
Analysis of Consumer-driven contract tests
with asynchronous communication between mi-
croservices
Analyse von Verbraucher-gesteuertem Vertragstesten mit asynchroner Kommunika-
tion zwischen Microservices

Bachelorarbeit

im Rahmen des Studiengangs
Informatik
der Universität zu Lübeck

vorgelegt von
Florian Nagel

ausgegeben und betreut von
Prof. Dr. Martin Leucker

mit Unterstützung von
Kathrin Potzahr, Dr. rer. nat. Annette Stümpel

Die Arbeit ist mit Unterstützung der Firma Capgemini Deutschland GmbH ent-
standen.

Lübeck, den 04.12.2019

Deklaration

Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und nur unter
Benutzung der angegebenen Quellen und Hilfsmittel angefertigt zu haben.

(Florian Nagel)
Lübeck, den 04.12.2019

iii

Abstract In the context of microservice architecture the speed of the delivery of
microservices is one of the most important parts in the release cycle. To be able to
deliver microservices fast and reliably the continuous integration (CI) and continuous
deployment (CD) pipeline have to be efficient, of good quality and optimized. This
way we can ensure the maximum speed of reliable updates. To get the maximum
out of the most beneficial aspect of microservices, the fast release cycle, we need
to have fast testing. With the introduction of microservices in an architecture the
amount of interfaces that can be reached is significantly higher. Most, if not all, of
the communication between microservices rely on these interfaces. This proves to be
a new problem in testing. These interfaces have to be tested reliably and quick.

Consumer-driven contract (CDC) tests apply exactly at these interfaces between
microservices without needing as much time as end-to-end tests. One of the reasons
consumer-driven contract testing is deployed in testing pipelines in the context of
microservice structure is their fast execution with reliable enough results to catch
many errors. In the best case, before the end-to-end tests are even run. This
allows the testing department to run less end-to-end tests and reduce the intensity
and necessity of end-to-end tests. CDC testing is well worked out in synchronous
messaging architectures even if it still lacks popularity. It is however not as seemingly
integrated in asynchronous communication as it is in its synchronous counterpart.

There are certain difficulties when it comes to asynchronous CDC testing. One is
the lack of tools. This does not propose a big problem because one of the currently
used tools for these tasks (Pact) also supports asynchronous messaging queues. As
mentioned earlier it does lack a fluent integration in those. The different advantages
and drawbacks of using Pact over other CDC tools are examined.

This thesis explores aforementioned tool and the possibilities of integrating this tool
into the testing realm of asynchronously communicating microservices.

v

Kurzfassung Im Kontext einer Microservice-Architektur stellt die Geschwindigkeit
der Auslieferung des Service’ mit den wichtigsten Aspekt dar. Um dies bestmöglich
zu gewährleisten, müssen die „continuous integration“ und „continuous deployment“
Abläufe so schnell und optimiert wie möglich sein. Die Phase, die am meisten Zeit
benötigt, ist die Phase des Testens. Um also das Maximum aus einem der größten
Vorteile der Microservice-Architektur, dem schnellen Ausliefern eines Service, zu
erreichen, muss schnelles Testen etabliert werden.

Eine der Gründe warum „consumer-driven contract“ (CDC) Testen in vielen Ent-
wicklungsabläufen integriert ist, ist die schnelle Ausführung dieser Tests und deren,
zumindest zu einem bestimmten Grad, verlässlichen Ergebnisse. So können sie viele
Fehler finden, bevor die teuren end-to-end Tests ausgeführt werden müssen. CDC
Testen funktioniert sehr gut in einem synchron kommunizierenden Netzwerk von
Microservices, auch wenn es dem CDC Testing immer noch an Popularität mangelt.
Allerdings sind diese im asynchronen Kontext nicht so gut implementiert wie in dem
synchronen Gegenstück.

Es gibt einige Schwierigkeiten bei asynchronen CDC Tests. Eine ist der Mangel
an Hilfsmitteln. Dies ist jedoch vernachlässigbar, da eines der am meisten genutzten
Programme (Pact) auch asynchrone Kommunikationsprotokolle unterstützt. Es fehlt
allerdings an einer nahtlosen Integration. Wie dieses Tool im Vergleich zu anderen
arbeitet, wird in der Arbeit untersucht.

Diese Arbeit erforscht zuvor benanntes Tool und die Möglichkeiten, die sich bei der
Nutzung dieses erschließen, wenn man es in dem Kontext der asynchronen Kommu-
nikation nutzen möchte.

vii

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Microservices . 3
2.2 Monoliths and Microservices side by side 5
2.3 Agile Development, Connection to microservices 7
2.4 Testing . 9

3 Consumer-driven contract testing 13
3.1 CDCs with synchronous communication 16

3.1.1 Consumer . 16
3.1.2 Provider . 17

3.2 CDCs with asynchronous communication 19
3.2.1 Consumer . 20
3.2.2 Provider . 21

4 Tools used 23
4.1 The example project: Tippkick . 23
4.2 CDC testing tools and why Pact was chosen 24

4.2.1 CDC testing tools . 24
4.2.2 Pact . 25

5 Observations 27
5.1 Consumer . 27

5.1.1 Synchronous . 27
5.1.2 Asynchronous . 30

5.2 Provider . 32
5.2.1 Synchronous . 32
5.2.2 Asynchronous . 34

6 Analysis 37
6.1 Synchronous to asynchronous messaging 37

6.1.1 Consumer . 37
6.1.2 Provider . 41

6.2 Future work . 48

ix

Contents

7 Summary 51

List of figures 53

List of tables 55

List of code listings 57

Bibliography 61

x

1 Introduction

With the industry shifting more and more from monolithic architectures to a mi-
croservice architecture [CDT18], it gets more important to ensure that the change in
architecture benefits the software and in regards to a microservice architecture the
whole release cycle. The speed of this release cycle as well as a reliable deployment
is very important. For this we need to use the correct tests. One testing method
that has come up with the use of microservices is consumer-driven contract (CDC)
testing. To use this testing method we also need the correct testing tools. Microser-
vice deployment is all about continuous integration (CI). CI stresses the factor of
time even more as in classical software deployment. The goal is to provide fast and
reliable testing pipelines to be able to release software often and regularly.

Most of the time the services act as a provider, providing information, or as a
consumer, processing data that was provided. The central point of communication
between consumer and provider can either be a REST interface or asynchronous
communication through message queues like Kafka. The two ways to handle this
while doing integration testing was to either do no integration testing at all or to
fire up the whole system. I.e. running provider and consumer, to make sure that
they communicate correctly with each other. This is a very reliable way of testing,
but takes a lot of time.

This is where consumer-driven contract (CDC) testing comes into play. It provides a
quick and reliable way of checking whether or not a provider service fulfils all of the
specifications for the communication, set by the consumer services. And that even
before running end-to-end tests. On consumer side it gives you the ability to tell the
provider which features are being using. This gives the provider the ability to check
if it is introducing breaking changes to the communication without starting up every
dependent system. With this methodology it takes less time to run integration tests
while still keeping most of the reliability and confidence of the classical tests.

While this is mostly implemented for synchronous REST communication between
microservices, there is still a lot to do to get asynchronous CDCs to the same level.
The current state of CDCs with asynchronous communication between microser-
vices is analysed in this thesis. Whilst providing theoretical insight to the testing
mechanics itself, it is also investigated what the current tools provide to make CDC
testing possible for asynchronous communication. Further there are suggestions
made for the further development of these tools to enable software engineers to use

1

1 Introduction

them as easily for asynchronous communication as they can be used for synchronous
communication.

The importance of these tests and how they perform in a case study can be found
in [LMM19] as a very recent example taken from the international conference on
Product-Focused Software Process Improvement. Further work on consumer-driven
contract tests include the creation of a framework for consumer-driven contract
testing of Java APIs [Sel18] by a Swedish student.

After reading this thesis the following questions should be answered and it should
be how these conclusions were reached.

This thesis aims to answer five main questions:

1. What is CDC testing and why do we need it in the context of microservice
architecture?

2. What are the differences between synchronous and asynchronous CDC testing?

3. What tools are there to provide CDC testing capabilities for asynchronous com-
munication between microservices?

4. Why do we use the Pact tool to provide CDC testing?

5. How can we use this tool for CDC testing in an asynchronous environment and
how does it differ from being used with synchronous communication between
microservices?

The thesis is structured in the following way: After this introduction there is the
preliminaries chapter to provide the reader with the needed background information
regarding knowledge on topics that are used in this thesis but not specifically de-
scribed in detail. The next chapter is dedicated to the tools used in this thesis. This
includes the example project "Tippkick" and the CDC testing tool "Pact". After this
a chapter about consumer-driven contract tests gives the reader a more in-depth ex-
planation on how consumer-driven contract tests work and what functionality and
benefits they provide in a software deployment cycle. The thesis continues with
observations made when comparing the implementation in a synchronous environ-
ment with the implementation in an asynchronous environment. The next chapter
is dedicated to analyse these observations and to give some insight on how one could
go about enhancing the implementation for asynchronous environments to meet the
same level of fluid integration as the synchronous counterpart. Finally there is a
chapter which summarizes found results in a concise manner.

2

2 Preliminaries

This chapter aims to explain some of the commonly used terms in connection to
this thesis’ topic. It will enable the reader to comprehend the terms, programs and
approaches used in this thesis and will further provide a short introduction. At the
end of this chapter the reader should have an idea in which environment we are
using CDC testing.

At the start we will be introducing microservices because they are the architecture
we are using CDC testing on. After that we will define the term "Monolith" and how
it compares to a microservice architecture. Following that will be a section about
why agile development fits into the idea of microservices and why it makes sense to
develop microservices in an agile process. The final section introduces the different
ways to test, so the reader has an idea of where CDC testing is to be categorized in
a listing of testing stages in a so called testing pyramid.

2.1 Microservices

Microservices are small, autonomous services that work together in a network. They
usually are each self-contained and provide a single business capability. [New15]

Example

Before explaining the parts of this definition in detail, the following paragraph pro-
vides an overview about microservices with a practical example.

Imagine a webpage that is hosted by an online shop. Various microservices could be
used for the fields that are displayed. One microservice could provide information
when a certain product is available, another one could handle the price display and
another microservice could be providing the information for the product in the form
of pictures for example.

3

2 Preliminaries

Small

”A microservice should be small and focused on doing one thing well” [New15]. This
means they are easily maintainable by a single small team because of their size and
their scope of functionality. A famous quote by Amazon incorporates this by saying
that a team managing a microservice should be no larger than a dozen people and
be able to be fed by two pizzas, as stated by Amazon’s notion of the Two Pizza
Team [JL14] This is one of the larger sized teams. If we observe the other size of
the spectrum there are instances where half-a-dozen people support half-a-dozen
microservices. [JL14]

Autonomous

Microservices should be as loosely coupled as possible and have as little depen-
dencies as possible on other services to provide the functionality specified. This
includes having their own database to work with, but is not limited to.1 That does
not mean that there is not a microservice in reality that is largely dependant on
another service, just that it should not be when designing the ”perfect” pattern
for a microservice architecture. Having them loosely coupled enables us to deploy
updates to a service without making changes to another service. [New15]

Architecture

While it should now be clear what a single microservice is doing and how it is
assembled, we should also establish how the microservice architecture works. Mi-
croservices usually have the role of either a consumer or a provider. A service either
consumes another service and processes that information or it provides information
to another service to consume. The communication can either be implemented via
the REST-protocol or by asynchronous means of messaging. The synchronous ap-
proach is fairly easy to set up and makes for a communication architecture that is
easily maintainable. It also has a few drawbacks to its asynchronous counterpart
made clear in later chapters. [Rop16] To see what a microservice architecture can
look like refer to figure 4.1 on page 23.

1This is just a recommendation made by the author. This does not mean that you can not deviate
from this.

4

2.2 Monoliths and Microservices side by side

2.2 Monoliths and Microservices side by side

Monoliths

One refers to a software structure or program as a monolith when it is a single entity
program. The program usually has a centralized database that it depends on and
the different parts of the program are connected in some way that doesn’t allow them
to run independently. With a monolithic architecture, a small change to one part
of the software can mean that the whole system has to be tested and redeployed.
Consider an example: Switching to a different database framework. This directly
affects a lot of the other code. The interchangeability of frameworks and libraries
is fairly low because it always impacts the whole system. Furthermore you have to
deploy the whole monolithic architecture when making changes to it. This includes
long testing times because the whole architecture has to be iterated through. Long
release cycles are another drawback of this architecture.[New15, pg. 141]

Side by side

When deciding whether to use a monolithic architecture or a microservice-based
architecture, there are a lot of factors to be taken into account. This is a quick
overview and does not by any means suffice for a complete decision-making process
on which architecture to choose.

Property Monolithic architecture Microservice architecture
Deployment time Long Short
Frequency of updates Low High
Quantity One Multiple
Initial Cost & Overhead Low Higher

Table 2.1: A comparison between microservices and monolithic architecture.

The following points can mostly be found in table 2.1. It shows an informal compar-
ison between microservices and monolithic architecture to describe the main differ-
ences in contrast to each other. The first column states the property that is being
investigated. The second column refers to a complete monolithic architecture. The
third column refers to a single microservice. Both the second and third column use
informal descriptors to give a vague idea of what to expect from the corresponding
architecture.

5

2 Preliminaries

While microservices offer more flexibility and interchangeability of modules later
on, monoliths are quick and easy to setup because of their reduced complexity
regarding their interfaces. The initial overhead is also way lower with monoliths
than with microservices. This is important to consider when deciding on a software
architecture for a system2. Monoliths provide a low frequency in updates and long
release cycles because every time a component changes the whole system has to be
tested and deployed. Microservices can be deployed independently and take much
less time to be tested individually because of the smaller size of each service. Small
changes to a service are quicker to be deployed and this provides the user with a
higher frequency of updates. Microservices allow for higher flexibility in the choice
of components, meaning less effort and cost to update a single service to a newer
framework or to have it use a newer database system than it would in a monolithic
environment. This means that, even if your software has grown to a size that is very
hard to manage, you can still interchange modules and change services with ease.
In a monolithic environment this is harder to manage.

2Sam Newman gives a good overview of what architecture might be best for you in his book
”Building Microservices: designing fine-grained systems” [New15]

6

2.3 Agile Development, Connection to microservices

2.3 Agile Development, Connection to microservices

As we have established what architecture we can use we are now introducing how one
could develop software. This section provides an introduction to agile development
and why microservices are very well suited to be developed in an agile development
cycle. This does not mean however that they have to be deployed agile, just that
they can be.

What is agile development?

Agile development is a form of software development which is more responsive to
customer needs as opposed to the waterfall model [O’R17]. The scrum method is a
widely known example for an agile method. Agile development aims to have short cy-
cle times, early decision-making and recognizes the process of software development
as an evolutionary process where change to the product is inevitable and accepted.
This means that the common mindset is that the requirements of the product can
change regularly throughout the software lifecycle. Good communication and early,
regular feedback are essential for this process. [O’R17]

Connection to microservices

Microservices are suited for agile development because of their independence from
each other and their short deployment times. The, usually small, team that works
on a microservice can further complement the agile development process. Now let
us define a few of the central advantages of agile development:

Short cycle times are the case for most microservices, as each team has one service
to maintain (which provides a small but sophisticated functionality), thus hav-
ing a small codebase and a manageable testing pipeline. This results in short
cycle times and quick deployment schedules.

Early decision-making also plays a central role in the development of microservices
as the team has to know what functionality their microservice has.

The evolutionary process is helped by having assigned each microservice to a small
team. Each microservice can be developed on their own (mostly) without the
need to contact big project managers for each and every decision. The mostly
autonomous workflow is also helping the short cycle times.

7

2 Preliminaries

Continuous deployment is another important factor. It reduces the overhead of
human interaction needed to deploy software. That means that every time a change
is made and released a pipeline job will compile the software, run various tests and
when this all passes the software will be deployed.

Microservices are a perfect fit for the world of agile development. Their small size
gives developers the ability to evaluate their progress fast and to verify their services.
Small teams provide the developers with the ability to enable new features and fixes
fast without much communication overhead. Microservices embrace the nature of
agile development.

8

2.4 Testing

2.4 Testing

Testing is a very important part of developing software. There are a lot of different
ways to test a software. Testing a microservice architecture differs from a monolithic
software in a few ways. The following paragraphs depict which approaches are used
in general. It will be clear where the approaches differ between monoliths and
microservice.

Types of tests

There are many different approaches and each company or development team has to
choose which one works best for them. The testing stages from the testing pyramid
displayed in figure 2.1 are listed in the following paragraphs. Each with a short
explanation. This specific pyramid shows different levels of testing a microservice.
From bottom to top it increases in complexity and and in the time each test takes
to complete. The bottom bracket should have the most tests while the top bracket
should contain the fewest. [Cle14] Testing pyramids are mostly found in the context
of agile development.[Coh09]

Unit

Integration

Component
End-to-end

Exploratory complexity

Figure 2.1: Testing pyramid according to a slide show by [Cle14]

As seen in the testing pyramid in figure 2.1 there are many different stages. It
is important to note that the tests have different scopes. Unit tests for example
only test inside a service, whereas everything up from component tests test between
services, so the network of microservices. Further explanations to this can be found
in the specific sections to the approaches below.

9

2 Preliminaries

Unit tests

At the most primitive and basic level there are unit tests. Unit tests typically test
functions of a class. They can be thought of as the most basic tests you could write.
An example:

Imagine having a function that divides two numbers and returns the result. A unit
test is written to test a function with the input parameters 4 and 0. The test now
compares the result and the expected result and fails if they mismatch. In this case
the division should fail and give some form of error. This example is restricted to
only one function and that function should not be dependant on any other as the
test is as atomic as possible.

Integration tests

Integration tests aim to test the communication paths and interactions between
components to test for interface defects [Cle14]. The goal is to test the behaviour
of the module under test and not the entire subsystem. Furthermore we want to
test the interaction between modules. The part of interest here is the interaction
between the module and external applications like datastores and other external
components. This is the main focus of integration tests. This includes gateway
integration and persistence integration tests. [Cle14] Microservice architectures add
a new layer of complexity to this form of testing, in comparison to a monolithic
architecture, as they introduce more interfaces that need to be tested. The approach
of CDC testing tries to make it easier to test these interfaces and to keep consistency
between them. Contract tests are a part of integration testing. The difference is
that it only regards the integration of the microservice to consumers of that service.
This will be discussed in detail in chapter 3 on page 13.

Component tests

Component3 tests limit the scope of the system under test, use internal code inter-
faces to manipulate the code interface and use test doubles to isolate the components
from other dependencies. [Cle14] The microservice is instantiated with no connec-
tion to any network or other interface. Instead it will use in-memory test doubles
and datasources. This leads to faster execution time and reduced complexity of the
build. [Cle14] This test aims to test the integration of the microservice with the

3”A component is any well-encapsulated, coherent and independently replaceable part of a larger
system [Cle14].”

10

2.4 Testing

other services. This is however not an integration test as they test the integration
of the modules in a microservice.

End-to-end tests

An end-to-end test tests the complete system and verifies that it meets its require-
ments. [Cle14] These tests test the complete system and manipulate it through
public interfaces such as GUIs and APIs. They take the longest to complete and are
the most complex. (See Figure 2.1) As stated in [New15] the earlier mentioned con-
tract tests could indeed replace end-to-end tests when deployed in a specific way4.
This significantly speeds up the testing process and provides less brittle and flaky
tests. [New15]

Exploratory tests

Exploratory tests refer to the manipulation of the software’s components by hand.
These tests refer to the testers using the software in ways that might have not
been included in automatic tests. These tests can help to establish a better under-
standing of the system and its structure. [Cle14] This testing method is applied to
microservices and monoliths alike as it is not coupled to any architecture.

4See [New15], page 144, second paragraph.

11

3 Consumer-driven contract testing

This chapter will provide an overview of the process that is labelled as ”consumer-
driven contract testing”. After this chapter the reader has the understanding of
how consumer-driven contract testing works and how it differs from a synchronous
messaging environment to an asynchronous messaging environment.

First there is an explanation to the usage and the benefits of using CDC testing.
The two sections after address the differences of CDC testing in a synchronous
environment (REST) and in an asynchronous messaging environment (AMQP) re-
spectively.

CDC testing in the context of microservices

A microservice architecture can have many connections between its microservices.
Typically you have producers and consumers. I.e. you have a microservice offering a
service and other microservices using/consuming1 that service. In most cases every
microservice has its own team working on it (See 2.1 on page 3). This means that the
teams working on the communicating microservices can very easily miscommunicate
what they are trying to achieve with their service and how it communicates. There
has to be a set of rules for this or at least some form of agreement on how to
communicate. This must be written down, as verbal agreements can easily lead to
miscommunication. The teams may also forget to communicate when they change
their interface in any way, that introduces breaking changes.

Imagine the following scenario: A provider of a person database can send a consumer,
the first and last name of a person when it is requesting that item. The response2

might look like the following:
{

"name": "Max Mustermann"
}

1The protocol used in this exchange (i.e. REST or an asynchronous message queue) is not
relevant for the current chapter and is therefore omitted. Refer to later chapters for an in-
depth comparison.

2It is assumed that responses are encoded in the JSON format[ECM13]

13

3 Consumer-driven contract testing

The consumers expect exactly this response.

What happens if the producer changes the format of his messaging? Imagine the
payload of the producer changing to the following:

{
"firstName": "Max",
"lastName": "Mustermann"

}

The team behind the producer service might think that the new payload makes
more sense or enables the consumers to work better with the provided information.
The team might change the versioning behind their interactions. They may not
realize that introducing these changes breaks the consumer side and many consumers
may stop working. The usual methodology for detecting this is running end-to-end
tests. These are very time-consuming and require all services to be up and running.
The question is what can be done to minimize costs (e.g. time needed to ensure
integration) and maximize profits (detecting breaking changes early)?

This is where the concept of consumer-driven contract tests comes into play. The
idea is to let the consumers define what format parts of the produced message
should look like. They only define these contracts for the parts of the exchange they
use, they do not define the complete interaction or interface of the provider. The
consumer creates a contract which states that he expects the following:

{
"name": "Max Mustermann"

}

This resembles exactly the old payload described by the producer. This way the
consumer wants to ensure that the producer is sticking to this format of the payload
so it does not introduce breaking changes. The actual format of the generated CDC
differs between tools. This is a fictional simplified version of one of those contracts.
This contract is generated by the consumer and then exchanged with the provider.
The provider receives these contracts from every dependant service to ensure that
every dependency can work with the provider.

After these contracts have been exchanged, the provider tests his implementation
against all the consumer contracts. This way the provider knows when he is in-
troducing breaking changes for the consumers. He also knows when a feature is
obsolete and is omittable from the produced message. This could be done to reduce
overhead and increase performance.

14

Limitations; what CDCs are not suited for

CDCs are only used for validating an interaction between two services. They should
not be used to replace functional tests. The only way they should be used for, is to
resemble the frame in which the interaction takes place. So for example: Instead of
testing for a specific name in the database

"name": "Max Mustermann"

The test should be done for a non-specific string value. This way we don’t test for
the specific values for a key-value pair, but instead test if the provider gives us the
information in the format we need it. Whether or not the provider sends us the
correct information is up to the provider’s unit tests to determine. For example
after this change the providers verification tests should pass with all of the following
messages. Only listing a few and not every possibility:

"name": ""

"name": "Max"

The provider is not testing against the specific values of its payload, but instead
against the format of the payload.

Important to note here, is while CDC testing does provide a great improvement
in the testing timeline, it only has limited capabilities. We can’t be certain if the
provider returns the requested information. Only that he sticks to the format pro-
vided by the contract. This also applies to failed interactions or error handling.
Those can and should be defined by a contract as well. E.g. does the producer
send an error message or does it send a specific HTML code? This is important to
remember when employing this type of testing in a testing pipeline.
CDC testing provides us with quick feedback so we catch mistakes early on, but it
does not guarantee a fully working network of services and does not replace proper
end-to-end tests (in the form we have introduced it). Full end-to-end tests should
still be run before deploying software, to reduce the risk of failure. By using the
CDC testing mechanic, the development team might not even have to deploy costly
end-to-end tests to catch some errors. This way the development team can save
time and resources.
Using CDC testing the intensity and quantity of end-to-end tests can be reduced
whilst still keeping the same level of risk analysis. Therefore prevention of failure
so software can be deployed faster and just as safe.

15

3 Consumer-driven contract testing

3.1 CDCs with synchronous communication

A widely used scenario for microservices is synchronous communication between ser-
vices through an HTTP based REST interface. As the REST protocol is commonly
used for APIs, it is a good way to start out when using microservices. The follow-
ing paragraphs will discuss how the synchronous exchange between microservices
can look like. Figure 3.1 shows an example of an exchange between consumer and
provider.

getMatch()
match

tippabgabe:Consumer spielplan:Provider

Figure 3.1: Synchronous communication between a provider and a consumer.
In this case tippabgabe and spielplan.

The upcoming sections are split into the consumer and the provider side. This way
they are focussed on each side independently from the other, as it would be the case
in a project. Judging by the architecture of microservices one would only have access
to one microservice. It is often the case that one microservice acts as a consumer as
well as a provider.

3.1.1 Consumer

The consumer side is the most commonly used one, because normally there are
multiple consumers to one provider service. As a consumer you want to give the
provider a CDC which contains every attribute send by the provider that you use.
This way the provider won’t remove any attributes that the consumer still uses.

Setup

The provider does not need to be reachable by our consumer as we can define
the contract without having access to the provider. This is one of the benefits of
CDC testing. You can also use the information on the exchange you currently have
with the provider. This way we don’t have to change any production code. Another
benefit is that the testing is based on the current implementation of the exchange.

We start writing tests immediately as we are independent of the deployment status
of the provider. We’ll define that this is the format the provider will send messages
in.

16

3.1 CDCs with synchronous communication

Application

When we are creating a CDC we are establishing which kind of response we expect
from the provider. This could be a single field that we expect from the provider.
E.g. in our request to the provider we state a user id. This looks like the following:

http://example.provider.com/user_id/12345

The provider now responds with information of that user. (See 3.2) In our case
this is a JSON like response. We only use one field of information, in this case the
surname. We want to make sure that our provider always sends this specific part of
the information in the response. The consumer only defines the values he is using
in the CDC contract. The provider can send much more information that is just
disregarded by the consumer. In our CDC we now specify that the provider response
has to include a field called surname with a matcher because we only want to test
if it exists, not which contents it has. If we want an exact matching body take a
look at figure 3.3 on the following page.

{
"user-id" : "12345",
"name" : "Max",
"surname" : "Mustermann"

}

Figure 3.2: The response body of the provider in JSON format.

3.1.2 Provider

The provider is the most important part in a microservice network, as many other
parties depend on it. On the provider side the CDCs are getting actively used.
A provider tests against multiple contracts to make sure that it fulfils every single
contract, so every dependent service can work as expected. If the provider introduces
breaking changes to the communication interface, the effected contracts will break
in the testing phase. Thus making sure that the provider does not introduce changes
that inhibit other services (that the provider has a contract with) to work with it.

Setup

The same as seen in 3.1.1 on the preceding page. The provider has to be reachable
via HTTP.

17

3 Consumer-driven contract testing

...
"response" : {

"status" : 200,
"headers" : {

"Content-Type" : "application/json;charset=utf-8"
},
"body" : {

"user-id" : "12345",
"name" : "Max",
"surname" : "Mustermann"

}
}
...

Figure 3.3: An excerpt of a generated pact file which only includes a response.
Omitted content has been replaced with ". . . "

Application

As opposed to the consumer, where we had to manually configure the contract
generation, we can now let a tool do the work for us. Our provider has to be up and
running, so our tool can reach it. Now it can trigger the provider via synchronous
means and use the responses to verify all CDCs. An application using a specific tool
is found in chapter 5 on page 27.

18

3.2 CDCs with asynchronous communication

3.2 CDCs with asynchronous communication

One of the more recent approaches for running microservices is to use asynchronous.
This is used to counteract the impact of problems that can arise when using syn-
chronous communication.[Rop16] In this chapter we will examine how to best in-
tegrate CDC testing into projects. As we don’t know exactly how to trigger our
provider, our consumer can only define what the expected response is, not what the
expected request should be.

send(obj, topic)
handle()

workWith(body)

listenFinalBet(body)

tippabgabe:Provider kafka:AMQP tippwertung:Consumer

Figure 3.4: The communication between a Provider and a consumer using an
AMQP.

As seen in figure 3.4 there is a significant difference to be observed when compar-
ing synchronous (figure 3.1 on page 16) and asynchronous communication. The
producer, consumer as well as the message queue could be replaced by any classes
with equivalent purpose. The asynchronous communication displays that there is
no immediate return from function calls. That is why the lifetimes of the function
calls are very short and the first function call does not have a return from the con-
sumer. This enables another advantage of asynchronous communication between
microservices:

When a service fails, the error does not bubble up and block the dependant microser-
vices from working. This is described in more detail in a talk from James Roper3

[Rop16]. He talks about how in synchronous communication a single point of failure
can block the whole system as every dependant microservice expects a response and
blocks its thread waiting for that response. When using asynchronous communica-
tion between microservices a single point of failure does not block the whole system.
It simply means that the service is unavailable and we cannot receive information
from it. The system does not crash, but it does not offer the full functionality until
the failing service has been restored.

3Co-creator of the platform Lagom and architect of OSS Lightbend

19

3 Consumer-driven contract testing

Preparation

Just like in the synchronous communication in chapter 3.1 on page 16 we don’t
have to have access to both, provider and consumer, to implement CDC testing on
either side. We only need access to the side that we are implementing CDC testing
for. The following sections are again split in two parts, the consumer side and the
provider side.

3.2.1 Consumer

A consumer in an asynchronous messaging environment listens to a messaging queue.
In the case of using Kafka, a popular messaging queue tool, the consumer listens to
a specific topic. As soon as the producer posts a message to that topic the consumer
gets notified and can work with the provided payload. He consumes the message.

Setup

As opposed to the mock service that is provided by a CDC tool, e.g. Pact, in a syn-
chronous environment using synchronous REST calls, there will be no mock service
provided by Pact in an asynchronous environment, because it is not implemented.
The programmer has to specify what the consumer expects from the provider. For
this there are several tools provided and the setup as well as the usage is straight-
forward and well documented [var].

Application

When the stage has been reached where we want to create a CDC it is best to
look at what the message handler of the software is expecting to receive from the
message queue and to apply that format to the CDC. This way we can make sure
that the received payloads resemble what our message handler is actually expecting.
This schema has a flaw that can’t be overlooked. With this schema we have to edit
our testing code, the code generating our CDC, every time we introduce changes
to the expected payload of the message handler. This is very important because it
means that, when we forget to make these changes to the testing code as well, our
(unchanged) CDCs will still be correctly verified by the provider against its code
base, but the actual communication, tested in end to end tests for example, will
fail.

As mentioned before this might introduce human error when instead we would want
to keep the testing process as automated as possible. This ensures that our testing

20

3.2 CDCs with asynchronous communication

contract breaks the provider as soon as we introduce changes. It is very important
to mention that these consumer-sided changes occur infrequently and are introduced
mostly by hand anyway. Therefore it is not much more work to edit the generated
consumer pact in the same workflow. Another aspect important to mention is that,
if a tool that can programmatically create or generate contracts is used, the contracts
contents can also be generated from the production code.

If the producer has to be in a certain state (e.g. it has to have one of its databases
up and running for our contracts to be verified) we can define this in the contract
by using so-called provider states. Implementations vary, but the purpose stays
the same; Telling the provider in which state he should be in when verifying the
contracts given.

3.2.2 Provider

A provider, sometimes also called producer, in an asynchronous messaging environ-
ment posts messages to a message queue when triggered by a certain event. This
could mean that the provider posts an object every time it gets changed on the
provider side, or it could for example post a message to the queue every time it
gets requested by a consumer. As we do not know exactly how the provider gets
triggered, e.g. what a consumer has to do to provoke a response, we can’t validate
contracts by simply speaking to the REST interface as we could whilst using syn-
chronous communication. This means that the contract verification on provider side
has to be implemented according to the messaging queue that is used. However, our
premise does not change. We might handle verifying the interactions differently, but
the overall method of CDC testing does not change.

Setup

The provider has to be able to post to an asynchronous messaging queue for our
CDC testing scheme in order to work.

Application

We can now trigger our provider depending on what contract we are verifying. As
mentioned earlier we have to implement this manually instead of relying on a tool
support (See chapter 6 on page 37). When triggering our provider we can then
compare the payload that was posted to the messaging queue with the payload
described in the contract interaction. If everything matches we have successfully
verified our provider.

21

4 Tools used

This chapter aims to introduce the tools that are used to research the thesis’ topic.
After reading this chapter the reader has a basic understanding about the tools that
are used and why they are used.

The first section introduces the example project that is used to show how CDC
testing works in a software environment. The second section gives an overview
about the available CDC testing tools, why Pact was chosen and what it has to offer
in terms of functionality.

4.1 The example project: Tippkick

Spielplan

Tippabgabe

Tippwertung

import match/result

match finished

match started

get match
finalize bet

post bet

read scores

Input/Output
Microservice

Synchronous communication
Asynchronous communication

Figure 4.1: The example project with the relations between the three microser-
vices.

23

4 Tools used

The "Tippkick" project is a sample project developed, and provided for this the-
sis, by Capgemini as a small example application for educational purposes regard-
ing microservices. There are three microservices in the project: Tippabgabe,
Tippwertung and Spielplan. These three services aim to provide a betting ap-
plication for football matches. Spielplan maintains all the information regarding
the actual matches and notifies the other services of the current status of a match.
Tippabgabe handles the betting process. You can post a bet to it, and after it is
finalized the Tippwertung-service will be informed. Tippwertung does all the
work surrounding whether a bet was successful (your bet was correct) or not (your
bet was not correct).

These services communicate through both, synchronous and asynchronous means of
messaging (See figure 4.1 on the previous page).

4.2 CDC testing tools and why Pact was chosen

This section aims to introduce the CDC testing tool used by the author. Furthermore
it explores other CDC testing tools and why Pact was chosen. In the end there is a
short listing showing the capabilities of Pact1.

4.2.1 CDC testing tools

The most commonly used and discussed tools are Spring cloud contract and Pact.
Spring cloud contract is developed by Spring and supports CDC testing for JVM-
based applications. It supports CDC testing for synchronous and asynchronous mes-
saging schemes and offers multiple integrations for messaging queues like Apaches
Kafka and RabbitMQ for example. Pact is an open-source tool maintained by the
Pact foundation. It is implemented in various programming languages2 and not
limited to JVM-based languages. It supports both, synchronous and asynchronous
messaging schemes.

It is important to note, that there are ways to exchange the pacts generated by
Spring cloud contract and Pact. This is particularly useful if you want to use the
asynchronous messaging integrations from Spring cloud contracts while maintaining
the flexibility between languages from Pact.

1https://github.com/DiUS/pact-jvm
2A detailed listing can be found at https://docs.pact.io/feature_support

24

https://github.com/DiUS/pact-jvm
https://docs.pact.io/feature_support

4.2 CDC testing tools and why Pact was chosen

Why Pact was chosen for this analysis

Pact was chosen because of its support for multiple languages. This way you can
use it for almost any scenario and any provider/consumer build. For example if
you want to have Pact verification on an Angular3 build, which is not a JVM-based
framework, Pact would be more suited because it also has an implementation for
JavaScript [var].

Spring Cloud Contract does support contract testing, but a little different than
the Pact tool. It allows for manual contract generation rather than the code-based
generation that Pact ships with. In Spring Cloud Contract the teams working
on the provider and the consumer define the contract they are testing against at
the beginning. Then both, the provider and consumer(s), test against the same
contract. This is another reason Pact was chosen over the Spring Cloud Contract
tool as it allows for a more fluent integration of the consumer-driven contract testing
approach. As Pact and Spring Cloud Contract have different approaches the choice
between the two of them relies heavily on the type of project.

4.2.2 Pact

Pact allows the user to programmatically generate consumer contracts. This means
that we can generate contracts at runtime and potentially based on the current
codebase. The contracts hold an expected response and the request that will be
made to the provider. These contracts are then exchanged with the provider, who
then verifies them against itself. The tool triggers the provider with the defined
expected request and then verifies the following response with the one defined in the
contract.

Pact also offers integration with a so-called Pact broker (provided by the same team
that made Pact) which holds all the contracts, offers them to consumer/provider
and captures which contracts failed or were successfully verified. More detailed
information on the features of Pact are found in the chapters 5 on page 27 and
chapter 6 on page 37.

3https://angular.io/

25

https://angular.io/

5 Observations

This chapter aims to provide the reader with observations on the implementation
process of CDC testing with Pact. These observations are focused on the differences
in implementation of CDC testing using synchronous messaging and asynchronous
messaging between services rather than on the subjective experiences made by the
author whilst implementing CDC testing.

This is not an experience report but observations made that are subject to the
overall process.

The chapter starts by showing what changes in the Pact verification process are
done between synchronous and asynchronous testing of interfaces on the consumer
and provider side respectively. For each case will be a theory section, explaining
what the process looks like in theory, and a practise section, showing by example
what aforementioned process looks like. The two big sections are Consumer and
Provider, respectively with synchronous and asynchronous subsections. These are
further divided to theory and practise.

5.1 Consumer

First will be the differences on the consumer side, starting with the synchronous
theory and practise followed by asynchronous theory and practise.

5.1.1 Synchronous

Theory

As described in figure 5.1 on the following page the four steps to synchronous con-
sumer driven contract testing using Pact are:

1. Using the Pact DSL, the expected request and response are registered with the
mock service.” [var]

2. ”The consumer test code fires a real request to a mock provider (created by the
Pact framework).” [var]

27

5 Observations

Figure 5.1: The Pact creation/verification process described by the official doc-
umentation of Pact[var]

3. ”The mock provider compares the actual request with the expected request (from
step one), and emits the expected response if the comparison is successful” [var]

4. ”The consumer test code confirms that the response was correctly understood”
[var]

If all of these steps succeed the Pact verification on consumer side was successful.

As you can see here the Pact tool does most of the test work itself. When writing
tests focus has to be put only on the interaction itself by stating the expected
request and the minimal expected response. This is because Pact natively supports
the REST protocol and handles everything related mostly on its own.

Practise

This subsection aims to give the reader an insight into CDC testing implementation
with the Pact tool. The following source code listing (5.2 on the next page) is taken
from the Pact-jvm github repository1 as it is not yet implemented in the Tippkick
project. A few lines of code are omitted as they are not relevant to this chapter or
contain repetitions.

Lines 1 and 2 define the jUnit runner that is used as jUnit 5 is used in this example.
Furthermore the provider name and the port on which it can be reached are
set.

Lines 4 through 6 define the headers for every Pact interaction. In this case we
need to specify that we are using the JSON file format.

Line 8 states the consumer name.

1https://github.com/DiUS/pact-jvm/blob/master/consumer/pact-jvm-
consumer-junit5/src/test/java/au/com/dius/pact/consumer/junit5/
ArticlesTest.java

28

https://github.com/DiUS/pact-jvm/blob/master/consumer/pact-jvm-consumer-junit5/src/test/java/au/com/dius/pact/consumer/junit5/ArticlesTest.java
https://github.com/DiUS/pact-jvm/blob/master/consumer/pact-jvm-consumer-junit5/src/test/java/au/com/dius/pact/consumer/junit5/ArticlesTest.java
https://github.com/DiUS/pact-jvm/blob/master/consumer/pact-jvm-consumer-junit5/src/test/java/au/com/dius/pact/consumer/junit5/ArticlesTest.java

5.1 Consumer

1 @ExtendWith (PactConsumerTestExt . c l a s s)
2 @PactTestFor (providerName = " Ar t i c l e sP r ov i d e r " , port = " 1234 ")
3 pub l i c c l a s s Ar t i c l e sTe s t {
4 pr i va t e Map<Str ing , Str ing> headers = MapUtils . putAl l (new HashMap<>()

, new St r ing [] {
5 " Content−Type " , " app l i c a t i o n / j son "
6 }) ;
7
8 @Pact (consumer = " Artic lesConsumer ")
9 pub l i c RequestResponsePact a r t i c l e s (PactDslWithProvider bu i l d e r) {

10 re turn bu i l d e r
11 . g iven (" A r t i c l e s e x i s t ")
12 . uponReceiving (" r e t r i e v i n g a r t i c l e data ")
13 . path (" / a r t i c l e s . j s on ")
14 . method ("GET")
15 . willRespondWith ()
16 . headers (headers)
17 . s t a tu s (200)
18 . body (
19 new PactDslJsonBody ()
20 . minArrayLike (" a r t i c l e s " , 1)
21 . ob j e c t (" va r i an t s ")
22 . eachKeyLike (" 0032 ")
23 . str ingType (" d e s c r i p t i o n " , " sample d e s c r i p t i o n ")
24 . c l o s eOb j e c t ()
25 . c l o s eOb j e c t ()
26 . c l o s eOb j e c t ()
27 . c lo seArray ()
28)
29 . toPact () ;
30 }
31
32 @Test
33 @PactTestFor (pactMethod = " a r t i c l e s ")
34 void t e s tA r t i c l e s (MockServer mockServer) throws IOException {
35 HttpResponse httpResponse = Request . Get (mockServer . getUr l () + " /

a r t i c l e s . j son ") . execute () . returnResponse () ;
36 asser tThat (httpResponse . ge tStatusL ine () . getStatusCode () , i s (equalTo

(200))) ;
37 asser tThat (IOUt i l s . t oS t r i ng (httpResponse . ge tEnt i ty () . getContent ()) ,
38 i s (equalTo (" {\" a r t i c l e s \ " : [{ \ " va r i an t s \ " : { \ " 0 0 3 2 \ " : { \ " d e s c r i p t i o n

\ " : \ " sample d e s c r i p t i o n \ "}}}]} "))) ;
39 }
40 }

Figure 5.2: Contract generating code on the synchronous consumer side

Lines 10 through 30 display the Pact builder used to generate the contract. Line

29

5 Observations

11 sets the provider state. Lines 12 through 14 define the expected request
with the interaction name in line 12, the REST path in line 13 and the HTML
method in line 14. Lines 15 through 28 define the response and with it the
payload. Line 16 and 17 define the header and the HTML status. In this case
200. Line 18 and following describe the payload. Further information on how
this PactDslJsonBody works can be found in the Pact documentation. [var]

Lines 32 through 39 define a jUnit test which determines if the payload was gen-
erated correctly. Line 33 defines which method should be used for this test
as the MockServer is provided to the test. Lines 35 through 38 test if the
status code is correct and if the JSON payload was generated correctly.

5.1.2 Asynchronous

Now that the workflow of what happens when using Pact in a synchronous environ-
ment has been established we will now look at the asynchronous implementation on
the consumer side. The figure from before can be used as an orientation. We will
now look at the differences described by the figure and the actual process used in
an asynchronous messaging environment.

Theory

In theory the same sequence as for synchronous communication should apply, but
there are some changes to the asynchronous implementation. Pact does not offer an
implementation for specific messaging queues, but instead has designed the messag-
ing queue testing to be agnostic to the specific implementations offered by Kafka or
RabbitMQ for example. Instead of defining a request and an expected response we
only define the expected response as we do not have a synchronous request/response
system. Further information will be provided in chapter 6 on page 37.

Practise

This subsection aims to give the reader an insight into an implemented CDC testing
using the Pact tool. The following source code listing (5.3 on the next page) is taken
from the example application "Tippkick" and from the service "tippwertung" which
acts as a consumer and has been shortened to not include comments, packages and
imports.

30

5.1 Consumer

1 @ExtendWith (PactConsumerTestExt . c l a s s)
2 @PactTestFor (providerType = ProviderType .ASYNCH)
3 pub l i c c l a s s IncomingMessageHandlerTest {
4
5 @Pact (prov ide r = " tippabgabe " , consumer = " tippwertung ")
6 pub l i c MessagePact createPactForTippabgabe (MessagePactBuilder

bu i l d e r) {
7
8 DslPart actua lPactDs l = LambdaDsl . newJsonBody (o −> {
9 o . numberType ("matchId " , 0L) ;

10 o . numberType (" ownerId " , 0L) ;
11 o . numberType (" hometeamScore " , 0) ;
12 o . numberType (" fo re ignteamScore " , 0) ;
13 }) . bu i ld () . asBody () ;
14
15 Map<Str ing , Object> metadata = new HashMap<>() ;
16 metadata . put (" Content−type " , " app l i c a t i o n / j son ") ;
17 metadata . put (" kafka−t op i c " , " t ipp ") ;
18
19 re turn bu i l d e r . g iven (" NoDataState ")
20 . expectsToReceive (" a t e s t message ")
21 . withMetadata (metadata)
22 . withContent (actua lPactDs l)
23 . toPact () ;
24
25 }
26
27 @Test
28 @PactTestFor (pactMethod = " createPactForTippabgabe ")
29 void testPactForTippabgabe (MessagePact pact) throws Exception {
30 St r ing expectedBody = new ObjectMapper () . w r i t e r () . forType (

GameBetEvent . c l a s s) . wr i teValueAsStr ing (new GameBetEvent ()) ;
31 JSONAssert . a s s e r tEqua l s (new St r ing (pact . getMessages () . get (0) .

contentsAsBytes ()) , expectedBody , t rue) ;
32 }
33 }

Figure 5.3: Contract generating code on the asynchronous consumer side

Lines 8 through 13 define the contract payload. In this case four key-value pairs,
where the key is a String and the value of a numeric type. Thus the
o.numberType(...) to specify this type.

Lines 15 through 17 define the metadata that is to be written into the contract.
Line 16 tells the provider which type of content the consumer expects to receive.
In this case it’s in the json format. Line 17 is there to tell the provider on
which topic this payload is going to be sent and received. Further information

31

5 Observations

in chapter 6 on page 37.

Lines 19 through 23 display a return statement which is a contract builder pro-
vided by the Pact framework. Line 19 defines the so-called provider state. The
state that should be invoked at the provider is in this case the NoDataState,
meaning that the provider does not have to have any data initialized. Line 20
displays how the interaction between the two services is called. This interaction
is called a test message.

Lines 27 through 32 define a jUnit test that verifies that the Pact contract payload
actually contains the object that is expected to be sent by the provider. In
this case a serialization of an object of type GameBetEvent.

5.2 Provider

Provider verification has the biggest differences between synchronous and asyn-
chronous in Pact testing.

5.2.1 Synchronous

Theory

With synchronous communication all of the testing is driven by the Pact framework.
The Pact runner acts as our consumer by playing the recorded requests from our
pact files back to the provider. E.g. it triggers the provider and then records the
received answer from the provider. The process of triggering our provider is pretty
simple as Pact just making the specific REST calls to it. The response is then
compared to what was originally stated by the consumer in our CDC. It can be
done in as little as a few lines of code as the provider only has to be set to a certain
state and then can be interacted with through the use of REST calls which requires
no further interaction as it is provided by the defined contract.

Figure 5.4 on the next page can be used for understanding the described workflow.
When following the arrows from top left the workflow of Pact is depicted.

32

5.2 Provider

Figure 5.4: The verification process on provider side as stated in the Pact doc-
umentation [var]

Practise

This example is a fictional example, so not taken from a live project, but it resembles
the structure and the efficiency of reallife provider tests. The author has opted to
construct a very minimal example whilst still showing the capabilities of Pact and
the different scenarios it can be used with. The following paragraph will explain the
code found in listing 5.5 on the following page.

Lines 1 through 3 set up the provider name, the folder where the Pact contracts
can be found. One could also use a pact broker or a path to a specific contract.

Lines 5 through 8 are the central part of the contract test with the provider. The
command context.verifyInteraction() starts the Pact tool which
then tests our provider.

Lines 10 through 13 can set up the service. Omitted in this case, but this would
be the part where one would start up the service so it can be reached via
REST.

Lines 15 through 18 show the method that sets up the provider state ”default”.
This would set up databases and/or initial information in those databases for
the state ”default”.

Lines 20 through 23 show the method that tears down aforementioned provider
state ”default”. I.e. shutting down the database or doing some cleanup.

33

5 Observations

1 @Provider (" myService ")
2 @PactFolder (" pacts ")
3 @ExtendWith (Pac tVer i f i c a t i on Invoca t i onContextProv ide r . c l a s s)
4 pub l i c c l a s s ContractTest {
5 @TestTemplate
6 void testTemplate (Pact pact , I n t e r a c t i o n i n t e r a c t i on , HttpRequest

request , Pac tVer i f i ca t i onContext context) {
7 context . v e r i f y I n t e r a c t i o n () ;
8 }
9
10 @BeforeAll
11 s t a t i c void setUpServ ice () {
12 // Set up the s e r v i c e
13 }
14
15 @State (" d e f au l t ")
16 pub l i c void toDe fau l tS ta t e () {
17 // Set up the s t a t e " d e f a u l t "
18 }
19
20 @State (va lue = " d e f au l t " , a c t i on = StateChangeAction .TEARDOWN)
21 pub l i c void t oDe fau l tS ta t eA f t e r () {
22 // Tear down the s t a t e " d e f a u l t "
23 }
24 }

Figure 5.5: The code used to test contracts against a provider using synchronous
messaging

5.2.2 Asynchronous

Theory

While the Pact tool does most of the work in a synchronous environment there are big
changes in the asynchronous environment. Due to the vast range of tools available
that offer functionality for a messaging queue the Pact tool was designed with no
specific messaging queue in mind. [var] This and the fact that an asynchronous
interaction does not have an immediate request/response system as a REST interface
does lead to Pact not knowing how to trigger our provider. I.e. how to invoke
a specific function in our provider to get it to post the message we expect to a
messaging queue. Furthermore the Pact tool is not aware of what messaging queue
we use and how it can interact with it. The work that has to be put in to get it
to working as good as the synchronous counterpart in regards to the functionality
is considerably higher. Further information to that in the following chapter 6 on
page 37

34

5.2 Provider

Practise

This subsection aims to give the reader an insight into an implemented CDC testing
using the Pact tool. The following source code listing (5.6 on the following page) is
taken from the example application "Tippkick" and from the service "tippabgabe"
which acts as a provider and has been shortened to not include comments, packages
and imports. The following paragraph will explain the code found in listing 5.6 on
the next page.

Lines 1 through 9 set up various things, including settings for Pact in lines 1 to 5
(Name of the provider, authentication for the Pact broker) and for jUnit and
Spring in line 6 to 9.

Lines 12 through 16 define fields that are going to be used for the Kafka integra-
tion.

Lines 18 through 30 define the method that is executed before every contract veri-
fication. In further detail we ensure that our results of the contract verifications
are sent back to the Pact broker. In line 22 we tell Pact that our provider is of
the type AmpqTestTarget() which means that it uses a messaging queue.
This line is very important and needs to be included in every Pact provider
test that uses asynchronous messaging. Lines 24 to 28 read the kafka-topic
from the contract. This is mentioned in 6 on page 37. We then set up our
Kafka service to run on this kafka topic.

Lines 31 to 34 trigger the Pact tool and start the contract verifications.

Line 36 and 37 are used to invoke the state ”NoDataState” of our provider. In
this case this is just a placeholder.

Lines 39 through 42 display the method that Pact uses to get the message sent by
the provider when triggered by the interaction called ”a test message”. This
will be explained in further detail in chapter 6 on page 37.

Lines 44 through 53 loop the payload of the provider through a kafka stream and
then reads that stream and returns the payload. This way we make sure that
the serialization and deserialization process works and Kafka provides us with
the correct payload.

Lines 55 through 74 are used to setup the embedded Kafka. This includes the
correct sender with the right serialization properties as well as the correct
receiver with the right deserialization properties for the key and for the values
of the payload.

35

5 Observations

1 @Provider (" t ippabgabe ")
2 @ExtendWith (P a c t V e r i f i c a t i o n I n v o c a t i o n C o n t e x t P r o v i d e r . c l a s s)
3 @PactBroker (host = " l o c a l h o s t " , port = " 80 ")
4 @PactBrokerAuth (username = " p o s t g r e s " , password = " password ")
5 @ V e r i f i c a t i o n R e p o r t s ({ " c o n s o l e " , " markdown " })
6 @SpringJUnitConfig
7 @Dirt iesContext
8 @EmbeddedKafka
9 @SpringBootTest

10 p u b l i c c l a s s OutgoingMessageHandlerJunitPactTest {
11
12 @Autowired
13 p r i v a t e EmbeddedKafkaBroker embeddedKafkaBroker ;
14 p r i v a t e KafkaTemplate<Long , FinalizeGameBetEvent> s e nd e r ;
15 p r i v a t e Consumer<Long , FinalizeGameBetEvent> consumer ;
16 p r i v a t e S t r i n g kafkaTopic ;
17
18 @BeforeEach
19 v o i d b e f o r e (P a c t V e r i f i c a t i o n C o n t e x t c o n t e x t) {
20 System . s e t P r o p e r t y (" pact . v e r i f i e r . p u b l i s h R e s u l t s " , " t r u e ") ;
21
22 c o n t e x t . s e t T a r g e t (new AmpqTestTarget ()) ;
23
24 S t r i n g metaData = c o n t e x t . g e t I n t e r a c t i o n () . toMap (PactSpecVersion . V3) . get (" metaData ") .

t o S t r i n g () ;
25 i n t indexOfKafkaTopic = metaData . indexOf (" kafka−t o p i c=") ;
26 kafkaTopic = metaData . s u b s t r i n g (indexOfKafkaTopic + " kafka−t o p i c=" . l e n g t h ()) ;
27 kafkaTopic = kafkaTopic . s u b s t r i n g (0 , Math . min (kafkaTopic . indexOf (" , ") , kafkaTopic .

indexOf (" } "))) ;
28 setUpKafka (kafkaTopic) ;
29 }
30
31 @TestTemplate
32 v o i d p a c t V e r i f i c a t i o n T e s t T e m p l a t e (P a c t V e r i f i c a t i o n C o n t e x t c o n t e x t) {
33 c o n t e x t . v e r i f y I n t e r a c t i o n () ;
34 }
35
36 @State (" NoDataState ")
37 p u b l i c v o i d invokeNoDataState () { System . out . p r i n t l n (" NoDataState was c a l l e d ") ; }
38
39 @PactVeri fyProvider (" a t e s t message ")
40 p u b l i c S t r i n g testTippwertung () {
41 r e t u r n g e t K a f k a S t r i n g () ;
42 }
43
44 p u b l i c S t r i n g g e t K a f k a S t r i n g () {
45 OutgoingMessageHandler handler = new OutgoingMessageHandler (s en d e r) ;
46 handler . handle (new FinalizeGameBetEvent (0 , 0 , 0 , 0)) ;
47
48 embeddedKafkaBroker . consumeFromAllEmbeddedTopics (consumer) ;
49
50 ConsumerRecord<Long , FinalizeGameBetEvent> r e c e i v e d = K a f k a T e s t U t i l s . g e t S i n g l e R e c o r d (

consumer , kafkaTopic) ;
51
52 r e t u r n S t r i n g . valueOf (r e c e i v e d . value ()) ;
53 }
54
55 p u b l i c v o i d setUpKafka (S t r i n g t o p i c) {
56 embeddedKafkaBroker . addTopics (t o p i c) ;
57
58 Map<St r in g , Object> s e n d e r P r o p e r t i e s = K a f k a T e s t U t i l s . senderProps (embeddedKafkaBroker .

g e t B r o k e r s A s S t r i n g ()) ;
59 s e n d e r P r o p e r t i e s . put (ProducerConfig .KEY_SERIALIZER_CLASS_CONFIG, L o n g S e r i a l i z e r . c l a s s) ;
60 s e n d e r P r o p e r t i e s . put (ProducerConfig .VALUE_SERIALIZER_CLASS_CONFIG, J s o n S e r i a l i z e r . c l a s s)

;
61
62 ProducerFactory<Long , FinalizeGameBetEvent> producerFactory = new

DefaultKafkaProducerFactory <>(s e n d e r P r o p e r t i e s) ;
63
64 s e n d er = new KafkaTemplate<>(producerFactory) ;
65 s e n d er . s e t D e f a u l t T o p i c (t o p i c) ;
66
67 Map<St r in g , Object> consumerProps = K a f k a T e s t U t i l s . consumerProps (" testGroup " , " t r u e " ,

t h i s . embeddedKafkaBroker) ;
68 consumerProps . put (ConsumerConfig .AUTO_OFFSET_RESET_CONFIG, " e a r l i e s t ") ;
69 consumerProps . put (ConsumerConfig .KEY_DESERIALIZER_CLASS_CONFIG, L o n g D e s e r i a l i z e r . c l a s s) ;
70 consumerProps . put (ConsumerConfig .VALUE_DESERIALIZER_CLASS_CONFIG, S t r i n g D e s e r i a l i z e r .

c l a s s) ;
71 ConsumerFactory<Long , FinalizeGameBetEvent> c f = new DefaultKafkaConsumerFactory <>(

consumerProps) ;
72 consumer = c f . createConsumer () ;
73 consumer . s u b s c r i b e (embeddedKafkaBroker . g e t T o p i c s ()) ;
74 }
75 }

Figure 5.6: The code used to test contracts against a provider using asyn-
chronous messaging

36

6 Analysis

This chapter aims to analyse the observations made in chapter 5 on page 27. It
will be discussed how the approach to implementing CDC testing differs from syn-
chronous messaging to asynchronous messaging. Further it will be analysed what
the current state of CDC testing with asynchronous messaging looks like and how it
could be improved. After this chapter it is clear how CDC testing differs from syn-
chronous to asynchronous messaging between services, how one can adapt to these
changes and how the asynchronous implementation could possibly be enhanced to
further resemble the fluent and seamless integration that the synchronous variant of
CDC testing using Pact represents.

6.1 Synchronous to asynchronous messaging

This section will analyse the observations made in chapter 5 on page 27 and will give
an idea on how to take these changes into account when using CDC testing with
the Pact tool in an asynchronous environment. First subsection will be focussing on
the consumer side and the second will be the provider side.

6.1.1 Consumer

We will start by looking at the consumer side of the consumer driven contract
testing. While in a synchronous environment we work with a request and response
system, in an asynchronous environment we work with a decoupled request response
scheme or a response only scheme. Imagine a provider that posts information to a
message queue as soon as its internal database changes. While we do not know how
to trigger our provider in certain cases, there are nonetheless cases where we can
easily trigger our provider. One would be using a REST interaction, but receiving
the payload via asynchronous means. Thus we do not have an expected request,
but only an expected response that we can define in our contracts.

Because of this our Pact creation/verification process on consumer side changes a
fair bit. The expected request is completely left out. Instead we will only provide
the tested provider with a string containing the title of our current interaction. E.g.

37

6 Analysis

Figure 6.1: Creating a consumer contract in an asynchronous environment. The
parts that are displayed transparently are omitted in the interaction.

just a simple name for the interaction. We also specify a provider state [var] that can
invoke a specific state on the provider side. E.g. having specific data in its database
or setting up the provider in a specific way. Examples for this can be found in 5.3
on page 31.

With all this in mind our four steps when creating a Pact contract (Enumeration
5.1.1 on page 27) condense down to only one step that is lead by the Pact framework.
We only describe the expected response in the contract. The process can be found
in figure 6.1. There is no automatic verification by the Pact tool that our consumer
understands the response correctly. It is now in the hands of the testing department
to ensure this. There is no mock provider either, as Pact does not know what
to mock. So which messaging queue to use as well as not having the capabilities
because of the aforementioned agnostic design. [var]

Further steps would be to post the defined contract interaction to the messaging
queue in use and then make sure that our consumer can correctly handle the pay-
load. This would be something that is fairly easy to implement and it would make
for a more fluent experience and would be closer to the testing that is done in a
synchronous messaging environment. This is a realization that is based on the use
of Pact tool for Java and the use of Kafka as a messaging queue. It might dif-
fer depending on which language is used and on the framework that is used for
asynchronous means of communication.

If the provider can be triggered by the consumer it would be possible for the testing
team to define such a testing pipeline that would work in more or less the same way
as for the synchronous messaging environment. The only difference would be how
the request and response work, but not in the principle of the interaction. We would
still have a request/response system as it is the case for a synchronous exchange.

38

6.1 Synchronous to asynchronous messaging

More information = better testing?

Steps that can be made to better prepare for asynchronous contract testing would
be to, in the case of using Kafka as a message queue, include the kafka-topic1 on
which the interaction should take place on. This way we have more metadata to
test with. The contract test would fail as soon as the two services communicating
would communicate on different topics. And maybe in future updates or in self-
made enhancements to the tool we can use this information to specifically test the
service on this kafka-topic. You can see this being used in line 17 in the code listing
5.3 on page 31.

Of course this has to be agreed on by the teams maintaining the affected services
as this could possibly introduce breaking changes to the contract testing if there is
testing work done on the metadata of the contract. If there is no interference there is
no reason not to include this information as it might be useful for future development
and does not add a significantly bigger workload nor a noticeable addition of storage
use. The more information one can gather in an interaction in a contract the more
secure our contract testing can be, as we have a more detailed interaction between
services; even if we don’t use all of the information.

Side by side comparison between synch and asynch

The following example will show how the synchronous and asynchronous consumer
examples look like side-by-side and analyse the differences and similarities. In figure
6.2 on the following page on the left is the synchronous consumer example (code
listing 5.2 on page 29), on the right the asynchronous consumer example (code listing
5.3 on page 31).

These examples differ in quite a few points. The most obvious to point out is that
they both use different DSLs provided by the Pact tool to create their expected
requests bodies. The synchronous example makes use of the old DSL from Pact
which has the structure of a builder and can be hard to read at times because of
the excessive nesting using closing calls like .closeObject(). The asynchronous
example makes use of the newer Pact DSL. It uses a lambda function to better in-
corporate the auto-indentation provided by IDEs. It also uses simple curly brackets
to close an object.

Further differences in this particular section of the code is obviously that they are
examples taken from different projects. While the left one uses a complex nested
structure with the Pact DSL features .minArrayLike() and .eachKeyLike(),

1The channel to which messages are posted.

39

6 Analysis

the right one uses a less complex payload in their interaction, thus only including
calls to the DSL like .numberType().

1 @ExtendWith (PactConsumerTestExt . c l a s s)
2 @PactTestFor (providerName = "

A r t i c l e s P r o v i d e r " , port = " 1234 ")
3 p u b l i c c l a s s A r t i c l e s T e s t {
4 p r i v a t e Map<S tr i ng , Str i ng > headers =

MapUtils . putAl l (new HashMap<>() , new
S t r i n g [] {

5 " Content−Type " , " a p p l i c a t i o n / j s o n "
6 }) ;
7
8 @Pact (consumer = " Artic lesConsumer ")
9 p u b l i c RequestResponsePact a r t i c l e s (

PactDslWithProvider b u i l d e r) {
10 r e t u r n b u i l d e r
11 . g iven (" A r t i c l e s e x i s t ")
12 . uponReceiving (" r e t r i e v i n g a r t i c l e

data ")
13 . path (" / a r t i c l e s . j s o n ")
14 . method ("GET")
15 . willRespondWith ()
16 . headers (headers)
17 . s t a t u s (2 0 0)
18 . body (
19 new PactDslJsonBody ()
20 . minArrayLike (" a r t i c l e s " , 1)
21 . o b j e c t (" v a r i a n t s ")
22 . eachKeyLike (" 0032 ")
23 . str ingType (" d e s c r i p t i o n "

, " sample d e s c r i p t i o n
")

24 . c l o s e O b j e c t ()
25 . c l o s e O b j e c t ()
26 . c l o s e O b j e c t ()
27 . c l o s e A r r a y ()
28)
29 . toPact () ;
30 }
31
32 @Test
33 @PactTestFor (pactMethod = " a r t i c l e s ")
34 v o i d t e s t A r t i c l e s (MockServer mockServer)

t h r o w s IOException {
35 HttpResponse httpResponse = Request . Get

(mockServer . g e t U r l () + " / a r t i c l e s .
j s o n ") . e x e c u t e () . returnResponse () ;

36 a s s e r t T h a t (httpResponse . g e t S t a t u s L i n e ()
. getStatusCode () , i s (equalTo (2 0 0)))
;

37 a s s e r t T h a t (I O U t i l s . t o S t r i n g (
httpResponse . g e t E n t i t y () . getContent
()) ,

38 i s (equalTo (" {\" a r t i c l e s \ " : [{ \ "
v a r i a n t s \ " : { \ " 0 0 3 2 \ " : { \ "
d e s c r i p t i o n \ " : \ " sample
d e s c r i p t i o n \"}}}]} "))) ;

39 }
40 }

1 @ExtendWith (PactConsumerTestExt . c l a s s)
2 @PactTestFor (providerType = ProviderType .

ASYNCH)
3 p u b l i c c l a s s IncomingMessageHandlerTest {
4
5 @Pact (p r o v i d e r = " tippabgabe " , consumer

= " tippwertung ")
6 p u b l i c MessagePact

createPactForTippabgabe (
MessagePactBuilder b u i l d e r) {

7
8 DslPart a c t u a l P a c t D s l = LambdaDsl .

newJsonBody (o −> {
9 o . numberType (" matchId " , 0L) ;

10 o . numberType (" ownerId " , 0L) ;
11 o . numberType (" hometeamScore " ,

0) ;
12 o . numberType (" f o r e i g n t e a m S c o r e "

, 0) ;
13 }) . b u i l d () . asBody () ;
14
15 Map<St r in g , Object> metadata = new

HashMap<>() ;
16 metadata . put (" Content−type " , "

a p p l i c a t i o n / j s o n ") ;
17 metadata . put (" kafka−t o p i c " , " t i p p ")

;
18
19 r e t u r n b u i l d e r . g iven (" NoDataState ")
20 . expectsToReceive (" a t e s t

message ")
21 . withMetadata (metadata)
22 . withContent (a c t u a l P a c t D s l)
23 . toPact () ;
24
25 }
26
27 @Test
28 @PactTestFor (pactMethod = "

createPactForTippabgabe ")
29 v o i d testPactForTippabgabe (MessagePact

pact) t h r o w s Exception {
30 S t r i n g expectedBody = new

ObjectMapper () . w r i t e r () . forType
(GameBetEvent . c l a s s) .
w r i t e V a l u e A s S t r i n g (new
GameBetEvent ()) ;

31 JSONAssert . a s s e r t E q u a l s (new S t r i n g (
pact . getMessages () . get (0) .
contentsAsBytes ()) ,
expectedBody , t r u e) ;

32 }
33 }

Figure 6.2: Side-by-side comparison between the synchronous (on the left) and
asynchronous (on the right) consumer implementation

Highlighted in red on the left is the omitted expected request to the provider. It is
rather short because the REST interaction is a simple GET-call, thus not transmit-
ting any extra information that could be saved in a contract, except the path that
the call is made on. There are another few changes in the first few lines, but they
are not as important as they only specify the provider name and type and alike. The
actual interaction that is saved in the contract does not contain many changes from

40

6.1 Synchronous to asynchronous messaging

the synchronous to the asynchronous implementation. So for the consumer there is
not that much change.

The last paragraph in both code examples is a unit test that tests if the generated
contract really contains the payload that we are it expecting to contain. It is impor-
tant to note that this is testing the contract generation process and is not testing
if the consumer can process the payload received from the provider correctly. In a
good test it should be tested if the consumer can actually work with the payload
so the connection between test code and live code is as close and tightly knitted
as it can be. This way we can make sure that if the test passes the code works as
well. Otherwise we would have a disconnect between the two and could receive false
negatives which we want to avoided at all costs as it lowers the confidence of our
tests.

To summarise we can observe that there are not many practical changes on the
consumer side. What is important is that we can support the provider in writing
its framework for verifying contracts by adding information like the kafka-topic in
the meta data of the contract.

6.1.2 Provider

As motivated earlier, the provider experiences the biggest change coming from using
synchronous messaging to using asynchronous messaging. This is partly because of
the agnostic design of the Pact tool on the provider side. There is no support for a
specific messaging queue like Kafka or RabbitMQ but instead a generic implemen-
tation to support interactions. This means that there is a lot more to be done before
being able to successfully use Pact on an asynchronous provider.

Figure 6.3: Verifying a provider in an asynchronous environment. The parts
that are displayed transparently are omitted in the interaction.

Another reason for the big change in provider contract testing is the absence of a
well-defined entry point for the provider. It might not be possible to obtain an entry

41

6 Analysis

point as we were able to in the synchronous implementation. We had a well defined
REST interface which made it easy to define the entry point. There are different
ways our provider could now react to changes, or, to be more precise, different ways
for our provider to be triggered to provide new information. It could, to provide a
few examples, now only post information when its database changes, from internal
influence, or could change when it detects a certain message on a kafka-topic, so an
external influence. As Pact can not possibly know which type of provider we are
using the team developing the service has to make sure that they are able to trigger
the provider. This is displayed in figure 6.3 on the previous page. The parts that
are more transparent are omitted in the contract verification process on the provider
side.

In the following paragraphs we will look at the code examples from chapter 5 on
page 27 and investigate how to incorporate asynchronous testing with Pact to make
it as powerful and easy to use as the synchronous implementation.

Side-by-side comparison

The two code examples will be stretched over multiple figures because of their size. In
code listing 6.4 on the next page and 6.6 on page 47 are boxes with numbers. These
highlight the similarities between the two and will be discussed in the following.

Box 1 is for the source of the Pacts that are going to be tested. In the synchronous
example it is a folder named ”pacts”. The asynchronous example is a little more
sophisticated as it uses a Pact broker with authentication. Here the credentials
are hardcoded, but there are different ways of authentication, including more
elegant variants through environment variables and token authentication.

Box 2 is positioned at the method that invokes the Pact tool verification process.
There is little to no difference here between the synchronous and asynchronous
example. It is possible to manipulate the various Pact tool specific objects
that are displayed in the parameters of the method.

Box 3 is at an example provider state method. Same procedure in both, the syn-
chronous and asynchronous, examples.

When we now compare the two code examples we can see that the actual code
using the Pact tool does not differ much between synchronous and asynchronous.
What does differ however is the functionality of the verification process which was
introduced earlier. We now have hardcoded a response in listing 6.5 on page 44. So
our testing code does not have any point of interaction to our life production code.
What is different as well is that we now have an entry point defined as a method that
the Pact tool calls automatically. In this case it is testTippwertung annotated

42

6.1 Synchronous to asynchronous messaging

1 @Provider (" myService ")
2 @PactFolder (" pacts ")
3 @ExtendWith (Pac tVer i f i c a t i on Invoca t i onContextProv ide r . c l a s s)
4 pub l i c c l a s s ContractTest {
5 @TestTemplate
6 void testTemplate (Pact pact , I n t e r a c t i o n i n t e r a c t i on , HttpRequest

request , Pac tVer i f i ca t i onContext context) {
7 context . v e r i f y I n t e r a c t i o n () ;
8 }
9

10 @BeforeAll
11 s t a t i c void setUpServ ice () {
12 // Set up the s e r v i c e
13 }
14
15 @State (" d e f au l t ")
16 pub l i c void toDe fau l tS ta t e () {
17 // Set up the s t a t e " d e f a u l t "
18 }
19
20 @State (va lue = " d e f au l t " , a c t i on = StateChangeAction .TEARDOWN)
21 pub l i c void t oDe fau l tS ta t eA f t e r () {
22 // Tear down the s t a t e " d e f a u l t "
23 }
24 }

1

2

3

Figure 6.4: Synchronous provider implementation with annotated numbers to
guide the reader.

with @PactVerifyProvider(”a test message”) to signal that this is the
method we want invoked when the interaction ”a test message” takes place.

To try to reach the level of integration of the synchronous implementation with the
asynchronous implementation there are a few steps necessary which we will take a
look at now.

Testing the provider more thoroughly

The asynchronous example discussed above is a shortened version of 6.6 on page 47
which combines the testing code and life production code by using Kafka. The
framed code sequences in code 6.6 on page 47 are the parts that are used to include
Kafka in the testing process. This was an effort made to try to include the actual
messaging queue into the testing and, when done right, one can trigger the provider

43

6 Analysis

1 @Provider (" t ippabgabe ")
2 @ExtendWith (Pac tVer i f i c a t i on Invoca t i onContextProv ide r . c l a s s)
3 @PactBroker (host = " l o c a l h o s t " , port = " 80 ")
4 @PactBrokerAuth (username = " pos tg r e s " , password = " password ")
5 pub l i c c l a s s OutgoingMessageHandlerJunitPactTest {
6
7 @BeforeEach
8 void be f o r e (Pac tVer i f i ca t i onContext context) {
9 context . se tTarget (new AmpqTestTarget ()) ;
10 }
11
12 @TestTemplate
13 void pactVer i f i ca t i onTestTemplate (Pac tVer i f i ca t i onContext context)

{
14 context . v e r i f y I n t e r a c t i o n () ;
15 }
16
17 @State (" NoDataState ")
18 pub l i c void invokeNoDataState () {
19 // Set up the s t a t e " NoDataState "
20 }
21
22 @PactVeri fyProvider (" a t e s t message ")
23 pub l i c St r ing testTippwertung () {
24 re turn " {\" hometeamScore \ " : 0 , \" ownerId \ " : 0 , \"

fo re ignteamScore \ " : 0 , \"matchId \ " : 0} " ;
25 }
26 }

1

2

3

Figure 6.5: Asynchronous provider implementation with annotated numbers to
guide the reader. Shortened version.

and compare the expected response just as in the synchronous example, just without
the expected request.

The box annotated with a marks the part of the Kafka code where the kafka-
topic is read from the consumer contracts. This way we can test for the kafka topic
in our contract which provides us with another layer of certainty in our test. It can be
tested if the provider and consumer communicate on the same kafka-topic, otherwise
our test would fail. This is only a suggestion as the code is not fully tested. It does
certainly work for simple examples, but further testing is advised. The method
getKafkaString() invokes the handler of the project itself (triggers it) and then
captures the sent payload from the kafka-topic. This example uses the actual testing
code as it creates an instance of the so-called OutgoingMessageHandler of the
service tippabgabe and then uses the live test code to generate the payload.

44

6.1 Synchronous to asynchronous messaging

The captured value from the kafka-topic is then used to verify the contract. This
way our testing code and live production code are intertwined in a way that allows
testing with higher confidence as we do not need to change the testing code when
our production code changes. The last box contains the method setUpKafka and
its sole purpose is to set up the EmbeddedKafkaBroker that is used in the testing
code. The Kafka sender and receiver are set up with the parsed kafka topic from
the contract.

The code for the Kafka integration takes up a lot of space and writing it can be time
intensive. This is especially bothersome if you expect the same fluent integration
and minimal effort needed as in the synchronous implementation. Ways to make this
process easier could be the refactoring of the Kafka code to another class and then
inheriting from that class if your test code allows it. A more elegant variant would
probably be to make use of annotation processing. One could write an annotation to
the class using Pact for provider verification which provides functionality of a more
fluent Kafka integration. This would reduce a lot of the boilerplate code and would
allow for faster test creation, thus being more affordable and desirable in software
projects.

One could imagine an annotation like @PactWithKafka. It could enhance the
class using the provider tests with an embeddedKafkaBroker so that one could
use it directly without all the setup as seen in the last highlighted code block.
Instead one could use the embeddedKafkaBroker directly as seen in the method
getKafkaString(). This way we could still control the use but do not have to
deal with all the setup. This would make the writing of tests less cumbersome. If
we would like to keep the flexibility of the used approach one could imagine passing
settings in the form of arguments to the annotation. So for example if we would
want to define the serializer we could just have something like
// −−snip−−
@PactWithKafka (ProducerConfig .KEY_SERIALIZER_CLASS_CONFIG =

LongSe r i a l i z e r . c l a s s)
pub l i c c l a s s OutgoingMessageHandlerJunitPactTest {
// −−snip−−

to replace a default value. This would represent the code seen in line 59 in figure
6.6 on page 47 which is setting the serializer class for the key of the Kafka sender.
With this one could imagine triggering the running provider with a special message
on a Kafka stream. What cannot be refactored to a different file is the trigger point
of the provider. This is still something that has to be handled by the team writing
the tests and it has to be handled for each case individually.

If the provider is triggered externally, by a REST request or a specific message
on a Kafka stream, it would however be possible to write a program that takes
some of the work off the team writing the tests as you could specify the Kafka

45

6 Analysis

stream in an annotation or the triggering REST request. There is a lot of potential
to make the CDC testing process for asynchronous provider less cumbersome and
easier accessible.

As it stands now this is the biggest problem with asynchronous contract testing on
the provider side: When writing a test you want to focus on writing the test, not
on completing the tool you test with.

46

6.1 Synchronous to asynchronous messaging

1 @Provider (" t ippabgabe ")
2 @ExtendWith (P a c t V e r i f i c a t i o n I n v o c a t i o n C o n t e x t P r o v i d e r . c l a s s)
3 @PactBroker (host = " l o c a l h o s t " , port = " 80 ")
4 @PactBrokerAuth (username = " p o s t g r e s " , password = " password ")
5 @ V e r i f i c a t i o n R e p o r t s ({ " c o n s o l e " , " markdown " })
6 @SpringJUnitConfig
7 @Dirt iesContext
8 @EmbeddedKafka
9 @SpringBootTest

10 p u b l i c c l a s s OutgoingMessageHandlerJunitPactTest {
11
12 @Autowired
13 p r i v a t e EmbeddedKafkaBroker embeddedKafkaBroker ;
14 p r i v a t e KafkaTemplate<Long , FinalizeGameBetEvent> s en d e r ;
15 p r i v a t e Consumer<Long , FinalizeGameBetEvent> consumer ;
16 p r i v a t e S t r i n g kafkaTopic ;
17
18 @BeforeEach
19 v o i d b e f o r e (P a c t V e r i f i c a t i o n C o n t e x t c o n t e x t) {
20 System . s e t P r o p e r t y (" pact . v e r i f i e r . p u b l i s h R e s u l t s " , " t r u e ") ;
21
22 c o n t e x t . s e t T a r g e t (new AmpqTestTarget ()) ;
23
24 S t r i n g metaData = c o n t e x t . g e t I n t e r a c t i o n () . toMap (PactSpecVersion . V3) . get (" metaData ") .

t o S t r i n g () ;
25 i n t indexOfKafkaTopic = metaData . indexOf (" kafka−t o p i c=") ;
26 kafkaTopic = metaData . s u b s t r i n g (indexOfKafkaTopic + " kafka−t o p i c=" . l e n g t h ()) ;
27 kafkaTopic = kafkaTopic . s u b s t r i n g (0 , Math . min (kafkaTopic . indexOf (" , ") , kafkaTopic .

indexOf (" } "))) ;
28 setUpKafka (kafkaTopic) ;
29 }
30
31 @TestTemplate
32 v o i d p a c t V e r i f i c a t i o n T e s t T e m p l a t e (P a c t V e r i f i c a t i o n C o n t e x t c o n t e x t) {
33 c o n t e x t . v e r i f y I n t e r a c t i o n () ;
34 }
35
36 @State (" NoDataState ")
37 p u b l i c v o i d invokeNoDataState () { System . out . p r i n t l n (" NoDataState was c a l l e d ") ; }
38
39 @PactVeri fyProvider (" a t e s t message ")
40 p u b l i c S t r i n g testTippwertung () {
41 r e t u r n g e t K a f k a S t r i n g () ;
42 }
43
44 p u b l i c S t r i n g g e t K a f k a S t r i n g () {
45 OutgoingMessageHandler handler = new OutgoingMessageHandler (s en d e r) ;
46 handler . handle (new FinalizeGameBetEvent (0 , 0 , 0 , 0)) ;
47
48 embeddedKafkaBroker . consumeFromAllEmbeddedTopics (consumer) ;
49
50 ConsumerRecord<Long , FinalizeGameBetEvent> r e c e i v e d = K a f k a T e s t U t i l s . g e t S i n g l e R e c o r d (

consumer , kafkaTopic) ;
51
52 r e t u r n S t r i n g . valueOf (r e c e i v e d . value ()) ;
53 }
54
55 p u b l i c v o i d setUpKafka (S t r i n g t o p i c) {
56 embeddedKafkaBroker . addTopics (t o p i c) ;
57
58 Map<St r in g , Object> s e n d e r P r o p e r t i e s = K a f k a T e s t U t i l s . senderProps (embeddedKafkaBroker .

g e t B r o k e r s A s S t r i n g ()) ;
59 s e n d e r P r o p e r t i e s . put (ProducerConfig .KEY_SERIALIZER_CLASS_CONFIG, L o n g S e r i a l i z e r . c l a s s) ;
60 s e n d e r P r o p e r t i e s . put (ProducerConfig .VALUE_SERIALIZER_CLASS_CONFIG, J s o n S e r i a l i z e r . c l a s s)

;
61
62 ProducerFactory<Long , FinalizeGameBetEvent> producerFactory = new

DefaultKafkaProducerFactory <>(s e n d e r P r o p e r t i e s) ;
63
64 s e n d er = new KafkaTemplate<>(producerFactory) ;
65 s e n d er . s e t D e f a u l t T o p i c (t o p i c) ;
66
67 Map<St r in g , Object> consumerProps = K a f k a T e s t U t i l s . consumerProps (" testGroup " , " t r u e " ,

t h i s . embeddedKafkaBroker) ;
68 consumerProps . put (ConsumerConfig .AUTO_OFFSET_RESET_CONFIG, " e a r l i e s t ") ;
69 consumerProps . put (ConsumerConfig .KEY_DESERIALIZER_CLASS_CONFIG, L o n g D e s e r i a l i z e r . c l a s s) ;
70 consumerProps . put (ConsumerConfig .VALUE_DESERIALIZER_CLASS_CONFIG, S t r i n g D e s e r i a l i z e r .

c l a s s) ;
71 ConsumerFactory<Long , FinalizeGameBetEvent> c f = new DefaultKafkaConsumerFactory <>(

consumerProps) ;
72 consumer = c f . createConsumer () ;
73 consumer . s u b s c r i b e (embeddedKafkaBroker . g e t T o p i c s ()) ;
74 }
75 }

1

2
3

a

Figure 6.6: Asynchronous provider implementation with annotated numbers to
guide the reader. Framed with a box in the source code are parts that are needed
for the Kafka integration. 47

6 Analysis

6.2 Future work

This section aims to explore the possibilities of further research in the field that this
thesis includes. This can be based on this thesis, but is not limited to. There are
two main sections that can be explored. One is independent from the CDC testing
tool, focussing on the effects that using CDC testing has on the project it is used
on, and the other is highly dependent on the currently available tools, exploring how
one can further enhance the testing workflow with them.

CDC testing

An interesting field of research would be the exploration and gathering of metrics
concerning CDC testing. This could be a comparison between a sample project with
and without CDC testing in a microservice architecture.

Can we replace end-to-end tests with detailed CDC tests? What kind of perfor-
mance gain can we observe when deploying CDC testing? Can this gain be generified
and/or captured with some mathematical approximation? Furthermore it would be
interesting how many resources have to be expended to implement CDC testing in
a project. A cost benefit analysis could be of interest here. Another very interesting
aspect would be the experiences made in the industry. A survey might offer inter-
esting insights into the current distribution of CDC testing as there are little to no
statistics available.

Regarding the testing tools

What definitely needs to be explored are the possibilities of implementing specific
messaging queue support to Pact for JVM based languages, or other languages
for that matter, as the effort needed to implement asynchronous CDC testing is
much higher than the implementation process for the synchronous counterpart. The
development of an addon implementing/enhancing the suggestions made in this
thesis would be of interest. Can a point in implementation be reached where the
asynchronous approach is as comfortable to use as the synchronous approach, thus
reducing the initial hurdle of asynchronous CDC testing. Another interesting aspect
would be the evaluation of the Pact tool itself.

A different approach, regarding JVM-based languages, would be to combine Pact
and Spring Cloud Contract, as the latter already has support for specific messaging
queues. As already mentioned there exist tools which are used to exchange contracts
between the two. An interesting inquiry would be if we lose information in either

48

6.2 Future work

direction of the conversion and if it would affect our workflow negatively or at all.
Can one, combining the two tools, create a workflow that is as comfortable to use
as the synchronous approach only using Pact?

So important aspects to enhance the experience of asynchronous provider testing
would be either the development of an addon that adds specific messaging queue
implementations to Pact, or a synergy of Pact and Spring Cloud Contract working
together to create a good workflow of CDC testing.

49

7 Summary

This summary will be based on the initial questions asked in the introduction as
those are the main results of this thesis. For each question there will be a reference
to the chapter or section where the question was answered.

1. What is CDC testing and why do we need it in the context of microservice
architecture?

CDC testing is way of formally defining contracts for the specific format of an
interaction between two services sharing information. These contracts get generated
by the consumer. The provider then takes this contracts and verifies itself with the
provided information. (chapter 3 on page 13)

The reason this specific testing approach gets more important in the context of
microservices is the sheer amount of interactions and interfaces between these ser-
vices. While it was easily manageable in a monolithic architecture it can get quite
overwhelming in a microservice architecture. The amount of interactions ramps up
the quantity and complexity of the end-to-end tests that are used and can easily
bloat your testing procedure and make it be very time-consuming. By having the
consumer define these tests the testing team of a provider can focus on writing the
service and the testing can be done mostly automatic. Furthermore the CDC tests
can be run before the costly end-to-end tests and provide an earlier feedback whether
or not an interface or an interaction with a service is broken without needing to start
up the other service. (section 2.4 on page 9)

2. What are the differences between synchronous and asynchronous CDC testing?

The biggest difference between synchronous and asynchronous CDC testing is that
the defined contracts change. Whilst there was both, an expected request and
an expected response in the synchronous one, the expected request is completely
omitted in the asynchronous contract. (chapter 3 on page 13)

This is because of the structure of an asynchronous exchange which really is not an
exchange but a one-way interaction. The provider usually posts a notification/item
containing new changes whenever an internal database changes. Other ways a
provider could be triggered would include a request via REST without awaiting
a result or posting a message to a messaging queue that the provider has subscribed

51

7 Summary

to. Because of this we cannot assume a default implementation as it was the case
with a REST interface. (section 6 on page 37)

3. What tools are there to provide CDC testing capabilities for asynchronous
communication between microservices?

There is a very limited selection of tools. Most noticeably are the open source ”Pact”
tool and the open source tool ”Spring Cloud Contract”. The Pact team even offers
a platform to share the generated contracts between consumer and provider; the so
called Pact broker. (4.2 on page 24)

4. Why do we use the Pact tool to provide CDC testing?

The two tools that were mentioned have a very different approach to contract testing
as Pact lets the consumers define their contracts programmatically and Spring Cloud
Contract works by having both parties (consumer and provider) agree to an already
defined contract which they can test against. Spring Cloud Contract also only
supports JVM-based languages whilst Pact supports a wide variety of languages.
Pact also supports the idea of consumer-driven contract tests better. (section 4.2
on page 24)

5. How can we use this tool for CDC testing in an asynchronous environment and
how does it differ from being used with synchronous communication between
microservices?

In an effort to get the asynchronous workflow to the same level of usability as the
synchronous implementation, it was tried to integrate the specific message queue in
use (in this case Kafka) into the contract verification process of the provider. This
is rather cumbersome as the team writing the tests has to focus on enhancing the
tool to fit its needs instead of focussing on writing the tests. Pact does not offer
support for specific messaging queues but instead a generic approach to messaging
queues. (chapter 5 on page 27)

To make this easier in the future one could refactor the Kafka specific code into
another class or have it be used via annotation processing. This way the workflow
of creating contract verification tests for the provider could get easier. Another
way would be to combine the capabilities of the two showcased tools as they are
compatible in a limited way. Spring Cloud Contract offers specific integrations for
messaging queues in Java. (chapter 6 on page 37)

52

List of Figures

2.1 Testing pyramid . 9

3.1 Synchronous communication between microservices 16
3.2 The response body of the provider in JSON format. 17
3.3 Part of a generated Pact file . 18
3.4 Asynchronous communication between microservices 19

4.1 The example project with the relations between the three microservices. 23

5.1 The Pact creation/verification process described by the official docu-
mentation of Pact[var] . 28

5.2 Contract generating code on the synchronous consumer side 29
5.3 Contract generating code on the asynchronous consumer side 31
5.4 The verification process on provider side as stated in the Pact docu-

mentation [var] . 33
5.5 The code used to test contracts against a provider using synchronous

messaging . 34
5.6 The code used to test contracts against a provider using asynchronous

messaging . 36

6.1 Creating a consumer contract in an asynchronous environment. The
parts that are displayed transparently are omitted in the interaction. 38

6.2 Side-by-side comparison between the synchronous (on the left) and
asynchronous (on the right) consumer implementation 40

6.3 Verifying a provider in an asynchronous environment. The parts that
are displayed transparently are omitted in the interaction. 41

6.4 Synchronous provider implementation with annotated numbers to
guide the reader. 43

6.5 Asynchronous provider implementation with annotated numbers to
guide the reader. Shortened version. 44

6.6 Asynchronous provider implementation with annotated numbers to
guide the reader. Framed with a box in the source code are parts
that are needed for the Kafka integration. 47

53

List of Tables

2.1 Monoliths compared to microservices 5

55

Listings

Synchronous consumer . 29
Asynchronous consumer . 31
Synchronous provider . 34
Asynchronous provider . 36

Side by side – Synchronous consumer . 40
Side by side – Asynchronous consumer . 40
Side by side – Synchronous provider . 43
Side by side – Asynchronous provider (shortened) 44
Side by side – Asynchronous provider (full) 47

57

Abbreviations

CDC Consumer-driven contract
AMQP Advanced Message Queuing Protocol
CI Continuous Integration
REST Representational State Transfer

59

Bibliography

[CDT18] Cerny, Tomas ; Donahoo, Michael J. ; Trnka, Michal: Contex-
tual Understanding of Microservice Architecture: Current and Future Di-
rections. In: SIGAPP Appl. Comput. Rev. 17 (2018), Januar, Nr. 4,
29–45. http://dx.doi.org/10.1145/3183628.3183631. – DOI
10.1145/3183628.3183631. – ISSN 1559–6915

[Cle14] Clemson, Toby: Testing Strategies in a Microservice Architec-
ture. https://martinfowler.com/articles/microservice-
testing. Version:Nov 2014. – Accessed: 2019-06-17

[Coh09] Cohn, Mike: Succeeding with Agile: Software Development Using
Scrum. 1st. Addison-Wesley Professional, 2009. – ISBN 0321579364,
9780321579362

[ECM13] ECMA-404, Standard: The JSON data interchange format. (2013)

[JL14] James Lewis, Martin F.: Microservices. https://www.
martinfowler.com/articles/microservices.html.
Version:March 2014. – Accessed: 2019-10-16

[LMM19] Lehvä, Jyri ; Mäkitalo, Niko ; Mikkonen, Tommi: Consumer-
Driven Contract Tests for Microservices: A Case Study. In: Franch,
Xavier (Hrsg.) ; Männistö, Tomi (Hrsg.) ; Martínez-Fernández, Sil-
verio (Hrsg.): Product-Focused Software Process Improvement. Cham :
Springer International Publishing, 2019. – ISBN 978–3–030–35333–9, S.
497–512

[New15] Newman, Sam: Building microservices: designing fine-grained systems.
O’Reilly Media, Inc., 2015

[O’R17] O’Regan, Gerard: Concise guide to software engineering. Springer, 2017

[Rop16] Roper, James: Rethinking REST in a Microservice world. Recorded
talk uploaded to youtube.com. https://youtu.be/NMmKSC794vo.
Version: 2016. – Accessed: 2019-08-12

[Sel18] Selleby, Fredrik: Creating a Framework for Consumer-Driven Contract
Testing of Java APIs. 2018

61

http://dx.doi.org/10.1145/3183628.3183631
https://martinfowler.com/articles/microservice-testing
https://martinfowler.com/articles/microservice-testing
https://www.martinfowler.com/articles/microservices.html
https://www.martinfowler.com/articles/microservices.html
https://youtu.be/NMmKSC794vo

Bibliography

[var] various: Pact documentation. git repository. http://docs.pact.io.
– Accessed: 2019-08-14

62

http://docs.pact.io

	Abstract
	Kurzfassung
	Table of contents
	Introduction
	Preliminaries
	Microservices
	Monoliths and Microservices side by side
	Agile Development, Connection to microservices
	Testing

	Consumer-driven contract testing
	CDCs with synchronous communication
	Consumer
	Provider

	CDCs with asynchronous communication
	Consumer
	Provider

	Tools used
	The example project: Tippkick
	CDC testing tools and why Pact was chosen
	CDC testing tools
	Pact

	Observations
	Consumer
	Synchronous
	Asynchronous

	Provider
	Synchronous
	Asynchronous

	Analysis
	Synchronous to asynchronous messaging
	Consumer
	Provider

	Future work

	Summary
	List of figures
	List of figures
	List of tables
	List of tables
	List of code listings
	List of listings
	Abbreviations
	Bibliography
	Literature

