stage needs access to that information (some optimization stages
might make use of that information as well).

Even languages that are not statically typed as such can have statically verifiable cor-
rectness properties. For example even if it is not possible to statically determine which
type a given value has in a programming language, it might still be possible to deter-
mine whether a function or variable with a given name exists in the current scope and
how many arguments a function accepts. So name errors (i.e. referring to a variable or
function name that doesn’t exist) and arity errors (i.e. calling a function with the wrong
number of arguments) could still be detected statically in such a language. A compiler
for such a language could thus have a stage akin to a type checking stage that detected
such errors and rejected programs that contain them.

In the SALT language the macro system has a simple type system that can be statically
checked. That is the compiler will reject specifications that call non-existent macros, call
macros with the wrong number of arguments or call macros with logical expressions as
arguments when the macro takes another macro as its argument — or vice versa.

High-Level Optimization Most compilers perform some optimizations on the programs
that they compile. An optimization is a transformation that takes a representation of a
program and modifies it in such a way that it still has the same semantics, but better time
or space behavior. Optimizations can roughly be divided into high-level and low-level
optimizations. A high-level optimization is one that can be performed on a program’s
tree representation without access to or knowledge of any details of any low-level formats
that the program will be converted to in later cases.

The version of the SALTXT compiler that is described in this document does not perform
any optimizations — high-level or otherwise. However some possible optimizations (both
high- and low-level) are described in appendix F of [Streit, 2006] and were implemented
in the previous SALT compiler. These optimizations will likely be added to the SALTXT
compiler in future versions — so will additional optimizations beyond those.

Conversion to Intermediate Representations Instead of taking an abstract syntax
tree (or an abstract syntax tree annotated with types) and directly producing text in
the target language from that, it is often advisable to perform the conversion in multiple
steps. In each step one representation of a program (or specification or document) will

11

2 Compilers

be converted to another representation that is a bit closer to the final output format.
This can mean transforming one type of tree into another type of tree whose node types
are closer to the operations that exist in the target language (whereas the node types in
the previous representations would have been closer to those in the source language) or it
could mean transforming a tree into a flat representation of the program, like a sequence
of instructions in some bytecode format.

Using multiple steps like that makes it easier to implement different target languages.
When implementing a new target language it is not necessary to rewrite a completely new
translation from an abstract syntax tree of the source language to the target language.
Instead some of the steps used for the existing target language can be reused for the new
one and only the steps that would need to be different for the new target language would
have to be implemented. Depending on how similar the new target language is to the
old one, it might only be necessary to implement very few new steps.

Low-Level Optimization Low-level optimizations are optimizations that only apply to
one specific intermediate representation and cannot be applied at an earlier stage. Low-
level optimization stages are usually interspersed with stages that convert to a lower-level
representation. That is a program will be converted to a lower-level representation and
then all low-level optimizations that apply to that representation will execute before it
is converted to the next representation.

Code Generation In the code generation stage the lowest-level representation of a pro-
gram will be converted to a program in the final target language.

2.2.2 Benefits and Drawbacks of Multiple Stages

As mentioned in the previous section many of the described stages are optional and often
multiple different stages can be combined into a single stage. It is even possible to write
a compiler that only consists of a parsing stage or a lexical analysis stage followed by
the parsing stage. This design has been somewhat common in the past, but has become
increasingly uncommon in modern times. In this section we will discuss the drawbacks
and benefits of a compiler design with many stages compared to one with few stages or
only a single stage.

One language-specific factor that needs to be considered is that some languages can
only be compiled in multiple stages because certain decisions cannot be made without
information that can only be known if later parts of the program have already been
analyzed. For example many modern programming languages allow function calls to
syntactically precede the definition of the called function without requiring any forward
declarations. In those languages no part of the program can be type checked until all of
the program has been parsed and the names and types of the functions defined in the

12

2.2 The Anatomy of a Compiler

program have been collected. In those languages the choice is not whether or not to use
multiple phases, but whether to minimize the number of stages or use as many stages as
is convenient.

The major drawback of using multiple stages is that it can lead to longer compilation
times as creating various intermediate representations and then processing them (multiple
times in some cases) will generally involve more computational overhead than doing
everything in one go. However in modern days computers have become fast enough
that the overhead of multiple passes will not be a problem. Further modern compilers
often perform intensive semantic analyses and optimizations that go far beyond what
was possible in the past and whose costs far outweigh the cost of using multiple stages
— making the latter cost insignificant in comparison. Note that this does not apply to
tokenization and parsing — that is having a separate tokenization stage before the parsing
stage will lead to improved performance as described in the previous section. Therefore
even compilers that are designed to achieve minimal compilation times separate the
tokenization and parsing stages.

The major benefit of using many stages is that it increases modularity. Using a multi-
stage design each stage can perform a single function making it more readable and main-
tainable. It also becomes possible to modify one piece of functionality without affecting
or having to touch any code that is not directly related to that functionality (and since
all the code responsible for a given piece of functionality will be located in the same
place, it will also be reasonably easy to do so). This also makes it easy to add new stages
(like additional optimizations) or even multiple alternative for a given stage with only
minimal changes to existing code. The most common example of this is that many com-
pilers can produce different output formats (like machine code for different processors)
depending on the platform or user choice. This is something that would require much
more substantial changes in compilers with a less modular design and could quickly lead
to unmaintainable code. Further it makes it possible to add a plug-in system through
which users of the compiler can add additional stages like new optimizations or output
formats, without having to touch any other code at all. This would be impossible to
accomplish in a single-stage design.

In addition to some languages not being implementable using a single stage, some op-
timizations and optional semantic analyses also require information about the whole
program from previous stages. Thus having a multi-stage design enables optimizations
and analyses that are not otherwise possible. An example of an optional semantic anal-
ysis would be an analysis that collects semantic information about a piece of code that
is not actually needed to compile the program, but can be useful to generate warnings
(like “This line of code can never be reached”) or enable additional optimizations. For
example many optimizations (like common subexpression elimination) in programming
languages can only be performed on functions that don’t have any side-effects, so having
a semantic analysis stage that checks which functions have side-effects, would enable
performing such optimizations in cases where they are allowed.

13

2 Compilers

The reasons listed above thus suggest that a multi-stage design is generally preferable to
a single-stage design or a design that minimizes the number of stages.

14

3 Integrated Development Environments

Integrated development environments (IDEs) are computer programs that integrate the
functionality of various development tools into one consistent environment. They can
either do so by replicating that functionality themselves or by simply integrating existing
tools into their user interface.

3.1 Features Commonly Found in IDEs

The functionality of an IDE generally includes the following:

Project Management The ability to create and manage projects and control which
files are part of which project. This basic information can be used by other features of
the IDE to make those features work better.

Building the Code Virtually all IDEs offer the ability to compile and/or execute one’s
project. By using the information that the IDE has about which files are contained in
one’s project and information that can be gained by performing code analysis on those
files, the IDE can determine dependencies between the files in one’s project automatically,
making it unnecessary for the user of the IDE to set up make files (or similar build
systems) manually.

Version Control Most IDEs offer the ability to integrate with version control systems.
This allows the user of the IDE to view version control information (like which local
files are in sync with the repository) in the IDE’s project view, perform version control
operations (like committing, updating, merging code) through the IDE’s user interface
and automatically inform the version control system of file operations performed through
the IDE’s project management features (like adding, removing and renaming files in the
project).

Editing Code The most fundamental ability an IDE needs to support is editing code. In
addition to basic editing capabilities this includes features commonly found in advanced
code editors like:

15

3 Integrated Development Environments

e Syntax highlighting
e Automatic indentation

e Automatic completion of names and keywords

Code Navigation Most IDEs will offer navigation features such as listing all functions,
variables and classes defined in a given file, the ability to jump to the definition of a
given symbol from its use-site (taking into account properties like scope), even across file
boundaries.

On the Fly Error Detection Most IDEs will detect code that contains compilation
errors as it is typed and will mark it as such. Some also offer common fixes for some
errors — for example Eclipse might offer to add an import statement to the code in Java
if it detects that a class is being used whose name is not currently in scope, but that
exists in the standard library.

Refactoring It is common for IDEs to offer certain refactoring tools like the ability to
rename a class, function or variable, updating all references to it.

Debugging IDEs usually also integrate a debugger, allowing one to set break points,
run the program in debug mode, step through the code and examine the contents of the
stack from within the user interface of the IDE.

3.2 Well-Known IDEs

Some well-known IDEs are |Eclipse, 2013|, [Netbeans, 2013| and [Visual Studio, 2013|.
There are also certain advanced text editors, like [Emacs, 2013|, that are sometimes
considered IDEs as they offer most or all of the features common in IDEs either directly
or through plug-ins.

One thing that sets Eclipse apart from other IDEs is the Xtext framework, which has been
written for Eclipse. Xtext allows language implementers to create an Eclipse plug-in for
their language that offers most of the functionality listed in the previous section without
writing much (or, in some cases, any) code in addition to the compiler. The Xtext
framework is described in more detail in chapter 4. The existence of this framework
combined with the popularity of Eclipse as a Java IDE is what convinced us to use
Eclipse as the basis of IDE support for SALT.

16

4 Xtext

Xtext is a compiler framework that allows language implementers to write a compiler for
a language and an Eclipse plug-in for that language at the same time. Xtext generates
code for an Eclipse plug-in that reuses code written for the compiler to implement IDE
functionality. So, by writing their compiler using Xtext, language implementers can
create an Eclipse plug-in for their language that offers most of the functionality listed in
chapter 3 without writing much (or, in some cases, any) code beyond what is necessary to
create the compiler anyway. This chapter will describe how Xtext works, what its features
are, how it compares to other tools for compiler construction and, based on that, why
Xtext was chosen to implement the SALT*T compiler and Eclipse plug-in.

4.1 Structure of an Xtext Project

The heart of an Xtext project is its grammar file. The grammar file contains the following
information:

e The types of tokens that the language consists of are specified by regular expressions
for each type of token. Xtext will generate code to tokenize the language using
this information. This works the same way as the common lexer generator tools
described in section 2.2.1.

e The syntax of the language is described through a grammar. Information about
what the produced abstract syntax tree should look like is provided by annotations
that, for each production rule of the grammar, specify whether the abstract syntax
tree should contain a node for that production and the name of the class of which the
node should be an instance. Xtext will generate the code to parse the language and
generate the abstract syntax tree from this information. It can also automatically
generate the classes that make up the tree if instructed to do so.

e The grammar is annotated with information about when names are introduced and
where they are used. Code for name resolution and auto-completion (in the Eclipse
plug-in) are generated from this information.

In addition to the classes that will be generated from the grammar file an Xtext project
will of course also contain non-generated classes. These classes are separated into two
categories: classes that fulfill functions needed by the compiler and classes that only
enhance or customize the Eclipse plug-in. The latter classes are all part of a separate

17

4 Xtext

sub-project. None of the classes in the main project will contain code that is specific to
IDE functionality.

4.2 Relation to ANTLR

Xtext uses the ANTLR parser generator to generate the parsing and lexing code. The
syntax of Xtext’s grammar file is the same as that of ANTLR except that, where ANTLR
contains embedded Java code to be executed when a given production is used, Xtext
contains annotation that describe which types of nodes should be generated as well as
additional information (as described in the previous section).

Xtext works by generating an ANTLR grammar from the Xtext grammar (by replacing
Xtext’s annotations with embedded Java code) and then invoking ANTLR to generate
a parser and a lexer from that grammar. Since Xtext does not allow Java code to be
embedded into the grammar, there is no way in Xtext to make parsing decisions based on
the results of executing Java code — something that can be done in ANTLR. Therefore
Xtext grammars are exactly as powerful as ANTLR grammars that do not use Java
code to make parsing decisions and strictly less powerful than ANTLR without that
restriction.

4.3 Comparison to Other Tools

The most common tools that exist to facilitate the development of compilers are lexer
generators and parser generators. A lexer generator is a tool that generates tokenization
code from a list of regular expressions as described in section 2.2.1. A parser generator
is a tool that generates parsing code from some form of annotated context-free grammar
as described in the same section.

As described in section 4.2 Xtext, like ANTLR, offers the functionality of both of these
types of tools. Unlike most other parser generators — including ANTLR — it does not
allow arbitrary code to be executed during parsing; it is only possible to generate abstract
syntax trees from the grammar. However any compiler that uses the multi-stage design
described in section 2.2.1 will use the parser to generate an abstract syntax tree anyway,
so this restriction of functionality does not affect such a compiler.

Another side-effect of the inability to embed executable code into an Xtext grammar is
that it’s not possible to make parsing decisions that are not context-free and it is thus
not possible to ideally parse languages that are not context-free — i.e. it is possible for
the generated parser to generate an “ambiguous”’ syntax tree, that is an abstract syntax
tree where one type of node could represent one of multiple different syntactic constructs.
A separate post-processing stage could then walk that tree and replace each ambiguous
node with a node that can only represents one specific syntactic construct, but it is not

18

4.3 Comparison to Other Tools

possible for an Xtext-generated parser to create an unambiguous abstract syntax tree
directly. However this is not relevant for the SALTXT compiler as SALT’s syntax is
entirely context-free. Therefore Xtext offers all the lexing and parsing functionality that
is required for the SALTXT compiler. Since Xtext not only automatically generates the
code to build the abstract syntax tree, but also the class that make up the nodes of the
tree, it is especially convenient to use.

In addition to parsing and lexing Xtext also offers features that help with parts of a
compiler for which other tools do not offer any assistance. One of those features is that
the grammar from which the parser is generated can also be annotated with information
about references — that is a syntactic construct that introduces a new name can be
annotated with that information and a syntactic construct that refers to a particular
type of name can be annotated with that information as well. So for example the syntax
for variable definitions could have an annotation to indicate that it introduces a new
variable name and the syntax for using variables could be annotated to indicate that it
refers to a variable name. That would look like this:

// 4 variable declaration consists of the keyword "declare” followed by
// an ID. The ID will be the name of that wvariable declaration.
VariableDeclaration : ’declare’ name = ID ;

// A4 wvariable usage consists of an ID, but that ID should be the name of
// a variable declaration.
VariableUsage : [VariableDeclaration] ;

From these annotations Xtext will generate code to perform name resolution. This
code can be extended by using Xtext’s API to affect the scoping rules where the auto-
generated code’s assumptions about scope differ from the rules of your language and to
enable importing and exporting of names across different files.

Xtext also provides a validation API that you can use to find and report errors in the
source code. The main, not IDE related, benefit this has over writing validation code
without such an API is that the mechanics of walking the tree are covered by the API —
that is you don’t have to write an implementation of the visitor pattern yourself.

However one of the most valuable features of Xtext is that it generates an Eclipse plug-in
that makes use of much of the compiler functionality that is implemented using Xtext.
For example, the generated plug-in uses the parser to highlight the syntax of the code.
This functionality can be further customized through Xtext’s API, but is already fully
functional without writing any additional code. Similarly the plug-in performs auto-
completion of keywords and names by using the grammar of the language as well as
the name resolution functionality. No additional code — beyond what is needed for the
compiler anyway — is needed to implement auto-completion. Likewise all errors and
warnings that are produced by the compiler through the validation API, will also be
detected on-the-fly by the plug-in and marked in the code and listed in Eclipse’s problem
view.

19

4 Xtext

Additionally the plug-in provides an outline view that is generated using the grammar.
However the outline that is provided by default will list a lot of unnecessary information
(as it generates an entry for every node in the source code’s abstract syntax tree) and is
thus less useful. So unlike the other IDE features provided by Xtext, the outline is not
very useful without writing additional code using the Xtext API to modify the view. For
the SALTXT plug-in this was not done as an outline view was not considered to be an
important feature for SALT. Therefore the SALTXT Eclipse plug-in does not provide an
improved outline view so far.

There are also libraries like LLVM, which help in the code generation phase by allowing
you to generate platform independent LLVM byte code, which can then be compiled
into various machine code formats through the LLVM API. So you only have to write
code generation code for one output format (LLVM byte code) and get support for
many different machine code formats without having to write any additional code for
any of them. Xtext does not offer any comparable functionality, but could be used in
combination with such tools if needed. However, since SALT is a logical specification
language that is compiled to logical formulas, not machine code, this is not relevant to
the SALT*T compiler.

20

5 Smart Assertion Language for
Temporal Logic

Linear temporal logic is a powerful tool to specify the behavior of various types of com-
ponents — be they computer programs that are verified using runtime verification tools or
hardware components that are checked using model checkers. However linear temporal
logic is a rather low-level way of writing specifications. It only offers a small set of core
operators and offers no means of abstraction that can be used to structure large specifi-
cations or to avoid repetition. This can make it hard to write, read, debug and maintain
large specifications and easy to make mistakes in them.

It is therefore desirable to have a higher-level language that has the same expressive
power as linear temporal language and can be used with the same tools, but at the
same time offers a greater set of operators, a more easily readable syntax and means of
abstraction that make it possible to easily write large specifications that are still readable
and maintainable.

SALT, which is short for “Smart Assertion Language for Temporal Logic”, is such a
language. It was proposed in [Bauer et al., 2006] and first implemented by Jonathan
Streit in [Streit, 2006]|. It offers a greatly expanded set of operators — all of which have
English, rather than symbolic, names for greater readability — and the ability to define
one’s own operators to facilitate code reuse, maintainability and readability.

It also offers looping constructs to make assertions over a set of expressions, further
facilitating code reuse and concise code. To enable SALT specifications to be used with
existing model checking and runtime verfication tools, SALT can be compiled to the
linear temporal logic dialects supported by those tools.

This chapter will incrementally describe the syntax and semantics of the SALT language.
A complete, continuous definition of the SALT syntax will be given in appendix A. A
complete list of operators and their semantics can be found in appendix B. A more
comprehensive look at the SALT language can be found in [Streit, 2006].

The SALT language as defined in [Streit, 2006] also contains timed operators, which
make it possible to write specifications that correspond to formulas in Timed LTL
[Raskin, 1999]. It also includes a restricted form of regular expressions. The SALTXT
compiler described in this thesis does not currently support those constructs. Therefore
this chapter will not describe the syntax and semantics of timed operators and confine
itself to the subset of SALT without timed operators and regular expressions.

21

5 Smart Assertion Language for Temporal Logic
5.1 Operators and Atomic Propositions
In its simplest form a SALT specification consists of a list of assertions. The basic syntax

of an assertion is as follows:

::= ’assert’

— —
~
~
*

An atomic proposition is either one of the constants true or false, an alphanumeric
identifier or a string in double quotes. Prefix operators are operators that have exactly
one operand. Infix operators are operators that have two or more operands. Both
infix and prefix operators can be used with the operator (operands) syntax. As usual
parentheses can be used to affect the order of operations. Comments in SALT start with
two dashes and extend to the end of the line.

Semantically the constants true and false are, rather unsurprisingly, propositions that
always true of false respectively. Identifiers and strings represent variables or states that
exist in the system which is being specified. Their semantics depend on that system.
It also depends on the system which identifiers and strings have a meaning and which
are meaningless or invalid — as far as the SALT language is concerned there are no
restrictions on strings and identifiers. There is no semantic difference between a string
and an identifier with the same contents (i.e. the identifier x will mean the same thing as
the string x) — the only difference is syntactic: strings may contain characters that are
not allowed in identifiers (e.g. spaces).

This is an example of a valid SALT specification:

assert x implies y
assert "hello world"
assert false implies (true and eventually z)

Some operators can also be used with scope modifiers. In that case one or more modifiers
are inserted between one or multiple of the operands depending on the operator. The
possible scope modifiers are optional, weak, required, inclusive and exclusive. Only
one of inclusive and exclusive and one of optional, weak and required can be used
per operand. Which modifiers are allowed or required before which operand depends on
the operator.

22

5.1 Operators and Atomic Propositions

= ’weak’
| ’required’
| ’optional’

::= ’inclusive’

| ’exclusive’

An example of a valid specification with scope modifiers is:

assert always x upto excl opt ¥y
assert (next a) until weak b
assert b until required c

The semantics of an operator expression depend on the operator. The operators available
in SALT are textual versions of the ones that are available in LTL as well as additional
operators and generalized and extended versions of the operators known from LTL. Some
of the available operators are:

Basic Logical Operators SALT has all the basic logical operators like and, or, not and
implies. They have the obvious semantics.

Basic Temporal Operators SALT also has the basic temporal operators that exist in
LTL, like globally (which can also be written as always), eventually, releases and
next. Those operators have the same semantics as in LTL.

until The until operator in SALT is an extended version of the U and W operators in
LTL. Tts second operator can optionally be modified using the modifiers weak, required
or optional and/or exclusive or inclusive. If none of the modifiers weak, required
or optional are used, it acts as if the modifier required had been used. If neither
inclusive nor exclusive are used, it acts as if exclusive had been specified.

When used with the modifiers required and exclusive, until is equivalent to the U
operator in LTL and will hold iff the right operand holds eventually and the left operand
holds during every step before then. When used with the modifiers weak and exclusive,
it is equivalent to the W operator and holds iff the right operand holds eventually and
the left operand holds during every step before then or the right operand never holds and
the left operand always holds. When inclusive is used instead of exclusive, the left
operand must still be true during the step in which the right operand first becomes true
(whereas it usually would only need to be true during every step before then). When
optional is used instead of weak or required, it will behave the same as weak except that
it will always be true if the right operand never becomes true (even if the left operand is
false during any or all of the steps).

23

5 Smart Assertion Language for Temporal Logic

upto The upto operator holds iff its left operand holds when only considering the steps
up to the step where the right operand first becomes true. The right operand has to be
modified using either inclusive or exclusive and either weak, optional or required.
When exclusive is used, only the steps before the right operand first becomes true are
considered. When inclusive is used, the step at which the right operand first becomes
true is considered as well. When required is used, the expression does not hold if the
right operand never holds. When weak is used and the right operand never holds, the
expression holds iff the left operand holds. When optional is used and the right operand
never holds, the expression holds regardless of whether the left operand holds. When
exclusive is used on the right operand, either weak or required can (and, in some cases,
must) be used on the left operand. When inclusive is used, the left operand must not
be modified. If exclusive is used and the right operand holds in the current step, the
rules determining whether the expression holds depend on the form of the left operand
and the modifier used on the left operand. These rules are explained in [Streit, 2006] and
will not be repeated here for conciseness. The right operand needs to be a purely Boolean
(i.e. not temporal) proposition. The upto operator can also be written as before.

accepton The accepton operator holds iff the left operand holds when only considering
the time before the step during which the right operand first holds or the right operand
holds at a step before anything has happened that would mean that the left operand
does not hold. For example a until b accepton c holds iff 2 until b holds when
only considering the time before the step at which c first holds or ¢ holds before any
step at which a does not hold. If the right operand never holds, the expression holds
iff the left operand holds. The right operand of accepton must be a purely Boolean
proposition.

In addition to prefix and infix operators there are also counted operators:
ce=) [) 7])

ci= 00 | =0 | 0 | k=0 | 0=

A counted operator is called like a prefix operator except that there’s a count in square
brackets between the operator and the operand. The count can either be a single number,
a range of two numbers separated by two dots or a number prefixed by a relational
operator. Unlike prefix and infix operators, counted operators cannot be called using the
operator (operands) syntax. An example of a valid specification with counted operators
is:

assert nextn [3..5] x
assert occurring [42] ¥

24

5.2 Loops

assert holding [> 23] =z

The semantics of the counted operators are as follows:

nextn nextn [n..m] f is true iff, for any i between n and m (inclusive), the formula £
holds at step ¢+, where ¢ is the current step. nextn [>= n] f is true iff, for any i > n,
the formula f holds at step ¢ + 1.

holding holding [n..m] f istrue iff, for any i between n and m (inclusive), the formula
f holds exactly during i steps. nextn [>= n] f is true iff f holds during at least n
steps.

occurring occurring [n..m] £ istrueiff, for any i between n and m (inclusive), the for-
mula f occurs exactly i times. nextn [>= n] f is true iff f occurs at least n times.

The difference between holding and occurring is that, if a formula holds for n con-
secutive steps, that counts as n steps during which it holds, but only as one single
occurrence.

For all of these operators [n] and [=n] are equivalent to n..n, [<= n] is equivalent to
[0.. n], [<n] to [0 .. (n-1)] and \il[> n|! to [>= (n+1)] for all integers n.

There is also the if-then-else operator:

re= if? ’then’ ’else’
The expression if ¢ then t else e is equivalent to (c implies t) and (mot(c)
implies e).

All temporal operators in SALT, except accepton (and its counterpart rejecton, which
is explained in appendix B), have a corresponding past operator that has the same name
with inpast appended to it. Some of them also have alternative names that are more
intuitive. For example the past equivalent of until is untilinpast, which can also be
written as since.

5.2 Loops

SALT also has looping constructs that can be used as expressions:

25

5 Smart Assertion Language for Temporal Logic

’aS’ 7in7

= 2allof’
| ’noneof’
| ’someof’
| ’exactlyoneof’

= Jlist?’ [° 2, DL
| ’enumerate’ ’[° >, 0 ']
| ‘with?

| without’

The semantics of the expression quantifier list as var in f are as follows: Let F be
the set that contains the result of substituting the expression e for each free occurrence
of the identifier var for each expression e in the list 1ist. The semantics now depend on
the used quantifier:

e The expression allof list as var in f will hold if all of the expressions in F
hold.

e The expression noneof list as var in f will hold if none of the expressions in

F hold.

e The expression someof list as var in f will hold if at least one of the expres-
sions in F' holds.

e The expression exactlyoneof list as var in f will hold if exactly one of the
expressions in £’ holds.

5.3 Macros

In addition to assertions SALT specifications can also contain macro definitions. All
macro definitions will be written at the beginning of a SALT specification, before the
first assertion. The syntax for macro definitions is as follows:

’define’)(J >)7)=

’define’ =2

(7’7)*

A macro that has been defined with parameters can be used like an operator. If its
parameter list contains only one parameter, it can be used like a prefix operator. If its
parameter list contains two or more parameters, it can be used like an infix operator. In
either case it can be used with the operator (operands) syntax.

When a macro is used this way, the expression is replaced with the macro’s body (i.e.
the expression right of the :=in the macro definition) and each free occurrence of any of
the parameters in the body is replaced with the corresponding operand.

26

5.4 Composite Identifiers and Strings

A macro that has been defined without a parameter list can be used like a variable and
each use of it will be replaced by its body.

5.4 Composite Identifiers and Strings

When identifiers and strings are used inside a macro definition or loop, they may include,
surrounded by dollar signs, any of the macro’s parameters or the loop’s variables. In that
case they are composite identifiers or composite strings respectively and when the macro
parameters or loop variables are substituted, the dollar-surrounded parts of identifiers
and strings are replaced by the expression (presumably another identifier or string) being
substituted for that identifier.

Here’s an example of using composite identifiers in a loop:

assert
allof enumerate [1..3] with i in
motor_i_used implies motor_i_has_power

This will be equivalent to the following assertion without a loop:

assert
(motor_1_used implies motor_1_has_power) and
(motor_2_used implies motor_2_has_power) and
(motor_3_used implies motor_3_has_power)

5.5 Variable Declarations

In addition to assertions and macro definitions, a SALT specification can also contain
zero or more variable declarations, that must come before all macro definitions. So the
complete production rule for a SALT specification is:

1= *

The syntax for a variable declaration is:

::= ’declare’ (.’) *

If the specification contains at least one declaration, then any time an identifier is used as
an atomic proposition, the identifier (or, in case of a composite identifier, its expansion)
must currently be bound according to the following rules:

e declare statements and macro definitions without parameters bind the given iden-
tifiers for the entire specification.

27

5 Smart Assertion Language for Temporal Logic

e Macro definitions with parameters bind the parameters inside the expression to the
right of the := and any of its sub-expressions.

e Loops bind the identifier following the as keyword inside the expression to the right
of the in keyword and any of its sub-expressions.

If the identifier is used as an atomic proposition and the atomic proposition is used
directly as an operand to a macro, the identifier may also be the name of an operator or
previously defined macro. Note that this has been changed in SALT*T as explained in
section 6.6.2.

If the specification does not contain any declarations, any identifier can be used as an
atomic proposition without restrictions. There are no restrictions on strings, even if the
specification contains declarations.

28

6 The SALTXT Compiler

6.1 Structure of the SALTXT Compiler

The SALT compiler’s structure consists of various phases, most of which are configurable
and extensible through plug-ins. Those phases are lexing and parsing, validation and
code generation.

The lexing and parsing phase in the SALT*T compiler are largely performed by code that
is auto-generated from a grammar that is written in Xtext’s grammar language with some
manually written code that runs between the lexer and the parser and preprocesses the
token stream to implement composite variables. The parser generates an abstract syntax
tree using classes that have also been auto-generated from the grammar. Those classes
use the ECore mechanism of the Eclipse Framework. If syntax errors are found during
this stage, the compilation aborts. When using Eclipse syntax errors are also marked in
the code editor. Due to Xtext’s support for cross-references references to non-existing
macros or variables are also caught by the parser and handled in the same way. If the
parser finishes parsing without any errors, the compilation process will continue with the
validation phase.

In the validation phase, the validator goes over the AST to catch errors that haven’t been
caught by the parser. These errors are calling macros with the wrong arity and using
modifiers (like weak) with operators that don’t support them or leaving them out with
operators that require them. In addition to these general validations, domain specific
validations can also be performed using domain specification plug-ins, which will be
explained in section 6.5. Like in the parsing phase, if errors are found, the compilation
will be aborted and, when using Eclipse, the errors will be marked in Eclipse’s editor.
Otherwise compilation continues with the code generation.

The code generation phase takes the validated abstract syntax tree and converts it into
one of the supported output formats. This process is divided into multiple translation
phases. First if a domain specification plug-in is used, the plug-in can return a new
AST on which some transformations have been done. Then the preprocessor runs on the
AST and produces a new AST in which all macros, looping constructs and composite
variables have been expanded. After this the rest of the code generation process is
controlled by translation phase plug-ins. A translation phase can translate the code
from one intermediate representation to another or into a final output format. It could
also transform a program in an intermediate form into an optimized program in the

29

6 The SALTXT Compiler

same intermediate form. Section 6.3 will describe how these plug-ins work and which
translation phases currently ship with the compiler.

Some translation phases are only available when the specification meets certain require-
ments. For example generation of Spin output is only available when no past operators
are used. To express this, predicate plug-ins, which are explained in section 6.4, are
used.

6.2 Lexing and Parsing

In the SALTXT compiler, lexing is performed in two stages: The first is performed by the
automatically generated lexer that uses the token rules defined in the grammar file. The
token stream produced by this lexer differs from the final token stream in how composite
variables are treated:

There are four token types defined in the grammar to represent composite variables:
COMPOSITE_ID, COMP_ID_START, COMP_ID_MIDDLE and COMP_ID_END. Of those the auto-
matically generated lexer only generates the first type of token (the others are set to
dummy values in the grammar that cannot possibly be matched). In the non-terminal
rules, however, only the latter three types of tokens are used. So after the automatically
generated lexer runs and before the parser all the COMPOSITE_IDs must be replaced by the
token types that the parser expects. For this purpose there is a custom lexer class, that
takes the token stream produced by the generated lexer and replaces each COMPOSITE_ID
in it with a sequence of COMP_ID_START, COMP_ID_MIDDLE, COMP_ID_END and IDENTIFIER
tokens.

The reason that the automatically generated lexer cannot produce the three different
types of COMP_ID_ tokens directly is that it’s not possible for the generated lexer to tell
that, for example, Alice$likes$Bob should be tokenized into COMP_ID_START (Alice$),
IDENTIFIER(1likes) and COMP_ID_END($Bob) as opposed to COMP_ID_START(Alice$),
COMP_ID_START(likes$) and IDENTIFIER(Bob). The reason for that is that the decision
depends not just on which characters are currently being read, but also which token has
been read previously. The generated lexer cannot keep track of such information, but
our custom lexer can.

By splitting COMPOSITE_IDs into multiple tokens like this, we can explicitly state in
the grammar the between the various COMP_ID_* tokens must be references to existing
variables. This enables auto-completing of variables inside composite variables and pro-
duces errors when the given identifier is not the name of an existing variable currently
in scope.

After the custom lexer processed the token stream, the parser parses it into an abstract
syntax tree. The parser is again wholly generated from the grammar, which contains
annotations to specify which parsing rule should create which type of node and what its

30

6.3 Translation Plug-ins

member variables should be set to. The node classes of the abstract syntax tree are also
wholly generated from the grammar.

6.3 Translation Plug-ins

The SALTXT compiler is designed to be extensible, so that it’s possible to support as
many output formats as possible. Some of the possible output formats may be LTL-
based and some may be based on other logics. Some may support all SALT operations
and some may only support a subset of them. In addition it should be possible to easily
implement new translation strategies and optimizations and compare them to existing
ones.

For this purpose the SALTXT compiler has a plug-in system for translation phases, so
that new translation phases can quickly be implemented, plugged into the existing infras-
tructure and run alongside the existing translation phases. Such phases might be new
optimizations, a new implementation of an existing phase using a different translation
scheme or a new output format.

This section describes how this plug-in system works.

6.3.1 The Translation Phase Interface

A new translation phase can be implemented by writing a translation plug-in. A transla-
tion plug-in is a class that implements the TranslationPhase<From, To> interface. Such
a class must implement the methods Specification<To> translate(Specification
<From>) and List<Predicate> requirements().

The translate method takes some representation of a SALT specification and returns
a transformed representation. The returned representation might either be of the same
type — this might be the case in an optimization pass that performs some replacements
on the AST, but does not change the types of nodes that can appear in the tree — or
a new one, as is commonly the case when translating from SALT to an output format
by way of different intermediate representations that are represented by different AST
types. A translation phase that produces a final representation of the specification that
is not meant to be processed further — a representation in what we call an output format
— will use String as its target type (To). The class Specification<T> contains a list
of the representations of each of the specification’s assertions in the given type as well
as some metadata like the specification’s name — that is the name of the file that the
specification is in without the file extension — as well as whether the specification uses a
domain specification plug-in and if so, which one.

Some translation phases are only applicable if the specification meets certain conditions.
For example Spin output can currently only be produced when the specification uses no

31

6 The SALTXT Compiler

past operators and domain specific output formats may only be available if a specific
domain specification plug-in is used (however no domain specific output formats are
currently implemented). To express such requirements predicate plug-ins can be written
(see section 6.4). The requirements method then returns a list of the predicate objects
that represent the translation phase’s requirement. For translation phases that have no
requirements, the method will simply return an empty list.

Each class that implements the TranslationPhase interface must be registered with the
TranslationPhaseRegistry class. That class contains two static lists: one for trans-
lation phases whose output are intermediate representations (we call such phases AST
transformations) and one for phases whose output is in a final output format. Classes
are registered by adding an instance of the class to the appropriate list.

6.3.2 Putting It All Together

In the code generation phase of the compiler, translation plug-ins are used the following
way: After performing domain specific transformations (see section 6.5), preprocessing
the SALT specification and then translating it to SALT core, the compiler calculates
all combinations of translation phases that can be applied sequentially to translate the
core specification into a specification output format. This is achieved by performing
a depth first search in the graph where each TranslationPhase<From, To> is inter-
preted as an edge from the node From to the node To. The search starts with the node
CoreExpression, the class that represents expressions in the SALT core language, and
targets the node String.

Figure 6.1 shows a visualization of such a graph. Solid edges represent translation phases
that exist in the version of the compiler described in this thesis (see section 6.3.3) while
dashed edges represent translation phases that could be added as additional plug-ins.
Similarly, nodes with solid borders represent intermediate representations or output for-
mats that exist in this version of the compiler while nodes with dashed borders represent
ones that could be added as additional plug-ins. The dotted line that divides the graphic
horizontally separates the translation phases that always execute from those that are con-
trolled by the plug-in system. Therefore the graph search described here starts directly
below that line, i.e. at the node representing Core SALT. The nodes representing are
labelled with the name of the output format rather than “String” for clarity’s sake.

Before traversing an edge, the compiler checks that the given specification matches all of
the translation phase’s requirements by applying each of the predicates returned by the
phase’s predicates method. If that is not the case, the edge is ignored. After finding
all possible paths this way, the possible paths are presented to the user, who can then
select which path to follow. In effect this allows the user to choose which output format
to generate and which translation scheme to use to get there.

The dialog for this can be be seen in figure 6.2. It would be advisable if future work on this
project included creating a more usable user interface for this selection. After the user

32

6.3 Translation Plug-ins

SALT
Preprocessor
Y
Preprocessed
SALT
PreprocessedSaltToCoreSalt Fixed
Plugin-based
4 g
L7 . oL
Core - HighLevelOptimisationPhase
SALT ~——~
\\
\\\
CoreSaltToSaltMM “~_ CoreSaltToOir
\\
\\\\
. N .
i I
| . .
SALT— | Other mterme_dlate !
: representation I
U S —
/ \
/ \
SaltMMToLtl / N\
v OirToNIbof // \QirToOnlbof
———— | -———~ / \\
OptimizeLtl { 1 L7 \\, NormalizeLt| !// \{
PSS e’ PTTTTTTTTT T 1 P Tt 1
I Non-LTL based : | Other non-LTL based :
: output format I : output format I
LtIToSMV LtIToSpin R R
SMV Spin

Figure 6.1: Graph of possible compilation paths

33

6 The SALTXT Compiler

Please select a compilation chain.
Core -> CoreSaltToSaltMM -> SaltMMTolLtl -> LtIToSmv ‘v|

oK | | Abbrechen

Figure 6.2: Compilation path selection dialog

selected a path, each translation phase from that path will be applied to the specification
sequentially. The string returned by the last phase will then be written to the output
file. The reason that the preprocessing and core translation phase always happen is that
predicates work with CoreExpression, so the specification must be translated to core
SALT for predicates to work. The rationale for this is explained in section 6.4.

6.3.3 Implemented Translation Phases

Currently the following translation phases are implemented in the SALTXT com-
piler:

Preprocessor The preprocessor takes the AST generated by the compiler and replaces
all macros, looping constructs and composite variables. It takes one AST object that
represents the entire specification and returns a Specification object containing a list of
each assertion’s AST. The type of each expression is the Expression type generated by
Xtext.

Core SALT The PreprocessedSaltToCoreSalt translation phase takes a specifica-
tion object containing preprocessed SALT expressions and returns a Specification
<CoreExpression>. CoreExpression is the type that represents expressions in the SALT
core language. The SALT core language is SALT with the following syntactic restric-
tions:

e In regular expressions the only allowed quantifier is * without a count. All other
quantifiers(+, 7, *{op n}) are expressed in terms of *, | and ;.

e The if-then-else construct is replaced by implication.

e The between operator is expressed in terms of upto and from.

e The releases operator is expressed as until inclusive weak.

e The never operator is expressed in terms of not and eventually.

e The operators nextn, occurring and holding are expanded to repeated appli-
cations of the appropriate operators. This translation is not implemented in the

34

6.4 Predicate Plug-in

current version of SALTXT | so specifications containing these operators will cur-
rently not compile.

SALT~ The CoreSaltToSaltMM translation phase translates core salt into SALT -
(represented by the SaltMMExpression type). The SALT™" language contains the LTL
operators, the SALT operators rejecton and accepton and the new operator stopon,
which is used to express the various variations of the SALT operator upto. SALT ™~
does not contain modifiers, so modified versions of operators are expressed in terms of
their plain version — with the exception of until weak, which is its own operator in

SALT.

LTL The SaltMMToLtl translation phases translates SALT™~ to LTL by translating the
rejecton, accepton and stopon operators in plain LTL. It returns a Specification
<LtlExpression>.

Output formats The phases Lt1ToSMV and Lt1ToSpin implement SALTXT’s two cur-
rently supported output formats: SMV and Spin. They translate Lt1Expressions to
Strings by expressing each LTL operation using its string representation in the given
output format.

These phases implement the translation scheme described in appendix F of [Streit, 2006].
Except for Lt1ToSpin, none of the phases have requirements. The Lt1ToSpin phase has
the requirement that the SALT specification may not contain past operators.

6.4 Predicate Plug-in

Certain translation phases can only be used under certain conditions. For example the
Spin output format can currently only be used for specifications that don’t use past
operators!. Further certain translation phases may only be applicable if a specific domain
specification plug-in is used.

To express these requirements, translation phases have a requirements method that
returns Predicate objects. This section explains how these objects work.

!The SPIN format itself does not support past operators. Since every LTL formula with past operators
can also be expressed without past operators [Gabbay et al., 1980], it would be possible to add a
translation phase that replaces expressions involving past operators with equivalent expressions that
don’t use past operators, which would make it possible to use SPIN as an output format even if the
specification contains past operators, but no such translation phase is currently implemented.

35

6 The SALTXT Compiler

6.4.1 The Predicate Interface

Predicate plug-ins are created by writing a class that implements the Predicate inter-
face. The Predicate interface has a single method boolean isValid(Specification
<CoreExpression>). The method takes a SALT specification and should return true
or false depending on whether the given specification meets the predicate. The speci-
fication is the core SALT format because the transformations made when translating to
core SALT are still light enough that, no matter which output format you’re translating
to, it always makes sense to translate to core SALT as an intermediate step, while at
the same time core SALT removes enough redundancies in the language, that it becomes
worthwhile to use it as you don’t have to handle all the multiple ways to express the
same thing that SALT sometimes allows.

6.4.2 The AbstractPredicate class

The AbstractPredicate class implements the Predicate interface. For every type of
expression in the AST of a preprocessed SALT specification, the AbstractPredicate
class has a method boolean isValidExpression(ExpressionType). Further it has
the method isValidOperator(PrefixOperator) and the method isValidOperator(
InfixOperator). These methods can be used to easily disallow certain types of operators
without inspecting their operands. All of those methods have a default implementation
(i.e. they're not abstract). In case of nodes that have children, the default implemen-
tation simply calls the appropriate isValid method for each of the node’s children and
then returns the conjunction of the results. For nodes that don’t have children, it simply
returns true.

It is expected that predicates will inherit from this class and then only handle the node
types relevant to the predicate instead of implementing the Predicate directly.

6.4.3 Implemented Predicate Plug-ins

The following predicate plug-ins ship with the current version of SALTXT:

The NoPastOperators predicate ensures that no past operators are used in the given
specification. It does so by inheriting the AbstractPredicate class and overrid-
ing the isValidOperator methods to disallow any past operators as well as the
isValidExpression(RegularExpression) method to disallow backward regular ex-
pressions. This predicate is a requirement of the Lt1ToSpin translation phase.

The UsesDomainSpecification predicate ensures that a specification uses a specific
domain specification plug-in. It takes the class of the domain specification plug-in as
a constructor argument. So to implement a translation phase that requires a domain

36

6.5 Domain Specification Plug-ins

specification plug-in called FooBar, requirements() would return a list containing the
following Predicate object:

new UsesDomainSpecification(FooBar.class)

6.5 Domain Specification Plug-ins

Specifications are written with the intent of verifying a system against the specification to
ensure its correctness. For this to work it is, of course, imperative that the specification
itself correctly represents the author’s intent. A specification language like SALT should
therefore be designed in a way that minimizes possible sources of mistakes and makes it
easy to see when a specification contains mistakes. SALT accomplishes this by making it
possible to define specifications in a structured way and using readable syntax. However
there are still sources of mistakes in SALT. One such source is to misspell propositions
in the specifications. For example a specification that requires that event A should
always be followed by event B will be trivially — and thus uselessly — true if the name of
event A is misspelled in the specification. To deal with this SALT allows you to specify
valid propositions using the declare statement at the beginning of a specification. It will
then mark any undeclared propositions as errors. However this approach has two major
limitations:

e There is no guarantee that the propositions declared in the specification are actually
meaningful in the context of the specified system. For example, when specifying
the behavior of a sate machine, the propositions used in the specification might
be the states of the state machine. However if you misremember the name of a
state when declaring the states in the specification or if you rename the states of
the state machine, but forget to apply the same renaming in the specification, the
specification would become incorrect. SALT has no way of verifying whether the
declared propositions correspond to states in the state machine because it doesn’t
know anything about the state machine. In other words SALT has no domain-
specific knowledge and thus no way of knowing whether the declared propositions
make sense in the context of the specified domain.

e Depending on the domain of the system to be specified and the properties to specify,
there might be an infinite amount of reasonable propositions. That is a system
might have a finite amount of variables that can be combined to propositions in an
infinite number of ways (see the example below). Using the current approach the
only way to write specifications would be to either declare each proposition you
plan to use — not just each variable, but each proposition over those variables that
you plan to use —, leading to a vast amount of declarations and ample opportunity
to make mistakes in those declarations, or not declare any propositions at all and
risk typos.

37

6 The SALTXT Compiler

For example one might consider a system of mutable numeric variables where we want
to specify the temporal behavior of the properties of those variables using arithmetic
expressions and comparisons. So if we wanted to express that the variable x must not stay
less than y+42 forever and that y must never become negative, this could be expressed
using the following specification:

assert "x < y + 42" implies eventually "x >= y + 42"
assert never "y < 0"

In such a specification a valid proposition could be any comparison operator applied to
any pair of arithmetic expression where an arithmetic expression could be any sequence of
arithmetic operators applied to any combination of the system’s variables and numeric
constants. Instead of declaring each such comparison individually, it would be much
better if we could just declare the variables that we're going to use and let SALT apply
domain specific knowledge to figure out in what ways those variables can be combined
to propositions. So in the example above, we’d want to only declare that the system
contains the variables x and y instead of having to declare each of the propositions
(r < y+42, z >= y+ 42, y < 0 and every other proposition about which we’d like
to reason) individually. In fact what we’d really want would be to not declare anything
at all and instead let SALT use its domain-specific knowledge about the kind of system
with which we’re working to find out what the system’s variables are.

It is thus becoming apparent that we need a way to let users supply SALT with domain-
specific knowledge about the systems for which they want to write specifications. For
this purpose let us consider domain specification plug-ins — a way to write plug-ins for
the SALT compiler that imbue it with domain specific knowledge. The SALT language
is also extended to allow the integration of such plug-ins.

6.5.1 Extensions to SALT

To integrate domain specification plug-ins into SALT, the syntax and semantics of SALT
are extended as follows:

e A specification can optionally begin with a using statement. A using statement
consists of the keyword using followed by the name of a domain specification plug-
in.

e The domain specification plug-in can perform checks on the specification’s abstract
syntax tree to determine whether it is valid for the given domain. It can also
perform substitutions on the tree to implement domain-specific macros or other
custom features.

38

6.5 Domain Specification Plug-ins

6.5.2 Writing Domain Specification Plug-ins

A domain specification plug-in is a class that inherits the abstract DomainSpecification
class. It must define the method Specification transformAndValidate(Expression).
The transformAndValidate method is called on the specification’s abstract syntax tree.
The class also has a protected field ValidationMessageAcceptor acceptor, which will
be initialized before the transformAndValidate method is called. It may return a trans-
formed AST (to replace domain-specific macros with pure SALT') or it may simply check
the expression for validity. If the expression contains is not valid according to the domain-
specific rules, the ValidationMessageAcceptor will be invoked and compilation will
abort with the given error message. The acceptor can also use to produce warning mes-
sages, which will not abort compilation.

The class also defines the following non-abstract methods:

e The method Specification transform(Specification) performs the plug-in’s
transformations on the given spec without performing any validations. It is imple-
mented by calling transformAndValidate after setting acceptor to an acceptor
that simply ignores all messages. This method is used during the compilation pro-
cess when an already-validated specification needs to be transform during the code
generation phase.

e The method static Specification get(Specification) takes a specification,
finds out whether that specification uses a domain specification plug-in and if so,
returns the DomainSpecificationPlug-in object corresponding to that plug-in.
Otherwise it returns null.

e The method static Specification transformAndValidate(Specification,
ValidationMessageAcceptor) finds the specification’s domain specification plug-
in using get, sets its validator to the given validator and then invokes that plug-in’s
non-static transformAndValidate method on the specification. If the specification
does not use a domain specification plug-in, the specification is returned unchanged.

The DomainSpecificationPlug-in will be used in two places:

e During the validation phase of the compilation the static transformAndValidate
method is applied to the specification. If it finishes without signalling any errors,
validation continues on the (possibly) transformed AST returned by the method.

e During the code generation phase, the get method is called with the specification
as its argument. The result of this is stored in the Specification<T> objects that
are passed around between the translation phases. If it is not null, the transform
method will be called before the preprocessing phase and its result will be used as
input for that phase.

39

6 The SALTXT Compiler

6.5.3 The AbstractValidator class

Domain specification plug-ins that only perform validations and no transformations can
inherit from the AbstractValidator instead of directly from the DomainSpecification
Plug-in class. The AbstractValidator defines a validateExp method for each type
of SALT expression. Each one takes the abstract syntax tree of an expression as its
first argument. It also takes an arbitrary object as its second argument and returns
an object. This object can be used to pass around state information. The default
implementation of each validateExp simply calls the appropriate validateExp method
on each subexpression with the state object as the second argument. It then returns the
state object it was given unchanged.

AbstractValidator inherits from DomainSpecificationPlug-in and implements the
transformAndValidate method by calling its own validateExp methods on each macro
body and each assertion in the specification. As the second argument it uses the result
of the abstract method newState, which users of this class need to override to return an
“empty” state object.

Users of this class should override the validateExp method for those types of expres-
sion, for which they want to perform custom validations. They can use the state object
returned by calls of validateExp on subexpressions to gain knowledge about those subex-
pressions.

6.6 Changes to the SALT Language

6.6.1 Macro Calls

The SALT language has the following grammar rules for non-nullary macro calls:

<macro_name> c = <ID>

<explicit_call> ::= <macro_name>

>(? <actual_param> (’,’ <actual_param>)* ’)’
<macro_name> <actual_parameter>
<actual_param> <macro_name> <actual_param>
(?,’ <actual_param>)*

<actual_param> ::= <expression> | ’@’ <macro_name>

<prefix_call>

I

<infix_call>

Nullary macros are defined using a syntax distinct from that of normal macros and are
used simply by writing their names. Therefore they can be treated like variables in the
parser. This makes them unproblematic and thus irrelevant to this discussion.

An expression can, among other things, be another macro call or the name of a variable.
Variable names, like macro names, are simply identifiers. This makes the grammar for
prefix calls and infix calls ambiguous. For example it is not clear from the grammar

40

6.6 Changes to the SALT Language

whether abc is an infix macro call where b is a binary macro and a and c are variables,
or whether there are two prefix macro calls where a and b are unary macros and c is a
variable.

Further expressions like afbge, d are also ambiguous, even if we already decided that f
and g are macros that we're calling using infix notation, because it is not clear whether
d is an argument to the macro f or the macro g.

The previous version of the SALT language resolves these ambiguities by choosing from
the possible parses that parse that will not treat a macro like a variable (or vice-versa)
or call a macro with the wrong number of arguments. There will be at most one such
parse and if no such parse exists, a parse error will be caused. For example afbgc, d was
parsed as f(a,g(b,c,d)) if f takes two arguments and g takes 3 or as f(a,g(b,c),d) if f
takes 3 arguments and g takes 2.

This approach makes it impossible to parse this syntax without keeping track of which
macros exist and what their arities are. It can also be argued that it makes it harder for
humans to read the code as they also need to keep track of those things to know which
arguments belong to which macro.

The ANTLR parser used by the previous implementation of the language implements
this behavior by embedding Java code in the grammar which creates a hash map that
keeps track of which macros exist and what their arities are. It then makes parsing
decisions based on the contents of that hash map.

Unlike ANTLR, Xtext does not allow parsing decisions to be based on embedded Java
code like this — in fact Xtext does not allow embedded Java code in the grammar at
all. Therefore it is not possible to implement these rules using an Xtext grammar.
Because of this it was necessary to modify the SALT language in such a way that parsing
decisions are based solely on the currently visible tokens, not the existence or arity of
prior declarations.

One way to accomplish this would have been to simply disallow prefix and infix macro
calls, so that all macro calls would have to use the explicit macro call notation. However
this would have meant breaking backwards-compatibility in a major way. It also would
have meant sacrificing some elegance of the syntax since user-defined macros could no
longer be using the same syntax as built-in infix operators.

Instead an attempt has been made to come up with a set of rules that would be simple to
understand and implement and that would lead to readable specifications while trying to
minimize the number of previously correct SALT specifications that would cause errors
using the new sets of rules. This resulted in the following rules:

e An expression of the form “<ID> <ID> <Expression>" will be interpreted as an
infix macro call whose left operand is a variable. If the first id is not the name of
a variable or the second id is not the name of binary macro, an error message is
produced. To call two unary macros using prefix notation, the user needs to use

41

6 The SALTXT Compiler

an expression of the form “macrol (macro2 argument)”.

e Similarly an expression of the form “<ID> <ID> <ID> <Expression>" will be
parsed as an infix call whose right operand is an infix call.

e When nesting infix macro calls without parentheses all arguments will be inter-
preted to belong to the innermost macro call preceding them. So when given input
of the form “a f b g ¢, d” the arguments of f will be a and the result of the second
macro call and the arguments to g will be b and c. If f is not a binary macro or
g is not a ternary macro, an error message will be produced. To call f with three
arguments, the user needs to parenthesize the inner macro call, i.e. “a f (b g ¢), d”.

6.6.2 Higher-Order Macros

In the previous version of SALT the syntax for defining non-nullary macros was as fol-
lows:

<macro_definition> ::= <ID> ’(’ <formal_param>
(’,’ <formal_param>)* ’)’
’:=’ <expression>

<formal_param> ::= <ID>

In SALT it is possible to define higher-order macros, i.e. macros that take other macros
as arguments. This means that an argument given to a macro can either be a SALT
expression or another macro. To pass a macro as an argument, the name of the macro is
prefixed with an @-character. In the previous version of the language there was no way
to tell from a macro’s signature which parameters were supposed to be expressions and
which were supposed to be macros.

In the Xtext based implementation the definition of a formal parameter is now <ID> | ’@’<ID>
where a simple ID denotes a parameter that stands for an expression and an @-sign fol-
lowed by an ID denotes a parameter that stands for a macro. This has the following
benefits:

e When reading a SALT specification it is now possible to tell which parameters
stand for expressions and which stand for macros just by looking at the macro’s
signature. This enhances readability.

e The formal parameter list of a macro now contains @-signs at the same positions
at which the actual parameter list will also contain @-signs. So a macro that is
called as “macro(@other macro, var)” is now also defined as “macro(@m, x)”. This
makes the syntax look more consistent.

e Since the IDE knows which parameters are macros and which are not, it can offer
more intelligent suggestions for auto-completion by only offering macro parameters
as completions in positions where a macro name would be legal and non-macro
parameters in positions where an expression would be legal.

42

6.6 Changes to the SALT Language

6.6.3 Recursive Macros

Previously it was allowed to define macros that called themselves, i.e. macros that were
recursive. Since the language offers no way to terminate such recursion, calling a recursive
macro would always lead to non-termination. That is never desirable behavior and there
is no use-case where a recursive macro would be useful without extending the language
in such a way that would allow recursive macros to terminate, which would be outside
the scope of this thesis (and not necessarily a good idea anyway). Therefore the new
version of the SALT language no longer allows macros to be recursive.

43

7 SALT IDE

Previously there has been no support for SALT in IDEs or text editors. That meant that
SALT specifications had to be written without any tool support. Since certain features of
IDEs and advanced text editors can greatly enhance the programmers’ productivity and
help them find mistakes earlier. Basic IDE support is considered a necessary feature for
SALTXT. The Xtext framework not only helps with implementing a compiler, but also
with creating an Eclipse plug-in using the same infrastructure as the compiler. Therefore
SALTXT’s IDE support has been implemented as an Eclipse plug-in. This section will
explain the features of that Eclipse plug-in and how they were implemented.

7.1 Features

The SALTXT Eclipse plug-in has the following features:

e SALT source code is highlighted using basic token-based rules, which highlight
keywords and operator names. The highlighting rules are generated from the token
rules of the grammar.

e Variable and macro names, keywords and operator names can be automatically
completed. A menu containing the list of possible completions will pop up as the
user types a long name. Alternatively the user can press the Control and Space
keys simultaneously to make the menu pop up right away. The list of possible
completions is context-aware, i.e. it only lists names or keywords that would be
syntactically legal in the current context. It also distinguishes between names of
macros and variables, so in a context where a macro name would be legal, but a
variable name would not be (after an @ for example), only macro names will be
listed. The menu will never list local variables that are not in scope at the point
of completion.

e Macros and variables can be renamed using Eclipse’s refactoring feature. This can
be done by invoking Eclipse’s rename action either on the definition of the macro
or variable or at a use site. It will rename all references to that variable or macro.
This replacement is aware of scope and does not rename variables or macros that
have the same name as the one that is being renamed but live in a different scope.

e From the call site of a macro or variable the user can jump to its definition — either
from the context menu or by pressing F3. This feature is also scope-aware and will

45

7 SALT IDE

always jump to the correct definition even if there are multiple definitions with the
same name.

e All errors are detected as the user is typing. The user does not have to invoke the
compiler to find out whether the code will cause compilation errors. The errors will
be marked in the code and listed in Eclipse’s “Problems” view. Error messages can
be viewed either in the “Problems” view or by hovering over the error marking in
the code. This includes general language errors (like syntax errors, using variables
or macros that don’t exist or are not in scope or using a macro with the wrong
number of arguments) as well as domain-specific errors that are detected by domain
specification plug-ins (see section 6.5).

e The SALT compiler can be invoked from within the IDE to compile SALT specifi-
cations to the desired output format.

It should also be mentioned that all the features that Eclipse always offers regardless of
which language is used, like integration with version control systems, are of course also
available when using the SALTXT Eclipse plug-in.

7.2 Implementation

Much of the functionality of the Eclipse plug-in is generated directly from the grammar
by the Xtext framework: The syntax highlighting rules are determined from the token
definitions of the grammar and require no additional code. The automatic completion
rules for keywords and built-in operator names is similarly generated from the grammar.
The remaining features, including completion rules for variables and macros, require some
additional information: They need to know where macros and variables are defined, where
they are used and how far their scope intends.

The first two types of required information can be encoded directly into the Xtext gram-
mar: In places where a new macro or variable name is introduced, i.e. in declare state-
ments, define statements and macro parameter lists, we don’t just use the token type
IDENTIFIER, but rather use the non-terminals MacroName or VariableName respectively.
Those rules simply invoke the terminal rule IDENTIFIER and store its value in the
special property name. The name property tells Xtext that the rule represents a named
entity to which references can be made elsewhere in the grammar. In the places where
macro or variable names are used, we write [MacroName] or [VariableName] in braces,
which is Xtext syntax to signify that the next token must be an Identifier that is not
just a legal identifier, but also equal to the name property of the given non-terminal rule
and the name’s scope must extend to the current location.

To determine the scope of names additional code is required outside of the grammar
definition: The SaltScopeProvider class is called for every reference in the grammar
and walks upwards from that reference through the AST to find which names of the given

46

7.2 Implementation

kind are currently in scope. Together the information provided by the grammar and this
class, enable SALTX™’s scope-aware IDE features. In addition to enabling IDE features,
the same information is also used by the compiler to match variable and macro names
to their definitions, so using the Xtext framework allowed us to create both a compiler
and an Eclipse plug-in without duplicating functionality like scope resolution.

47

8 Conclusion

This thesis described the SALTXT compiler and Eclipse plug-in. It started by explain-
ing the fundamentals of compilers and IDEs. It then gave an overview of the SALT
language. Afterwards it explained the language changes made in SALTXT and then pro-
ceeded to describe the implementation of the SALTXT Eclipse plug-in and the SALTXT
compiler.

The contributions of this thesis are as follows:

The SALTXT Eclipse plug-in that has been introduced in this thesis is the first tool to offer
any kind of IDE or editor support for SALT. Through features like syntax highlighting
and automatic completion, SALT specifications can now be written more efficiently and
comfortably than before.

The SALTXT compiler introduced in this thesis only uses Java-based technologies and
can be distributed as a single jar file. It is thus more easily deployable than the existing
reference implementation.

The SALTXT compiler also distinguishes itself with its easily extensible, plug-in based
architecture. Through the three types of plug-ins described in this thesis, it is easily
possible to extend the SALTXT compiler with alternative translation strategies, new
optimizations, transformations and output formats and to add knowledge of specific do-
mains, allowing the compiler to check that the given specification is not only syntactically
valid, but also makes sense for the given domain.

8.1 Future Work

8.1.1 Compiler
Feature-complete SALT Implementation

The version of the SALTXT compiler presented in this thesis does not support regular
expressions or timed operators. These could be implemented in a way similar to the oper-
ators that are supported with comparatively little effort. Support for regular expressions
has since been added independently of this thesis.

49

8 Conclusion

Translation Phases That Add Predicates

One other feature that is currently not implemented, but that would be worthwhile to
implement in the future is the ability to add predicates to specifications using translation
phases:

Currently the check whether a specification meets a predicate is performed once after the
specification has been translated to Core LTL. If a specification does not meet a predicate
at that point, no translation phase that requires that predicate will be performed on the
specification. The proposed feature would enable a translation phase to add a predicate
to a specification, so that after running that translation phase on a specification, other
translation phases that require the predicate can now be run on that translation.

An example where this would be useful would be a translation phase that replaced expres-
sions involving past operators with equivalent expressions that don’t use past operators,
which is possible because, for every LTL formula containing past operators there is an
equivalent formula that does not contain past operators [Gabbay et al., 1980]. Such a
translation phase could add the NoPastOperators predicate to a specification (because
after that translation phase is finished, the specification will indeed not contain any past
operators anymore), allowing the specification to be compiled to SPIN, which does not
support past operators.

This feature can be implemented by storing the information which predicates are met by
a specification as part of the specification’s Specification<T> object — as opposed to
storing that information locally in the method that invokes the translation phases, as is
the case now.

Any translation phase can then add predicates to the Specification object when it
returns the new Specification object representing the translated specification. Such a
change could be made relatively easily. This has not been implemented as part of this
thesis, but has since been implemented indepently of this thesis.

More Translation Phases and Other Plug-ins

Jonathan Streit’s SALT compiler can produce LTL formulas in symbolic notation as
KTEX code. Such an output plug-in (or one that directly produces PDFs by feeding
the ITEX code into a IATEX compiler), could also be implemented for SALTXT. Other
output formats that support additional model checkers and runtime verifiers can also be
written. For tools that understand some dialect of LTL, this would be very little work
using the Lt1BasedOutputFormat class. Tools that don’t use LTL can be supported as
well due to SALT*T’s modular design. This might even include tools whose specification
languages are less powerful than SALT. For those predicate plug-ins could be written to
ensure that specifications only use those features that the target language is powerful
enough to express.

50

8.1 Future Work

In addition to new output formats, new intermediary translation phases could also be
introduced. One such phase could be a phase that removes past operators as indicated
earlier. Another example would be optimization phases that could implement both high-
level optimizations, optimizing SALT or Core SALT expressions, or low-level optimiza-
tions, optimizing LTL or SALT" expressions (or other intermediate representations that
might be introduced by further plug-ins).

Currently the only domain specification plug-in that comes with SALTXT is a small
example plug-in that is of very little practical use, other than showing plug-in writers
how a domain specification plug-in might be written. Real domain specification plug-ins
could be written in the future.

User Friendliness of Translation Path Selection

Currently the dialog to select the translation path is very bare-bones and not user-
friendly. This will be even more true, the more translation phase plug-ins are added to
the compiler. The user also needs to remake his selection every time a specification is
compiled, which is not ideal considering that a user will most likely want to target the
same output format as before when re-compiling a specification. It would therefore be
a good idea to create a more user-friendly dialog for selecting compilation chains that
displays the available options in a more organized fashion remembers the user’s previous
selection. One way to simplify the interface would be to first only ask the user which
output format he wants to target and then let him select from the compilation paths
leading to that output format only.

When a given compilation path cannot be chosen due to its requirements, the current
interface simply does not list it as an option. If a user intended to use a certain output
format and is not aware that he’s using features that are not supported by that output
format, the fact that no compilation path leads to his intended output format will likely
confuse the user. Therefore an improved version of the compilation path selection dialog
should make clear which translation paths are not available and why (that is which
requirements are not fulfilled). This could be achieved by graying out target formats or
intermediate phases that are not available and show in a tooltip which requirements are
not met. The interface might also include a “more information” button that, when clicked,
would show the user exactly where his specification does not meet the requirements (e.g.
where he’s using an operator that is not supported by the given output format).

It should also be possible to select compilation paths via command line switches, so
that the compiler can be used in a headless environment or by an automated build
system.

A command line interface that allows compilation paths to be selected using command
line switches has since been implemented independently of this thesis.

51

8 Conclusion

8.1.2 Eclipse Plug-in

The following additional features for the SALTXT Eclipse plug-in could be implemented
in a future release of SALTXT with relatively little effort. All of these features would
require some code to be written in the Eclipse-specific part of the project and would not
affect the behavior of the compiler part of the project.

Various Ul Fixes

e Syntax highlighting could be used to distinguish macro names from variables and
local macros or variables from global macros or variables.

e Auto completion could be improved to not list unary macros when completing an
infix macro call.

e Currently the names of domain specification plug-ins are not auto-completed when
writing a use statement. This could be fixed.

e The outline view could be improved, so that it provides a more useful outline of
the specification’s structure.

Integration of Compilation Path Selection

When compiling from within Eclipse, it would be more consistent if the user could select
his intended output format (and the compilation path to get there) through Eclipse’s
built-in “Run As” system rather than SALTX™’s own selection dialog. This would make
the process feel more integrated and it would not interrupt the user’s workflow by making
a dialog pop up.

SALT Projects

Currently the SALTXT Eclipse plug-in does not add a project type for SALT projects
— the user has to create a different type of project (like a Java project) and then add
SALT files to it by adding a “misc” file and then giving it a “.salt” extension. This is
counter intuitive. Thus a SALT project and file type should be added. When creating a
new SALT project, a SALT file should be created along with it and creating a SALT file
should invoke a wizard that asks whether a domain specification plug-in should be used
and, if so, lets the user choose between the available domain specification plug-ins.

The project’s settings could also offer the option to select a specific compilation path.
Any use of features that violate that path’s requirements could then directly be marked
as errors by Eclipse’s on-the-fly error detection.

52

A SALT Syntax

This appendix will give a continuous EBNF grammar describing the syntax of the SALT
language as described in [Streit, 2006], excluding timed operators and regular expressions,
which have not been implemented in this thesis and are thus of no relevance to it.

A.1 Grammar

<spec> S

<declaration> =

<macrodef > HEES

<assertion>

<expr>

<atomic_proposition>

<operator_expr>

<prefix_operator>

<infix_operator>

<declaration>*
<macrodef >*
<assertion>+

’declare’ <id> (’,?’ <id>)=

’>define’ <id> ’(? <id> (2,7 <id>)% ?)’ ?:=’ <expr>
’define’ <id> ’:=’ <expr>

’assert’ <expr>

<atomic_proposition>

<operator_expr>

<quantifier> <list> ’as’ <id> ’in’ <expr>
’if? <expr> ’then’ <expr> ’else’ <expr>
7(; <expr>))7

= ’true’

| >false’
| <id>

| <string>

<prefix_operator> <expr>

<expr> <infix_operator> <expr> (’,’ <expr>)*
<operand> <operator> ’(’ <operand> (’,’ <operand>)*
<counted_operator> ’[’ <count> ’]’ <expr>

310

<id>

7&7
7|7

<id>

53

A SALT Syntax

<operator> ::= <prefix_operator>
| <infix_operator>

<counted_operator>::= ’nextn’ | ’nextninpast’ | ’previousinpast’
| ’occurring’ | ’occurringinpast’
| holding’ | ’holdinginpast’

<operand> <modifier>? <expression>

<modifier> <wro> <inclexcl>
<inclexcl> <wro>
<inclexcl>

<wro>
<wro> ‘weak’

’required’
’optional’

<inclexcl> ::= ’inclusive’
| ’exclusive’

<int>
<rel_op> <int>
<int> .. <int>

<count>

]
N
I

<rel_op> I>0 | =2 | >=0

’allof”’
’noneof’

<quantifier>

’someof’

’exactlyoneof’
<list> ’list? [’ <expr> (7,’ <expr>)* ’]°
’enumerate’ [’ <int> ’..’ <int> ’]°
<list> ’with’ <expr>

<list> ’without’ <expr>

A.2 Rules for Identifiers

An identifier can be any alphanumeric identifier that starts with a letter and can contain
underscores — just like in most programming languages. When identifiers and strings are
used inside a macro definition or loop, they may include, surrounded by dollar signs,
any of the macro’s parameters or the loop’s variables. In that case they are compos-
ite identifiers or composite strings respectively. There are the following restrictions on
using identifiers (in case of composite identifiers, the restrictions apply to its expanded
version):

o [f an identifier is used as a prefix operator, it must either be the name of one of the
prefix operators listed in appendix B or the name of a macro that has been defined

54

A.2 Rules for Identifiers

with exactly one parameter.

If an identifier is used as an infix operator it must either be the name of one of the
infix operators listed in appendix B or the name of a macro that has been defined
with two or more parameters.

If an identifier is used as an atomic proposition and the specification contains one
or more declarations statements, the identifier must currently be bound according
to the following rules:

— declare statements and macro definitions without parameters bind the given
identifiers for the entire specification.

— Macro definitions with parameters bind the parameters inside the expression
to the right of the := and any of its sub-expressions.

— Loops bind the identifier following the as keyword inside the expression to the
right of the in keyword and any of its sub-expressions.

If the identifier is used as an atomic proposition and the atomic proposition is used
directly as an operand to a macro, the id may also be the name of an operator or
previously defined macro. Note that this has been changed in SALTX" as explained
in section 6.6.2.

If the specification does not contain any declarations, any identifier can be used as
an atomic proposition without restrictions.

95

B List of SALT Operators

This appendix lists all operators that exist in the SALT language and gives a short
explanation for each of them. For a more in-depth explanation see [Streit, 2006].

If an operator’s description does not mention modifiers, no modifiers are allowed on any
of its operands.

In the following descriptions all times will be relative to the current step, e.g. a phrase
like “the first step at which x holds” does not consider any steps prior to the current step.
So if x holds at steps 2, 4 and 5 and the current step is 3, the first step at which x holds
would refer to step 4, not 2. Likewise “the last step at which x held” would be 2, not
D.

B.1 Prefix Operators

This is a list of all operators that are used with exactly one expression as their operand.
These operators can be invoked either using prefix syntax (operator operand) or function
call syntax (operator(operand)).

not The not operator negates its operand. It can also be written as !.

next The next operator holds iff its operand holds in the next step. The right operand
can optionally be modified using the weak modifier. If there is no next step (which can
be the case if next is used inside an upto expression), the expression will hold iff the
weak modifier has been used.

eventually The eventually operators holds iff its operand holds in the current or any
subsequent step.

always The globally operator holds iff its operand holds in the current and all subse-
quent steps. It can also be written as globally.

o7

B List of SALT Operators

never The never operator is the opposite of the always operator. It holds iff its operand
holds neither in the current step nor in any of the subsequent steps.

nextinpast The nextinpast operators holds iff its operand holds in the previous step.
The right operand can optionally be modified using the weak modifier. If there is no
previous step (which can be the case if next is used inside an uptoinpast expression),
the expression will hold iff the weak modifier has been used. The nextinpast operator
can also be written as previous.

eventuallyinpast The eventuallyinpast operators holds iff its operand holds in the
current or any previous step. It can also be written as once.

alwaysinpast The alwaysinpast operator holds iff its operand holds in the current and
all previous steps. It can also be written as historically.

neverinpast The neverinpast operator is the opposite of the alwaysinpast operator.
It holds iff its operand holds neither in the current step nor in any of the previous
steps.

B.2 Infix Operators

This is a list of all operators that are used with two or more expressions as their
operands. Most of these operators are used with exactly two operands, so the num-
ber of operands will only be mentioned when it is not two. These operators can be
invoked either using infix syntax (operandl operator other_operands) or function call
syntax (operator (operands)).

and The and operator holds iff both its operands hold. It can also be written as &.

or The and operator holds iff at least one of its operands holds. It can also be written
as |.

implies The implies operator holds iff both its operands hold or its left operand does
not hold. It can also be written as ->.

equals The equals operators holds iff both its operands hold or both its operands do
not hold. It can also be written as <->.

o8

B.2 Infix Operators

until The until operator in SALT is an extended version of the U and W operators in
LTL. Its second operator can optionally be modified using the modifiers weak, required
or optional and/or exclusive or inclusive. If none of the modifiers weak, required
or optional are used, it acts as if the modifier required had been used. If neither
inclusive nor exclusive are used, it acts as if exclusive had been specified.

When used with the modifiers required and exclusive, until is equivalent to the U
operator in LTL and will hold iff the right operand holds eventually and the left operand
holds during every step before then (not considering any steps before the current step).
When used with the modifiers weak and exclusive, it is equivalent to the W operator
and holds iff the right operand holds eventually and the left operand holds during every
step before then or the right operand never holds and the left operand always holds.
When inclusive is used instead of exclusive, the left operand must still be true during
the step in which the right operand first becomes true (whereas it usually would only
need to be true during every step before then). When optional is used instead of weak
or required, it will behave the same as weak except that it will always be true if the
right operand never becomes true (even if the left operand is false during any or all of
the steps).

releases The releases operator holds iff its right operand remains true until the left
operand first becomes true (if the left operand never becomes true, the right operand
must always remain true).

upto The upto operator holds iff its left operand holds when only considering the steps
up to the step where the right operand first becomes true. The right operand has to be
modified using either inclusive or exclusive and either weak, optional or required.
When exclusive is used, only the steps before the right operand first becomes true are
considered. When inclusive is used, the step at which the right operand first becomes
true is considered as well. When required is used, the expression does not hold if the
right operand never holds. When weak is used and the right operand never holds, the
expression holds iff the left operand holds. When optional is used and the right operand
never holds, the expression holds regardless of whether the left operand holds. When
exclusive is used on the right operand, either weak or required can (and, in some cases,
must) be used on the left operand. When inclusive is used, the left operand must not
be modified. If exclusive is used and the right operand holds in the current step, the
rules determining whether the expression holds depend on the form of the left operand
and the modifier used on the left operand. These rules are explained in [Streit, 2006] and
will not be repeated here for conciseness. The right operand needs to be a purely Boolean
(i.e. not temporal) proposition. The upto operator can also be written as before.

from The right operand of the from operator must be modified with the same modifiers
as the right operand of upto. The left operand must not be modified. The from operator

99

B List of SALT Operators

holds iff its left operand holds at (if the inclusive modifier is used) or after (if the
exclusive modifier is used) the step where the right operand first becomes true. The
meanings of the other modifiers are like those of upto. Like upto the from operator
requires the right operand to be a purely Boolean proposition. The from operator can
also be written as after.

between The between operator is applied to three operands. It is a combination of the
upto and from operators. It holds if its first operand holds when only considering the
steps from the step where the second operand first becomes true and up to the step where
the third operand first becomes true. The allowed and required modifiers for the first
operand as well as their meanings are the same as for upto. The allowed and required
modifiers for the second and third operands as well as their meanings are the same as
those the right operand of upto. The second and the third operand must be purely
Boolean propositions.

accepton The accepton operator holds iff the left operand holds when only considering
the time before the step during which the right operand first holds or the right operand
holds at a step before anything has happened that would mean that the left operand
does not hold. For example a until b accepton c holds iff a until b holds when
only considering the time before the step at which c first holds or ¢ holds before any
step at which a does not hold. If the right operand never holds, the expression holds
iff the left operand holds. The right operand of accepton must be a purely Boolean
proposition.

rejecton The rejecton operator holds unless and only unless the left operand does not
hold or the right operand holds before the step at which it can be determined that the
left operand definitely holds. The right operand of rejecton must be a purely Boolean
proposition.

untilinpast The untilinpast operator holds iff the left operand holds in the current
and every previous step until the step at which the right operand last held. It has the
same modifiers with the same meanings as until. It can also be written as since.

releasesinpast The releasesinpast operator holds iff the right operand has held ever
since the left operand has last been true. It can also be written as triggered.

uptoinpast The uptoinpast operator holds iff the left operand holds when only con-
sidering the time after the right operand has last been true. It can be modified in the
same way as the upto operator. The right operand needs to be a purely Boolean propo-
sition.

60

B.3 Counted Operators

frominpast The frominpast operator holds iff the left operand held at the step where
the right operand has last been true (if the inclusive modifier is used) or at the step
before it (if the exclusive modifier is used). It can be modified in the same way as the
from operator. The right operand needs to be a purely Boolean proposition.

B.3 Counted Operators

This is a list of all operators that are used with a count and an expression as their
operands. These operators can be invoked using the counted operator syntax: operator
[count] operand.

nextn nextn [n..m] f is true iff, for any i between n and m (inclusive), the formula £
holds at step ¢+, where c is the current step. nextn [>= n] f£ is true iff, for any ¢ > n,
the formula f holds at step ¢ -+ 1.

holding holding [n..m] f istrue iff, for any i between n and m (inclusive), the formula
f holds exactly during i steps. nextn [>= n] f is true iff f holds during at least n
steps.

occurring occurring [n..m] fistrueiff, for any i between n and m (inclusive), the for-
mula f occurs exactly i times. nextn [>= n] f is true iff f occurs at least n times.

The difference between holding and occurring is that, if a formula holds for n con-
secutive steps, that counts as n steps during which it holds, but only as one single
occurrence.

nextninpast nextninpast [n..m] £ is true if, for any i between n and m (inclusive),
the formula f holds at step ¢ — ¢, where c is the current step. nextn [>= n] £ is true if,
for any ¢ > n, the formula f holds at step c—i. It can also be written as previousn.

holdinginpast holdinginpast [n..m] f is true if, for any i between n and m (inclu-
sive), the formula f holds exactly during i steps. nextn [>= n] f is true if f holds during
at least n steps.

occurringinpast occurringinpast [n..m] f is true if, for any i between n and m (in-
clusive), the formula f occurs exactly i times. nextn [>= n] f is true if f occurs at least
n times.

61

B List of SALT Operators

For all of counted operators [n] and [=n] are equivalent to n..n, [<= n] is equivalent
to [0.. n], [< n] to [0 .. (n-1)] and [> n] to [>= (n+1)] for all integers n.

62

References

[Accellera, 2004] Accellera (2004). Property Specification Language Reference Manual
Ver- sion 1.1.

[Aho et al., 1986] Aho, A. V., Sethi, R. and Ullman, J. D. (1986). Compilers: Principles,
Techniques, & Tools. Addison-Wesley, Reading, MA.

[Armoni et al., 2002] Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza,
T., Landver, A., Mador-Haim, S., Singerman, E., Tiemeyer, A., Vardi, M. Y. and
Zbar, Y. (2002). The ForSpec temporal logic: A new temporal property-specification

language. In Tools and Algorithms for Construction and Analysis of Systems pp.
196-211,.

[Bauer et al., 2006] Bauer, A., Leucker, M. and Streit, J. (2006). SALT—Structured
Assertion Language for Temporal Logic. Technical Report TUM-10604 Institut fiir
Informatik, Technische Universitdt Miinchen.

[clang, 2013| clang (2013). http://clang.llvim.org. |Online; accessed August 20, 2014|.

|[Eclipse, 2013| Eclipse (2013). http://www.eclipse.org/. [Online; accessed August 20,
2014)].

[Emacs, 2013] Emacs (2013). http://www.gnu.org/software/emacs/. [Online; accessed
August 20, 2014].

[Gabbay et al., 1980] Gabbay, D. M., Pnueli, A., Shelah, S. and Stavi, J. (1980). On the
Temporal Basis of Fairness. In POPL, (Abrahams, P. W., Lipton, R. J. and Bourne,
S. R., eds), pp. 163-173, ACM Press.

[gce, 2013] gee (2013). http://gee.gnu.org/. |Online; accessed August 20, 2014].

[Haskell, 2013] Haskell (2013). http://www.haskell.org/. [Online; accessed August 20,
2014].

[Netbeans, 2013] Netbeans (2013). http://www.netbeans.org/. [Online; accessed August
20, 2014].

[Pnueli, 1977] Pnueli, A. (1977). The Temporal Logic of Programs. In FOCS pp. 46-57,
IEEE Computer Society.

[Python, 2013] Python (2013). http://www.python.org/. [Online; accessed August 20,
2014].

63

References

[Raskin, 1999] Raskin, J.-F. (1999). Logics, Automata and Classical Theories for Decid-
ing Real-Time. PhD thesis, Universite de Namur Namur, Belgium.

[Reps, 1998] Reps, T. (1998). "Maximal-Munch" Tokenization in Linear Time. ACM
Transactions on Programming Languages and Systems 20, 2008.

[Streit, 2006] Streit, J. (2006). Development of a programming-language-like temporal
logic specification language. Diploma thesis Munich University of Technology.

[Visual Studio, 2013] Visual Studio (2013). http://www.microsoft.com/visualstudio/.
[Online; accessed August 20, 2014].

64

	Introduction
	Compilers
	Alternatives to Compilation
	The Anatomy of a Compiler
	Compilation Stages
	Benefits and Drawbacks of Multiple Stages

	Integrated Development Environments
	Features Commonly Found in IDEs
	Well-Known IDEs

	Xtext
	Structure of an Xtext Project
	Relation to ANTLR
	Comparison to Other Tools

	Smart Assertion Language for Temporal Logic
	Operators and Atomic Propositions
	Loops
	Macros
	Composite Identifiers and Strings
	Variable Declarations

	The SALTXT Compiler
	Structure of the SALTXT Compiler
	Lexing and Parsing
	Translation Plug-ins
	The Translation Phase Interface
	Putting It All Together
	Implemented Translation Phases

	Predicate Plug-in
	The Predicate Interface
	The AbstractPredicate class
	Implemented Predicate Plug-ins

	Domain Specification Plug-ins
	Extensions to SALT
	Writing Domain Specification Plug-ins
	The AbstractValidator class

	Changes to the SALT Language
	Macro Calls
	Higher-Order Macros
	Recursive Macros

	SALT IDE
	Features
	Implementation

	Conclusion
	Future Work
	Compiler
	Eclipse Plug-in

	SALT Syntax
	Grammar
	Rules for Identifiers

	List of SALT Operators
	Prefix Operators
	Infix Operators
	Counted Operators

	References

