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Zusammenfassung

Der wachsende Anteil an erneuerbaren Energiequellen in der Stromerzeu-
gung gefährdet die Stabilität des Stromnetzes. Der Ausgleich von Lastspitzen
durch die gezielte Rückspeisung von Energie aus Batterien in Elektrofahrzeu-
gen kannAbhilfe schaffen. Das ReNuBiL Projekt (Reallabor Nutzerorientiertes
Bidirektionales Laden) erforscht das bidirektionale Laden von Elektrofahrzeu-
gen und die Planung von deren Buchungen basierend auf Zeitreihenvorhersa-
gen von Energiedaten und dem Bedarf an Netzinteraktion. In dieser Arbeit
werden drei auf künstlichen neuronalen Netzen basierende Modelle des ma-
schinellen Lernens vorgestellt, die aus einem einfachen, vollständig verbunde-
nenNetz, einem faltendenNetz und einem autoregressiven LSTM-Netz (Long
Short-Term Memory) bestehen. Die drei Energiezeitreihen werden jeweils ei-
nenTag in die Zukunft vorhergesagt undumfassenden Strompreis, den Strom-
verbrauch des Audimax Gebäudes der Universität zu Lübeck und die erneu-
erbare Stromerzeugung. Die Modelle werden mit TensorFlow und Keras un-
ter Verwendung von Hardware-Beschleunigung trainiert, unter anderem mit
der NVIDIA DGX2 im AI Lab Lübeck. Eine Verbesserung der Vorhersagege-
nauigkeit von mindestens 54% im Vergleich zu statistischen Leistungsmaßstä-
ben wurde für alle drei Zeitreihen unter Verwendung von optimal konfigu-
rierten Modellen erreicht. Vorverarbeitungsschritte, wie das Hinzufügen von
Temperaturdaten und die saisonale Anpassungmit Hilfe vonMedianfenstern,
wurden getestet. Dabei wurde festgestellt, dass letztere Methode eine Verbes-
serung herbeiführte. Zusätzlich wird ein Ansatz für qualitative Vorhersagen
getestet. Abschließend macht diese Arbeit Vorschläge zur Verbesserung der
Modelle für die zukünftige Forschung.
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Abstract

The rise of renewable energy sources threatens the power grid’s stability. This
can be remedied by discharging batteries in electric vehicles back into the grid
at the right moment to compensate for peak loads. The ReNuBiL project (Re-
allabor Nutzerorientiertes Bidirektionales Laden, English: real-world labora-
tory for user-oriented bidirectional charging) explores bidirectional charging
of electric vehicles and the scheduling of bookings based on time series pre-
dictions of energy data and the need for grid interaction. This work presents
three artificial neural network-based machine learning models such as a basic
dense neural networkmodel, a convolutionmodel and an autoregressive Long
Short-Term Memory (LSTM) model that predict three energy time series one
day into the future. The predicted time series comprise the electricity price, the
power consumption of the Audimax building of the University of Lübeck and
the renewable power generation. Themodels are trainedwith TensorFlow and
Keras using hardware acceleration, such as the NVIDIA DGX2 machine at the
AI Lab Lübeck. An improvement in performance of at least 54% compared to
statistical baselines was achieved for all three time series using the models in
optimal configurations. Preprocessing steps such as adding temperature data
and seasonal adjustment using median windowing are tested and the latter
is found to improve performance. A qualitative prediction approach is also
evaluated. Finally, this work offers suggestions on improving these models in
future research.
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1
Introduction

1.1 Motivation

As we grow increasingly reliant on renewable energy sources, the danger of a fluctuat-
ing power output looms over efforts to move into the age of a carbon-neutral power grid.
Many renewable energy sources harness the power of the sun, wind or tides for generat-
ing electrical power. While they are generally cheap and environmentally friendly, their
biggest disadvantage is that their output changes depending on external factors, which
makes them hard to integrate into a grid system at scale. Additionally, extreme weather
events can cause the demand for energy to rise suddenly and disrupt all types of power
generation as was seen in the 2021 blackout in Texas, USA [6]. The simultaneous need
for carbon-neutral energy and a grid resilient to the impacts of climate change on power
generation [37] heightens the importance of technologies capable of stabilizing power
grids.

A data-driven approach to grid stabilization is shaped by the available data sources.
As such, a number of sources are considered. Firstly, electricity price data introduces eco-
nomic aspects of the power grid. Secondly, power consumption data of a single building
gives insight into the patterns of energy usage and the effects of human activity on it.
And finally, power generation, in particular renewable power generation, allows for the
study of both sides of a power grid from a climate-conscious perspective.

The energy output of renewable sources is heavily influenced by environmental fac-
tors, many of which are determined by very complex systems. Wind speed, solar irra-
diance, precipitation and sea currents are examples of factors important to renewable
power generation that are determined by the weather and climate. Power consumption,
on the other hand, is largely determined by human activity but is just as difficult tomodel
accurately, as it is also the product of complex and random interactions.

Through machine learning, computers can become adept at tasks that are otherwise
difficult or even impossible to program explicitly. This presents an opportunity for mod-
eling the complex systems that need to be understood in order to balance and improve
the power grid. This work explores whether machine learning, and artificial neural net-
works in particular, can be used to effectively model parts of these systems andmake pre-
dictions of the associated time series data. Such predictions are used in the context of the
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1 Introduction

ReNuBiL project [35] (Reallabor Nutzerorientiertes Bidirektionales Laden, English: real-
world laboratory for user-oriented bidirectional charging) for compensating peak loads
using electric vehicles on the campus of the University of Lübeck. The project explores
the technological and psychological aspects of grid stabilization through a small-scale
implementation of intelligent bidirectional charging.

1.2 Contributions of this Thesis

In this work various machine learning models for time series prediction are applied to
electricity price, power consumption andpower generationdata. Choosing the bestmodel
type and configuration for a particular application can be difficult but is nonetheless an
important factor for performance. Due to the complex processes that produce this data, a
very good prediction or a prediction far into the future is not achieved. Rather a predic-
tionwith acceptable accuracy one day into the future can be producedwith thesemodels.
Simpler dense artificial neural network (ANN, or NN for short) models and convolutional
ANNmodels produced the best results while an autoregressive Long Short-Term Memory
(LSTM) model was not far behind. Detailed experiments were conducted to determine
the best methods and models for each data source. In order to verify the effectiveness of
these machine learning-based models, their performance is compared to baselines given
by simple statistical methods.

Data was collected from three different sites. Forecasts of the electricity prices using
data from a local utility company are made, as they could be useful in lowering energy
costs. Secondly, the power consumption of the Audimax of the University of Lübeck is
predicted so that load spikesmay be compensated. And finally, a prediction of the renew-
able energy generation volume in Germany is explored, in order to be able to give pref-
erence to charging the electric vehicles with predominantly renewable energy. Changes
in the structure of the Audimax power consumption throughout the spring and summer
of 2021 posed an additional challenge but also made the dataset more diverse.

All three data sources naturally contain cyclic patterns relating to a change in power
consumption or renewable energy availability over the course of a day. Seasonal adjust-
ment is a preprocessing step that removes these patterns from the data and allowsmodels
to predict the non-seasonal parts of a time series. It is found to be effective at improving
model performance in most cases. The combination of these techniques and addition-
ally training models to predict the difference between one day and the previous one also
produces good results. The best models made predictions that had an at least 54% lower
error than the statistical baselines.

Since, ultimately, scheduling decisions will be based on the prediction of these time
series, a qualitative approach is presented inwhich variousmetrics of the data, such as the
spread or minimum and maximum, are predicted in favor of the data points themselves.
Givingmodels access to air temperature data is also tested but it does not appear to make
the predictions better, however, because the system is probably too complex for this type
of model to properly comprehend.

A Python script handles the preparation of the training data, inputting additional
data sources, tuning and training models, outputting the results and optionally also plot-
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1 Introduction

ting them. The models are created with the help of Google’s TensorFlow with the Keras
API, while Pandas is used for processing the data. Training is done using GPUs and is
optionally further accelerated by using the NVIDIA DGX2 machine available at the AI
Lab Lübeck.

1.3 Related Work

Due to the importance of the prediction of energy prices, consumption, and generation to
infrastructure providers there is a lot of literature available on this topic. Amasyali and
El-Gohary provide an overview [4] of the methods used in the prediction of building
energy consumption. Artificial neural networks trained using back propagation (BPNN)
[16] like the models used in this work are, in general, found to be a common and effective
tool for this type of time series prediction.

Forecasts of electricity prices using LSTMneural networks have been performedwith
a wavelet-transform [46] preprocessing stage [8, 28] as well as more complex decomposi-
tion and model structures [49]. Determining the optimal hyperparameters for a network
remains a central challenge in this field. Peng et al. present a novel evolutionary algorithm
called differential evolution, which finds suitable hyperparameters for an LSTM model
and allows it to outperform existingmodels [32]. Another approach to choosing an effec-
tive LSTM architecture and model inputs is proposed by Gundu and Simon, which uses
a particle swarm optimization technique [14].

Power consumption, or the load, of a grid as a whole is interesting to forecast as it
provides crucial guidance to grid operators who need to match it with generation ca-
pacities. A review of different established methods, such as engineering, statistical and
machine learningmethods, for the prediction of power consumption is provided by Zhao
and Magoulès [48]. Pramono et al. present a method for short-term load forecasting us-
ing models that combine convolutional neural networks (CNNs) and LSTM networks [33].
Similarmethods can also be applied to individual households [23] and industrial systems
[43].

Work on forecasts of energy generation focuses on solar andwind energy as these are
the most widespread energy sources that fluctuate throughout the day and year. Solar
irradiance, the intensity of the sunlight hitting the earth, alongside other factors deter-
mining photovoltaic power output is heavily influenced by climate conditions and the
weather. The solar irradiance correlates to photovoltaic output and therefore one ap-
proach is to make predictions of the solar irradiance based on existing weather forecasts
[34, 45]. Including aweather forecast in the problem themodel has to solve canmake pro-
ducing a good model even more challenging since weather forecasting is a difficult prob-
lem in itself. Weather forecasts using large-scale simulations and specialized machine
learning techniques already provide sources of weather parameters for all geographical
positions. Wavelet decomposition as a preprocessing step also gives good results [7] ac-
cording to Cao and Cao.

Given the relatively direct influence of the weather on solar irradiance, a more tradi-
tional approach that simulates the irradiation of photovoltaic power plants is successful
as well [26]. Aggarwal and Saini reviewed a number of other model types apart from
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artificial neural networks and found a combination of model types to perform best [2].
Kumar et al. apply forecasts using LSTM models of wind and solar power generation to
small grid systems in which the fluctuations of renewable energy sources can have an
even greater effect [22]. While there are methods utilizing physical simulations and sta-
tistical models for wind power forecasts [5, 36, 15], short-term predictions of wind power
using LSTM models with a wavelet transform were found to be more accurate [25]. As
with the forecasts of energy prices, the problem of optimizing an LSTM model’s hyper-
parameters remains difficult but can be tamed by using, for example, a genetic algorithm
as demonstrated by Shahid et al. [38].

A common strategy in all three areas is to use CNNs alone or in combination with
LSTM networks [44, 21, 20, 33, 23] because they are particularly well suited for learning
and extracting patterns. However, Zhang and Kline also found simple models to work
well if seasonal adjustment is utilized [47].

1.4 Structure of this Thesis

This section describes the order and content of the following chapters and sections. In
general, the formal structures are discussed first followed by specific implementation de-
tails and finally the experimental results.

A formal basis for time series prediction and the evaluation of such predictions using
error metrics is established in chapter 2. It also introduces simple statistical methods that
are used a baseline against which sophisticated time series prediction models are bench-
marked. Additionally, three types of artificial neural network models are described and
illustrated with diagrams. In chapter 3 the application context for the time series pre-
diction task in the ReNuBiL project is presented and its requirements are characterized.
The three data sources are introduced at the level of the application context. Chapter 4
describes the technical details of the data sources and then goes into the various meth-
ods with which the data is preprocessed. The methods include adding time signals and
air temperature data, downsampling and normalization of the data, and optionally ap-
plying seasonal adjustment using median windowing. It also introduces the concept of
qualitative prediction.

Before model training can begin, sequences of inputs and labels have to be generated.
This is described in chapter 5, which then also gives the performance results of the statisti-
cal baselines and describes the no input baseline. The process of hyperparameter tuning
is described alongside an overview of each models’ hyperparameters. The Evaluation
chapter 6 starts off with implementation details after which the methodology of the eval-
uation is described in detail. Then, the tuned hyperparameters of the models are given
and finally the performance of each model is evaluated. This chapter also goes into how
well each of the methods themselves worked. The last chapter 7 summarizes this work
and its results, followed by a detailed outlook of the next steps and the opportunities for
future work.
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2
Time Series Prediction

2.1 Problem Definition

A sequence of vectors dependent on time 𝑡 serves as a basis for modeling the time series
prediction task. This section is adapted from parts of section 2.1 of Dorffner’s overview of
using neural networks for time series processing [12]. Such a sequence can be represented
as a function ⃗𝑥 ∶ ℝ≥0 → ℝ𝑘 that yields 𝑘-dimensional vectors.

As 𝑥 represents real-world data, it is continuous with respect to the time variable
𝑡. However, since measurements, also called samples, can only be taken at discrete time
steps the whole function is not available. The samples are taken at regular intervals de-
termined by the sampling interval 1/𝑓 where 𝑓 is the sampling frequency. Because the
sampling process cannot be perfect, the samples are taken at slightly irregular sampling
times 𝑡0, 𝑡1, 𝑡2, … from which values at exactly spaced sampling times 𝑡 ∈ ℕ0 are later
interpolated. This preprocessing step happens before the prediction stage and, in the
following, is assumed to have already been performed.

For the task of predicting ⃗𝑦(𝑡 + 𝑑) using 𝑛 vectors from ⃗𝑥, a function F ∶ ℝ𝑘×𝑛 → ℝℎ

is required. The time series ⃗𝑦 ∶ ℝ≥0 → ℝℎ being predicted yields ℎ-dimensional vectors
since not all values in vectors of ⃗𝑥 are interesting to predict but can be useful in making
an accurate prediction. These vectors are referred to as labels in a prediction task. The
prediction estimates ⃗𝑦 as ̂⃗𝑦:

̂⃗𝑦(𝑡 + 𝑑) = F( ⃗𝑥(𝑡), ⃗𝑥(𝑡 − 1), … , ⃗𝑥(𝑡 − (𝑛 − 1)))

In this case additional secondary values that can be useful for some models are included
in ⃗𝑥. 𝑑 refers to the prediction lag and is in this work 1 since predictions starting at the
currentmoment are desired. The function F can be considered amodel of the time series as
its inputs can be successively replaced with previous predictions making the prediction
ofmultiple samples possible. As such, it is capable of generating the series from a starting
set of values. Obviously F is only useful when it has less input parameters than there are
elements in the time series. In practice, F will always receive the last 𝑛 elements from ⃗𝑥
forming a window of a certain time span.
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2 Time Series Prediction

2.2 Error Metrics

With ⃗𝑦 being the unknown value that would be observed in the future and F approximat-
ing it with ̂⃗𝑦, the forecast is evaluated by computing the mean error 𝐸F over a test time
series of length 𝑚:

𝐸F =
1
𝑚

𝑚−1
∑
𝑖=0

𝑒( ̂⃗𝑦(𝑡 − 𝑖), ⃗𝑦(𝑡 − 𝑖))

It is denoted 𝐸F to emphasize that the performance of F is being calculated. The error
between the forecasted value and the real sequence element is measured by the error
function 𝑒. The goal is to minimize 𝐸F to an acceptable level. The largest acceptable error
is dependent on the error metric and the context. The two metrics used here are themean
squared error (MSE) and the mean absolute error (MAE). MSE is the error metric 𝐸F using
the squared error 𝑒𝑠, which is calculated as follows:

es( ̂⃗𝑣, ⃗𝑣) = ( ̂⃗𝑣 − ⃗𝑣)2

MAE, on the other hand, uses the absolute error 𝑒𝑎 for a proportional error response:

ea( ̂⃗𝑣, ⃗𝑣) = | ̂⃗𝑣 − ⃗𝑣|

MSE particularly emphasizes large errors while MAE weights all errors proportional to
their magnitude. The choice of error metric affects the behavior of a model since the
training process optimizes it to minimize the error by adjusting the model’s internal pa-
rameters. If avoiding large spikes is very important, MSE is a good choice. If large spikes
are just as important to consider as a consistent offset of the prediction from the correct
values over a longer period of time, MAE should be chosen. This means picking an er-
ror metric is actually part of specifying the problem the model is supposed to solve since
the error metric determines how well the problem was solved and to what degree the
specification was fulfilled.

2.3 Statistical Methods

A more accurate assessment of a model’s performance can be made if it is compared to
a simple baseline model. If a complicated model is not better than the simple baseline
model then it can be discarded on the basis of being unnecessarily complicated. The
baseline models make rough estimates of the course of the data over the prediction inter-
val.

The simplest baseline repeats the latest input value for the entire output. In formal
terms this is represented by the model Flast:

Flast( ⃗𝑥(𝑡), … , ⃗𝑥(𝑡 − (𝑛 − 1))) = ⃗𝑥(𝑡)

Another simple baseline repeats the entire input as the output and is givenwith themodel
Frepeat:

Frepeat( ⃗𝑥(𝑡), … , ⃗𝑥(𝑡 − (𝑛 − 1))) = ⃗𝑥(𝑡 − (𝑛 − 1))
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2 Time Series Prediction

For simplicity ⃗𝑥 is identical to ⃗𝑦 here. In practice, an identity model would select some
values from each element in ⃗𝑥. Figure 2.1 illustrates how the two simple baselines work
using power consumption data.

0 h 10 h 20 h 30 h 40 h

35 kW

40 kW

45 kW

Input
Label

Prediction by "last" model
Prediction by "repeat" model

Figure 2.1: Example of the two baselines predicting the next day of power consumption
data based on the previous one. This example is taken from the test dataset.

2.4 Artificial Neural Networks

Statistical methods for time series prediction are limited in their ability to workwith com-
plex and non-linear systems. Artificial neural networks can overcome this by using mul-
tiple layers of neurons in order to produce complex outputs. Neurons in their simplest
form are nodes in a graph that put values through an activation function and then pass
them on to be used by other neurons further down the line. The biases of the neurons
and the weights of the edges connecting them are trained using backpropagation (see
[16] for details on this process). Given the desired output of a network for a certain in-
put, the optimizer updates the weights and biases, also called parameters, of the model F
such that it will produce an output with a smaller loss 𝐸F, the value of the loss function,
which is the optimization target. An epoch of training is completed by training the model
with the entire training dataset once. Usually multiple epochs are necessary to fully train
a model. Learning neural networks with multiple layers is referred to as deep learning.

These models make an entire prediction consisting of 𝑚 steps without interruption
instead of successively predicting single steps as it was defined in the problem definition.
These multi-step models can be thought of as a group of individual models F𝑖 that each
produce the single prediction vector ̂⃗𝑦(𝑡 + 𝑑) with lag 𝑑 = 𝑖 ∈ [1, 𝑚 − 1] based on their
shared input. They are effectively just an efficient combination ofmany single-stepmodels.
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2 Time Series Prediction

Dense Models

In dense layers each neuron is connected to each other neuron. They can model linear
relationships and more complex ones when combined into a network of multiple such
layers. Dense models make use of one or more dense layers. A model with only one
input and one output layer can model linear relationships using the connections between
the two layers. Here such a model is referred to as having zero dense layers even though
there are trainable parameters in the model. Figure 2.2 is a diagram of a dense model.

··· Input Layer

···
Output Dense Layer

···
Internal Dense LayersDense Layers

Dense Layer Units

···
···

Figure 2.2: This diagram represents a dense model as a graph of nodes and edges. In
practice, model parameters are a stored and operated on as matrices. The dense layers
extend further to the left.

Convolution Models

Convolution layers in neural networks contain a convolution kernel. Instead of making
every possible connection between input and outputs, the kernel slides over the input
and produces an output using a section of the input weighted by the kernel. This means
the weights are to a degree shared between all sections of the input. A kernel can be
trained to recognize patterns without needing patterns to appear at all possible positions
in the training data as it would be necessary for a regular dense layer. This beneficial
effect is called parameter sharing and is based on the assumption that learned patterns
from one part of the input can be applied to other parts as well. More information about
convolutional neural networks and their use in image processing is given by O’Shea and
Nash [30]. Figure 2.3 on the following page is a diagram of a convolution model.

Long Short-Term Memory Models

LSTMwas introduced byHochreiter and Schmidhuber and outperformed other recurrent
neural networks of the time on tasks involving time series data [17]. As the name Long
Short-Term Memory suggests, LSTM units remember things over time by maintaining
an internal state throughout the time series. Gates within the units regulate the flow of
information in and out of them. A detailed and mathematical description of how LSTM
works can be found in the original paper by Hochreiter and Schmidhuber [17].
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2 Time Series Prediction

···

Input Layer

···
Output Dense Layer

···
Internal Dense LayersDense Layers

Dense Layer Units

···
···

Convolution Layer

Kernel Filters ···
Kernel Width

···

Figure 2.3: This diagram represents a convolution model as a graph of nodes and edges.
The nodes with dashed outlines are not separate nodes but rather positions in which the
nodes perform calculations.

Autoregressive LSTM Models

An autoregressive (AR) LSTM neural network works in two phases, a warmup and an
output phase. In the warmup phase, the LSTM cell reads the inputs and prepares the
internal state. In the output phase, the output of the cell at each iteration is used as the
input for the next while also being saved as the output of the model. This architecture
allows the output length to be varied after training. It is considered autoregressive since it
uses its own output as the input for the following step. Figure 2.4 illustrates the structure
of this model type.

···

Input Layer

··· ···LSTM Units
LSTM Layer

Intermediate Dense Layer···

Output Dense Layer

···
···

···

Figure 2.4: This diagram represents an AR LSTM model as a graph of nodes and edges.
The LSTM cell’s internal state is passed horizontally along the chain.
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3
Application Context

The increasing demand for renewable energy sources requires a solution for the fluctu-
ating power generation it entails. One solution is battery-based grid stabilization, which
has a fast response time and is cost-effective for balancing energy generation and con-
sumption over short periods of time. Batteries can be charged and discharged depending
on the current grid requirements and can rapidly respond to load peaks or dips. Tesla,
Inc. has demonstrated that high-power short-term frequency stabilization of power grids
using large batteries is possible with their construction of the Hornsdale Power Reserve
in Australia [31]. Because there is an increasing number of electric vehicles attached to
charging stations at any one point in time throughout the grid, the batteries in electric
vehicles can be used as a distributed battery farm for grid stabilization. Compensating
for loads on the grid using vehicle batteries and dynamic charging schedules is known as
a vehicle-to-grid (V2G) system. Another mode of operation is unidirectional V2G, called
V1G, where charging power is temporarily reduced in response to grid requirements.
VxG is a collective term referring to general bidirectional charging and load balancing as
it combines V1G and V2G.

3.1 ReNuBiL

The ReNuBiL project implements VxG for two shared electric vehicles and charging sta-
tions on the campus of the University of Lübeck. As part of that effort, methods are evalu-
ated that make bidirectional charging and in particular returning power to the grid more
efficient. The goal is to charge electric vehicles when renewable energy is abundant, the
electricity price is low and during times at which no peak loads need to be compensated.
Additionally, it is desirable to compensate peak loads whenever possible. Honoring all
fulfillable user bookings, however, stands above these goals.

A scheduling process will try to ensure that the vehicles are attached to the charg-
ing stations as much as possible during times when interacting with the grid would be
most beneficial. The calculated schedule is realized by making suggestions to users in
order to influence their bookings and by controlling the bidirectional charging stations.
It uses a prediction of the power consumption of the Audimax building as well as predic-
tions of the renewable power generation volume and electricity prices to determine the
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3 Application Context

best times for returning or receiving power from the grid. Figure 3.1 shows a photo of
ReNuBiL’s electric vehicles at the bidirectional charging stations while figure 3.2 on the
next page shows a screenshot of the Grafana dashboard, which displays the latest power
consumption data from the meters.

Figure 3.1: A photo of the electric vehicles for ReNuBiL. Source: © Martin Sachenbacher,
used with permission.

Knowing this data in advance, or at least a sufficient approximation of it, should
improve scheduling outcomes on average in regards to the aforementioned goals. In this
project, due to the limited scale of the lab there is no coordination with the grid provider
who knows if there is actually a deficit or surplus of power in the network. While the
power consumption of theAudimaxmay be an indicator of the situation in the grid, many
other factors can influencewhether or not returning power to the grid at any point in time
is beneficial to the grid provider’s or the building owner’s goals. The electricity price and
the renewable power generation can also be indicators of the grid situation but they too
do not provide a full picture. However, this last consideration lies beyond the scope of
the ReNuBiL project and this work.

3.2 Energy Data

Wholesale electricity price data was kindly provided by the Stadtwerke Lübeck GmbH,
the local utility company. They have requested that raw values from this dataset are not
shared outside the university. The dataset consists of hourly prices in €/MWh over a time
span of just over three months.

Thepower consumption of theAudimax lecture building on theUniversity of Lübeck’s
campus is measured by a meter attached to the building’s power connection. Current,
voltage and wattage measurements have been saved to a database every 10 seconds start-
ing in January 2021. Since the charging station is attached to the Audimax’s power sup-
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3 Application Context

Figure 3.2: A screenshot of the Grafana dashboard, which displays the latest power con-
sumption data from the meters.

ply, measurements by a different meter for the charger are subtracted from the building’s
power readings.

Power generation volume is used as a rough measure of howmuch renewable power
is available on the grid. Data of the volumeof renewable power generation is derived from
theActual Generation by Production Type category on the ENTSO-E Transparency Platform
[13] for the years 2018 to 2020 and 2021 up until the 15th of August. This dataset contains
the power generation values for all types of generation in 15 minute intervals. The sum
of the current actual generation from all renewable production types is used as the main
value for this data source. These production types include Biomass, Geothermal, Hydro
Run-of-river and poundage, Hydro Water Reservoir, Other renewable, Solar,Wind Offshore and
Wind Onshore. Nuclear and waste incineration power are excluded as they are generally
not considered renewable energy sources.
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3.3 Forecasts for Scheduling

The goal is to provide the scheduler in ReNuBiLwith predictions of the three data sources
that allow it to make better decisions. Additionally their accuracy should be high enough
for the predictions to be useful. This makes it important to define the time scale and pe-
riod of the problem. The forecasts are useful when the scheduler can better compensate
peak loads and use abundant renewable energy more often with the forecasts than with-
out them. Of course themagnitude of this improvement is also important. For scheduling
vehicle bookings, a forecast of the energy trends over the next day is the most interesting.
Predicting a longer time framewould not yieldmuch better results than simply repeating
the already predicted day because of the high complexity and noise within the systems.
A shorter time frame would make scheduling harder as the durations of the events with
which the scheduler works are each a few hours long. This includes vehicle bookings,
vehicle charging and discharging batteries.

The best resolution for the predictions is around a half to four samples per hour de-
pending on how accurately the predictions can be made and if the scheduler can make
proper use of higher resolutions. The data has to be downsampled to reduce its resolution
if it is too high since processing it with unnecessary precision would incur a performance
and training time cost. The input data may be chosen to have a slightly higher temporal
resolution than the prediction in case additional hints about future trends can be extracted
from more detailed input data. For the selection of model types and their configurations
in the following chapters, the output resolution is one sample per hour and forecasts are
made up to one day into the future. If need be, these application parameters can be ad-
justed in response to new requirements.

3.4 Statistical Baselines

For this specific use case avoiding large individual errors is important as they can affect
the scheduler’s decisions. Therefore MSE is chosen as the loss function for training mod-
els and as the objective metric for hyperparameter tuning (see section 5.3 on page 24).
However, the MAE is also measured during tuning and training for a different perspec-
tive. ResultswithMAEvalues are included in the raw result data but not in this document
directly.

Statistical methods, such as linear regression, could be applied to the problem but
they are unlikely to be successful because of the data’s structure. The time series are not
simple trends but rather contain many complex patterns. The power consumption data,
for example, features sharp changes around specific times of each day, a lower power
consumption at night and other varying patterns, all of which are probably created by the
building’s climate control systems and human activity. Nevertheless, simple statistical
methods are used as baselines against which more complex models are benchmarked.
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4
Data Sources and Preprocessing

4.1 Primary Data Sources

The electricity prices, power consumption and power generation are considered the pri-
mary data sources. Important details about each data source are described in this section
while they are initially introduced in section 3.2 on page 11.

Electricity Prices

Due to the relatively small time frame of the electricity price dataset, model performance
might be reduced because of a lack of training data. Since the data only covers the time
from January 1 to April 7, 2020, a model trained on this data cannot observe possible
long-term seasonal patterns.

Audimax Power Consumption

There are sometimes gaps in the power consumption data when some part of the system
is interrupted. These gaps in both streams of data are filled in with the last known value.
Additionally, the two meters’ measurement intervals do not perfectly align nor are they
perfectly spaced. To solve this, both time series are re-indexed onto a perfectly aligned 10
secondmeasurement interval using linear interpolation. Then the correction of the build-
ing’s own power consumption with the charger’s consumption can be performed. While
this method is not perfect, it results in relatively accurate power consumption measure-
ments for the building. Table 4.1 on the following page lists the number of gaps and total
time for which samples are missing in the data for both components. The long gaps are
generally caused by unscheduled downtime of the measurement and recording systems
while the short gaps are likely the result of temporary interruptions or system restarts.
Preprocessing of the data reduces the temporal resolution enough for small errors at the
level of individual measurements to be smoothed out.

This dataset is continuously expanding as measurements are still being taken. The
starting date January 14, 2021 and the cutoff date August 26, 2021 yield around eight
months of data of which only seven are usable since there are large measurement errors
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at the beginning. In order for all experiments to be based on the same data, the cutoff
date was set just before the first experiments that are presented in this work were started.

Component Long gaps
Missing time

from long gaps
Short gaps

Missing time

from short gaps

Audimax 25 40h 28m 317 0h 44m
Charging station 35 5h 19m 966 3h 27m

Table 4.1: The number of long (over one minute) and short (between 10.5 seconds and
one minute) gaps in the data for both components together with the total length of time
forwhichmeasurements aremissing as a result of these gaps. For example, in a 15 second
gap only five seconds would be counted as missing since the first ten seconds are still
covered by the last recorded measurement.

Renewable Power Generation

While the ENTSO-E Transparency Platform has renewable power generation data span-
ning many years, the section of that data used in this work is around three and a half
years long starting on January 1, 2018 and ending on August 15, 2021. If a row is miss-
ing a value for any production type, it is treated as invalid and the corresponding sum
replaces the last known value.

4.2 Time Signal Inputs

Besides the data values that are used as a basis for the prediction, six time signals are
passed into the model so that it has access to information on the time of day, the day of
theweek and the day of the year. A sine and cosine of the fraction of the current day, week
and year are added as input columns. This allows the model to better reproduce possible
repeating patterns by training it to incorporate possible correlations between these time
signals and the data values into its predictions. Zhang and Kline found this approach
using trig functions to be beneficial to model performance [47].

4.3 Air Temperature as an Additional Input

While the building’s heating and cooling power consumption is determined by a compli-
cated interaction of outside temperatures, heat from the sun and precipitation amongst
other factors, the outside air temperature could be a rough indicator of howmuch energy
might be required for climate control. Data from hourly measurements of the air tem-
perature two meters above ground near the Airport Blankensee, which is located around
three kilometers from the Audimax, is kindly provided by the German Weather Service
(Deutscher Wetterdienst, DWD) [11]. Figure 4.2 on the next page shows examples of
time signals and air temperature inputs.
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Figure 4.2: Example of the time signal and air temperature inputs over the span of one
week. All plots share the same axis but the time signals are unitless.

4.4 Downsampling

The power consumption data is recorded with a high sampling frequency, which results
in a large amount of samples. The downloaded data for the Audimax and charging sta-
tion meters has a combined file size of 383 megabytes. Processing this data and training
models on it without reducing the resolution is unwieldy and slow. Therefore, it is down-
sampled to use a longer sampling interval of one hour. The length of the input data is
important to consider in particular when training LSTM models because they become
harder and much slower to train with very long inputs. In figure 4.3 on page 20, exam-
ples of the power consumption data are shown. The price data is not downsampled since
its temporal resolution is already one hour. Furthermore the difference in resolution be-
fore and after downsampling is hardly visible for the power generation data because of
its smoothness.

The downsampling process has the additional desirable effect of resulting in perfectly
aligned samples. This is only the case because samples at the required times are newly
calculated instead of being produced by simply omitting all unneeded samples. Samples
taken at slightly random intervals interpreted as aligned intervals would distort parts of
the data where there are more or less samples than expected.
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4.5 Normalization

All input columns are individually normalized, here through standardization specifically,
by subtracting the mean 𝜇 and dividing by the standard deviation 𝜎 of each column.
In formal statistical terms the operation is the following where 𝑋 is a random variable
representing the elements of a time series:

𝑋′ =
𝑋 − 𝜇

𝜎

Model performance is improved through the removal of scale differences between the
inputs, thus eliminating the need for the model to handle scaling itself. Additionally nor-
malization of inputs also avoids saturating activation functions within neural networks
[19]. Removing an offset and linear scaling from the data reduces the amount of unnec-
essary work the model has to do. This process of normalization is reversed on the output
data to obtain the values in their original ranges:

𝑋 = 𝑋′ ⋅ 𝜎 + 𝜇

Inputs are normalized before being passed to a model and denormalized for use outside
the model. However, error metrics are calculated on the normalized model outputs since
this allows errors to be roughly compared between data sources and avoids dealing with
large values.

4.6 Seasonal Adjustment with Median Windowing

A time series ⃗𝑥 can be modeled as being composed of noise basis ⃗𝑏 and seasonal com-
ponent ⃗𝑠 contributed to by a number of prominent seasonalities ⃗𝑠𝑖 with periods 𝑝𝑖 where
𝑖 ∈ ℕ is in practice 1 or 2:

⃗𝑥 = ⃗𝑏 + ⃗𝑠1 + ⃗𝑠2 + …

There is some debate on whether seasonal adjustment, which removes seasonally repeat-
ing patterns from the data before feeding it into predictive models, is helpful or not. In
their experiments Zhang and Kline find that it is helpful [47]. They also found simpler
models to outperform more complex ones in general. In this work seasonal adjustment
is evaluated as a way of improving model performance alongside other methods. Daily
or even weekly repeating patterns are clearly visible in all three data sources. Seasonal
adjustment attempts to remove these seasonalities ⃗𝑠 leaving the model to work with the
noise basis ⃗𝑏 of the data. Despite the name, seasonalities can have a period 𝑝 of any num-
ber of samples and do not need to be seasonal in the traditional sense of the word.

The most straightforward way of adjusting for daily seasonalities is to calculate the
median over the whole dataset at each sampling time of the day. Given a sampling fre-
quency of one sample per hour there are 𝑝 = 24 samples in a day. This calculation yields
a median day 𝑠md(𝑡𝑑) that is a function of the sample index 𝑡𝑑 ∈ [0, 𝑝 − 1] within the
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seasonality’s period 𝑝. 𝑡𝑑 corresponds to the time of day if the period 𝑝 is one day worth
of samples long.

⃗𝑠md(𝑡𝑑) = median{ ⃗𝑥(𝑝 ⋅ 𝑑 + 𝑡𝑑) ∣ 𝑑 ∈ ℕ0 }

For this method the seasonally adjusted data is calculated as

⃗𝑥md(𝑡) = ⃗𝑥(𝑡) − ⃗𝑠md(𝑡 mod 𝑝).

In these datasets the daily seasonalities remain relatively stable only over short periods of
time and change over the course of weeks. In formal terms, this means ⃗𝑠md is not always a
good approximation of the seasonal component ⃗𝑠 in ⃗𝑥. This drift can make the seasonally
adjusted data ⃗𝑥md more complex for a model to predict than the original data ⃗𝑥 itself,
rendering this simple approach ineffective.

A solution to this problem is to instead use a sliding window to calculate the local
seasonality for each day. The window is 𝑤 seasonality periods long. The median over the
values of the last 𝑤 = 7 days at the same time of day is calculated as the local seasonality
⃗𝑠mw(𝑡). For example, the local seasonality for a data point at 13:15 is calculated from the
median of the values at 13:15 on the previous seven days. The local daily seasonality

⃗𝑠mw(𝑡) = median{ ⃗𝑥(𝑡 − 𝑝 ⋅ 𝑑) ∣ 𝑑 ∈ [0, 𝑤 − 1] }

can be used to produce the corresponding seasonally adjusted time series

⃗𝑥mw(𝑡) = ⃗𝑥(𝑡) − ⃗𝑠mw(𝑡).

The optimal window length and method are not immediately obvious from the data.
Window lengths such as a single day, multipleweeks or some other number of days could
be effective. The average magnitude of the seasonally adjusted data serves as a proxy for
the effectiveness of a given windowing period. This is an imperfect measure but it does
provide some interesting insights into the patterns that can be found in the data. The
rationale is that a more thorough seasonal adjustment can better disburden the model of
predicting seasonalities. The results of the following window length analysis are similar
to a frequency decomposition.

Figure 4.4 on page 21 compares the window lengths 𝑤 and the windowing methods
mean and median. For the price data a window length of around two months has the
smallest difference magnitude with the mean window but choosing such a long window
would severely reduce the amount of available data since the price dataset is only 97
days long. With this in mind the best windowing method is taking the median and the
best window length is one week for both the price and power consumption data. The
dips in the difference magnitudes at multiples of seven days in both the price and power
consumption data are not surprising, given the weekly cycle these systems have. In both
cases different power consumption behavior on weekends and to a lesser extent on each
weekday can cause aligning the window length to full weeks produce particularly low
difference magnitudes.

The best window length for the power generation data is one day. Because renewable
power generation is mostly influenced by the weather, a weekly seasonality is not to be

– 18 –



4 Data Sources and Preprocessing

expected, even though the grid operatormay slightly adjust generation tomatch demand.
The small reduction in the difference magnitude around a window length of 40 days
may be an effect of monthly weather variation. Even longer window lengths could be
producing larger differences because they include data across multiple seasons.

Figure 4.5 on page 22 shows examples from all three data sources together with the
seasonally adjusted data and the corresponding seasonalities.

4.7 Qualitative Prediction

The consumers of the predictions actually only need quite coarse information about the
probable behavior of the three data sources over the course of the next day. Even predic-
tionswith a resolution of one hour could bemore frequent than they need to be. However,
reducing the output resolution alone just reduces the amount of information produced
by themodels and provides few benefits beyond a slightly reduced training time. Having
the models predict additional qualitative information about the data could give the con-
sumers information that is more helpful than if simply more data points were provided.
Such additional outputs could include the spread,minimum,maximumand standard de-
viation over the interval each output data point represents. These outputs are calculated
using the slightly higher resolution version of the data, which the model does not need
to directly predict. How valuable this qualitative prediction is compared to the regular
single-output version depends on what the predictions are used for. Model performance
using qualitative prediction is evaluated in theMethod Evaluation section 6.5 on page 35.
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Figure 4.3: An excerpt of the power consumption data in unprocessed and in downsam-
pled form.
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Figure 4.5: One-week-long excerpts of each data source before and after subtracting the
seasonalities obtained with the sliding median window. The subtracted daily seasonality
is also included. Notably, after seasonal adjustment the data has a smaller magnitude
and is less cyclic.
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Training Preparation and Hyperparameter

Tuning

5.1 Dataset Splitting

After training a model on a dataset, the model is very good at recognizing pieces of its
training data and giving good predictions on it. Though this does not necessarily mean
the model can make useful predictions on unknown data since it could have also simply
memorized the training data instead of generalizing from it. In order to test the perfor-
mance of a trainedmodel it needs to be tested with previously unseen data. In particular,
it is important that the model’s training gives it no indication of the exact details of the
testing data. If a model has direct knowledge of the testing data then a test using that
data would be biased in the model’s favor. A model is considered to be overfit when it
performs well on training data but badly on unknown data. An under-fit model on the
other hand needs more training and does not perform well yet on any data.

A Three-Way Split

Evaluating model performance requires a test dataset. However, using the same dataset
for model tuning and for the final evaluation introduces the risk of overfitting on the
testing data. Choosing a model out of a potentially large pool of models based on testing
data can lead to the selection of a model that happens to performwell on the specific data
chosen as the test dataset but badly on real-world data. Therefore, another set of testing
data that is only used for the final evaluation is necessary. This leads to a three-way split
of the prepared dataset: 80% of the data is for training, 10% of the data is for validation
and the remaining 10% are for testing. The search for the best model is performed on
the validation data while the final evaluation verifies the choice using the test data. No
adjustments to the models can be made based on the result of the final evaluation or a
bias could be introduced. The validation and test datasets should be representative of the
training dataset but they have to all remain strictly separate.
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5.2 Baseline Performance

If a neural network-based model performs better than the baseline on average then it is
considered useful by this benchmark and should be considered for use in the real-world
application. The error values produced by the two statistical baselines Flast and Frepeat
for each data source can be found in table 5.1. These error values are calculated on the
normalized values and are, therefore, unitless.

Baseline Dataset MSE Price MSE Consumption MSE Generation

Flast
Validation 0.828 1.212 0.774
Test 0.826 1.676 1.649

Frepeat
Validation 0.744 0.677 0.930
Test 0.735 0.542 0.477

Table 5.1: The MSE of the two simple baselines with the validation and test datasets.

No Input Baseline

It is interesting to quantify a model’s dependence on the given inputs for making predic-
tions. A model that is given no inputs containing data from a primary data source, such
as power consumption data for example, can only rely onmemorizing the training labels,
which are the expected outputs for a given set of training inputs. A model’s capacity for
memorizing outputs during training is evaluated with the no input baseline. This baseline
can be constructed from anymodel by training it with all of its primary data inputs zeroed
out. The no input baseline can only use the additional data sources, namely time signals
and temperature data, to make predictions. Amodel performing better than this baseline
is likely using the given inputs to produce an output and is not making predictions solely
based on memorized training data.

A vector ⃗𝑥(𝑡) = (𝑝1, … , 𝑝𝑛, 𝑎1, … , 𝑎𝑚) in a time series ⃗𝑥 contains the input values for
one time step 𝑡. Of these values, 𝑝1, … , 𝑝𝑛 are from a primary data source such as the
electricity price, power consumption and power generation. The values 𝑎1, … , 𝑎𝑚 on the
other hand, are additional inputs such as time signals and temperature data. A regular
model F receives a sequence of vectors from ⃗𝑥 to make a prediction of ⃗𝑦. The no input
baseline F′ receives partial input vectors of the form (0, … , 0, 𝑎1, … , 𝑎𝑚), which are derived
from those in ⃗𝑥, but is trained to predict ⃗𝑦 like a regular model. The resulting model, to a
degree, captures the correlation between the additional inputs 𝑎1, … , 𝑎𝑚 and the expected
output ⃗𝑦. This baseline is different from the statistical baselines as they do use primary
data inputs while this one does not.

5.3 Hyperparameter Tuning

Hyperparameter tuning is the manual or automated optimization of a model’s hyperpa-
rameters, which can have a large effect on performance by indirect means. They include
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fixed model parameters, such as the type, number and size of neural network layers and
parameters of the optimizer, such as the learning rate (LR). They are called hyperparameters
because they are parameters that are fixed before training whereas the actual parameters
of the model, such as the layer weights and biases, directly determine the model’s output
but are calculated during training. The performance of a model with a given set of hyper-
parameters is impossible to determine precisely without actually training and evaluating
it.

Instead of testing all possible combinations of hyperparameter values, differentmeth-
ods of selecting hyperparameters may be utilized. The three offered in KerasTuner [29]
are a random search of the hyperparameter space, Bayesian optimization [39] andHyper-
band [24]. In this work the Bayesian optimization tuning algorithm is used. In contrast
to Hyperband, Bayesian optimization trains each model completely before moving on
to the next iteration. Some of the models used in this work have been observed not to
have steadily increasing losses during training, which can disrupt Hyperband’s search
strategy.

KerasTuner allows each model to be trained multiple times for each set of hyper-
parameters in order to increase the accuracy with which the performance of the hyper-
parameters is evaluated. This leads to a more stable search result, which is important
considering the substantial variation in performance that individual trained models dis-
play. The tuner tests 50 different sets of hyperparameters for each of which three model
instances are trained. This means the Bayesian optimization algorithm chooses a random
set of hyperparameters for the first iteration and then chooses new sets of hyperparame-
ters for each following iteration based on all the previous iterations’ results.

Hyperparameters

Each model has its own set of hyperparameters depending on the type and structure
of the model. They are defined within a function that constructs a model instance. The
common hyperparameter is the learning rate parameter for the optimizer, while all others
vary for each model. Table 5.2 on the next page gives an overview of the model specific
hyperparameters. Figures 2.2 to 2.4 on pages 8–9 show the hyperparameters within dia-
grams of each model’s structure and what parts of the models they affect.

In the dense model, the number of dense layers and each of those layer’s sizes, also
referred to as units, are hyperparameters. Conditional hyperparameters are used for the
layer units since they are each only applicable if a certain number of layers has been se-
lected.

The convolution model has a number of tunable hyperparameters. The convolution
layer has the kernel width, which is the number of inputs the kernel is applied to at a
time, and the number of kernel filters, which are separate sets of kernel weights. This
means both dimensions of the kernel parameter matrix can be tuned. Another hyperpa-
rameter determines how many of up to two additional dense layers are added following
the convolution layer. Each of these layers’ sizes can be tuned as well.

The AR LSTMmodel’s only hyperparameter is the number of units in the LSTM cell.
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Model Hyperparameter Value Interval

Dense Extra Dense Layers [0, 3]
Dense Layer Units (each) [16, 512]

Convolution

Kernel Width [2, 12]
Kernel Filters [8, 128]
Extra Dense Layers [0, 2]
Dense Layer Units (each) [16, 512]

AR LSTM LSTM Units [256, 512]

Table 5.2: An overview of the hyperparameters that can be tuned for each of the three
models.
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6
Evaluation

6.1 Implementation and Model Training

Here a few technical details are discussed in order to give a rough impression of the imple-
mentation. The repository containing the source code, the raw data and the evaluation
results can be found in the accompanying materials1. In the Python script the data is
loaded from CSV (comma separated value) files using Pandas [41, 27] into DataFrame
objects. A data frame is a two dimensional table with columns and rows. Each row is
one data point, essentially a vector, that has values for each of the columns. The models
all have only one input, namely the main data frame. The columns of the data frame are
also referred to as multiple inputs or input columns. The same goes for multiple outputs,
which are here simply multiple output columns. Models with multiple separate inputs
and outputs are possible in general but not used in this work.

An interesting implementation detail concerning the power consumption data is that
it needs to be downloaded piecewise from the Grafana dashboard. Due to timeouts lim-
iting the maximum duration of a query, the full dataset cannot be downloaded at once.
Instead, it is manually downloaded in chunks and subsequently joined using a utility
script. This process also analyses the gaps in the data. Large gaps with unusually regular
lengths and positions can indicate missing chunks of data.

Preprocessing behavior and the selection of a data source is simplified through the
use of DataSource classes for the data sources. A parent class contains methods for gen-
eral processing using the settings and data loading methods defined in each individual
data source classes. The Python script adapts and incorporates parts of the code from the
TensorFlow time series forecasting tutorial [42].

TensorFlow and Keras

TensorFlow [1] with the Keras API [10] facilitates defining andworkingwithmany types
of ANNs. TensorFlow provides the low-level computation services that Keras uses to
present a high-level API for machine learning tasks. Models are trained using the Adam
optimizer, which has been found to perform well on many tasks, and the same goes for
1The repository is also internally available at https://gitlab.isp.uni-luebeck.de/renubil/
renubil-timeseries-prediction. It includes a digital copy of this text.
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time series prediction tasks in particular. This makes it the recommended optimizer cho-
sen by TensorFlow and the one used for training models in this work. Since Adam is a
stochastic optimization method, training a model is a stochastic process and will yield
randomly different results every time it is run. The evaluation of the effects of a choice
on model performance using slightly random training outcomes is dealt with by training
the multiple instances of the samemodel (see the EvaluationMethodology section 6.2 on
page 30).

Keras allows for any number of error metrics to be recorded during training and eval-
uation. This is taken advantage of by specifying theMSE as the loss function and register-
ing the MAE as an additional metric that Keras should report. In the Model Evaluation
section 6.4 on page 32 only the MSE is given because of space constraints but the raw
results do contain measurements of the MAE.

Synthesis of a Training Dataset

The dataset is split into training, validation and testing parts as discussed in section 5.1.
Given a continuous data frame, which is effectively a table, discrete sequences for training
the models have to be generated. In order to make efficient use of the data, the sequences
on the dataset overlap except for an offset of one sample. This means each sequence is
almost identical to the last but advanced by one sample. Another effect of these overlap-
ping sequences is that the models are trained to predict at any position in the dataset and
not only aligned to full days. This means the models are able to make predictions using
any input data of the right length and format.

Each sequence consists of two parts, the input and the label values. Which columns
appear in each part varies with the data source and which preprocessing techniques are
being used. During training the input values are passed through the model and then the
model’s parameters are adjusted such that it better fits the expected labels. How many
samples they contain is relevant internally but irrelevant in determining the fundamental
behavior of themodel. Asmentioned previously, model inputs are one day long and they
predict one day into the future starting immediately at the end of the input.

The generation of the dataset that TensorFlow uses to interface with the models is
handled by the WindowGenerator class and specifically its subclasses. It uses a Tensor-
Flow method to efficiently generate a time series dataset of sequences and randomizes
their order to avoid a temporal bias during training. This is also the point at which input
and label columns are separated into input and label sequences. Taking random samples
after generating sequences with the window generator is not a good approach as it would
lead to a substantial overlap between the datasets. For the same reason, the sequences are
generated after splitting and not beforehand.

Hardware

TensorFlow trains the models using CPU or GPU cores and can optimize the calculations
using hardware specific libraries like cuDNN [9] for NVIDIA devices. For this work the
AI Lab Lübeck [3] of the University of Lübeck was used for the final training and evalua-
tion of the models. It provides facilities for CPU and GPU training through a JupyterLab
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environment where code is run in notebooks. One hardware option are Dell servers,
which perform reasonably well for both hardware types. The other option is a NVIDIA
DGX2 machine with GPUs that are faster than the Dell server’s GPUs. In all hardware
configurations, namely CPU on a regular desktop computer, CPU on theDell server, GPU
on the Dell server and on DGX2, TensorFlow automatically detected and optimized for
the selected compute device with very little additional code being necessary.

There were some difficulties using the AI Lab and the DGX2 GPUs specifically. At
first, GPU training did not work for LSTM models using cuDNN because dynamic allo-
cation of GPU memory needed to be explicitly enabled in the code. Another issue was
connecting to the notebook server and using the storage server. There was some un-
scheduled maintenance and there is a lack of documentation on the particulars of the
Jupyter environment. Given that at the time of writing there is no proper scheduling sys-
tem for using the DGX2 GPUs, scheduling is handled informally. How the selection of
DGX2 GPUs works for the notebook and where this scheduling happens was not docu-
mented but became clear after detailed communication with the scientific staff familiar
with the matter. Finally, DNS resolution failed during installation of Python packages in
the notebook on the DGX2 GPU, which again made it impossible to run the notebook.
The notebook was able to run on the DGX2 machine but the aforementioned problems
repeatedly made it cumbersome to do so. The experiments for this work were performed
using a GPU of one of the Dell servers.

Tuning and Training Times

The computation times largely depended on the data source and the size of the models,
while the configuration had no impact. On the Dell server training a single epoch of the
AR LSTMmodel took an average of five seconds for the electricity price data, ten seconds
for the power consumption data and 70 seconds for the power generation data. For this
model the mean best epoch varies between the first and the twelfth after which another
fifteen epochs are trained to make sure the optimal performance was reached. While
tuning took multiple hours for these first two data sources, it took over two days for
the power generation data source. This disparity comes from the difference in available
data, which proportionally affects how much data needs to be processed for each epoch.
The computation of the seasonal adjustment and the addition of temperature data made
no difference in training time. Interestingly, for the AR LSTM model even changing the
number of LSTM units made no difference to the average training time per epoch.

Tuning and training the simpler models took significantly less time. For the dense
model it took around one hour using the power consumption data, while it took around
ten hours using the power generation data. The convolutionmodel took a similar amount
of time independent of the selected hyperparameters. On average, training the dense
model for a single epoch took anywhere between 278 and 2725 milliseconds depending
on the size of the input. The total training time also depends on the number of epochs the
models are trained for, which varies between data sources and with the selected learning
rate.
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6.2 Evaluation Methodology

In order to find the best model for each prediction task, multiple levels of model con-
figurations and parameters are optimized. First of all, the optimization is performed for
each data source separately. Given a specific data source, the script searches for the best
model. There are three model types: the dense model, the convolution model and the
AR LSTM model. Each model can be configured in different ways. While not strictly
hyperparameters, the choice of a model’s inputs and outputs can have a large effect on
its prediction performance. This includes seasonally adjusting the primary input data or
adding temperature data. Any combination of these two options is referred to as a model
configuration. With each option being either disabled or enabled, there are four possible
configurations. One level deeper, model-specific hyperparameters and the learning rate
are adjusted by hyperparameter tuning. More on this can be found in the Hyperparam-
eter Tuning section 5.3 on page 24.

After hyperparameter tuning there is the option to train the model to predict the
difference between its input values and the expected output values instead of predicting
the output values themselves. In formal terms, this means a single-step model F is given
a sequence of vectors ⃗𝑥(𝑡 − 𝑖) with 𝑖 ∈ [0, 𝑛 − 1] and is trained to predict ⃗𝑦(𝑡 + 1) − ⃗𝑥(𝑡).
The vectors ⃗𝑥 and ⃗𝑦 are in this case required to have the same internal format and the
dimensions 𝑘 and ℎ of the vectors have to be equal. This construction is also applicable to
multi-step models but involves additional technicalities, which are omitted here.

With a given set of good hyperparameters, a model is trained in three differentmodes.
The normalmode changes nothing. The secondmode, referred to as the deltamode, trains
the model on the difference between its input and the expected output as it was just de-
fined. The third mode represents the no input baseline that is included for comparison.
20 instances of a model are trained in each of the three modes in order to acquire accurate
performance metrics. To reduce training time, training is stopped once a model’s valida-
tion loss has not improved for 15 epochs. The resulting metrics for each model instance
are gathered separately for the training, validation and testing datasets and are finally
combined by statistical methods like the mean, median and standard deviation. Since
overfitting causes model performance to degrade after training for too many epochs, the
metrics are recorded after the training epoch in which the model had the best validation
loss.

In the delta mode and if the configuration includes seasonal adjustment, models are
evaluated by adding their output to the seasonally adjusted data. Only in this situation
are models trained to produce the seasonally adjusted time series ⃗𝑥mw from which the
seasonalities have been removed with median windowing. The process of seasonal ad-
justment is described in the Seasonal Adjustment withMedianWindowing section 4.6 on
page 17. In the normal mode the seasonally adjusted data, if enabled, is just an additional
input.

For each data source, all combinations of model type, configuration and mode are
compared using the metrics, and the combination with the lowest validation MSE is cho-
sen as the best model. This result can then be validated, however not influenced, by the
equivalent metrics obtained from the test dataset. Figure 6.1 on the following page is a
simplified graphical representation of this evaluation methodology.
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Figure 6.1: A flowchart of the evaluation methodology. BO stands for Bayesian optimiza-
tion with which new hyperparameters are selected until all iterations are completed.

6.3 Tuning Results

The following sections discuss the tuned hyperparameter values for each model type.
Figures 6.2 to 6.4 on pages 32–34 show the results of the three models predicting three
segments from the power consumption test dataset. The prediction can be seen to some-
times deviate from the labels significantly in all three examples but it generally follows
the course of the labels. Each trained instance of a model behaves slightly differently and
its performance can vary depending on the specific input it is given.

The tuning results for the dense and convolution models vary greatly between con-
figurations. One explanation for this large variation could be that the Bayesian optimizer
was configured suboptimally. It is also possible that these hyperparameters may not have
a large impact on the model performance and therefore were not tuned to be the same
each time.

Tuning the dense models resulted in three- and zero-layer models for almost all con-
figurations. The number of units in the three-layer models varies from 16 to 1024 without
a discernible pattern. Together with the abundance of good zero-layer models this sug-
gests that the model structure has a negligible effect on performance in this experiment.
Additionally, the learning rate was tuned to the minimum value 0.0001 for all but two
configurations.
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Figure 6.2: Three predictions on example days from the power consumption test dataset
with a basic dense NN model with seasonal adjustment and temperature data. This
model was trained using a learning rate of 0.0001 and 1024 units in a single dense layer,
both of which were determined by the tuner for this model configuration.

The tuning results of the convolutionmodels vary greatly between all tuning sessions
with the only constant being the lack of additional dense layers for all but one configura-
tion. This variation means that these hyperparameters only have a negligible impact on
model performance. One explanation for the choice of no additional dense layers is the
limited number of easily trainable patterns in the overall relatively small training dataset.

The number of LSTM units in the AR LSTM model was tuned to around 350 to 450
while the learning rate is between 0.0001 and 0.04. This tuning result ismuchmore consis-
tent across configurations compared to the other two model types. Because there is only
one hyperparameter, it may be easier to tune accurately since finding its global optimum
is likelier.

6.4 Model Evaluation

In tables 6.6 to 6.8 on pages 36–38 the results of tuning and training each of the three
model types are presented. It should be noted that the error values can be somewhat
skewed depending on the exact interactions of a model with the validation and testing
datasets. The test results largely agree with the validation results and they have common
best configurations for each data source. Additionally for almost every configuration, at
least one of the modes is better than the no input baseline, which the test dataset also
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Figure 6.3: Three predictions on example days from the power consumption test dataset
with a convolutional NN model with seasonal adjustment and temperature data. This
model was trained using a learning rate of 0.0001, a kernel width of 12, 64 kernel filters
and no additional dense layers, all of which were determined by the tuner for this model
configuration.

agrees with. This means that models are doing more than just remembering training
data. The models performed better than the simple baselines in every instance, which is
to be expected but it is a good validation nonetheless. The choice of the optimal mode for
each configuration made by the validation results is confirmed by the test data.

A summary of the best models for each of the data sources and the results of the
simple baselines for comparison can be found in table 6.5 on the next page. The best
results using the ANN models are 55%, 54% and 59% better than the repeat baseline for
each of the three data sources, respectively. The tuned hyperparameters used to train the
models that produced these results can be found in the individual tables of results.

For the electricity price and power consumption data sources the dense model per-
formed the best, while the convolution model was the best performing model for the
power generation data source. For the electricity price data however, the AR LSTMmod-
els were almost as good as the other two model types.

It is surprising that the AR LSTM models performed worse than the other two sim-
pler model types given that LSTM models are generally thought to be particularly good
at this type of problem. One possible explanation for this is that since they are also harder
to train, they did not unfold their full potential in these experiments and therefore failed
to outperform the other models. Another possibility is that it is very difficult to make
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Figure 6.4: Three predictions on example days from the power consumption test dataset
with an AR LSTM model with seasonal adjustment and temperature data. This model
was trained using a learning rate of 0.00048 and 448 LSTM units, both of which were
determined by the tuner for this model configuration.

Data Source Model Type Configuration Mode Val. MSE Test MSE

Electricity
Price

Baseline Flast - - 0.828 0.826
Baseline Frepeat - - 0.744 0.735
Dense Seasonal Adjustment Delta 0.334 0.322
Convolution Both Delta 0.390 0.327
AR LSTM With Temperature Delta 0.396 0.330

Power
Consumption

Baseline Flast - - 1.212 1.676
Baseline Frepeat - - 0.677 0.542
Dense Both Normal 0.312 0.506
Convolution Both Normal 0.353 0.411
AR LSTM Basic Normal 0.446 0.493

Power
Generation

Baseline Flast - - 0.774 1.649
Baseline Frepeat - - 0.930 0.477
Dense Both Delta 0.403 0.269
Convolution Both Normal 0.383 0.246
AR LSTM With Temperature Normal 0.433 0.294

Table 6.5: The best configurations for each model type and data source. In each group
the best result is highlighted. The results of the two simple baselines are included in this
table for comparison.
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predictions of this data with the limited additional inputs giving few helpful hints which
causes simple models to be more suitable as they are easier to train when there are only
simple patterns to predict. Zhang and Kline also observe that when seasonal adjustment
is used, simple models perform better than complex ones most of the time [47]. A signif-
icant amount of complexity in models is spent on reproducing the seasonalities of data
that was not seasonally adjusted.

6.5 Method Evaluation

In order to evaluate the effectiveness of the three methods, namely the delta mode, sea-
sonal adjustment and adding temperature data, the average change in accuracy they cause
is measured. For a given method, the average MSE of all training series that used the
method is compared to that of all those that did not use it. This average is computed
across all data sources and model types. For the delta mode this means all results that
used the delta mode are compared to those that used the normal mode.

An average reduction in MSE of 9.85% with seasonal adjustment is measured. The
delta mode and the addition of temperature data cause an increase of 3.95% and 5.54%
in the measured average MSE, respectively. The chosen best models in the results tables
also reflect this as many best configurations include seasonal adjustment. While the same
is true for the temperature data, it did not improve the accuracy of all models on average.
The temperature data can also be ignored by a model if it does not provide an advantage
and its use by the bestmodelsmay therefore also be incidental. The no inputmode causes
a 39.66% increase in MSE on average and thereby confirms the usefulness of giving the
models inputs at all.

Evaluation of Qualitative Prediction

The qualitative prediction is evaluated using power consumption data with seasonal ad-
justment and temperature data, based on the convolution model’s results. A convolution
model was tuned and then evaluated by training a series of 20 model instances, as it was
done with the previous experiments. The qualitative prediction is set to use a fiveminute
sample interval for the input and the regular hourly sample interval for the output. The
model is trained to predict metrics, in this example the minimum and maximum, calcu-
lated over the samples that correspond to each output value.

The tuning resulted in a kernelwidth of 2, 8 kernel filters and no additional dense lay-
ers. Table 6.9 on page 39 contains the measured performance for the models trained with
these hyperparameters. An example of a prediction can be seen in figure 6.10 on page 39.
Due to the differences between this task and that of simply making regular predictions,
the error values cannot be directly compared between them. However, the model does
exceed the no input baseline and judging from the example plots, does reasonably well
in general. The plots also indicate that the model detects and subsequently predicts a
varying distance between the minimum and maximum metrics.
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Data Source Configuration Dense Units LR Mode Val. MSE Test MSE

Electricity
Price

Basic 272/576/16 0.00010
Normal 0.475 0.548
Delta 0.470 0.440

No Inputs 0.500 0.504

With
Temperature 1024/16/16 0.00010

Normal 0.511 0.575
Delta 0.519 0.492
No Inputs 0.584 0.534

Seasonal
Adjustment 176/16/416 0.00010

Normal 0.461 0.527
Delta 0.334 0.322

No Inputs 0.492 0.505

Both - 0.00010
Normal 0.528 0.579
Delta 0.369 0.351

No Inputs 0.671 0.599

Power
Consumption

Basic 1024/784/16 0.00010
Normal 0.347 0.597
Delta 0.393 0.750
No Inputs 0.426 0.834

With
Temperature - 0.00010

Normal 0.329 0.581
Delta 0.348 0.650
No Inputs 0.375 0.661

Seasonal
Adjustment - 0.00010

Normal 0.325 0.505
Delta 0.345 0.524

No Inputs 0.407 0.690

Both - 0.00010
Normal 0.312 0.506
Delta 0.324 0.528

No Inputs 0.368 0.642

Power
Generation

Basic 1024/16/16 0.00010
Normal 0.461 0.290
Delta 0.464 0.288
No Inputs 1.119 0.665

With
Temperature 1024/16/16 0.00010

Normal 0.455 0.295
Delta 0.453 0.291
No Inputs 1.019 0.664

Seasonal
Adjustment* - 0.00045

Normal 0.414 0.262

Delta 0.414 0.265

No Inputs 1.101 0.659

Both 16 0.00139
Normal 0.410 0.269

Delta 0.403 0.269

No Inputs 1.011 0.663

Table 6.6: The results of tuning and training the dense NN model. For each data source
the three or four best results are highlighted. The third column contains the number of
units in each of the dense layers of which there can be zero to four.
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Data Source Configuration K. Width/Filters LR Mode Val. MSE Test MSE

Electricity
Price

Basic 2/72 0.01235
Normal 0.430 0.479
Delta 0.469 0.579
No Inputs 0.563 0.539

With
Temperature 2/128 0.00227

Normal 0.568 0.458
Delta 0.499 0.584
No Inputs 0.849 0.588

Seasonal
Adjustment 10/32 0.00010

Normal 0.504 0.508
Delta 0.402 0.331
No Inputs 0.567 0.568

Both 2/64 0.05121
Normal 0.603 0.573
Delta 0.390 0.327
No Inputs 0.828 0.602

Power
Consumption

Basic 2/72 0.00274
Normal 0.383 0.448
Delta 0.482 0.692
No Inputs 0.439 0.479

With
Temperature 2/128 0.00021

Normal 0.375 0.425
Delta 0.482 0.691
No Inputs 0.407 0.438

Seasonal
Adjustment 12/8 0.00048

Normal 0.380 0.462
Delta 0.454 0.479
No Inputs 0.466 0.527

Both 12/64 0.04141
Normal 0.353 0.411
Delta 0.418 0.424
No Inputs 0.404 0.426

Power
Generation

Basic 2/128 0.00364
Normal 0.402 0.259
Delta 0.708 0.405
No Inputs 1.002 0.499

With
Temperature 12/128 0.00948

Normal 0.396 0.249
Delta 0.476 0.327
No Inputs 0.856 0.472

Seasonal
Adjustment* 12/32 0.00055

Normal 0.388 0.254
Delta 0.471 0.336
No Inputs 0.994 0.504

Both 12/128 0.00722
Normal 0.383 0.246
Delta 0.470 0.325
No Inputs 0.870 0.473

Table 6.7: The results of tuning and training the convolutional NN model. For each data
source the three best results are highlighted. The third column gives the convolution
kernel’s width and its number of filters. The configuration marked with * was the only
one for which the tuning result included additional dense layers, with 128 and 240 units,
respectively.
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Data Source Configuration LSTM Units LR Mode Val. MSE Test MSE

Electricity
Price

Basic 480 0.01235
Normal 0.545 0.552
Delta 0.559 0.572
No Inputs 0.642 0.568

With
Temperature 480 0.00227

Normal 0.669 0.524
Delta 0.806 0.813
No Inputs 0.789 0.551

Seasonal
Adjustment 384 0.00010

Normal 0.502 0.538
Delta 0.396 0.330
No Inputs 0.452 0.519

Both 352 0.05121
Normal 0.605 0.613
Delta 0.551 0.438
No Inputs 0.560 0.573

Power
Consumption

Basic 448 0.00274
Normal 0.446 0.493
Delta 0.498 0.664
No Inputs 0.581 0.837

With
Temperature 480 0.00021

Normal 0.449 0.465
Delta 0.523 0.653
No Inputs 0.514 0.582

Seasonal
Adjustment 448 0.00048

Normal 0.480 0.438
Delta 0.574 0.669
No Inputs 0.723 0.771

Both 288 0.04141
Normal 0.692 0.874
Delta 0.487 0.519
No Inputs 0.616 0.782

Power
Generation

Basic 448 0.00364
Normal 0.443 0.296
Delta 0.457 0.306
No Inputs 0.963 0.501

With
Temperature 512 0.00948

Normal 0.433 0.294
Delta 0.546 0.338
No Inputs 0.898 0.589

Seasonal
Adjustment 384 0.00055

Normal 0.448 0.278
Delta 0.482 0.295
No Inputs 0.913 0.496

Both 480 0.00722
Normal 0.448 0.331
Delta 0.516 0.344
No Inputs 0.892 0.525

Table 6.8: The results of tuning and training the AR LSTM model. For each data source
the three best performing results are highlighted. Two results in the power generation
section have the same error value and therefore both are highlighted.
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Mode Validation MSE Test MSE

Normal 0.482 0.537
No Inputs 0.552 0.581

Table 6.9: The results of training 20 instances of the convolution model to do qualitative
prediction.
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Figure 6.10: Three qualitative predictions on example days from the power consumption
test dataset.
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7
Conclusion and Outlook

7.1 Conclusion

In this work the application of machine learning models to energy time series data was
explored in the context of the ReNuBiL project. First, a formal basis was established en-
compassing time series, their prediction and the evaluation of such predictions using
error metrics. Then, tools for time series prediction such as models using artificial neural
networks and statistical performance baselines were introduced. Three different mod-
els were used, one with a basic dense neural network, one with a convolutional neural
network and, finally, an autoregressive LSTM model.

In order to better schedule electric vehicle bookings, which can be used for VxGwhile
they are connected to a charging station, the project requires predictions of electricity
price, power consumption and renewable power generation data. These data sources
were then preprocessed by downsampling and normalization. After splitting the data
into training, validation and testing sections, a dataset of sequences for use with themod-
els was generated for each of them. A number of methods for improving prediction accu-
racywere introduced, whichwere later evaluated in their effectiveness. They are seasonal
adjustment, the addition of air temperature data and the delta mode.

The implementation in form of a Python script relied on TensorFlow, the Keras API
and Pandas. The University of Lübeck’s AI Lab provided access to GPUs including a
NVIDIA DGX2 machine that allowed for fast tuning and training of the models. Each
model has hyperparameters that heavily influence its performance potential. They are
optimized with hyperparameter tuning and the many model instances are trained to de-
termine how well each configuration performs. The configurations are all feasible com-
binations of the aforementioned methods for improving prediction accuracy.

The many experiments were conducted in an automated fashion and then evaluated
as shown in the previous chapter. Using the best configuration and tuned hyperparam-
eters, all models were found to be effective at predicting each data source one day into
the future. For the electricity price and power consumption data the basic dense model
performed the best with an improvement of at least 54% compared to the repeat baseline,
while the convolution model yielded the best results for the power generation data. The
evaluation of the three optional methods yielded that seasonal adjustment produced an
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average performance improvement, while the other two did not. They were, however,
found to be frequently part of the best configurations for each data source. In summary,
the application of machine learning methods such as artificial neural networks to energy
data yielded results that were better than statistical baselines and the no input baselines
for each model. The following section sheds light on the next steps for this work as part
of the ReNuBiL project and opportunities for a further improvement of the models.

7.2 Outlook

This work analyzed the application of machine learning to predict future values of three
energy data sources. The next step as part of ReNuBiL is the implementation of a service
thatmakes predictions on request using the developedmachine learningmodels anduses
them as a basis to control the actions of the scheduler. Such a service would load one or
more trained models and then make the requested predictions using the data supplied
in each request. While TensorFlow is available for a variety of programming languages
and platforms, creating a server for making predictions using Python would be the most
convenient. An interesting metric worth evaluating is how much the predictions help
the scheduler reach the project’s goals compared to if it was using worse predictions or
no predictions at all. For an effective comparison to be possible, either a simulation or an
accurate measurement of the scheduling behavior without energy data predictions needs
to be available. The usefulness of qualitative predictions can be further evaluated when
a concrete implementation of the application context, particularly that of the scheduler,
is complete.

The models could gradually be improved by re-training or even re-tuning them on
a larger and more diverse dataset as time goes on. Training the models with the goal
of providing energy data forecasts for real-world use will be different from how they are
trained for evaluation of themethod itself. More of each dataset can be used, as the three-
way split is not required if the best model is already known. Additionally, due to the high
variability in prediction accuracy of somemodels, trainingmultiple instances of the same
model and looking at all their predictions together should be considered. A measure of
the models’ confidence could be calculated from the variation of their predictions.

The power consumption data has a very high resolution coming from the measure-
ment equipment. Amore complex but still computationally efficientmodel could be used
to possibly improve prediction accuracy by allowing analyzing high-frequency patterns,
which are lost in the downsampled version of the data. A similar improvement could
be possible with other sources of additional data, such as separate power consumption
measurements for each of the electrical phases, more accurate and diverse meteorolog-
ical measurements, weather forecasts and possibly even thermodynamic simulations of
buildings. Predictions of the energy consumption and demand are made by the grid op-
erator and published on the ENTSO-E Transparency Platform. These predictions, which
are likely quite good given the grid operator’s knowledge of their own system, could be
directly accessed through the platform’s API. A possible correlation between the renew-
able power generation and the electricity prices could also be investigated.

The field of ANN-based machine learning for time series prediction has developed
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many methods of improving models. They could also be used to improve the models
that are presented in this work. One aspect is regularization, which aims to reduce over-
fitting, while also accelerating model convergence. Early stopping, which ends training
early when a model’s performance stops improving for a number of epochs, is already
utilized in this work. There are also other ways of applying regularization to a model,
such as penalization, which reduces large weights in a network, and dropout [40], which
randomly drops units from layers during training. Other methods for enhancing time se-
ries forecasting include wavelet and FFT preprocessing, which decompose a time series
into its frequency components.

Another option is to use a controlled learning rate schedule for avoiding or evenwork-
ing with local optimal encountered along the way during training [18]. More convolu-
tion, pooling and LSTM layers could also be added to the models for further improve-
ments. In particular, the LSTM model, which did not perform better than the simpler
models despite its higher complexity and required training effort, could benefit from
techniques that improve performance and reduce fixation on local optimal in the search
space. The constantly evolving field of machine learning, and artificial intelligence us-
ing ANNs in particular, regularly produces new techniques that are applicable to a time
series forecasting problem like this one.
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