
Stream-Based Verification with JUnit

Strombasierte Verifikation mit JUnit

Masterarbeit

Im Rahmen des Studiengangs
Informatik
der Universität zu Lübeck

Vorgelegt von
Denis-Michael Lux

Ausgegeben und betreut von
Prof. Dr. Martin Leucker

mit Unterstützung von
Malte Schmitz, M.Sc.

Dipl.-Inf. DanielThoma

Lübeck, den 14. Juni 2019

Selbstständigkeitserklärung

DerVerfasser versichert anEides statt, dass er die vorliegendeArbeit selbständig, ohne fremde
Hilfe und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt hat.

Die aus fremden Quellen (einschließlich elektronischer Quellen) direkt oder indirekt über-
nommenen Gedanken sind ausnahmslos als solche kenntlich gemacht. Die Arbeit ist in gle-
icher oder ähnlicher Form oder auszugsweise im Rahmen einer anderen Prüfung noch nicht
vorgelegt worden.

Ort/Datum Unterschrift des Verfassers

Contents

Introduction 1

1 Unit Testing and Mocking in JUnit 3

1.1 Unit Testing . 4

1.2 The JUnit Testing Framework . 4

1.3 Assertions . 8

1.4 Mocks and Stubs . 10

2 Stream Runtime Verification 13

2.1 Runtime Verfication . 13

2.2 Stream Processing . 14

2.3 Temporal Stream-based Specification Language (TeSSLa) 20

3 TeSSLa-Based Monitoring and Mocking in JUnit 25

3.1 Application Code Instrumentation . 25

3.2 Monitors for Test Cases and Test Suites . 28

3.3 Class and Interface Mocks . 33

4 The JUnitSRV Framework 37

4.1 The jUnitRV Library . 37

4.2 TeSSLa-Based Monitors . 43

4.3 The JUnit Platform . 48

4.4 The SRVTestEngine . 51

4.5 TeSSLa-Based Mock Objects . 54

5 Case Study 61

5.1 The ATM Example . 61

5.2 The Data Service Example . 64

5.3 The Autonomous Robot Example . 68

6 Discussion and Conclusion 73

List of Abbreviations 75

List of Listings 77

List of Figures 79

References 81

Abstract

In this thesis a concept and the associated implementation of a JUnit 5 test engine is pre-
sented and explained, which integrates the testing framework JUnit, the JUnit runtime
verification library jUnitRV, the stream runtime verification tool TeSSLa and amocking
framework adapted to these tools. An integration of these tools has the advantage that
by simultaneously executing and monitoring test cases, the respective specification can
not only be used for verification, but can also influence the execution of the applica-
tion code as a disruptive factor in order to investigate additional aspects of the tested
software. This integration paves the way for monitoring traditional unit tests during
their execution using monitors synthesized from LTL or TeSSLa specifications and si-
multaneously influencing application code execution using mock objects connected to
these monitors. On the one hand the strengths of LTL and TeSSLa based verification
can be combined and on the other hand existing JUnit test cases can retrospectively be
monitored and influenced by monitors with little effort.

Zusammenfassung

In dieser Abschlussarbeit wird ein Konzept und die dazugehörige Implementierung
einer JUnit 5 Test-Engine, welche das Testing-Framework JUnit, die JUnit Runtime Ve-
rification Library jUnitRV, das Stream Runtime Verification Werkzeug TeSSLa und ein
auf dieseWerkzeuge abgestimmtesMocking-Frameworkmiteinander vereint, dargelegt
und erklärt. Eine Integration der genannten Werkzeuge bringt den Vorteil mit sich,
dass durch die gleichzeitige Ausführung und Überwachung von Testfällen die jeweilige
Spezifikation nicht nur zur Verifikation dient, sondern daneben auch die Ausführung
des Anwendungscodes als Störfaktor beeinflussen kann, um so zusätzliche Aspekte der
getesteten Software untersuchen zu können. Dies öffnet die Türen dafür, herkömmliche
Unit-Tests während der Ausführung mittels Monitoren, die aus LTL oder TeSSLa Spe-
zifikationen synthetisiert werden, zu überwachen und gleichzeitig mittels diesen Moni-
toren verknüpften Mock-Objekten Einfluss auf die Ausführung des Anwendungscodes
zu haben. Dadurch lassen sich zum einen die Stärken von LTL und TeSSLa basierter Ve-
rifikation vereinen und zum anderen können bestehende JUnit Testfälle mit geringem
Aufwand nachträglich durch Monitore überwacht und beeinflusst werden.

1

Introduction

Software systems are becoming an increasingly important part of everyday life. Especially in
embedded systems, software ensures that entire systems in areas such as aerospace, medicine
and automotive work in a controlled and reliable manner. A very important aspect in the
planning and commissioning of such systems is functional safety. Particularly, in system
development according to the international standard IEC 61508 the use of unit testing is
indispensable, but also techniques as runtime verification (RV) in conjunction with unit test-
ing can be a reasonable alternative to conventional verification techniques like model check-
ing [CGP99] and theorem proving [BC10].

As mentioned by [Mye11], the rule of thumb in software engineering is that in a typical pro-
gramming project about 50 percent of the time elapsed and more than 50 percent of the
total cost is spent on testing the developed program or system. Examples such as the Therac
25 incidents [LT93], where patients were harmed or died due to radiation overdoses, or the
Pentium FDIV bug [Pra95], where missing values in a look-up table led to incorrect floating-
point division results, show that testing in software engineering is essential to ensure the
reliability of programs or systems and to avoid unexpected costs. The high investment of
time and resources for testing requires the use of appropriate testing techniques during de-
velopment. The RV technique mentioned above complements traditional techniques such
as testing. The difference to other verification approaches is that RV, as the name suggests,
is performed during the runtime and can therefore react to incorrect software behavior on
detection. Both the testing and the RV technique are equally powerful and thus allow the
mutual exchange, but both techniques have different strengths. Checking the behavior of
components, for example, is easier with RV, while the use of unit testing to check the system
state is less complicated. Thus, to make a selection of verification techniques for a software
project, the respective tools as well as their interfaces, their performance, their properties
and their compatibility with other tools must be considered. Another important aspect is
that RV and unit testing can be performed simultaneously and independently. The consid-
eration of this aspect in the design and implementation of RV and unit testing frameworks
allows a simple monitoring of existing test cases with the help of RV, whereas a test case to
be monitored can easily be executed as a simple test case. The main objective of this thesis
is to integrate the JUnit Testing-Framework, the RV library jUnitRV, the stream runtime ver-
ification (SRV) tools related to the Temporal Stream-based Specification Language (TeSSLa)
and a mocking framework tailored to these tools, into a JUnit testing framework, which can
be used in conjunction with the conventional JUnit 5 testing frameworks.

The following chapters introduce the new testing framework JUnitSRV. During design and
implementation, it is taken into account how unit testing is generally practiced and how the

2 Introduction

TeSSLa specification language works. Therefore, in chapter 1 testing, in particular unit test-
ing and related techniques such as assertions, mock objects and stubs will first be explained
and discussed. Chapter 2 then introduces the SRV language TeSSLa, starting with a general
explanation of RV. Then, SRV in the form of TeSSLa is presented using examples. The in-
sights from chapters 1 and 2 are used in chapter 3 to explain the concepts for implementing
the JUnitSRV framework. Chapter 4 discusses the most important aspects of implementing
these concepts. Therefore, the jUnitRV library is introduced first. The jUnitRV library was
developed for the JUnit 4 framework, which was the latest version at the time of deployment.
However, because the JUnitSRV framework is designed for the latest features of JUnit, it is
based on JUnit 5. The architecture of JUnit was completely revised between versions 4 and
5. One of the challenges in the development of JUnitSRV is therefore the retention of the
functions of the jUnitRV library. In order to extend the JUnit 5 infrastructure, it is necessary
to provide a custom test engine. This test engine uses the jUnitRV library for code instrumen-
tation. A new monitor type for the TeSSLa specifications is also designed and implemented.
One of the biggest features of JUnitSRV is a lightweightmocking framework. By using the ex-
ternal library Javassist, JUnitSRV is able to create mock objects at runtime by creating classes
as bytecode on the fly, which are then passed directly to the java virtual machine (JVM) when
needed. The difference between conventionalmocking frameworks such asMockito [Moc19]
and the built-in JUnitSRVmocking framework is the ability to configure the behavior of these
mock objects via a TeSSLa monitor. Chapter 5 gives code examples for three scenarios. Each
scenario highlights one of the main features of the JUnitSRV framework.

⋆ ⋆ ⋆ ⋆ ⋆

I would like to thank my supervisor Prof. Dr. Martin Leucker for the opportunity to write
this thesis at the Institute for Software Engineering and Programming Languages. Another
special thanks goes to Daniel Thoma for the supportive discussions about the implementa-
tion that emerged from this work. I would also like to thank Malte Schmitz for his efforts
in reading this thesis and making many helpful comments. Without the many comments of
my supervisors, the thesis today would not look the way it does.

At this point I would also like to thank my family and the Brauer family for their support
during my studies. My special thanks go to Susan Brauer, who supported me personally and
financially especially during the last months of my studies and especially in the completion
of this thesis. Without her support, this thesis would probably never have come about.

3

1 Unit Testing and Mocking in JUnit

In software development, testing large programs with many instructions and many classes
can be a challenge. The unit testing [Mye11] technique presented in this chapter is a strat-
egy for overcoming this problem. It examines the behavior of individual components, also
referred to as units of a system. The following sections cover unit testing and other related
techniques such as assertions, mock objects, and stubs. In addition, the JUnit framework is
introduced to show how these techniques can be implemented and applied in the context
of Java. The methods in the following sections are illustrated by small listings that refer to a
working example composed of the three units presented in listing 1.1.

public interface Account {
int getBalanceInCents();
void setBalance(int cents);
String getName();
String getEMail();
String getPhoneNumber();

}

public interface ATM {
void withdraw(int cents, Account account) throws NotEnoughMoneyException;
void deposit(int cents, Account account);

}

public interface NotificationService {
void send(String message, Account account);

}

Listing 1.1: An example application that is comprised of the three modules Account, ATM and
NotificationService. The Account is the technical implementation on the server side that stores customer
information such as balance, customer id, e-mail address and phone number. The ATM is the device with
which a customer can change his balance by withdrawing and depositing cash. The NotificationService
is responsible for informing customers of any withdrawal or deposit of money on their Account.

All interfaces listed in listing 1.1 are modules or units of the application they form. Accord-
ing to the Dependency-Inversion Principle (DIP) reintroduced by [Mar03], these modules
are defined as interfaces to separate implementation details from abstractions. This separa-
tion decouples high-level implementations from low-level details, increasing code reusabil-
ity and facilitating unit testing. The example is a simplified model of a financial institution
consisting of the three modules Account, ATM and NotificationService. The Account is
the implementation of a server-side object that stores customer information such as balance,
customer id, email address, and phone number. The ATM is the device that allows customers
to change their balance on the corresponding account object by withdrawing and depositing
cash. NotificationService is a service that notifies customers each time money is with-
drawn or deposited to the appropriate account. Because the NotificationService object
receives an Account instance, it has access to the customer’s email address or phone number
and can decide what type of notification to perform. This service can, for example, send noti-

4 Unit Testing and Mocking in JUnit

fications by SMS or e-mail or not send notifications at all. In the following sections, concrete
implementations for these interfaces are presented if required.

1.1 Unit Testing

There are many techniques for testing software, including load testing [Jia15], which gener-
ally evaluates the system under load; performance testing [Mol09], which focuses on meeting
non-functional requirements such as required response times and expected user numbers;
conformance testing [TKS03], which focuses on determining whether an application under
test conforms to its protocol specification; and acceptance testing [Mye11], where the cus-
tomer of the program determines whether the program meets the original requirements by
comparing both. The purpose of all these testing strategies is to demonstrate that the pro-
gram or system is not in compliance with its specification and is therefore behaving incor-
rectly. One of the most common testing methods in software development is unit testing,
also called module testing [Mye11]. Unit testing compares the behavior of the unit or mod-
ule with the functional or interface specification by which it is defined. As [Mye11] explains,
unit testing is the process of testing individual subroutines, classes, or procedures of the pro-
gram. This means that the program is not tested as a whole, but the test concentrates on the
smaller components of the program. After testing these building blocks, individual units de-
pendent on them can be tested, which is also referred to as integration testing or interaction
testing [MS01]. In object-oriented programming (OOP), a unit can be either a single method,
a class, or even a subsystem. In [Lin05] a unit is described as a natural abstraction unit, i.e.
the class or its instantiated form: the object. In the following, the currently tested unit is
referred to as the system under test (SUT) [PL05]. As mentioned by [Mye11], the motivation
of unit testing is to facilitate the task of debugging, since errors that occur during testing
are known to be present in the tested unit. In addition, [Mye11] mentions that unit testing
provides the ability to test modules in parallel, thereby increasing performance.

In the following sections, the words test case and test suite are often used in the context of unit
testing. According to the definitions of [PL05], a test case is a structure of input and expected
output behavior, while a test suite is a set of test cases. Test suites can include assumptions
about the environment and configuration of the SUT, among other aspects.

1.2 The JUnit Testing Framework

The testing framework used in the following sections and chapters is an open source testing
framework for automated object-oriented unit testing in Java and is known as JUnit1. The
JUnit 4 framework was first developed by Kent Beck and Erich Gamma and is now being

1https://junit.org/junit5/

https://junit.org/junit5/

The JUnit Testing Framework 5

further developed as a SourceForge2 project. As explained by [Lin05; Lin17], one of the JUnit
5 developers, the JUnit framework is from a historical point of view a descendant of SUnit,
a similar framework for Smalltalk. In 2009, the latest version of JUnit 4 (4.7) was released,
which was replaced by JUnit 5 (5.0.0) in 2017. During the development of JUnit 5, the entire
JUnit 4 architecture was revised and rebuilt with a view to greater flexibility and the provision
of Java 8 language features. The main objectives of the design were to separate the aspects
of JUnit as a tool and JUnit as a platform. In addition, JUnit 4 and 5 should coexist and run
simultaneously to facilitate test migration. Finally, JUnit 5 should be freely combinable with
other frameworks and extendable by custom testing frameworks.

In the following, unit testing is presented using a practical example with JUnit 5. For this
purpose, an implementation of the ATM interface shown in listing 1.1 is used. Listing 1.2
describes the implementation of an off-site ATM. The NotificationService, which informs
customers about withdrawals and deposits on their accounts, is passed as a parameter to its
constructor and thus created outside this class.

public class OffSiteATM implements ATM {
public NotificationService service;

public OffSiteATM(NotificationService service) {
this.service = service;

}

public void withdraw(int cents, Account account) throws NotEnoughMoneyException {
if (cents <= 0 || account == null) throw new IllegalArgumentException();
if (account.getBalanceInCents() < cents) throw new NotEnoughMoneyException();
account.setBalance(account.getBalanceInCents() - cents);
service.send("Balance decreased by " + (cents/100.0) + " EUR", account);

}

public void deposit(int cents, Account account) {
if (cents <= 0 || account == null) throw new IllegalArgumentException();
account.setBalance(account.getBalanceInCents() + cents);
service.send("Balance increased by " + (cents/100.0) + " EUR", account);

}
}

Listing 1.2: An implementation for the ATM interface. OffSiteATM uses a NotificationService to inform
customers about transactions. The OffSiteATM.withdrawmethod checks whether there is enough balance
on the existing account to withdraw the specified amount of money. It then reduces the balance by the
amountwithdrawn and finally informs the customer of the change. With the OffSiteATM.depositemethod,
the balance is increased by the specified amount and finally the customer is informed about the change.

A brief description of the SUT, i.e. the implementation described in listing 1.2, is as follows:
the ATM’s task is to store transactions for customers on their account. On the physical device,
the customer enters the amount of money he wants to withdraw. This transaction is then
applied by the ATM object to the corresponding account instance. If there is not enough
money on the account, the ATM displays a message to the user. When depositing money,
the user gives cash to the device, which then stores the amount on the appropriate account

2https://sourceforge.net

https://sourceforge.net

6 Unit Testing and Mocking in JUnit

instance. The customer should not be able to enter negative numbers at the ATM. For each
transaction, the NotificationService should send a notification of the transaction to the
customer.

Two types of information are required to design test cases: a specification for the unit being
tested and the source code of that unit [Mye11]. The specification is usually a description of
the input and output parameters of the unit and its function, similar to the above specifica-
tion.

@DisplayName("Test Suite: OffSiteATM")
@TestInstance(Lifecycle.PER_CLASS)
class OffSiteATMTest {

private NotificationService service;
private Account account;
private OffSiteATM atm;

@BeforeAll // setup phase
void setUpBeforeAll() {

service = new SMSNotificationService();
}

@BeforeEach // setup phase
void setUpBeforeEach() {

account = new PrivateCustomerAccount();
atm = new OffSiteATM(service);

}

@Test
void testDeposit() {

// exercise phase
atm.deposit(1050, account);
// verification phase
assertEquals(1050, account.getBalanceInCents());

}

@Test
void testDepositNegative() {

assertThrows(IllegalArgumentException.class, () -> atm.deposit(-100, account));
assertEquals(0, account.getBalanceInCents());

}
}

Listing1.3: AJUnit 5 test class for the OffSiteATM class. The @DisplayName annotation sets a customname for
the class in the summary of test results. All test cases share the instance variables service, account and atm.
The method annotated with @BeforeAll is executed once before all test cases are executed. The method
annotatedwith @BeforeEach is executed once before each test case. Methods annotatedwith @Test are test
cases.

Listing 1.3 illustrates a JUnit test class that is responsible, as the name suggests, for test-
ing the OffSiteATM class. This test class contains two test cases intended to test the
OffSiteATM.deposit method. A JUnit test is defined as a regular non-private Java class
that can contain test cases. According to [JUn19a], a test case is a non-private, non-abstract
instance method that returns no value and is directly annotated or meta-annotated with
@Test, @RepeatedTest, @ParameterizedTest, @TestFactory, or @TestTemplate. A JU-

The JUnit Testing Framework 7

nit test typically runs through a four-phase sequence: setup, exercise, verify, and tear-
down [Fow07]. In listing 1.3, the two methods OffSiteATMTest.setUpBeforeAll and
OffSiteATMTest.setUpBeforeEach belong to the setup phase. The setup can partly be
done in these methods or in the test cases themselves. However, by using the methods
annotated with @BeforeAll and @BeforeEach, the code duplication for constructing the
SUT can be reduced, making the test cases simpler. During the setup phase, the SUT
is set to a predefined initial state by creating all collaborator objects [Fow07] on which
the SUT depends, such as the Account and NotificationService objects, and connect-
ing them to the SUT. Methods annotated with @BeforeAll are executed once before
any test case is executed. By default, the test class is reinstantiated for each test case.
Therefore, the method annotated with @BeforeAll must be static. However, annotating
OffSiteATMTest with @TestInstance(Lifecycle.PER_CLASS) configures the JUnit frame-
work to instantiate the test class only once to execute all its test cases, so methods annotated
with @BeforeAll do not need to be static. Assuming the NotificationService is stateless,
it can be instantiated once and then used in each test case, allowing it to be instantiated in the
OffSiteATMTest.setUpBeforeAll method. Methods annotated with @BeforeEach are exe-
cuted before each test case. In the example, this method is used to create a new OffSiteATM

instance for each test case. The test case can then perform the tested task on the new instance
without worrying about side effects. Next, calling atm.deposit in both test methods is the
exercise phase. In this phase, the SUT performs the task to be tested. The assert statements
represent the verification phase. In the verification phase, the test case checks whether the
task performed worked correctly. Finally, the teardown phase is responsible for the clean-up
work. In JUnit, methods annotated with @AfterAll and @AfterEach are part of the tear-
down phase. Similar to the @BeforeAll and @BeforeEach counterparts, these methods are
executed after one or all test cases are executed. There is no explicit teardown phase in list-
ing 1.3 because the garbage collector implicitly performs the teardown process. Methods
that are not annotated are ignored by JUnit, but can be used as auxiliary methods for test
cases.

@DisplayName("Test Suite: OffSiteATM")
class OffSiteATMTest {

@Nested
class DepositTests {

@Test
void test() {

Account account = new PrivateCustomerAccount();
new OffSiteATM(new SMSNotificationService()).deposit(1000, account);
assertEquals(1000, account.getBalanceInCents());

}
}

}

Listing1.4: Anexampleof anested test class in JUnit 5. The DepositTests test suite is definedas a subsuiteof
the OffSiteATMTest class and contains a single test case. Nested classes allow developers to logically group
test cases. In this example all test cases concerning OffSiteATM.deposit are bundled in DepositTests.

8 Unit Testing and Mocking in JUnit

In the context of unit testing, test suites are also important to give test cases a structure. This
structure usually comes from the units or properties to be tested. Test suites are basically
classes in the context of JUnit because they bundle test cases. In addition to the test classes,
JUnit offers the @Nested Annotation with which test cases can be logically grouped within
test classes. Listing 1.4 is an example of such a nested class. If the higher-level class, in this
example OffSiteATM, contains @BeforeAll and @BeforeEachmethods, they are also applied
to the test cases of the nested classes.

1.3 Assertions

In the JUnit framework, assertions are static auxiliary methods that support the assertion of
conditions during the verification phase and are accessible via the Assertions class. Asser-
tions are used to define constraints for the SUT. These constraints pass if the condition is
met, or fail if the condition is violated. In general, the constraints for the SUT are derived
from its specification and formulated either as a boolean expression or in the form of two
objects. One object defines the expected value, while the other object represents the actual
value. Either the boolean constraint or the pair of actual and expected objects are passed to
one of the static assertion methods in the Assertions class for evaluation. A failed assertion
indicates that the SUT is not acting as required by the specification. If an assertion method
fails, an AssertionFailedError exception with detailed information is thrown and further
execution of the test case is aborted.

@DisplayName("Test Suite: OffSiteATM")
class OffSiteATMTest {

@Test
void test() {

Account account = new PrivateCustomerAccount();
OffSiteATM atm = new OffSiteATM(new SMSNotificationService());
atm.deposit(1000, account);
assertEquals(1000, account.getBalanceInCents(), "Balance is not correct");

}
}

Listing 1.5: An example for Assertions.assertEquals. The first parameter is the expected value, which is
1000. The second parameter is the actual value provided by Account.getBalance. If the assertion fails, the
message is passed as a third parameter.

The examples in this section illustrate various assertion methods provided by the JUnit 5
Assertions class. Most assertion methods follow the same pattern. The first parameter is
the expected value as an object and the second parameter is the current value as an object.
Both objects are compared with the Object.compareTo method. If the passed objects are
primitive types, they are compared directly with the compare operator. Complex objects
are compared using the Object.equalsmethod. For each assertion method of Assertions,
there is an overload that receives either a String or a Supplier<String> object that can
provide detailed information about the test in addition to the expected and actual objects

Assertions 9

@DisplayName("Test Suite: OffSiteATM")
class OffSiteATMTest {

private Account account;
private OffSiteATM atm;

@BeforeEach
void setUp() {

account = new PrivateCustomerAccount();
atm = new OffSiteATM(new SMSNotificationService());

}

@Test
void testWithdrawExceptionV1() {

try {
atm.withdraw(100, account);
fail("No NotEnoughMoneyException thrown");

} catch(NotEnoughMoneyException ex) { /* empty catch */ }
}

@Test
void testWithdrawExceptionV2() {

assertThrows(NotEnoughMoneyException.class, () -> atm.withdraw(100, account));
}

}

Listing 1.6: An example of an assertion that a checked or an unchecked exception was thrown during the
exercise phase. In OffSiteATMTest.testWithdrawExceptionV1, the exercised method is surrounded by a
try-catch block. If the method throws an exception, the try block is aborted and the catch block is executed.
If no exception is thrown, the Assertions.fail method that causes an AssertionFailedException
with the specified text is invoked. The OffSiteATMTest.testWithdrawExceptionV2 method uses the
Assertions.assertThrowsmethod to achieve the same result.

in the case of a failed assertion. The test case presented in listing 1.5 again refers to the
OffSiteATM example from listing 1.2 and serves as an example of a test case which verifies
the assertion that the OffSiteATM.deposit method works as intended.

For the ATM.withdraw method, not only the functionality of the method is important, but
also the exception handling must be asserted. There are two ways of asserting that a method
throws an exception. Listing 1.6 shows both approaches in detail, which also work with
unchecked exceptions. In the first approach, the method that should throw the exception is
executed in a try-catch block. Immediately after the method call, the fail method is called
with a message. The catch block remains empty. If an exception is thrown, the fail method
is never called and the empty catch block prevents the test case from failing. The second ap-
proach uses the corresponding static method Assertions.assertThrows of the Assertions
class.

In addition to equality assertions and exception handling, the Assertions class offers several
convenience assertion methods that help simplify test cases. For example, there are methods
to check whether two objects are actually the same. It can be checked whether an object is
null or that a boolean condition is true or false. The execution time can also be checked
with a timeout duration, which should not be exceeded during the exercising of the tested

10 Unit Testing and Mocking in JUnit

task of the SUT. A complete list of possible assertions can be found in [JUn19a], the official
JUnit documentation.

1.4 Mocks and Stubs

Unit testing usually involves testing the SUT in isolation to ensure that any errors that may
occur during the exercise phase are caused by the SUT and not by one of its collaborators.
There are several techniques that can be used to isolate the SUT from its collaborators. This
section presents the techniques ofmocking and stubbing [Mes07]. The purpose of both tech-
niques is to replace concrete implementations of collaborator objects, since a unit often needs
other units to work at all. Sometimes these required units are expensive to construct, e.g.
databases or network components. Because collaborator objects are not of interest when
testing the SUT, all necessary collaborator objects are replaced by objects that pretend to be
the collaborator needed to make the SUT work. To explain the concept of mock objects and
stubs, the example from Listing 1.1 is used again.

Listing 1.7 contains a simple test case that tests whether the OffSiteATM.deposit method
works as intended. Thus, in this example, the SUT is an instance of OffSiteATM. Both, an
Account instance and a NotificationService instance are used as collaborator objects to
make OffSiteATM.deposit work. The Account and NotificationService instances are
needed for two reasons. Firstly, OffSiteATM.deposit obviously cannot be called without
an instance of both and secondly, the Account instance is needed for verification because
OffSiteATM has no state. This means in particular that after exercising the SUT the ver-
ification is performed on the Account instance to check if the SUT has worked correctly.
As described by [Mes07], this type of test utilizes the state verification technique. Besides
the Account, the NotificationService is also important to decide if the functionality of
OffSiteATM.deposit is correct. Like OffSiteATM, the NotificationService is stateless.
Therefore, it is not possible to check its state after the SUT has been exercised, as there is
no data to assert against. In order to decide whether a notification is sent correctly, i.e. the
right customer receives exactly one notification, it would be necessary to actually send a real
e-mail or SMS or some other type of notification that is implemented. However, this would
not be a practical test as the overhead is too high. Checking that the SUT makes the right
calls, i.e. calls in the right order, with the right parameters and as often as expected on the
collaborator, is called behavior verification [Mes07].

When applying state verification, stubs are the technique of choice to isolate the SUT from its
collaborators. In [Mes07], a stub is described as a test-specific object that is a substitute for
a real object to provide the SUT with its desired indirect inputs. Listing 1.8 is an exemplary
implementation of an AccountStub.

Mocks and Stubs 11

@DisplayName("Test Suite: OffSiteATM")
class OffSiteATMTest {

@Test
void testDeposit() {

Account account = new PrivateCustomerAccount();
OffSiteATM atm = new OffSiteATM(new SMSNotificationService());
atm.deposit(1000, account);
assertEquals(1000, account.getBalanceInCents());

}
}

Listing 1.7: An example of state verification to check if the SUT, an instance of OffSiteATM, is working
as intended. The collaborators are the Account and SMSNotificationService instances required to call
OffSiteATM.deposit. After exercising the SUT, the status of the Account collaborator is used to check
whether OffSiteATM.depositworked correctly.

class AccountStub implements Account {
private int balance;
public int getBalanceInCents() { return balance; }
public void setBalance(int cents) { this.balance = cents; }
public String getName() { return "John Doe"; }
public String getEMail() { return "john.doe@mail.com"; }
public String getPhoneNumber() { return "1234556789"; }

}

Listing 1.8: An AccountStub implementation. The AccountStub contains the balance as a state, which can be
changed via getters and setters. The other methods provide dummy values. A stub can be created without
using third-party libraries. Usually it is only used in tests and not in the actual application.

A stub is a class that implements the interface of the unit it is intended to replace during test
case execution. Since Java supports polymorphism, this object can be used as if it were of
the same type as the implemented interface or inherited class. The AccountStub contains as
a state solely the balance value, which can be changed via a getter and setter. The remaining
methods return dummy values. As this example demonstrates, it is not necessary for the
developer to rely on third-party libraries to use stubbing during testing. The behavior of stub
objects is predefined and therefore static. Stubbing can also be used to reduce the complexity
of the setup phase. For example, if the account also required dependencies, an entire subsys-
tem would have to be instantiated during test case execution. A stub can be defined in such
a way that it does not need a dependency to be created.

Unlike stubs, a mock object is used when behavior verification is required. A mock object
is defined as a test-specific object on which the SUT depends and which checks whether it
is used correctly [Mes07]. The following examples use the Mockito framework [Moc19] to
show how mocking is performed in JUnit test cases.

The example in Listing 1.9 shows how mocking can be used during unit testing. The ex-
ample also includes the AccountStub created in Listing 1.8. Typically, the setup phase is
divided into two parts called data and expectation parts [Fow07]. First, the mock objects
are created in the data part to isolate the SUT from its collaborators. The second part is the
expectation part, where developers can define the behavior of the mock objects. Since the
NotificationService.send method does not return a value and the mock object does not
do anything with the passed data, this part is missing in the example. After the setup phase

12 Unit Testing and Mocking in JUnit

@DisplayName("Test Suite: OffSiteATM")
class OffSiteATMTest {

@Test
void testDeposit() {

// setup phase
Account account = new AccountStub();
NotificationService serviceMock = Mockito.mock(NotificationService.class);
OffSiteATM atm = new OffSiteATM(serviceMock);
// exercise phase
atm.deposit(1000, account);
// verification phase
assertEquals(1000, account.getBalanceInCents());
Mockito.verify(serviceMock, times(1)).send("Balance increased by 10.0 EUR", account);
Mockito.verifyNoMoreInteractions(serviceMock);

}
}

Listing 1.9: An example of how tomock classes or interfaces. In the OffSiteATMTest.testDeposit test case,
the setup phase also creates a NotificationServicemock object. The staticmethod Mockito.mock receives
the class object of the class to be mocked and returns a mock object for this class. The serviceMock is then
passed to the OffSiteATM object. Afterwards, the SUT can then be exercised. During the verification phase,
the verification for the serviceMock instance is added. The NotificationService.sendmethod should only
be called once with the specified parameters.

the SUT is exercised using the stub and the mock object. Finally, the verification is done. As
in the setup phase, the verification phase has two aspects. The assertion checks if the Account
object holds the correct balance. The new aspect is the verification of the mock objects.
The first verification statement checks whether the method NotificationService.send is
called exactly once with the specified arguments on the serviceMock object. Assuming the
NotificationService.send method would be called twice within OffSiteATM.deposit,
the verification statement would fail due to a TooManyActualInvocations exception. It is
possible to verify further constraints for the serviceMock instance here. The last verification
statement is the Mockito.verifyNoMoreInteraction, which ensures that the serviceMock
instance does not experience more than the specified interactions. As emphasized in this
example, the difference between mock objects and stubs lies in the way the verification is
performed. Stubs are useful in state verification, while mock objects are used to ensure that
the SUT interacts with the mock object as intended which is also referred to as behavior
verification.

13

2 Stream Runtime Verification

This chapter introduces runtime verification (RV), in particular stream runtime verification
(SRV). According to [Con+18], themain objective of software verification is to checkwhether
a program meets its specification. In contrast to software testing, RV concentrates more on
behavior verification of the program than on state verification. In RV, only a single run of
the system is considered when checking whether this system violates its specification [LS09].
Typically, during RV, a property to be checked is specified as a logical formula, for example,
using linear temporal logic (LTL), and then synthesized into a monitor that can then evaluate
a run. SRV takes a different approach. A set of input streams is related incrementally to a
set of output streams [BS14; Con+18; DAn+05]. This approach allows quantitative measure-
ments in addition to monitoring correctness properties. The following sections introduce
the TeSSLa language for SRV. First, RV in general is discussed. Then, the concept of stream
processing is introduced. Finally, TeSSLa is presented together with some examples.

2.1 Runtime Verfication

Software verification is essentially a matter of checking whether a program corresponds to
its specification [LS09]. This means in particular that the SUT is compared with its speci-
fication. Software verification can be performed using various techniques such as theorem
proving [BC10], model checking [CGP99] and testing [Mye11]. As described in chapter 1,
software verification can be separated into state and behavior verification. State verification
checks whether the SUT is in the correct state after it has been exercised with certain tasks. It
is not of interest whether it has performed the correct method calls in the correct order to get
into the correct state as long as the final state is correct. Behavior verification checks whether
the SUT is functioning as intended while exercising its tasks. For behavior verification, it is
important that the SUT components behave exactly as specified, that is, that the sequence and
respective number ofmethod calls are correct, and that no unexpected interaction takes place
between the components. This section focuses on behavior verification, in particular RV. In
contrast to traditional verification techniques such as theorem proving and model checking,
this is a relatively new, lightweight approach to software verification [Con+18].

Definition 2.1 ([LS09]). Runtime verification is the discipline of computer science that deals
with the study, development, and application of those verification techniques that allow
checking whether a run of a SUT satisfies or violates a given correctness property.

According to [LS09], a run of a system is a possibly infinite sequence of system states. In this
context, a state of the system describes current variable assignments or the sequence of its
emitting or performing actions. While formally a run can be considered as a possibly infinite

14 Stream Runtime Verification

word or trace, the execution of a system is a finite prefix for a run and formally a finite trace.
When executing a program, only its executions can be observed, but this restricts the corre-
sponding evolving run as a prefix. While verification techniques such as model checking are
more interested in checking whether all possible runs of the system meet the given correct-
ness properties, the executions of the SUT are the primary object analyzed in the RV setting.
In RV, the verification of the correctness properties of an execution is typically performed
using monitors. To its simplest form, a monitor decides whether the current execution of
the system satisfies a certain correctness property by giving either true or false as a ver-
dict.

Definition 2.2 ([LS09]). A monitor is a device that reads a finite trace and yields a certain
verdict.

Monitoring may be conducted in two ways: First, a monitor can be used to check the current
execution of a system. This approach is called online monitoring. In this setting, the monitor
is designed to process execution traces incrementally and efficiently. On the other hand, a
monitor can process recorded executions, also known as offline monitoring.

In addition to the behavior of monitors, their creation is also of interest. During RV, a mon-
itor is typically generated automatically from a high-level specification, also known as a syn-
thesized monitor. Since RV has its roots in model checking, a variant of LTL is often used as
a specification. The jUnitRV library, which is described in detail in chapter 4 in section 4.1,
synthesizes monitors from LTL properties. The next section introduces stream runtime veri-
fication, which uses a different form of specification to synthesize monitors.

2.2 Stream Processing

This section introduces stream runtime verification, which was established by the specifica-
tion language LOLA [DAn+05]. As described in [Con+18], in contrast to traditional RV,
SRV takes a different approach by correlating a set of input streams with a set of output
streams step by step. According [BS14], in the context of SRV, specifications explicitly de-
clare the dependencies between input streams, which represent the observable behavior of
the system, and output streams, which describe error reports and diagnostic information.
These dependencies can relate the data value of current events of an output stream to past,
current, or future data values of events of the same or other streams. This approach enables
not only monitoring of correctness properties, but also statistical measurements that are use-
ful for system profiling and coverage analysis.

The following explanation refers to the example in listing 2.1. The example is a specification
written in TeSSLa. The visualization for this specification and the corresponding execution
of the SUT is shown in figure 2.2. The SUT is an ATM instance from the example in listing 1.1.

Stream Processing 15

withdraw

deposit

sum_withdraw

sum_deposit

balance

overdrawn

20 15

15 10 5

0 20 35

0 15 25 30

0 15 25 5 10 -5

f t

Figure 2.2: An example of the application of SRV to the execution of an Account instance. The diagram
consists of a set of input and associated output streams defined in the TeSSLa specification of Listing 2.1.
The two input streams withdraw and deposit are event streams over the domain of integers. In contrast to
the streams sum_withdraw, sum_deposit, balance and overdrawn, both streams do not continuously deliver
events for each timestamp. The last four streams do not produce events but signals.

Since this chapter only deals with SRV in general, the details about TeSSLa are explained in
Section 2.3.

in withdraw: Events[Int]
in deposit: Events[Int]

def sum_withdraw := sum(withdraw)
def sum_deposit := sum(deposit)
def balance := sum_deposit - sum_withdraw
def overdrawn := balance < 0

out *

Listing 2.1: A TeSSLa example specification. The specification relates the output streams sum_withdraw,
sum_deposit, balance and overdrawn to the input streams withdraw and deposit. Both streams
sum_withdraw and sum_deposit recursively sumall withdrawals and deposits. The balance stream calculates
the difference between all withdrawals and deposits and thus the account balance. The overdrawn stream
indicates whether the account is overdrawn. The last line of the specification ensures that all streams are
output by the TeSSLa interpreter.

Figure 2.2 illustrates the input streams withdraw and deposit as well as the corresponding
output streams sum_withdraw, sum_deposit, balance and overdrawn for the execution of
the SUT. Discrete events are represented by circles containing the value of the correspond-
ing event. If a stream continuously provides an event at any time, this is interpreted as a
signal. A signal is divided into several segments which represent the points in time at which
the same value is supplied by the stream. Both input streams provide integer events with
different and unstable frequencies. The output stream balance calculates the current bal-
ance on the account by calculating the difference between the two streams sum_deposit and
sum_withdraw. New events on the deposit or withdraw stream cause the sum_withdraw and
the sum_deposit stream to be recalculated. The overdrawn output stream provides boolean
events where false indicates that the balance on the account is zero or more and true that
the balance is negative. As the example shows, the evaluation of a stream depends on the
streams it needs for its calculations. An example of this is the balance stream, which is

16 Stream Runtime Verification

SD⊥ ∋ x

SD′
⊥
∋ y

SD′′
⊥
∋ lift(f)(x, y)

f f f

Figure 2.3: A visualization of lifting an arbitrary function f to streams, i.e. f : SD⊥ → SD′
⊥
. The lift(f)(x, y)

operation depends on the streams x and y and is evaluated whenever one of these streams supplies a new
event. As the input stream are not synchronized, the function f can only be used if both streams deliver
events simultaneously or if f is able to process empty values. If the second event is considered, f cannot
produce an event, because an event is not provided at the same time on both the x and y streams.

updated whenever the sum_deposit or sum_withdraw stream supplies new events. If only
one of these streams produces a new event, the last event seen on the other stream is used
for the calculation. This particular mechanism is explained in more detail below. Streams
that deliver events irregularly and not simultaneously with other streams are called non-
synchronized or asynchronous streams [Con+18]. Thus, the withdraw and deposit streams
are non-synchronized. In SRV, calculation with missing data values of events on a stream, as
shown in figure 2.2, is not supported by default. To compensate missing events on a stream
by the last seen event the lift operator and two auxiliary operators are required.

In the specification in listing 2.1, binary operators such as the −, + and < operator are
used for calculations between data values of stream events and literal values. These oper-
ators are defined over the data domain D, which is Z in the example. In order for the
operators to be applied to streams, they must be lifted [Con+18] from the data domain to
streams. A non-synchronized stream over a time domain T and a data domain D is a se-
quence SD := (T× D)+. Since not all non-synchronized streams provide events simultane-
ously, the data domain D is extended by the missing value ⊥, i.e. D⊥ := D ∪ {⊥}. To lift
functions such as f : D⊥ ×D′

⊥ → D′′
⊥, that operate on the data domain, to a stream, the lift

operations is used:

lift : (D⊥ × D′
⊥ → D′′

⊥) → (SD × SD′ → SD′′).

The lift operation applies a given function f to the current events of the streams specified as
arguments. The result of the calculation of f can then be provided as an event on an dedicated
output stream or provided as input to another function. Especially for non-synchronized
streams, the lifted function f may not be able to calculate a result if one of the dependent
streams does not supply an event at the current time. Figure 2.3 illustrates this issue for f . To
solve this problem, the lift operationmust be adjusted. For this purpose, themerge [Con+18]
operation is introduced using the lift operation. The merge operation processes streams
event-oriented, where two streams are merged into one and the first stream is preferred if

Stream Processing 17

x

y

merge(x, y)

20 15

15 10

20 10 15

Figure 2.4: An example of merging two non-synchronized streams x and y with the merge operator, i.e.
merge(x, y). The merge operation forms a new stream in this example. Whenever one of the two input
streams x or y delivers a new event, this event is provided on the merged stream. If both input streams
provide an event, the event of the stream that is the first argument of the merge operation is preferred.

x

y

last(x, y)

20 15 7 13

20 7 7

Figure 2.5: Relating to the last value occurring strictly before an event on an other stream. The input stream
x provides event over the integer domain whereas the input stream y provides unit event that do not hold
any value. The last operation takes two arguments. The first argument is a stream of which the last value
is evaluated that occurred strictly before the event currently happened on stream y if available. Hence, the
events on the streamwhich is the second argument serves as triggers for the evaluation of the last operation.

two events occur simultaneously on both streams. The merge operation is defined as fol-
lows:

merge(x, y) = lift(f)(x, y)

f : D⊥ × D⊥ → D⊥

f(a, b) =

b if a = ⊥

a else

Figure 2.4 illustrates the behavior of the merge operation for the x and y integer streams.
In the first step, both streams provide an event. Due to the behavior of the f function, the
value of stream x is preferred to the value of stream y. In the following two steps, only one
of the two streams supplies an event, which is then used as the new event for the merged
stream.

The secondoperation besides themerge operation, which is necessary to fully allow the lifting
of non-synchronized streams, is the last [Con+18] operation. The last : SD × SD′ → SD

operation supplies the last event of a stream that occurred strictly before the current event of

18 Stream Runtime Verification

SD ∋ x

SD′ ∋ y

SD ∋ x′

SD′ ∋ y′

SD′′ ∋ slift(+)(x, y)

3 42 7 11

17 29

3 3 42 7 11

17 17 17 29

20 59 24 40

Figure 2.6: The slift operation lifts an arbitrary function f from the data domain to streams. In this case, the
function to be lifted to streams is the + : Z × Z → Z operator. To avoid the problem of missing events
on streams x and y, two new streams x′ and y′ are constructed each with intermediate results. Both the
stream x′ and y′ use the last operation to ensure that they both always deliver an event at the same time.
If one of the streams cannot provide an event, but the other does, the last event of that stream is provided.
In addition, the function f is wrapped into another function f ′, which is only applied to the events of the
streams x′ and y′ if both streams supply an event. In the example, at the first event of the x′ stream the y′

stream does not provide an event, therefore the+ operator does not evaluate in this case.

another stream. This operation can be applied to two streams over arbitrary data domains,
as shown in figure 2.5. In this example, the x stream is an integer stream, while the y stream
provides unit events. Each time the y stream provides an event, the last(x, y) operation
produces the last event that occurred on the x stream strictly before the y event.

Now that the necessary auxiliary operations are available, an improved version of the lift
operation can be defined. This operation allows an arbitrary function f to be lifted to streams
by a combination of the lift, merge and last operation. If not all streams onwhich the function
f depends supply an event, missing events on streams are replaced by the last event that
occurred on that stream. This new operation is called slift [Con+18] operation and is defined
as follows:

slift : (D× D′ → D′′) → (SD × SD′ → SD′′)

slift(f)(x, y) = lift(f ′)(x′, y′)

x′ = merge(x, last(x, y))

y′ = merge(y, last(y, x))

f ′(a, b) =

f(a, b) if a ̸= ⊥ ∧ b ̸= ⊥

⊥ else
.

The slift operation example is given in figure 2.6. The slift-operation uses the lift-operation,
which processes the x and y streams indirectly referring to the x′ and y′ streams. The x

and y streams are converted into the streams x′ and y′ respectively. The difference between
x and x′ is that at each event on the y stream the last event on the x stream is taken over
by using the last operation. The result is then merged with the original x stream to ensure
that the last event is only overtaken if there is no new event available at the current time.

Stream Processing 19

x

time(x)

last(time(x), x)

time(x)− last(time(x), x)

t=1 t=3 t=4

1 3 4

1 3

2 1

Figure 2.7: The time operator gives access to the timestamp of each event. The timestamp refers to a global
clock and is unique to for its stream. The time operator produces new events that carry the timestamp as a
data value. This allows all operators for data values to be applied to these events as well. In the example the
stream time(x) produces new events containing the time as its data values. These values are then used by
the last operator to refer to the timestamp of second last event occurred on x. Finally, some calculation is
done on the events provided by the intermediate streams.

x

last(sum, x)

last(sum, x) + x

sum

0

59 31 29 47

0 59 90 119

59 90 119 166

0 59 90 119 166

0

1

2 3

4

Figure 2.8: An illustration for the recursive evaluation of the sum stream from listing 2.9. The streams
last(sum, x) and last(sum, x) + x are streams that contain intermediate results for the sum stream but
are not explicitly declared in the corresponding specification. The dotted arrows represent the source and
target of events. The 1 step represents the initial configuration for the sum stream. Steps 2 , 3 and 4 repre-
sent the calculation that is performed for each new event on x. Step 2 is the reference to the last sum value,
which is then added to the new event data value of x in step 3 . Finally, the value calculated in step 3 is
provided by the sum stream in step 4 . The constant stream 0 supplies the literal 0 to the other streams.

The same procedure is also applied to the y stream. In addition, the function f is wrapped
with a function f ′. This function applies f to its arguments only if both arguments provide
events. If one of the arguments does not supply an event, f ′ does not evaluate, as shown
in the example. The stream x′ produces an event with a value of three, but the y′ stream
produces no event, so the + operator cannot be used. This way, the slift operation is now
able to lift arbitrary functions with arguments of arbitrary data types to streams. Using the
last known event of a stream to perform operations on multiple streams is a concept called
signal semantics [Con+18].

Beside the previously introduced operators there are also other operators in the context of
stream runtime verification. The events of all non-synchronized streams must have a global
order, but do not have to occur simultaneously. The order of all events is determined by their
time of occurrence. Thus, each event carries the time of its occurrence as a timestamp data

20 Stream Runtime Verification

value that enables all operators to apply operations to these timestamps. To access an events
timestamp, the time : SD → ST operation [Con+18] can be used. Figure 2.7 shows an
example of the time operation applied to the unit events of the x stream.

Lifting a function from the data domain to streams and accessing previous events are two
of the three basic principles of stream processing. The last principle that has not yet been
introduced is recursive equations [Con+18]. To write recursive equations, the last-operation
is used in conjunctionwith themerge-operation. By using the last operation, the last event of
a stream can be accessed, while the merge operation can supply an initial event from another
stream to a recursive equation. An example of the application of a recursive operation is the
TeSSLa specification in listing 2.1. The two streams sum_withdraw and sum_deposit sum up
the data values from the events of the deposit and withdraw streams, respectively, using the
sum operation. This operation is specified in listing 2.9. The sum operation calculates the sum
of the data values of all events of a stream recursively. In listing 2.9 the sum of all integers on
the x stream is calculated.

in x: Events[Int]
def sum: Events[Int] := merge(last(sum, x) + x, 0)
out sum

Listing 2.9: A TeSSLa specification example defining a recursive equation for summing up values on a given
input stream x. The last(sum, x) subexpression of the sum stream is a self-reference to the last event
occurred on the stream, which is then added up by the current event data value. If no last value is available,
the merge operation supplies the 0 event.

Figure 2.8 is the corresponding graphical representation of the stream processing performed
on the input stream x. The three additionally visualized streams last(sum, x), last(sum,
x) + x and 0 represent intermediate results. The merge operation on the sum stream en-
sures that the signal on the stream is initialized with a value of 0. After the x stream has
provided its first event, the merge operation on the sum stream takes over the last event of
the last(sum, x) + x stream. The last(sum, x) + x is recalculated with each new event
on the x stream.

2.3 Temporal Stream-based Specification Language (TeSSLa)

In the following, TeSSLa [Con+18], a specification language tailored for SRV of cyberphys-
ical systems, where timing is a critical issue, is presented. In contrast to traditional SRV
frameworks such as LOLA [DAn+05], which process event streams without taking timing
information into account, TeSSLa is able to operate non-synchronized due to its native sup-
port of time-stamped events. This allows efficient processing of streams with sparse and
fine-grained event sequences. The TeSSLa implementation used in the following chapters
enables both offline and online monitoring, i.e. the monitoring of running applications as
well as the monitoring of pre-existing traces. An example of a TeSSLa specification is shown

Temporal Stream-based Specification Language (TeSSLa) 21

in listing 2.1 and serves as an example for the discussion in this section. The example refers
to the Account interface of listing 1.1 in chapter 1.

SRV is based on the three basic principles: stream processing, previous events and recursive
equations. These concepts are now being investigated in TeSSLa. As listing 2.1 and the cor-
responding visualization in figure 2.2 emphasize, TeSSLa natively supports the processing of
non-synchronized streams and thus fulfills the first of the three basic principles mentioned.
Recursive equations and access to previous events are tied together in TeSSLa. As with ex-
isting SRV approaches, TeSSLa relates a set of input streams to a set of output streams via
mutually recursive equations. Listing 2.9 is an example of such a recursive equation where a
stream refers to its previous events by using the last operation in conjunction with the merge
operation, which produces an initial value. Internally, TeSSLa only supports discrete events,
but operators that follow signal semantics can be expressed with the slift operator introduced
in the previous section. The operators +, − and < used in the example in listing 2.1 are au-
tomatically lifted to signal semantics.

In addition to the basic operations, TeSSLa offers a number of useful additional operations.
The time [Con+18] operation, which provides access to timestamps of events with the ob-
jective of accessing the global order of events and performing calculations with these times-
tamps, the count [Con+18] operation, which counts the number of events supplied on the
given stream, the filter [Con+18] operation, which can be used to filter events on a stream
depending on a boolean condition, and the delay [Con+18] operator, which allows events to
be generated at certain times using the const [Con+18] operation. The const operator gener-
ates a new stream that maps each event of the input stream to an event at the same time that
has a constant data value on the resulting output stream. Listing 2.10 shows a TeSSLa speci-
fication with all these operations. The most common TeSSLa keywords are: the keyword in

that defines an input stream, the def keyword that defines a stream with intermediate results
that can later be used as an output stream, the out keyword that defines output streams, and
the as keyword that allows naming of temporary streams.

in deposit: Events[Int]
def timeout_duration := const(3, deposit)
def high_condition := default(deposit > 100, false)
out deposit
out time(deposit) as time
out timeout_duration
out high_condition
out filter(deposit, high_condition) as high_deposit
out delay(timeout_duration, deposit) as deposit_too_late
out count(deposit) as num_deposits

Listing 2.10: A TeSSLa specification with its auxiliary operators. The default operation produces a default
event if the first argument cannot provide an event. Since the comparison in the first argument requires an
event on the deposit stream, the high_condition stream would not be initialized. Unlike listing 2.1, most
output streams are not declared using the def keyword. Instead, they are declared inline and renamed using
the as keyword.

22 Stream Runtime Verification

deposit

time

timeout_duration

high_condition

high_deposit

deposit_too_late

num_deposits

85

t=1

105

t=4

101

t=5

50

t=7

150

t=9

1 4 5 7 9

3 3 3 3 3

105 101 150

f t f t

0 1 2 3 4 5

Figure 2.11: A visualization of the specification in listing 2.10 that processes a deposit stream. The time op-
eration generates a stream that immediately outputs events that contain the time stamp of the events of
the input stream as a data value. The time_duration stream maps each deposit event to an event contain-
ing the constant integer value 3. The stream high_condition checks whether the data value of the current
event provided by deposit exceeds 100. If this is the case, the signal from high_condition is true, other-
wise it is false. The high_deposit stream filters the data values of events from the deposit stream using the
signal from high_condition. If high_condition is true, the event deposit is provided by the high_deposit.
The deposit_too_late outputs unit events if the time span between two deposit events is greater than or
equal to the value provided by the current timeout_duration event. If a new event occurs at deposit before
the timeout is reached, the timeout is reset. Finally, the stream num_deposits counts the number of events
provided by deposit.

As described in [Con+18], the TeSSLa compiler analyzes the TeSSLa specification and per-
forms a static type check. Finally, the specification is translated into flat TeSSLa. In addition,
TeSSLa provides a macro system, which means that more complex functions based on the
basic operations offered by TeSSLa can be specified. This makes TeSSLa more flexible and
powerful as it allows the creation of application-domain specific standard libraries. The de-
fined macros are expanded by the compiler, i.e. they are transformed so that the resulting
specification uses the built-in slift operator and constant values are implicitly converted into
constant signals. As an example, the stream sum_withdraw of the listing 2.1 can be rewritten
using macros. Listing 2.12 shows a specification in which the macro sum calculates the sum
of all data values provided by the integer events from its input stream withdraw.

def sum(a: Events[Int]) := s where {
def s: Events[Int] := merge(last(s, a) + a, 0)

}

in withdraw: Events[Int]
def old_sum_withdraw: Events[Int] := merge(last(old_sum_withdraw), withdraw, 0)
out old_sum_withdraw
out sum(withdraw) as new_sum_withdraw

Listing 2.12: The macro sum defines a function that calculates the sum of the data values provided by
the integer events of the input stream a. The macro calculates the same result as the recursion in the
old_sum_withdraw stream.

Both, the compiler and the interpreter, which are both the same application, are written in
Scala and can therefore be used directly from Java applications. As a result, TeSSLa allows

Temporal Stream-based Specification Language (TeSSLa) 23

x

seen

new_or_old

1 2 1 3

new new old new

Set() Set(1) Set(1,2) Set(1,2,3)

Figure 2.14: A visualization of a system run for the specification in listing 2.13. The integer events on stream
x are stored in the set provided on stream seen. For each event on the stream x, a string is output on the
stream new_or_old indicating whether it is an event with a new data value, or whether such an event has
already been seen.

the use of Java data structures as data values for its events. Listing 2.13 is an example of a
specification that uses the complex data type Set to track the processed integer events.

in x: Events[Int]

def seen: Events[Set[Int]] := merge(Set_add(last(seen, x), x), Set_empty[Int])
def new_or_old := if Set_contains(last(seen, x), x) then "old" else "new"

out *

Listing 2.13: A TeSSLa specification that records all processed integer events using recursion and the
complex data type Set. In the recursion, an empty Set is initialized using the merge operation. In the next
steps, a new object can be added to the existing set using Set_add. In the stream new_or_old it is now
possible to check with Set_containswhether the current event was already contained in the set before.

A graphical representation of a system run for the listing 2.13 specification is shown in fig-
ure 2.14. By sharing the same JVMbetween application, compiler and interpreter, it would be
possible to use application-specific data types as event data values for streams within TeSSLa
in the implementation presented in the chapter 4.

25

3 TeSSLa-Based Monitoring and Mocking in JUnit

This chapter introduces concepts for instrumenting and monitoring application code and
how to create and use mock objects. These concepts are illustrated by listings and partially
by Unified Modeling Language (UML) sequence diagrams. First, the instrumentation of
the application code from the existing jUnitRV library is explained. Then, some approaches
to TeSSLa monitors, their advantages and disadvantages as well as their attachment to test
classes and test cases are presented in detail. Finally, the last section of this chapter introduces
a concept for the creation and usage of mock objects. Mock objects can either be attached to
TeSSLa monitors or a special handler can be used to change their behavior.

The approaches presented in the following sections refer to the terms application context and
test context. Code executed in the test context is intended to test the functionality of the ap-
plication code. The executed application code, on the other hand, is the application context.
Therefore, code executed in the test context cannot directly modify the code executed in the
application context and hence has only limited influence on the control or data flow of the
application. For example, the application code cannot access the instance variables of the
test class that is executing it. In addition, the test code cannot change the return value of a
particular method that has no parameters. The bottom line here is that switching between
application and test contexts is not straightforward. The following sections introduce tech-
niques that allow data exchange between the test and the application context. In particular,
monitoring requires data to be extracted from the execution of the application code. This
data is then processed by monitors. In the other direction, mock objects can inject data pro-
cessed by monitors from the test context into the application context to influence control or
data flow.

3.1 Application Code Instrumentation

As explained in chapter 2, RV examines the behavior of a system with respect to given con-
straints or properties. Behavior in this context means e.g. the sequence of called methods
and constructors, accesses to instance variables, thrown exceptions and so on. In Java, this
information cannot easily be obtained from executed programs. To get such information it
is necessary to modify the code to be monitored, for example by using special runtime an-
notations, or logging libraries. All these approaches require, however, to have access to the
system to be monitored on the one hand and on the other hand that all classes to be moni-
tored must be changed manually for test purposes. As this approach prevents, for example,
that third party software, whichmay only be available in precompiled form, can bemonitored
and existing projects can only be subsequently monitored with much effort, it is necessary
to develop an automated procedure that provides the information necessary for monitoring.

26 TeSSLa-Based Monitoring and Mocking in JUnit

For this purpose the so-called instrumentation is used. In this process, components in the
form of bytecode are manipulated in such a way that the corresponding information, also
referred to as events, can be obtained and processed in a publish-subscribe manner from an
external component when methods of the manipulated class are executed. By this approach
it is on the one hand possible to monitor third-party software and on the other hand existing
code can be subsequently monitored with very little effort.

The software instrumentation explained in the following is already given by the implementa-
tion of the jUnitRV library and is therefore only summarized to get a picture of its function-
ality. The concept of instrumentation must also consider the following requirements. First,
events that occur during application code execution should be processed by TeSSLa moni-
tors in a blocking manner. This means, that if an event occurs, program execution should be
halted until all monitors have finished processing the event. The reason for this is that the
implementation of mock objects, which will be introduced later, can react to changes in the
system state. The next requirement is that a TeSSLa monitor should immediately stop the
execution of the test case to which it is attached with an assertion error if it detects a speci-
fication violation. Finally, it should be possible to instrument the application code without
explicitly changing it. This requirement allows developers to instrument third-party code
that may not be available. In addition, instrumentation does not lead to changes in the ap-
plication code. Furthermore, this design separates the test and application contexts, since
events and monitors are not specified in the application code, but in test classes.

Before a concept for instrumentation is presented, a list of events that may occur when ex-
ecuting application code is provided. The events called, calling, returned and returning for
class constructors and methods are considered for instrumentation. In addition, the calling
and returning of instantiations, thrown exceptions, field accesses and assignment, class instan-
tiation and class loading should also be instrumentable. The selection of these events results
from the Javassist library [Chi19], which is used for the modification of the bytecode, and
thus is also responsible for the instrumentation.

The requirementsmentioned above, as well as the aspect of reusability of the software, lead to
an event implementation as Java objects, that can later be used by monitors or mock objects.
Therefore, all events mentioned above are modeled as classes inheriting from a base class
Event. Each event holds information about the class and the method or field it is associated
with. This allows developers to create events as instance variables within JUnit test classes, as
shown in listing 3.1. The test engine can use these Event objects to perform instrumentation
before executing the test code.

For convenience, the explicit instantiation of an Event object can be replaced by a static
method invocation. In the actual implementation, events can depend on additional data for
internal use, which can be derived from the class name or the method or field name passed

Application Code Instrumentation 27

class OffSiteATMTest {
private Event calledEvent = new Called("ATMExample/ATM", "deposit", ...);
private Event returnedEvent = new Returned("ATMExample/ATM", "deposit", ...);

@Test
void testDeposit() {

Account account = new AccountStub();
OffSiteATM atm = new OffSiteATM(new SMSNotificationService());
atm.deposit(1000, account);
assertEquals(1000, account.getBalanceInCents());

}
}

Listing 3.1: An example for the declaration of events in a test class. The two events calledEvent
and returnedEvent contain information about the method to be instrumented as well as the type of
instrumentation. Both events lead to an instrumentation of the ATM.deposit method. The object
calledEvent causes an event to occur when the method ATM.deposit is called, while the object
returnedEvent causes an event to occur when the method is exited.

through constructor parameters. By using a static method for this purpose, the developer
does not have to generate these values manually. Therefore, instantiating Event objects us-
ing static methods makes errors due to incorrect parameters less likely and reduces code
complexity. Listing 3.2 demonstrates how to instantiate events using a static method invoca-
tion.

class OffSiteATMTest {
private Event calledEvent = called("ATMExample/ATM", "deposit");
private Event returnedEvent = returned("ATMExample/ATM", "deposit");

@Test
void testDeposit() {

Account account = new AccountStub();
OffSiteATM atm = new OffSiteATM(new SMSNotificationService());
atm.deposit(1000, account);
assertEquals(1000, account.getBalanceInCents());

}
}

Listing 3.2: By using the static methods called and returned the declaration of Event objects can be
simplified. The result of this notation is the same as in listing 3.1.

As described in the instrumentation requirements, the processing of events should be block-
ing. The easiest way to achieve this is to append or prepend code to methods, constructors,
or field accesses. If a method is instrumented by a called Event, code is inserted at the be-
ginning of the instrumented method to generate and publish an event. Depending on what
Event it is, code is injected in different locations of the class. The tricky part of this solution
is that the code injection has to be done after loading the class and before passing it to the
JVM to make it possible to instrument third-party components as well. Since such code is
often only available in precompiled form, this means in particular that the injection has to be
applied to bytecode. Figure 3.3 illustrates the execution of an instrumented method. During
program execution the method ATM.deposit is called. Before the body of the method is exe-
cuted, the monitor instance m consumes the Called event of the ATM.depositmethod. After
the monitor has consumed the event, the execution of the ATM.deposit method continues.

28 TeSSLa-Based Monitoring and Mocking in JUnit

Calling ATM.deposit

Called ATM.deposit

Returning ATM.deposit

deposit(1000, account)

Returned ATM.deposit

t:Test p:Program a:ATM m:Monitor

Figure 3.3: An UML sequence diagram showing how the monitor is involved in the execution process of
the instrumented ATM.depositmethod. Before the method is called, the Calling event is consumed by the
monitor. After the monitor has processed this event, the ATM.deposit method starts executing. Directly
after the invocation a Called event is created and consumed by themonitor. After this event is finished, the
actual method body is executed. Finally a Returning event is processed by the monitor. After the method
ATM.deposit is finished, the Returning event is published.

Before the ATM.deposit method terminates, it produces a Returned event, which the moni-
tor consumes again. The ATM.deposit method then returns immediately after the monitor
finished consuming the Returned event.

One of the main advantages of this approach is that not only can events be monitored during
the execution of the instrumented code, but detailed information about the event, such as
the method parameters or return values, can also be retrieved. Since only those methods
and variable accesses that are really needed are instrumented and not all possible ones, this
approach has a positive effect on the performance of the instrumentation implementation.
Furthermore, it is possible to cause an instrumentation of the application code with little
effort by simply declaring an instance variable. Thus, the instrumented class does not have
to be changed manually.

3.2 Monitors for Test Cases and Test Suites

Hitherto monitors have been synthesized from LTL formulas by the jUnitRV library and con-
structed and simulated as state machines. Since the TeSSLa interpreter performs the simu-
lation, it is the responsibility of a TeSSLa monitor to translate the event data into streams,
which are then forwarded to the interpreter and give a verdict based on the output streams.
Because events provide a variety of information, a monitor must be designed in such a way
that arbitrary input streams can be generated from this information. For example, it must

Monitors for Test Cases and Test Suites 29

be possible for the monitor to convert an event of a method call into a stream that supplies
integer events that contain the first parameter of this method as a data value. On the other
hand, the judgement of the output streams is another interesting aspect, because the events
of the output streams contain data values of different types. For example, a TeSSLa specifica-
tion can be written in such a way that the events of all output streams contain string values.
It is at the monitor to decide whether it should fail or continue based on these streams. An
additional requirement for a TeSSLa monitor is that it must be described in the test context
in order to maintain the separation of test and application context. In summary, this means
that TeSSLa monitors serve as a communication link between the test code and the TeSSLa
interpreter, which fundamentally distinguishes them from LTL-based monitors. In the fol-
lowing some approaches for TeSSLa monitors are presented and discussed.

Since the subsequent implementation uses a custom test enginewritten for the JUnit 5 library,
loading this test engine through the JUnit 5 platform requires the use of Java’s service provider
interface (SPI). This results in the first approach to howmonitors can be defined and executed.
As with custom test engines, a monitor can be defined as a service provider that is loaded at
runtime by a service loader. Therefore, each monitor that can be used in the test code must
be defined as a class which inherits from a base monitor class that defines the service. The
service provider classes must be grouped together with a manifest file, which contains all
loadable classes, in a jar library. The test engine can then load these monitors at runtime.
This approach has the advantage that monitors are easy to manage. To add a new monitor,
a new class file must be added to the jar library and a line of code must be appended to the
manifest file. The actual testing framework does not have to be changed, only a new version
of the jar library containing this monitor has to be provided. Annotations are now used in
the test code to attach monitors to test classes or test methods. If a monitor is attached to
a test class, all its test cases are monitored by this monitor. During test case execution, the
test engine ensures that the correct monitors from the list of available monitors are found,
instantiated, and attached.

@Monitors({"WithdrawMonitor"})
class OffSiteATMTest {

private Event calledDeposit = called("ATMExample/ATM", "deposit");

@Monitors({"DepositMonitor"})
@Test
void testDeposit() {

Account account = new AccountStub();
OffSiteATM atm = new OffSiteATM(new SMSNotificationService());
atm.deposit(1000, account);
assertEquals(1000, account.getBalanceInCents());

}
}

Listing 3.4: Both monitors WithdrawMonitor and DepositMonitor were loaded as services and attached
to the test class OffSiteATMTest and the test method OffSiteATMTest.testDeposit respectively. Both
monitors consume the Called event calledDeposit defined in the test class.

30 TeSSLa-Based Monitoring and Mocking in JUnit

@Monitor(
spec="spec.tessla",
called={
@Called(method="deposit", clazz=ATM.class, argTypes={int.class, Account.class},

stream="deposit"),
@Called(method="withdraw", clazz=ATM.class, argTypes={int.class, Account.class},

stream="withdraw")
},
returned={
@Returned(method="deposit", clazz=ATM.class, argTypes={int.class, Account.class},

stream="deposit_return")
},
outputStreams={"balance", "error"},
logStreams={"balance"}

)
class OffSiteATMTest {

@Test
void testDeposit() {

Account account = new AccountStub();
OffSiteATM atm = new OffSiteATM(new SMSNotificationService());
atm.deposit(1000, account);
assertEquals(1000, account.getBalanceInCents());

}
}

Listing 3.5: An example of how to declare amonitor using annotations. The spec attribute defines the name
and path to the TeSSLa specification. The called attribute declares all Called events while the returned
attribute declares all Returned events. With outputStreams the output streams which the monitor receives
from the TeSSLa interpreter can be defined. The logStreams can be used to specify streams whose events
are printed on the console.

Listing 3.4 demonstrates how to attach monitors to test classes and test cases. The monitor
WithdrawMonitor is responsible for all test methods within the test class OffSiteATMTest,
while DepositMonitor is only responsible for the OffSiteATMTest.testDeposit test case.
Both monitors are loaded by the Java SPI, which means that they only have to be used in
the test classes. The calledDeposit event is used to instrument the application so that the
attached monitors can consume these occurring events.

There are, however, two reasons why this approach is inappropriate. Managing monitors as
services means that the declaration of monitors is separated from the declaration of events.
The TeSSLa interpreter consumes different input streams, these input streams can be com-
posed of several events. The monitor must know these declared events to generate streams
from them. Therefore, the necessary events already defined in the test codemust be redefined
in the monitor class. Duplication in the event declaration leads to a higher error probability
and also increases the amount of code that must be produced, especially if the number of
events to be considered is large. The second disadvantage is that the bundling of monitors
in jar libraries before they can be used makes the project structure more complex. Monitors
are created in a separate submodule or even an external project and must be compiled before
the test code is executed and then linked to the actual project, resulting in a more complex
project structure.

Monitors for Test Cases and Test Suites 31

A less dynamic and thus less complex approach, which is more test code oriented, is moving
the declaration of monitors from external classes into annotations, as shown in listing 3.5.
All relevant attributes such as name or path of the specification file, events as input streams,
output streams and logging of streams are declared as annotation parameters.

The main advantage of this approach is that the monitor declaration can be done locally.
No additional files are required and additional effort for loading the monitor during test
code execution can be avoided. The problem is that annotations, which are a special type
of interfaces, cannot inherit from each other. Therefore, no input attribute can be declared,
which then gets both @Called and @Returned annotation objects inheriting from a @Input
base annotation. This also means that as new event types are added, new attributes must be
used in @Monitor, making the declaration code more complex. In addition, only primitive
types, String instances, Class instances, enum types, and annotation types can be assigned
to the annotation parameters. For each event that may occur during program execution, the
monitor object must know how to translate the received event data into streams. This could
be solved by using translation objects or lambda expressions that process such translations.
However, this approach is not feasible due to the type limitation of the attribute parameters.
Hence, this approach does not allow dynamic translation of events into streams. Finally, the
event declaration is moved from the test class to the annotation. Thus, it is no longer possible
for the instrumentation implementation to recognize these events. This leads to the fact that
themonitor now has to ensure independently that the instrumentation is performed. In turn,
this makes the simultaneous use of TesslaMonitor objects and LTL-based monitors more
complicated.

In the last approach, the monitor declaration is similar to the event declaration. A class
TesslaMonitor is provided by a library. During instantiation, the class TesslaMonitor re-
ceives the name or path of the specification file as well as the input and output streams, which
are passed to the constructor via parameters. In addition to the TesslaMonitor class the
classes InputStream and OutputStream, as well as Transformer and Condition are also pro-
vided by this library. In the InputStream declaration, the constructor gets the name of the
stream, a Translator instance that translates these events into streams, and the events passed
as variadic arguments. The declaration of output streams is simple as well, since the corre-
sponding streams are returned by the TeSSLa interpreter and therefore only the name of the
stream and a Condition object must be specified. The Condition object is responsible for
judging the associated output stream and giving a verdict based on them. The declaration of
such a monitor is done at class level and allows developers to pass the same events previously
declared for application code instrumentation to the input streams. An example of this is
shown in listing 3.6.

32 TeSSLa-Based Monitoring and Mocking in JUnit

@Monitors({"depositMonitor"})
class OffSiteATMTest {

private Event depositCalled = called("ATMExample/ATM", "deposit");
private InputStream in = new InputStream("deposit", new IntStreamfromParamTranslator(1),

depositCalled);
private OutputStream out = new OutputStream("balance", new Condition());
private TesslaMonitor depositMonitor = new TesslaMonitor("spec.tessla", in, out);

@Test
void testDeposit() {

Account account = new AccountStub();
OffSiteATM atm = new OffSiteATM(new SMSNotificationService());
atm.deposit(1000, account);
assertEquals(1000, account.getBalanceInCents());

}
}

Listing 3.6: An example of the declaration of a TesslaMonitor object. The depositCalled event already
created for the instrumentation can nowbe reused for themonitor. To declare themonitor, the InputStream
and OutputStreamobjectsmust be createdfirst. The InputStreamobject contains threeparameter types: the
stream name, a Translator object that translates events into streams, and the events to be considered by
the translator. The OutputStream object gets the name of the streamprovided by the TeSSLa interpreter and
the Condition object which judges that stream and makes a verdict. The monitor depositMonitor is now
created using all these objects and attached to the test class by using the @Monitors annotation.

For simplicity, the code required to declare a monitor can be reduced by providing a func-
tional interface that can be used optionally. listing 3.7 provides an example of such a func-
tional interface.

@Monitors({"depositMonitor"})
class OffSiteATMTest {

private Event depositCalled = called("ATMExample/ATM", "deposit");
private TesslaMonitor depositMonitor = TesslaMonitor.forSpec("spec.tessla").

.inputStream("deposit", new IntStreamfromParamTranslator(1), depositCalled)

.outputStream("balance", new Condition());

@Test
void testDeposit() {

Account account = new AccountStub();
OffSiteATM atm = new OffSiteATM(new SMSNotificationService());
atm.deposit(1000, account);
assertEquals(1000, account.getBalanceInCents());

}
}

Listing 3.7: An example of the declaration of a TesslaMonitor by a functional interface. Instead of declaring
InputStream and OutputStream separately, as done in listing 3.6, the declaration is made by methods on a
TesslaMonitor instance.

This solution ensures that events declared for application code instrumentation can be reused
for monitor declaration. In contrast to the pure annotation approach, developers can not
only declare streams, but also specify how occurring events can be converted into streams by
Translator instances or lambda expressions. Another important point is that monitors are
declared in the test code, which means that no additional project or subproject is required to
declare monitors, reducing the complexity of the project structure and setup.

Class and Interface Mocks 33

The implementation, which will be presented later, follows the last presented concept. In
addition to the concept of the programmaticmonitor declaration, the implementation details
of the monitoring are also important. The following steps are carried out in the specified
sequence when the test methods of a test class are executed. Before the test code is executed,
the entire test code is instrumented based on the events declared in the test class. Then, all
monitors from the test class are collected, instantiated and finally added to the instrumented
methods as listeners. Now, as shown in figure 3.3, the instrumented code will notify the
monitor by an event during execution. The monitor then takes all its InputStream instances
corresponding to the specified event and creates stream events with their translators, which
are readable by the TeSSLa interpreter. The application code continues its execution after the
interpreter has consumed and processed these stream events. Since all this is done in a single
thread, the instrumentedmethod is halted until the interpreter and then themonitor returns,
which is in line with the original requirements.

3.3 Class and Interface Mocks

The last feature that the implementation will provide later is the mocking of classes and in-
terfaces. As there are already several mocking libraries, such as Mockito [Moc19], there is
a need to discuss why such a feature needs to be reimplemented. A TeSSLa monitor offers
the possibility to get detailed information about the state of the system. The idea now is to
connect monitors tomocks to control their behavior. As already explained in section 3.2, the
execution of instrumented methods is stopped until the monitors and the TeSSLa interpreter
have finished event processing. This allows Mocks to wait for the interpreter’s response, in
the form of output streams, to generate a return value. However, this behavior cannot be
transferred to mock objects of external libraries like Mockito, which is why a separate mock-
ing framework has to be implemented. There are requirements that the upcoming concept
for mock objects must fulfill. It should be possible to mock classes, abstract classes, and in-
terfaces. Any method within a mock object can either be linked to a monitor, controlled by
an invocation handler, or simply return a default value. A mock object can be connected
to different monitors at the same time. In addition, developers should be able to control
the return value of methods of a mock object by attaching an invocation handler to those
objects. If no invocation handler is attached to a Mock object and no monitor is associated
with a particular method, that method returns a default value. If a method is connected to a
monitor and an invocation handler at the same time, the values provided by the monitor are
preferred.

Since monitors are connected to test methods by annotations and mocks can be connected
to monitors specified in method annotations, the context in which mocks are created is the
method context. In addition, a mock may require configuration, such as connecting to a

34 TeSSLa-Based Monitoring and Mocking in JUnit

handle Account.setBalancesetBalance(1000)

handle Account.getBalanceInCents

1000

getBalanceInCents()

1000

t:Test p:Program a:Account h:InvocationHandler

Figure 3.9: A UML sequence diagram that illustrates the method call for instances created by a Mock<T>
object. The program is started by a JUnit test. The instance a is of type Account and was created by a
Mock<Account> object and linked to a InvocationHandler. Every method call on a is now forwarded to the
handler which generates the return values for this object. The purpose of a is simply to act as a middleware
between the currently tested and verified code and the handler that specifies how a actually behaves.

particular monitor or adding a custom handler. A mock object for the CustomClass class
is created in listing 3.8. After instantiating the mock object, a custom invocation handler is
added to the mock. Finally, an instance of the mock is created using the Mock.newInstance
method.

class OffSiteATMTest {
@Test
void testDeposit() {

// Mock setup
Mock<Account> accountMock = Mock.create(Account.class);
accountMock.setHandler(new DefaultValueInvocationHandler());
Account account = accountMock.newInstance();
// SUT setup
OffSiteATM atm = new OffSiteATM(new SMSNotificationService());
// Exercise phase
atm.deposit(1000, account);
// Verification phase
assertEquals(1000, account.getBalanceInCents());

}
}

Listing 3.8: An example of how to create a mock object within a test class. First, the Mock.createmethod is
used to create a Mock<T> object of the class or interface that is passed as an argument. Then the Mock object
is configured. After the configuration of the Mock object, an instance of the actual class or interface can be
created with the help of the Mock.newInstancemethod. Afterwards, this instance can be used as if it were a
conventional instance of the mocked class or interface.

As the example of listing 3.8 emphasizes, there is a difference between a mock object of a
certain class and its instances. Since instances of the class or interface to be mocked do
not provide an interface for configuration, this must be done with an intermediate result.
This intermediate result is an instance of the class Mock<T>. One advantage is, that Mock
objects have to be configured only once, but afterwards any number of configured instances
can be created. The class DefaultValueInvocationHandler could implement an interface
InvocationHandler, which could be similar to the interface shown in figure 3.10.

Class and Interface Mocks 35

public interface InvocationHandler {
Object handle(Object instance, Method method, Object[] args, Class<?>[] argTypes);

}

Listing 3.10: An example of the InvocationHandler interface. The InvocationHandler interface provides
only the InvocationHandler.handlemethod. This method gets four parameters. The first parameter is the
instance on which the actual method was called. The second parameter is the method that was called. The
second-last parameter contains an array of types of parameters passed to the actual method, while the last
parameter contains the corresponding values.

The method InvocationHandler.handle is notified as soon as a method is called on the
mocked instance. It can then calculate a return value based on the given information, e.g.
the method called on the mocked instance, and returns that value. The mocked instance
then takes the return value provided by the InvocationHandler.handle method and re-
turns it as its own return value. This behavior is shown in figure 3.9. The object a of the
class Account was instantiated by a Mock<Account> object. When an InvocationHandler

is attached to the mock, it forwards all method calls to that handler. The instance a now
behaves like a middleware. This middleware is required because during RV the currently
verified code is executed in the application context while the handler is executed in the test
context. The instance a establishes the connection between these two contexts. Furthermore,
the InvocationHandler offers the possibility to return values to mocked objects, which are
based on the output streams of a TeSSLa monitor. Listing 3.11 contains an example of how
monitors can be connected to monitor output streams.

@Monitors({"depositMonitor"})
class OffSiteATMTest {

// Instrumentation & Monitor setup
private Event depositCalled = called("ATMExample/ATM", "deposit");
private TesslaMonitor depositMonitor = TesslaMonitor.forSpec("spec.tessla").

.inputStream("deposit", new IntStreamfromParamTranslator(1), depositCalled);

@Test
void testDeposit() {

// Mock setup
Mock<Account> accountMock = Mock.create(Account.class);
accountMock.connectToStream("getBalanceInCents", "balance", "depositMonitor");
Account account = accountMock.newInstance();
// SUT setup
OffSiteATM atm = new OffSiteATM(new SMSNotificationService());
// Exercise phase
atm.deposit(1000, account);
// Verification phase
assertEquals(1000, account.getBalanceInCents());

}
}

Listing 3.11: This example creates a mock object for the Account class. As in listing 3.8, the intermediate
object Mock<Account> is first created using Mock.create. This object is then configured. Unlike in
listing 3.8, the mocked instance is now connected to a monitor with Mock.connectToStream. The
method Account.getBalanceInCents is bound to the balance stream of the depositMonitor. The monitor
depositMonitor does not have to declare the stream balance explicitly, because the TeSSLa specification
contains this stream and therefore the TeSSLa interpreter automatically passes it on to the monitor, even if
the monitor does not declare a OutputStream object on it.

36 TeSSLa-Based Monitoring and Mocking in JUnit

The connectToStream method has three parameters. The first parameter contains the name
of the method to be connected to an output stream. The second parameter is the output
stream that provides the values for calculating the return value, while the third parameter is
the name of the monitor that provides that stream. The monitor to which the mocked object
is connected does not have to explicitly declare the stream to which themethod is connected,
because if the TeSSLa specification contains this stream, the TeSSLa interpreter automatically
forwards it to the monitor, even if the monitor does not declare an OutputStream object on
it.

37

4 The JUnitSRV Framework

This chapter introduces the JUnitSRV framework powered by the SRVTestEngine. The JU-
nitSRV framework consists of the existing jUnitRV library which provides RV and instru-
mentation functionalities that can be used during testing in conjunction with a new monitor
implementation utilizing the TeSSLa interpreter for verification. In addition, it provides a
lightweight mocking framework that enables mock objects to be connected to monitors to
adjust their behavior at runtime. The jUnitRV library uses LTL-based specifications that are
checked by a dedicated monitor during test execution. Whenever such a monitor detects
specification violations, the execution of the test case currently running is stopped with a
AssertionFailedException. In contrast to jUnitRV, which is based on the Runner archi-
tecture of JUnit 4, the JUnitSRV framework uses JUnit 5. Due to the fact that jUnitRV is
integrated into JUnitSRV, the functions provided by the jUnitRV library can also be used
in JUnit 5 test cases. This makes it possible to monitor the application code simultaneously
using LTL and TeSSLa based monitors, combining the strengths of both monitor types. The
implementation of the monitors and the mocking framework corresponds to the concepts
presented in chapter 3.

In the following sections, the complete implementation is not presented, as it is too complex
to be explained in detail here. However, in some aspects of the implementation interest-
ing problems arose which had to be solved. Therefore, for each main component of the
implementation a detail is explained, which required special strategies for a solution of the
problem. In the following, the jUnitRV library is explained in general, as it is partly used
for instrumentation and monitoring of test cases. Then, the implementation of the TeSSLa
monitors is described, which utilizes the interfaces from the jUnitRV library. Afterwards, the
JUnit 5 platform is introduced, which uses the JUnitSRV framework for test case execution
of monitored test cases. Finally, the custom mocking framework is presented, which allows
developers to connect mock objects to TeSSLa monitors to control their behavior.

4.1 The jUnitRV Library

This section introduces the jUnitRV library and shows the implementation of the concept of
instrumentation presented in chapter 3 section 3.1 and the concept of monitoring presented
in chapter 3 section 3.2. Therefore, the JUnit 4 Framework is introduced first. Then, the
internal architecture based on [Lin17], one of the JUnit 5 developers, is discussed, followed
by the design and implementation of jUnitRV, which is described in [DLT13].

The jUnitRV library is designed and implemented on the basis of the JUnit 4 framework. In
JUnit 4, the Runner architecture provided by the framework is used to customize the execu-
tion of test cases. An UML diagram containing the Runner class and all its parent and child

38 The JUnitSRV Framework

≪interface≫
Describable

+ getDescription(): Description

Runner

+ run(notifier: RunNotifier): void

≪interface≫
Filterable

+ filter(filter: Filter): void

≪interface≫
Sortable

+sort(sorter: Sorter): void

ParentRunner

+ describeChild(child: T): Description
+ getChildren(): List<T>
+ runChild(child: T, notifier: RunNotifier): void

T

BlockJUnit4ClassRunner Suite

Figure 4.1: The core modules of the JUnit 4 Runner architecture presented as a class diagram. For
reasons of simplicity, the classes and interfaces contain only their abstract methods. The classes
BlockJUnit4ClassRunner and Suite do not contain any abstract methods and are therefore presented as
simple classes without details in this diagram.

classes is represented in figure 4.1. All information is taken from the JUnit 4 documentation
of [JUn19b].

The important class in the hierarchy of figure 4.1 is the Runner class. As the name suggests,
the Runner class is responsible for controlling the execution process of test classes. A Runner

can describe itself using the inheritedmethod Describable.getDescription, which returns
a Description object. This Description object contains information that is exported and
can be used by other tools, such as an integrated development environment (IDE), to display
test results. The Runner.run method is a generic method that executes either a test suite or
a test class. Unlike in the context of JUnit 5, the class Suite represents test suites, so JUnit
4 explicitly distinguishes between test classes and test suites. For custom Runner implemen-
tations, the Runner class is often too generic. To facilitate the creation of custom Runner

classes, the abstract class ParentRunner is also provided by JUnit 4. The ParentRunner class
is a more specific version of Runner that can have multiple children. Tests are hierarchi-
cally structured in the context of JUnit in the form of trees. For example, a test suite may
contain other test suites that may contain multiple test classes. Finally, these test classes

The jUnitRV Library 39

can contain several test methods. Each test suite and test class can be executed by a dif-
ferent Runner object. The generic class ParentRunner also provides auxiliary methods for
retrieving a list of child elements via ParentRunner.getChildren, which can then be exe-
cuted via ParentRunner.runChild. The JUnit 4 framework also provides two non-abstract
subclasses of ParentRunner, the BlockJUnit4ClassRunner class and the Suite class. The
BlockJUnit4ClassRunner is the default Runner class used when no other Runner class is
explicitly attached to the test class by the annotation @RunWith.

The jUnitRV library has its own Runner class, the RVRunner, as well as classes for event and
monitor declarations to enable runtime verification during the execution of test cases. There-
fore, the library includes an Event class that contains information about the context in which
the associated event in the application code occurred. The instructions that can trigger an
Event correspond to those alreadymentioned in chapter 3 section 3.1. Declaring such events
causes the jUnitRV library to instrument the application code. In the following, code exam-
ples are presented to illustrate the workflow of using the jUnitRV library. The working exam-
ple of a data service from [DLT13] is used for this purpose. This data service is described by
the interface DataService, which is specified in listing 4.2.

public interface DataService {
void connect(String userID) throws UnknownUserException;
void disconnect();
Data readData(String field);
void modifyData(String field, Data data);
void commit() throws CommitException;

}

Listing 4.2: The DataService interface from [DLT13]. The DataService is a middleware that allows
a client to communicate with a database or store data directly on disk. Before writing data using
DataService.modifyDataor readingdatausing DataService.readData, theusermust connect to the service
via DataService.connect. After writing data, possible changesmust be saved by transmitting this data with
the help of DataService.commit. Finally the connectionmust be disconnected at the endof the sessionwith
DataService.disconnect.

The DataService can be considered as a middleware between an application and a persis-
tence system responsible for storing the transmitted data. Saving the data can be done by
using a database or by document oriented storage. A user can connect to the DataService
through the DataService.connect method to read data from the information system using
DataService.readData, or to change data permanently using DataService.modifyData.
All transactions performed during a session must be stored in the information system by
DataService.commit. At the end of the session the user disconnects from the service via
DataService.disconnect.

Two things are necessary to monitor this DataService. First, a property must be defined
that should be checked during the execution of the SUT. Second, the events required for
the property must also be defined. If data was changed during the session, the client must
instruct the DataService to commit the changes before the user signs off and disconnects

40 The JUnitSRV Framework

from the service, otherwise local changes would be lost. The jUnitRV library synthesizes
monitors from LTL, so the property must be formulated as a LTL formula:

Always(modify ⇒ ¬disconnect Until committed).

In the corresponding JUnit test case there must be events objects that correspond to the
methods DataService.modify, DataService.disconnect and DataService.commit in or-
der for the monitor to consume them. As mentioned in section 3.1, this can be achieved by
using the Event class and the static auxiliary methods of the SimpleSyntax class from the
jUnitRV library.

private static String dataServiceQName = "myPackage/DataService";
private static Event modify = called(dataServiceQName, "modifyData");
private static Event committed = returned(dataServiceQName, "commit");
private static Event disconnect = called(dataServiceQName, "disconnect");

Listing 4.3: The declaration of events in jUnitRV . First, the fully qualified class name of the class DataService
is declared as a string instance variable dataServiceQName. Unlike in Java, a forward slash is used instead
of a period between the namespace components. The declaration of all necessary events is done by the
auxiliary methods SimpleSyntax.called and SimpleSyntax.returned. Both auxiliary methods require the
fully qualified class name as the first parameter and the name of the method that triggers the event as the
second parameter.

The fully qualified name of the class to be instrumented is first stored as a string in an in-
stance variable. In contrast to Java, a forward slash is used instead of a period between the
namespace components. Then, Event objects are declared that are to be consumed later
by the monitor. The declaration of all necessary events is done by the auxiliary methods
SimpleSyntax.called and SimpleSyntax.returned. Both auxiliary methods require the
fully qualified class name as the first parameter and the name of the method that triggers
the event as the second parameter. These events can be used to create the actual moni-
tor using the above LTL formula. Listing 4.4 contains the declaration of a LTL4Monitor

that is synthesized from both the LTL expression created by the SimpleSyntax.Always,
SimpleSyntax.Until and SimpleSyntax.implied methods, and the events declared in list-
ing 4.3.

private static Monitor commitBeforeDisconnect = new FLTL4Monitor(
Always(implies(modify, Until(not(disconnect), committed))));

Listing 4.4: A LTL4Monitor that monitors the Always(modify ⇒ ¬disconnect Until committed)
property while executing the test cases to which the monitor is attached. The monitor consumes
the events modify, committed and disconnect. The LTL formula is constructed using the methods
SimpleSyntax.Always, SimpleSyntax.implies and SimpleSyntax.Until.

The LTL formula shown above is constructed using the methods SimpleSyntax.Always,
SimpleSyntax.implies and SimpleSyntax.Until and then passed to themonitor construc-
tor. Since the RVRunner extracts and instantiates the monitors from the test class before it
is instantiated itself, the monitor instance variable must be static. This in turn means that
the events must also be static. The declared FLTL4Monitor can now monitor test cases by

The jUnitRV Library 41

≪interface≫
RVMonitorService

+ supports(m: Monitor): boolean
+ createDescriptor(m: Monitor, name: String): MonitorDescriptor

≪interface≫
Monitor

FLTL4Monitor

DFLTL4Monitor

DFLTL4RVMonitorService

FLTL4RVMonitorService

≪interface≫
Dispatcher

+ dispatch(…): void
+ getState(): D1
+ getOutput(): O
+ reset(): void
+ isActive(): boolean
+ setActive(a: boolean): void
+ getDescriptor(): MonitorDescriptor
+ register(h: MonitorHandler): void
+ unregister(h: MonitorHandler):void

D1, D2, C, Q, O

≪interface≫
DispatcherFactory

+ create(e: PropertyEvaluator, l: Loader): D
+ getDescriptor(): MonitorDescriptor

O, D

≪interface≫
DispatcherService

+ process(d: MonitorDescriptor): DispatcherFactory

≪interface≫
MonitorHandler

+ changed(dispatcher: Dispatcher, changes: MonitorState, output: O): void
+ terminated(dispatcher: Dispatcher, changes: MonitorState, output: O)

O

MonitorDescriptor

O, F, I

Figure 4.5: The context of the classes Monitor, MonitorDescriptor and Dispatcher. The Monitor class only
serves as a container for the information needed to monitor and preserve the underlying formalism. The
same information is contained in the MonitorDescriptor used by the RVRunner. The dispatcher is compiled
into the bytecode of themonitored application classes and processes the occurring events according to the
formalism of the Monitor class belonging to the MonitorDescriptor.

attaching it to test classes or test methods using the @Monitors annotation. When a monitor
is attached to a test class, all test cases of that class are monitored by it.

During test execution, the declared events must be monitored. The sequence of events that
occur during execution is the trace, which is processed and verified by the formalism passed
to the actual monitor. To use the monitoring of the jUnitRV library, it provides three main
modules, the Monitor class, the MonitorDescriptor class, and the Dispatcher class. List-
ing 4.5 illustrates the context of all these classes. An instance of Monitor is declared within
the test class and contains information about the monitored events and the formalism used
for verification, i.e. a LTL formula. The FLTLMonitor in the example of listing 4.6 receives
the events it depends on in the form of the LTL formula passed. The RVRunner extracts all
Monitor instances by collecting the monitor names from the @Monitors annotations on the
test class and its test cases using the Reflection API [Ora19]. The instance variables of the test
class are then accessed by name to obtain the monitors that appear in the @Monitors anno-
tation of that class or test case. Each monitor is instantiated by a RVMonitorService. The

42 The JUnitSRV Framework

@Monitors({"commitBeforeDisconnect"})
@RunWith(RVRunner.class)
public class DataServiceTest {

private static String dataServiceQName = "myPackage/DataService";
private static Event modify = called(dataServiceQName, "modifyData");
private static Event committed = returned(dataServiceQName, "commit");
private static Event disconnect = called(dataServiceQName, "disconnect");
private static Monitor commitBeforeDisconnect = new FLTL4Monitor(

Always(implies(modify, Until(not(disconnect), committed))));

@Test
public void test() {

DataService service = new MyDataService("http://myserver");
service.connect("12345");
service.modifyData("value", new IntData(42));
service.commit();
service.disconnect();

}
}

Listing 4.6: An exemplary test class that declares events on the DataService class and provides them
to a FLTL4Monitor instance in the form of a LTL expression. The monitor is attached to all test cases of
the DataServiceTest class because DataServiceTest is annotated with @Monitors. The values passed to
@Monitors are the names of the monitor variables declared in the test class that are to be considered for
monitoring.

RVMonitorService is loaded via Java’s SPI. It decides whether a Monitor object is supported,
and it can create a MonitorDescriptor from the Monitor instance. Among other informa-
tion, the MonitorDescriptor contains the information that the corresponding Monitor ob-
ject contains and is only used by internal classes of the jUnitRV library. In the next step,
DispatcherServices are loaded via the SPI. The task of these services is to create Dispatcher
instances based on the MonitorDescriptor they contain. Finally, the Dispatcher instances
are compiled into the bytecode of the instrumented methods. This bytecode manipulation
is done via the Javassist library [Chi19]. Depending on the type of event, the invocation
of Dispatcher.dispatch is appended to or prefixed to the instrumented method of the
SUT. Now, when an instrumented method is called, the context information is collected
and passed to the Dispatcher.dispatch invocation. To perform bytecode manipulation, a
custom ClassLoader is required to intercept the loading process. A ClassLoader is responsi-
ble for loading class files at runtime when a instruction creates a new instance of a particular
class. In this case, the JVM requests this class from the ClassLoader, if not already present.
If a class was loaded by a particular ClassLoader, the same ClassLoader is responsible for
loading dependent classes as needed. Since the RVRunner executes the test class, it can load
its test class with a custom ClassLoader and load all application classes that are supposed to
be tested.

In order to extend the jUnitRV library with user-defined monitor types, implementations for
the interfaces in 4.5 must be provided via the SPI during test case execution. These functions
enable the implementation in the following sections to outsource the monitoring process to
the jUnitRV library and ensure that the additional functions of the JUnitSRV framework are
consistent with the jUnitRV library.

TeSSLa-Based Monitors 43

4.2 TeSSLa-Based Monitors

This section presents the implementation of the TeSSLa monitor concepts from chapter 3
section 3.2. As already described in the section 4.1, the jUnitRVlibrary supports dynamic
extensions for monitors by using Java’s SPI. Therefore the new monitor services of JUnit-
SRV are discussed first and then their internal structure and classes are introduced. Finally,
examples for different monitors using listings are shown.

Figure 4.7 is a simplified overview of the services and associated classes implemented by the
JUnitSRV framework. The classes and interfaces in this UML class diagram do not contain
any attributes ormethods, otherwise the diagramwould have become too complex. In this di-
agram, boxes represent classes and circles interfaces. Themeaning of arrows still corresponds
to that of conventional UML diagrams. As usual in the UML standard, italic font still means
that it is an abstract component. The services necessary to recognize TesslaMonitors during
the transformation of test cases are the TesslaMonitoringService, which is responsible for
identifying TesslaMonitor instances, and the TesslaMonitorDispatcherService, which is
responsible for creating Dispatcher instances for the instrumented classes. In addition to
these services, a custom Monitor implementation the TesslaMonitor is also provided by the
JUnitSRV framework. The abstract class TesslaMonitorAttribute serves as a marker class
used by TesslaMonitor to describe an attribute that configures the monitor. As described in
section 4.1, the TesslaMonitor is a container that contains the configuration for monitoring
behavior and is not used during actual monitoring, while the TesslaMonitorDispatcher is
embedded in the application code. By implementing all these interfaces and providing the
necessary services, the code instrumentation of the jUnitRV library is able to support the new
TesslaMonitors for test case monitoring.

While the instrumented application code is being executed, Dispatcher.dispatch is called.
The Dispatcher can then process the event and calculate a result that is passed to the at-
tached handlers. The monitors provided by the jUnitRV library are based on automatons,
which means that each event results in a new state in the monitor automaton. However,
the TesslaMonitor does not use any automatons for monitoring, but the TeSSLa interpreter
which receives discrete events on certain streams and correlates these input streams with
the resulting output streams. The monitor must give a verdict on the basis of these output
streams. For this purpose, the JUnitSRV framework requires twomechanisms: InputStream
objects, which refer to StreamTransformer objects, and OutputStream objects, which refer
to StreamCondition objects. Events processed by a Dispatcher contain information such
as the instance on which a particular method was called, the arguments of that method, the
method itself, the return value, and some other information in the form of a StreamEvent

object. The InputStream is responsible for preparing this information and translating it
into streams. For example, an integer event stream should provide events that represent

44 The JUnitSRV Framework

Monitor FormalismDescriptor Serializable

TesslaMonitor TesslaMonitorAttribute

TesslaMonitorDispatcher

Dispatcher DispatcherService

DispatcherFactory

TesslaMonitorDispatcherServiceDispatcherFactoryImpl

TesslaMonitoringService

RVMonitorService

SimpleHandler

Figure 4.7: A simplified hierarchical overview of the TesslaMonitor, its TesslaMonitoringService, its
TesslaMonitorDispatcher, its TesslaMonitorDispatcherSerivce, and the TesslaAttribute class. The
meaning of the arrows continues to correspond to that of conventional UML diagrams. Concrete classes
are represented as boxes, while interfaces are represented as circles. The displayed interfaces are provided
by the jUnitRV library.

InputStream

InputStream

InputStream CheckedOutputStream

CheckedOutputStream

LoggedOutputStream

ST

ST

ST

TeSSLa interpreter

TeSSLa specification

SC

SC

Called event

Returned event

Called event

Reducer
B4

Console

TeSSLa monitor

t=1

2

t=4

5

t=1

t=5 t=3 t=2

f

t

f
()() B4

B4

Figure 4.8: An overview of the structure of the TesslaMonitor. The left side of the monitor shown in the pic-
ture shows the input for a TesslaMonitor. The InputStream instances use a StreamTransformer instance to
translate instrumentation events into streams. The result of the stream transformation is passed as stream
events over to the TeSSLa interpreter, which calculates a step from these events. The resulting output
streamsarepassed to the corresponding OutputStreamobjects. Each CheckedOutputStream instanceuses an
instance of the StreamCondition class to calculate aB4 value. These values are collected and aggregated by
the Reducer of themonitor to calculate a final verdict for this step. The instances of the LoggedOutputStream
class ensure that the corresponding streams are printed on the console. The right side of the monitor repre-
sents the output of the monitor.

TeSSLa-Based Monitors 45

one of the arguments of a particular method. A StreamTransformer is used to perform
this transformation. The StreamTransformer retrieves the StreamEvent and calculates a
resulting value. The InputStream then uses this resulting value and feeds the TeSSLa in-
terpreter with it. After the interpreter has finished calculating the output stream events for
this step, the OutputStream objects come into action. There are two types of output streams.
The CheckedOutputStream, which is taken into account when calculating a verdict, and the
LoggedOutputStream, which is used to output the events of the output stream, provided
by the TeSSLa interpreter, to the console to enable debugging. Each CheckedOutputStream

uses a StreamCondition to decide whether a condition is violated or not. The resulting value
is a B4 value. Since a monitor can use multiple CheckedOutputStream objects, a so-called
Reducer is used to collect and aggregate the verdicts of each CheckedOutputStream after
each step. JUnitSRV offers the ConjunctionReducer, which is the default Reducer, and the
DisjunctionReducer. The first calculates the conjunction of all CheckedOutputStream ver-
dicts, while the second calculates the disjunction. The structure of a TesslaMonitor is shown
in the figure 4.8. All components that are colored green in this graphical representation
are freely configurable by the developer. Since the developer has the possibility to influence
data that goes to the TeSSLa interpreter and can also process data that comes back from
it, the developer can dynamically adapt a TesslaMonitor to almost any use case. To show
how a TesslaMonitor is used within JUnit, the working example from chapter 1 is used
again.

Listing 4.9 contains both a JUnit test case and a TeSSLa specification which is used for SRV
during test case execution. In contrast to conventional test cases, monitored test cases are
annotated using the annotation @MonitoredTest instead of @Test. The reason for this is
explained in section 4.4. The TeSSLa specification receives as input stream the deposits
made using the ATM class and defines constraints on that stream to be met during moni-
toring. If the constraints are not met, a unit event is generated on the output stream error

together with a message on the error_message stream. The TesslaMonitor provides a func-
tional interface for its configuration. For example, the TesslaMonitor.forSpec method
is used to identify the specification used for stream processing during verification, while
the TesslaMonitor.inputStream method specifies an input stream that is passed to the in-
terpreter, and the TesslaMonitor.outputStream method specifies an output stream used
for the final verdict. Finally, the TesslaMonitor.logAllOutputStreams method takes care
of printing all output streams from the TeSSLa interpreter on the console. Both objects
transformer and condition are used by the object InputStream and CheckedOutputStream
respectively. There are two arguments for the ATM.deposit method. The first argument is
the amount of money to be deposited. This value is translated by the transformer object
into stream events on the deposit stream. Whenever the deposit method is called on a
class that implements the ATM interface, this translator creates an event that is then passed

46 The JUnitSRV Framework

@DisplayName("Tessla Monitored Tests")
class MonitoredOffSiteATMTest {

private static final String atmQName = "ATMExample/ATM";
private static final Event calledDeposit = called(atmQName, "deposit");
private static final StreamTransformer<TesslaInt> transformer = (StreamEvent event) -> {

return new TesslaInt((Integer) event.getArgs()[0].getValue());
};
private static final StreamCondition<TesslaUnit> condition = (TesslaUnit event) -> {

return Boolean4.FALSE;
};
private static final Monitor exampleMonitor = TesslaMonitor.forSpec("spec.tessla")

.inputStream(new InputStream<>("deposit", transformer, calledDeposit))

.outputStream(new CheckedOutputStream<>("error", TesslaUnit.class, condition))

.logAllOutputStreams();

@Monitors({"exampleMonitor"})
@MonitoredTest
void testDepositSRV() {

// Exercise Phase
atm.deposit(2000, account);
// Verification Phase
assertEquals(2000, account.getBalanceInCents());

}
}

-- TeSSLa specification
in deposit: Events[Int]
def condition: Events[Bool] := deposit > 1000
def error: Events[Unit] := if condition then ()
def error_message: Events[String] := if condition then "deposit exceeded 1000 cents"
out *

Listing 4.9: A simple example of the declaration of a TesslaMonitor. The declaration of Event objects
corresponds to that of the jUnitRV library. Next, a StreamTransformer is declared that extracts the first
argument from ATM.deposit calls and translates it into integer events that can be processed by the TeSSLa
interpreter. Then, a StreamCondition is declaredwhich causes themonitor to failwhenanevent is consumed
on the error stream. Finally, a TesslaMonitor with all components is declared. Below the JUnit test class
is the corresponding TeSSLa specification, which creates a unit event on the error stream when the input
stream deposit returns an event containing an integer data value exceeding 10. All streams, including the
input stream, are then considered as output streams.

to the TeSSLa interpreter. The interpreter processes all stream events and provides a set of
associated output streams. Then, the object condition processes the events on the output
stream for which the OutputStream to which it belongs is responsible. In the case of the
monitor from listing 4.9 the condition object checks whether an event occurs on the error
stream. If this is the case, it will always return false, so the monitor will always fail when an
event occurs on the error stream.

Since the JUnitSRV framework uses the Scala interface of the TeSSLa interpreter, special
types are used to represent primitive values such as integers. Therefore, the JUnitSRV frame-
work provides wrapper classes for these types. In the example the two types TesslaInt and
TesslaUnit are used. This approach has two advantages. First, although the interpreter and
the test code are executed in the same JVM, arbitrary types cannot simply be passed to the in-
terpreter, since the wrapper classes serve as restrictions on possible types during themonitor
declaration. Second, the type of objects passed to and received from the TeSSLa interpreter

TeSSLa-Based Monitors 47

@DisplayName("Tessla Monitored Tests")
class MonitoredOffSiteATMTest {

private static final String atmQName = "ATMExample/ATM";
private static final Event calledDeposit = called(atmQName, "deposit");
private static final Monitor exampleMonitor = TesslaMonitor.forSpec("spec.tessla")

.inputStream("deposit", intEventsFromArg(1), calledDeposit)

.failOnEvent("error")

.logAllOutputStreams()

.reportOn("error_message");

@Monitors({"exampleMonitor"})
@MonitoredTest
void testDepositSRV() {

// Exercise Phase
atm.deposit(2000, account);
// Verification Phase
assertEquals(2000, account.getBalanceInCents());

}
}

Listing 4.10: A simplified example for monitoring test cases. The monitor declaration is simplified in
contrast to the monitor declaration in listing 4.9 by using the class Convenience and its static auxiliary
methods. Both, the objects transformer and condition are created by the class Convenience. The
method Convenience.intEventsFromArg generates a stream transformer, which translates the argument
at the position specified by the parameter of the Convenience.intEventsFromArg method from the
instrumented method into an integer, that is then passed on as a stream event to the TeSSLa interpreter.
The TesslaMonitor.failOnEvent method causes the monitor to fail when an event is consumed on
the error stream. If this is the case, the message in the error_message stream is used as an error
report. In addition, all output streams from the specification are printed to the console using the
TesslaMonitor.logAllOutputStreamsmethod.

is typed and thus the responsibility for type checking shifts from the TeSSLa interpreter to
the SRVTestEngine. This allows early detection of errors in the use of monitors, and data
transformations during test case execution.

In order to facilitate the usage of the interface of JUnitSRV, the JUnitSRV framework pro-
vides the class Convenience, which contains some static methods, that allow to create certain
objects like, e.g., InputStream, OutputStream, StreamTransformer and StreamCondition.
The monitor declaration in listing 4.9 can be simplified by using the class Convenience.
The Convenience.intEventsFromArg method returns a StreamTransformer similar to the
transformer object in the listing 4.9. It receives the index of the argument to be translated
into an event. Using the TesslaMonitor.failOnEvent method, a CheckedOutputStream

object can be created that behaves exactly the same as the condition object from listing 4.9.
Unlikemonitors based on LTL formulas, monitors synthesized fromTeSSLa can specify mul-
tiple conditions that can fail, and therefore in some cases a detailedmessagewith information
about the failed condition is required to determine the cause of the error. For this purpose,
the TesslaMonitor can be configured using the TesslaMonitor.reportOn method to dis-
play the string that occurs on the stream passed by name as an argument. In the example
of listings 4.9, the monitor displays detailed information about an error using the stream
error_message.

48 The JUnitSRV Framework

4.3 The JUnit Platform

This section introduces the JUnit Plaform. First, it explains how the JUnit Plaform architec-
ture allows developers to extend functionality through custom frameworks. Then the respon-
sibilities of these custom test engines are explained.

As shown in figure 4.12, the architecture of JUnit 5 is divided into the JUnit Platform, which
is the link between the client application and the actual testing frameworks, and the respec-
tive testing frameworks. By default, the JUnit 5 framework offers the two testing frame-
works JUnit Vintage and JUnit Jupiter. While the JUnit Vintage framework is responsible
for executing old JUnit 4 test cases on the new JUnit 5 platform, JUnit Jupiter executes
JUnit 5 test cases. During the test case execution all testing frameworks are considered
at the same time. The JUnit Platform also allows the usage of custom testing frameworks
during test case execution. A test engine contains the business logic by which the JUnit
tests are performed. Each testing framework needs its own test engine, a class that im-
plements the TestEngine interface. The JUnit Platform uses the SPI to load TestEngine

implementations during runtime and then use it for test case execution. Therefore, the
class name of the TestEngine implementation of each testing framework must be added to
the META-INF/services/org.junit.platform.engine.TestEngine file in the correspond-
ing jar file. Using this file, the JUnit Platform service loader can determine custom imple-
mentations of the TestEngine interface using Java’s SPI. Listing 4.11 contains the interface
TestEngine.

public interface TestEngine {
String getId();
TestDescriptor discover(EngineDiscoveryRequest discoveryRequest, UniqueId uniqueId);
void execute(ExecutionRequest request);

}

Listing 4.11: The JUnit TestEngine interface. Custom TestEngines that run test cases during testing
must implement this interface and must be provided to the Javas SPI. A TestEngine has a unique id
which is returned by TestEngine.getId. The is also responsible to extract all its test cases from the given
EngineDiscoveryRequest and returns the resulting tree-based structure as a TestDescriptor. Besides the
discovery process a TestEngine can also execute a TestDescriptor via its TestEngine.executemethod.

The JUnit Platform also offers the Runner class JUnitPlaform. This class allows tests to
be run on the JUnit Platform in a JUnit 4 environment. Also of great importance is the
JUnit Platform Launcher, which is used by the actual client application to perform testing.
In most cases, the client application is an IDE, such as IntelliJ, Eclise or NetBeans. How-
ever, it is also possible to interact with JUnit via a command line interface (CLI). The JU-
nit Platform Launcher requires a TestPlan for the actual execution, which is generated by
the implementation of the Launcher.discovery method. The Launcher class forwards the
discovery and execution requests to any attached TestEngine. A TestEngine is responsi-
ble for two tasks. First, it receives an instance of EngineDiscoveryRequest, which gives

The JUnit Platform 49

JUnit 3.X/4.X tests

JUnit 4.12

JUnit Vintage Engine

JU
nitVintage

JUnit 5.X tests

JUnit 5.3.2

JUnit Jupiter Engine
JU

nitJupiter

JUnit Platform Engine

JUnit Platform Launcher

JUnit Platform Runner

JU
nitPlatform

…

Client Application (e.g Eclipse, IntelliJ, …)

Figure 4.12: The layers of a project that uses JUnit 5. The client application is an application that can run
JUnit tests such as Eclipse or IntelliJ. This application communicates with the JUnit Platform to discover and
run certain tests. The detection and execution requests are passed to all connected testing frameworks and
the results are post-processed by the JUnit Platform before being passed to the client application. The client
application can then present a representation of the results.

≪interface≫
TestDescriptor

+ getUniqueId(): UniqueId
+ getLegacyReportingName(): String
+ getTags(): Set
+ getSource(): TestSource
+ getParent(): TestDescriptor
+ setParent(p: TestDescriptor): void
+ getChildren(): Set
+ getDescendants(): Set
+ addChild(d: TestDescriptor): void
+ removeChild(d: TestDescriptor): void
+ removeFromHierarchy():void
+ isRoot(): boolean
+ getType(): Type
+ isContainer(): boolean
+ isTest(): boolean
+ mayRegisterTests(): boolean
+ containsTests(d: TestDescriptor): boolean
+ prune(): void
+ findByUniqueId(id: UniqueId): TestDescriptor
+ accept(v: Visitor): void

AbstractTestDescriptor

children: Set<TestDescriptor>

AbstractTestDescriptor(id: UniqueId, name: String)
AbstractTestDescriptor(id: UniqueId, name: String, s: TestSource)
+ getUniqueId(): UniqueId
+ getDisplayName(): String
+ getTags(): Set<TestTag>
+ getSource(): TestSource
+ getParent(): TestDescriptor
+ setParent(p: TestDescriptor): void
+ getChildren(): Set<TestDescriptor>
+ addChild(c: TestDescriptor): void
+ removeChild(c: TestDescriptor): void
+ removeFromHierarchy(): void
+ findByUniqueId(id: UniqueId): TestDescriptor
+ hashCode(): int
+ equals(o: Object): boolean
+ toString(): String

≪interface≫
Visitor

+ visit(d: TestDescriptor): void

≪enum≫
Type

CONTAINER
TEST
CONTAINER_AND_TEST

+ isContainer(): boolean
+ isTest(): boolean

≪interface≫
DiscoverySelector

ClassSelector

ClasspathRootSelector

MethodSelector

PackageSelector

Figure 4.13: The class hierarchy of the TestDescriptor. A TestDescriptor contains information about the
corresponding test. Each test suite, test class and test method is described by a TestDescriptor. Each
TestDescriptor has subdescriptors, i.e. a test class can consist of several test cases. To simplify the definition
of user-defined TestDescriptors, the JUnit Platform provides the abstract class AbstractTestDescriptor,
which has already implemented most interface methods.

50 The JUnitSRV Framework

discover(request)

descriptor

discover(request)

descriptor

executionStarted(descriptor)

executionFinished(descriptor, result)

execute(descriptor, listener)
execute(descriptor)

ide:Client p:Platform e:TestEngine l:ExecutionListener

Figure 4.14: The discovery and execution process of test cases in JUnit 5. First, the client application sends
a discovery request to the JUnit Platform to extract test cases from the specified selector. The JUnit Plat-
form forwards the request to all loaded TestEngines to create a test descriptor. At a later stage, the client
can perform tests that are detected by an execution request. The JUnit Platform redirects this request to all
TestEngines that support the given test cases. The TestEngine can then execute the test cases from the de-
scriptor. During execution, it notifies the appropriate ExecutionListenerwhen test cases have been started,
terminated, or failed.

the TestEngine access to the information needed to recognize tests and containers. The
EngineDiscoveryRequest consists of selectors and a filter. For example, a selector can con-
tain the name of a Java class, the path to a file or directory, and possibly other details. The
corresponding class hierarchy is shown in figure 4.13 and describes all DiscoverySelectors
used by the SRVTestEngine. While each MethodSelector and ClasspathRootSelector pro-
vides the current class with its getJavaClassmethod, the test classesmust be extracted from
PackageSelector and ClasspathRootSelector using auxiliary methods provided by the
JUnit framework. It is the responsibility of the TestEngine to find all relevant tests and
containers from the provided DiscoverySelector objects. The filter, on the other hand is
responsible for providing information about which resources should be considered by the
TestEngine and which resources should be ignored. The TestEngine.discover method
is responsible for creating a representation of tests from the selectors and filters of the
EngineDiscoveryRequest. This test representation is a tree containing only containers and
tests. A container is a structure that can contain other containers or tests, i.e. a test class,
while a test is an executable test case, i.e. a method annotated with @Test. Containers rep-
resent nodes and tests represent leaves in the corresponding tree. Each container and each
test must be translated from the TestEngine into a TestDescriptor, which is shown in fig-
ure 4.13. The hierarchy of the TestDescriptors contains all test containers and tests of the
provided selectors as well as additional data that the test to be executed requires.

In addition to the discovery process of test cases, the execution of test cases is also per-
formed by TestEngine instances. The TestEngine.execute method receives an instance
of ExecutionRequest, which includes the TestDescriptor, that was previously created by

The SRVTestEngine 51

the TestEngine.discover method; an instance of EngineExecutionListener, which is a
listener that is notified when tests are started, stopped, or skipped; and some configuration
parameters in the form of an ConfigurationParameters object. Figure 4.14 visualizes the
process of detection and execution of all detected tests. Since both processes are decoupled,
the client application can decide when tests are detected and when they are executed. For
example, tests can be discovered by an IDE to visualize the test structure in a special view,
but they can also be discovered immediately before execution.

4.4 The SRVTestEngine

In this section the SRVTestEngine that powers the JUnitSRV framework is introduced. The
SRVTestEngine implements the TestEngine interface shown in section 4.3 and adapts the be-
havior of the RVRunner class introduced in section 4.1. Since the application code instrumen-
tation of the jUnitRV library should be usedwithin the SRVTestEngine, the test class transfor-
mation applied by the RVRunner to the test classes must be performed by the SRVTestEngine.
As mentioned in the previous sections, the JUnit 5 architecture does not provide Runner

classes. In particular, the JUnit 5 architecture supports two methods for intercepting the
execution of test cases. First, by using extensions. Extensions are basically callbacks that are
called at different stages of the test case execution. Since extensions are designed to be called
at different stages and the executed test class cannot be preprocessed by them, they cannot
load test classes with a user-defined class loader, which is essential for the instrumentation
performed by the jUnitRV library. Therefore, a custom TestEngine is the last and only option
that provides the ability to instrument application code during the class loadindg process
and thus enable RV during test case execution.

Figure 4.15 illustrates the main classes that form the actual SRVTestEngine. The interface
TestEngine and the abstract class AbstractTestDescriptor are the same as in figure 4.13.
The SRVTestEngine.discover creates a TestDescriptor tree structure of all tests extracted
from the selectors of the specified EngineDiscoveryRequest. Unlike JUnit Jupiter, a test
case executed by the SRVTestEngine contains additional information such as the connected
monitors. Therefore, the SRVDescriptor inherits the AbstractTestDescriptor. Thus, the
SRVDescriptor is a conventional TestDescriptor and can be used by the JUnit Platform as
such, in addition the SRVTestEngine can add further information to it, which can be used
during test case execution. During execution, the TestDescriptor tree is translated into
a SRVExecutionNode tree. This is necessary because the SRVTestEngine does not use test
classes as they are to execute its test cases. Each test class is transformed exactly the same as
the RVRunner transformed these classes in the context of the jUnitRV library. A representa-
tion of the data structures created by the JUnit Platform and the SRVTestEngine is shown in
figure 4.16. First, the JUnit Platform passes an ExecutionRequest to the SRVTestEngine,

52 The JUnitSRV Framework

≪interface≫
TestEngine

+ getId(): String
+ discover(r: EngineDiscoveryRequest, id: UniqueId): TestDescriptor
+ execute(request: ExecutionRequest): void

SRVTestEngine

+ getId(): String
+ discover(r: EngineDiscoveryRequest, id: UniqueId): TestDescriptor
+ execute(request: ExecutionRequest): void

AbstractTestDescriptor

SRVDescriptor

SRVLeafDescriptor SRVNodeDescriptor

SRVMethodDescriptor

SRVSkippedMethodDescriptor

SRVClassDescriptor

SRVSkippedClassDescriptor

SRVEngineDescriptor
≪interface≫

SRVExecutionNode

+ of(d: TestDescriptor, l: EngineExecutionListener): SRVExecutionNode
+ exec(): void {exceptions=SRVExecFailedException}
+ setParent(p: SRVExecutionNode): void
+ getTestClassInstance(): Object

SRVClassExecution SRVEngineExecution SRVMethodExecution SRVSkippedClassExecution SRVSkippedMethodExecution

Figure 4.15: The structure of the SRVTestEngine. A UML diagram containing all classes important with re-
gard to the SRVTestEngine. The SRVTestEngine implements the interface TestEngine. By combining this
implementationwith Java’s SPI it can be loaded from the JUnit Platform at runtime. The SRVTestEngine uses
its own test descriptors, the SRVDescriptors, to add additional information to them. By using the composite
design pattern, a tree-like structure is created from the DiscoveryRequest. Before the test case is executed,
an additional tree structureof SRVExecutionNodeobjects is generated from the SRVDescriptor tree structure
and linked to it. An example of this process is shown in Figure 4.16.

which then translates it into a tree structure of TestDescriptors during the discovery
process. By using the SRVDescriptor class, additional information can be appended to
these descriptors to increase performance during test case execution. When the JUnit Plat-
form executes test cases, the tree structure of SRVTestDescriptors is passed back to the
SRVTestEngine. Then, it translates the descriptors into a tree of SRVExecutionNodes. Each
node corresponding to a SRVClassDescriptor transforms the corresponding test class using
the TestTransformation from the jUnitRV library. During the transformation, monitors
are extracted and instantiated for later use. The SRVClassExecution node then creates an
instance of the transformed test class to be used when executing its test cases.

The SRVExecutionNode and its implementing classes apply the composit pattern [Gam+95].
According to [Gam+95] the composite pattern is used to assemble objects into a tree struc-
ture representing part-whole hierarchies. Any class that implements the SRVExecutionNode
interface is also treated as a SRVExecutionNode. It can be executed, which triggers the ex-
ecution of all child SRVExecutionNodes and it contains contextual information about the
executing unit as well as the corresponding SRVDescriptor and an ExecutionListener.
The ExecutionListener is used to inform the JUnit Platform that the execution of a
TestDescriptor node has been started, stopped, or skipped. The SRVClassExecution class
holds a reference to the corresponding SRVClassDescriptor that provides access to attached
monitors. It also creates the current instance of the transformed test class. Within the

The SRVTestEngine 53

ExecutionRequest

ClassSelector MethodSelector PackageSelector ClasspathRootSelector

JUnit Platform

SRVTestEngine

ED

CD

MD MD

CD

MD MD

SRVTestEngine.discovery

Ex/EE

Ex/CE

Ex/ME Ex/ME

Ex/CE

Ex/ME Ex/ME

SRVTestEngine.execute

Class Instance
ExeuctionListener

Class Instance
ExeuctionListener

Monitors
Transformed Class

Monitors
Transformed Class

Monitors
Test Method

Monitors
Test Method

Monitors
Test Method

Monitors
Test Method

ExecutionListener

ExecutionListener

ExecutionListener

ExecutionListener

Figure 4.16: A graphical representation of the data structures used in test discovery and test execution pro-
cess by the SRVTestEngine. The client application starts the test discovery by providing all the resources to
be considered for the discovery process. These resources can be classes, methods, packages, or a classpath.
During the search for tests, the SRVTestEngine creates a tree structure that represents the parent-child re-
lationship of test classes, nested classes, and their test cases. Additional information such as a transformed
version of the test class is also appended to the nodes and leaves of the tree. When test cases are executed,
a congruent representation is created from SRVExecutionNodes of the TestDescriptor tree. Each node at
the same position in both trees is connected.

SRVClassExecution.exec method the methods attached with @BeforeAll, @BeforeEach,
@AfterAll and @AfterEach and the child nodes of type SRVMethodExecution are exe-
cuted.

When test cases are discovered, an EngineDiscoveryRequest is passed to each TestEngine

loaded via the SPI. Using this EngineDiscoveryRequest, the TestEngine determines which
test cases should be considered during execution. The jUnitRV library uses the annotation
@Monitors to identify the test cases to be monitored during execution. However, this ap-
proach is not applicable by the SRVTestEngine because a test case annotated with both an-
notations @Monitors and @Test would be executed by both the JUnit Jupiter Framework
and the JUnitSRV Framework. Therefore, a special annotation is required that distinguishes
JUnit Jupiter test cases from JUnitSRV test cases so that when a test case is considered by
one framework, the other ignores it. For this purpose, the SRVTestEngine provides the an-

54 The JUnitSRV Framework

class OffSiteATMTest {
private static final String notificationServiceQName = "ATMExample/NotificationService";
private static final Event calledSend = called(notificationServiceQName, "send");
private static final Monitor sendCalledOnce = TesslaMonitor

.forSpec("ATMExample/spec.tessla")

.inputStream("send", calledSend)

.failOnEvent("error")

.reportOn("error_message");

@Monitors({"sendCalledOnce"})
@MonitoredTest
void testDepositSRV() {

// Setup Phase
NotificationService service = new SMSNotificationService();
Account account = new AccountStub();
OffSiteATM atm = new OffSiteATM(service);
// Exercise Phase
atm.deposit(1000, account);
// Verification Phase
assertEquals(1000, account.getBalanceInCents());

}
}

-- TeSSLa specification
in send: Events[Unit]
def cnt: Events[Int] := count(send)
def condition: Events[Bool] := cnt > 1
def error: Events[Unit] := if condition then ()
def error_message: Events[String] := if condition then "Method 'send' called more than 0"
out *

Listing 4.17: A test class with JUnitSRV test cases. The TeSSLa monitor created with the calledSend
event is declared and attached to the OffSiteATMTest.testDepositSRV test case using the @Monitors and
@MonitoredTest annotations. The monitor uses the specification displayed below the test class. It ensures
that the NotificationService.send method is called only once. If this restriction is violated, the monitor fails
with the message provided by the error_message stream.

notation @MonitoredTest. This annotation is also associated with an extension that pre-
vents test cases from being executed by JUnit Jupiter or JUnitSRV when annotated with both
@Test and @MonitoredTest. Listing 4.17 contains a complete test class containing a sin-
gle test case executed by the JUnitSRV framework and ignored by the JUnit Jupiter frame-
work. The listing also contains a TeSSLa specification that defines the behavior of themonitor
sendCalledOnce.

4.5 TeSSLa-Based Mock Objects

One of themain features of the JUnitSRV framework is the mocking of interfaces and classes.
In particular, the JUnitSRV framework allows mocking of classes, abstract classes, and inter-
faces at runtime and allows these mocks to connect to monitor streams. In contrast to other
mocking frameworks like Mockito [Moc19] the mock behavior is controlled by so-called
InvocationHandlers. These handlers are responsible for calculating return values for meth-
ods based on their arguments. With this handler mechanism, mock objects are highly con-
figurable and can be adapted to almost any application. To connect a mock to a stream of a

TeSSLa-Based Mock Objects 55

ProxyFactory

ClassProxyFactoryInterfaceProxyFactory

Mock

T

ClassMock

T

InterfaceMock

T

≪interface≫
InvocationHandler

+ handle(instance: Object, method: Method, args: Object[], argTypes: Class<?>[]): Object

DefaultMethodHandler StreamMethodHandler

Figure 4.18: The class hierarchy for the mocking framework and all related classes. The factory classes
are responsible for creating proxy classes for the classes or interfaces that should be mocked. The result-
ing proxy classes are wrapped in a generic Mock class. Mocked classes are represented as ClassMock ob-
jects, while mocked interfaces are represented as InterfaceMock objects. The implementations of the
InvocationHandler class are responsible for describing the behavior of mock objects.

TeSSLa monitor, a special handler is used internally, which can also be used in conjunction
with InvocationHandlers.

Figure 4.18 outlines the main classes that allow classes and interfaces to be mocked. One of
the two main components is the ProxyFactory and its two subclasses ClassProxyFactory
and InterfaceProxyFactory. These classes apply the proxy pattern and the abstract factory
pattern [Gam+95], and are responsible for creating proxy classes for classes or interfaces to
be mocked. The instantiation of classes and interfaces is fundamentally different, e.g. classes
must be instantiated with the provided constructors and interfaces cannot be instantiated at
all. When mocking classes or interfaces during testing, the use of constructors that require
arguments for instantiation should be avoided. This makes it possible to create objects with-
out having to create their dependencies beforehand. The problem with this approach is that
classes may not provide standard constructors that can be used. In the context of Java, so-
called default constructors are only added to a class if it does not have any explicitly declared
constructors. However, this cannot be required of any class to be mocked. Furthermore, in-
terfaces do not provide constructors and implementations for methods at all. To solve this
problem, the instances ClassProxyFactory and InterfaceProxyFactory create classes at
runtime using the Javassist library [Chi19]. Whenever these factory classes are prompted
to create a proxy class, they generate the bytecode of classes that inherit or implement the
specified class or interface. In the case of classes, the factory scans the class to be mocked
for the default constructor. If this constructor does not exist, it is created in the proxy class.

56 The JUnitSRV Framework

Then, each method is overwritten to provide an implementation. To allow configuration
of the behavior of the implemented methods, a DefaultInvocationHandler instance is at-
tached to the proxy class, which is then called in each method. A proxy class as created by
ClassProxyFactory for the class OffSiteATM from listing 1.2 is the OffSiteATMMock0 class
in listing 4.19.

public class OffSiteATMMock0 extends OffSiteATM {
private InvocationHandler invocationHandler6459966968329040635;

public OffSiteATMMock0() {}

public OffSiteATMMock0(NotificationService service) {
super(service);

}

public void withdraw(int cents, Account account) throws NotEnoughMoneyException {
Object[] args = new Object[] {cents, account};
Class<?>[] sig = new Class[] {int.class, Account.class};
Method m = MethodUtils.getMethod(this.getClass(), "withdraw", sig);
this.invocationHandler6459966968329040635.handle(this, m, args, sig);

}

public void deposit(int cents, Account account) {
Object[] args = new Object[] {cents, account};
Class<?>[] sig = new Class[] {int.class, Account.class};
Method m = MethodUtils.getMethod(this.getClass(), "deposit", sig);
this.invocationHandler6459966968329040635.handle(this, m, args, sig);

}
}

Listing 4.19: A proxy class for the class OffSiteATM. The name of the proxy class is generated by appending
the term Mock followed by the number of already created proxy classes to the actual name of the class
or interface to be mocked. A proxy class needs a handler that defines its behavior for method calls. The
handler name is generated with a random hash to prevent instance variable shadowing with the instance
variables of the parent class. Each method of the parent class or the implemented interface is implemented
or overwritten, so that the call is passed to the InvocationHandler instance instead of being calculated
directly in the method.

As shown in listing 4.19, a default constructor is added to the class. This constructor is not
available in the OffSiteATM class. Then, an instance variable InvocationHandler is added.
The name of this variable is formed by the word invocationHandler followed by a random
hash value to prevent variable shadowing with the instance variables of the base class. Within
all overridden methods, this handler is then called with context information such as the
current method, parameters and their types, and the instance on which the method was
originally called. Proxy classes for interfaces are created analogously, with the difference that
the respective methods are not overwritten but only implemented there and the proxy class
implements the interface instead of extending it. The class MethodUtils is an auxiliary class
that is provided by the JUnitSRV framework and returns an Method instance for the specified
class, name and parameter types, if the corresponding method exists.

TeSSLa-Based Mock Objects 57

class AccountMockTest {
@MonitoredTest
void test() {

Mock<Account> accountProxy = MockFactory.mock(Account.class);
accountProxy.setHandler((instance, method, args, sig) -> {

switch (method.getName()) {
case "getBalanceInCents": return 10000;
case "getName": return "John Doe";
case "getEMail": return "john.doe@email.com";
case "getPhoneNumber": return "12345";
default: return DefaultValue.of(method.getReturnType());

}
});
Account accountMock = accountProxy.newInstance();
assertEquals(10000, accountMock.getBalanceInCents());
assertEquals("John Doe", accountMock.getName());
assertEquals("john.doe@email.com", accountMock.getEMail());
assertEquals("12345", accountMock.getPhoneNumber());

}
}

Listing 4.20: An example of how to create a mock object for the Account class. The method of the class
MockFactory.mock passes the request either to the ClassMockFactory or to the InterfaceMockFactory,
based on the argument obtained. The proxy class created by the factory is wrapped by a Mock instance.
A custom handler is then attached to the proxy class. Finally, themock object is created from the proxy class.
The Assert statements after instantiation check whether the handler returns the correct return values for all
methods.

After Javassist has created these proxy classes, they are passed to the JVM and can then
be instantiated. Before instances of these proxy classes are created, they can be config-
ured, since the associated handler is not initialized by the initializer or constructor. The
ClassProxyFactory and InterfaceProxyFactory objects create instances of the ClassMock
and InterfaceMock classes, respectively. Instances of ClassMock or InterfaceMock can in-
stantiate proxy classes via their method Mock.newInstance. This and the Mock.setHandler
method allows the proxy objects to be configured to use custom InvocationHandlers.
If no custom InvocationHandler is passed to the Mock, it uses an instance of the
DefaultInvocationHandler class. If a Mock object is connected to a TesslaMonitor, the
StreamMethodHandler is used internally instead. Figure 4.20 illustrates the creation of a
proxy and its corresponding mock object for the Account class from listing 1.1. The class
MockFactory decides via the method MockFactory.mock which factory should create the
proxy class. Since Account is an interface, the InterfaceProxyFactory is used to create the
proxy class and the corresponding Mock<Account> object. A customhandler is then attached
to the proxy class, returning a value based on the currentmethod. Finally, the Mock<Account>
object creates an instance of the proxy class that is assigned to the accountMock variable of
type Account. This Account instance can then be used as a normal Account instance thanks
to the polymorphism, although it is actually the proxy class. The assertions at the end of the
test case check whether the attached handler returns the correct values. To use the mocking
feature of the JUnitSRV framework, the Class Loader, which also performs the instrumen-
tation, is required. For this reason the call of the MockFactory.mock method only works in
JUnitSRV test cases, i.e. in test cases annotated with @MonitoredTest. However, no moni-

58 The JUnitSRV Framework

class AccountMockTest {
private static String accountQName = "ATMExample/Account";
private static Event calledSetBalance = called(accountQName, "setBalance");
private static Monitor mockMonitor = TesslaMonitor.forSpec("spec.tessla")

.inputStream("balance_stream", intEventsFromArg(1), calledSetBalance);

@Monitors({"mockMonitor"})
@MonitoredTest
void test() {

// Setup phase
Mock<Account> accountProxy = MockFactory.mock(Account.class);
accountProxy.setHandler((instance, method, args, sig) -> {

switch (method.getName()) {
case "getName": return "John Doe";
case "getEMail": return "john.doe@email.com";
case "getPhoneNumber": return "12345";
default: return DefaultValue.of(method.getReturnType());

}
});
accountProxy.connectToStream("getBalanceInCents", "balance_stream", "mockMonitor");
Account accountMock = accountProxy.newInstance();
// Exercise Phase
accountMock.setBalance(1000);
// Verification Phase
assertEquals(1000, accountMock.getBalanceInCents);
assertEquals("John Doe", accountMock.getName())

}
}

-- TeSSLa specification
in balance_stream: Events[Int]
out *

Listing 4.21: An example of the declaration of a mock object which is controlled by both a monitor
output stream and an InvocationHandler. The TeSSLa specification for the monitor is specified below
the class and takes only one input stream balance_stream, which contains the values passed to the
Account.setBalancemethod. Thesewill also be output as an output stream. Themock object nowconnects
the Account.getBalanceInCents method with this output stream to generate return values. The other
methods get their return values from the attached InvocationHandler.

tor has to be attached to such a test case. If no monitor is attached to such a test case, it is
executed as a conventional test case.

Besides an user-defined InvocationHandler, a Mock object can also be connected to an out-
put stream of a TesslaMonitor. This function allows mocks to retrieve return values for
methods from the last provided events of a particular stream. It allows the dynamic behavior
of mocks based on the overall state of the system tracked by the TeSSLa specification. In ad-
dition, it is a more elegant way to configure proxy classes. Listing 4.21 shows a mock object
for the class Account. The Account.getBalanceInCents method uses as its return values
the last seen value of the balance_stream provided by the mockMonitor. The input streams
for the underlying specification are the values passed to the Account.setBalance method.
In addition, an user-defined InvocationHandler is also used, which generates the return
values of the other methods. Thus, one part of the methods is provided with return values
of the monitor attached to the test case in which the mock object lives, while the other part
gets its values from an user-defined InvocationHandler. To ensure that the return values of

TeSSLa-Based Mock Objects 59

1241: balance = 1000

1241: balance = 1000

update balance = 1000

called Account.setBalance
setBalance(1000)

handle Account.getBalanceInCents

1000

getBalanceInCents()

1000

handle Account.getName

John Doe

getName()

John Doe

t:Test a:Account h:InvocationHandler s:StreamInvocationHandler d:Dispatcher i:TeSSLa

Figure 4.22: A visualization of the interactions between the components involved into mocking and in-
strumentation. The test case invokes the methods of the Calculator class. The Calculator.add method
is instrumented and its invocation produces events that are consumed by the TeSSLa interpreter. The
Calculator.summethod is connected to an output stream of the TeSSLa specification. Once the interpreter
processed the add event it will update the StreamInvocationHandler. If the Calculator.summethod on in-
stance a is invoked later it can access this value to return it. The Calculator.submethod is controlled by a
custom InvocationHandler.

the monitor stream are always available, the StreamMethodHandler, which is used internally,
must take care to remember the output stream values. The reason for this is the fact that an
output stream can supply a value at a certain point in time, but the associated mock object
does not use this value until much later.

Figure 4.22 is an UML sequence diagram that shows how the various components from the
test case in listing 4.21 interact during the exercise phase. Once an instrumented method
performs the action that was instrumented, the corresponding dispatcher is notified. The
dispatcher instance then translates the events into stream events using the corresponding
StreamTransformer objects of the respective InputStream instances. After the TeSSLa in-
terpreter has completed the calculation for the input events, it will inform the listening dis-
patchers of any changes. These dispatchers can now inform all StreamInvocationHandlers
about changes so that they can save the output stream values. If a mock object later calls a
method associated with a stream, it can obtain the value previously calculated by the TeSSLa
interpreter from the StreamInvocationHandler.

61

5 Case Study

This chapter presents three examples that use the JUnitSRV framework to apply RV and SRV
in specific contexts. These three examples have been chosen to showcase a particular strength
of the JUnitSRV framework in each one. First, the ATM example from chapter 1, which also
served as aworking sample throughout this thesis, is used to showhow test cases are generally
monitored. Then, the section 5.2 presents an example project based on the example presented
in [DLT13] that uses both LTL and TeSSLa based monitors and shows how both types of
monitors can synergizewith each other. Finally, in the section 5.3 an application ismonitored
usingmock objects. For each of these examples a TeSSLa specification and if necessary a LTL
specification specifying the properties to be monitored is shown. In addition, the event and
monitor declarations as well as the declaration of test cases are shown. Finally, a passing and
a failing execution of one of the test cases is presented by means of diagrams.

5.1 The ATM Example

In this section, the application consisting of the components shown in listing 1.1 on page 3 is
performed. In particular, the implementation of the class in listing 1.2 on page 5 is examined.
For this purpose instances of the classes Account and NotificationService are replaced by
stubs. While the Account stub can be checked by assertions during the verification phase, the
TeSSLa specification checks the behavior of the NotificationService stub. Specifically, a
TeSSLaMonitor is used to checkwhether the Notification.sendmethod is called only once
during each of the ATM.deposit and ATM.withdraw methods. Besides the monitoring tests,
a conventional JUnit Jupiter test is used to check if exceptions are thrown correctly.

Since the JUnit Platform considers all loaded test engines for test case execution, it is possible
to use traditional JUnit 5 test cases andmonitored test cases simultaneously. The specification
used for the TesslaMonitor is shown in figure 5.1. The monitored implementation is given
in listing 1.2 on page 5. The declaration of events and monitors is done in listing 5.2. Finally,
the figures 5.4 and 5.5 show a passing and a failing test case execution from the testWithdraw
test case shown in listing 5.3.

The TeSSLa specification first defines input streams for send, deposit and withdraw that
correspond to the method NotificationService.send, ATM.deposit und ATM.withdraw.
Then, the two streams deposit and withdraw are merged into one stream to indicate when
the counter for the send stream should be reset. As long as no event occurs on the merged
stream, the events of the send stream are counted. The error condition is that if this counter
is ever greater than one, the method NotificationService.send is invoked multiple times
in one of the ATM.deposit or ATM.withdraw methods.

62 Case Study

-- A macro that counts the events on the stream of the first argument and whose counter is
-- reset when events that appear on the stream of the second argument.
def count_until_reset[A,B](values: Events[A], reset: Events[B]) := count where {

def count: Events[Int] := default(
if default(time(reset) > time(values), false) then 0
else if default(time(reset) == time(values), false) then 1
else last(count, values) + 1, 0)}

-- The declaration of input streams that are made up of instrumentation events in the
-- application code.
in send: Events[Unit]
in deposit: Events[Int]
in withdraw: Events[Int]

-- All intermediate streams that are computed using the input streams and the defined macro
def deposit_withdraw := merge(deposit, withdraw)
def cnt_send := count_until_reset(send, deposit_withdraw)

-- The definition of the error condition as well as the message shown to the developer in
-- case the condition is false
def condition := cnt_send > 1
def error := if condition then ()
def error_message := if condition && default(time(deposit) > time(withdraw), false)

then "Too many send calls during ATM.deposit"
else if condition && default(time(withdraw) > time(deposit), false)
then "Too many send calls during ATM.withdraw"

-- the definition of all output streams.
out error
out error_message

Listing 5.1: The TeSSLa specification checks whether the NotificationService.sendmethod is calledmore
than once in the ATM.deposit or ATM.withdrawmethods. The count_until_resetmacro counts the events
on the stream of the first argument and resets the counter if an event has occurred on the stream of
the second argument. The three input streams represent NotificationService.send, ATM.deposit and
ATM.withdraw events. If themethod NotificationService.send is calledmore than once in ATM.deposit or
ATM.withdraw, a unit event is provided on the error stream together with a message on the error_message
stream.

To use the TeSSLa specification in the test class, the monitor must be defined. The following
assumes that the tested class OffSiteATM is declared in the ATMExample package. The dec-
laration of the events and monitors is straightforward and is done as in the previous chap-
ters.

private static final String serviceQName = "ATMExample/NotificationService";
private static final String atmQName = "ATMExample/ATM";
private static final Event calledSend = called(notificationServiceQName, "send");
private static final Event calledDeposit = called(atmQName, "deposit");
private static final Event calledWithdraw = called(atmQName, "withdraw");
private static final Monitor sendCalledOnce = TesslaMonitor.forSpec("spec.tessla")

.inputStream("send", calledSend)

.inputStream("deposit", intEventsFromArg(1), calledDeposit)

.inputStream("withdraw", intEventsFromArg(1), calledWithdraw)

.failOnEvent("error")

.reportOn("error_message");

Listing 5.2: The declaration of the events, generated by the instrumented application code, and themonitor
for the TeSSLa specification in listing 5.1. The events calledSend, calledDeposit and calledWithdraw are
created by the methods NotificationService.send, ATM.deposit and ATM.withdraw and then translated
by the monitor sendCalledOnce into the streams send, deposit and withdraw.

The ATM Example 63

The monitor declaration for the specification in listing 5.1 is shown in listing 5.2. First, the
fully qualified names for both interfaces ATM and NotificationService are stored in vari-
ables. Then, all associatedmethod call events are created and passed to themonitor as config-
uration parameters. The monitor fails if the specification provides a unit event on the error
stream. If this is the case, an error message is output, provided by the error_message stream.
Finally, the test cases are also of interest.

@Test
void testExceptions() {

assertThrows(IllegalArgumentException.class, () -> atm.deposit(-100, null));
assertThrows(IllegalArgumentException.class, () -> atm.deposit(-100, account));
assertThrows(IllegalArgumentException.class, () -> atm.deposit(100, null));
assertThrows(IllegalArgumentException.class, () -> atm.withdraw(-100, null));
assertThrows(IllegalArgumentException.class, () -> atm.withdraw(-100, account));
assertThrows(IllegalArgumentException.class, () -> atm.withdraw(100, null));
atm.deposit(100, account);
assertThrows(NotEnoughMoneyException.class, () -> atm.withdraw(101, account));

}

@Monitors({"sendCalledOnce"})
@MonitoredTest
void testDeposit() {

atm.deposit(100, account);
assertEquals(100, account.getBalanceInCents());

}

@Monitors({"sendCalledOnce"})
@MonitoredTest
void testWithdraw() throws NotEnoughMoneyException {

atm.deposit(100, account);
atm.withdraw(50, account);
assertEquals(50, account.getBalanceInCents());

}

Listing 5.3: The three test cases that are executed to check the OffSiteATM class. The first test case is a JUnit
Jupiter test case which checks the exceptions thrown within ATM.deposit and ATM.withdraw. The last two
test cases are JUnitSRV test cases thatmonitor the behavior of the SUT according to the TeSSLa specification
and monitor declaration during execution.

The first test case is executed by the JUnit Jupiter test engine due to the annotation @Test.
It should test whether exceptions are thrown if the arguments passed to ATM.deposit and
ATM.withdraw are invalid. The last two test cases confirm that themethods ATM.deposit and
ATM.withdraw work as intended by asserting against a Account stub. While exercising the
SUT, themonitor sendCalledOnce checkswhether themethod NotificationService.send
is called more than once in ATM.deposit and in ATM.withdraw. The execution of the moni-
tored test case testWithdraw is visualized in figure 5.4.

As the visualization and test summary in figure 5.4 shows, all test cases are passed success-
fully. In the implementation, each call to ATM.deposit and ATM.withdraw leads to a sin-
gle call to NotificationService.send. Therefore, the condition stream does not return
a true value. As a result, no event is provided on the error stream. If the SUT would call

64 Case Study

send

deposit

withdraw

deposit_withdraw

cnt_send

condition

error

error_message

100

50

100 50

0 1 0 1

f

(a) (b)

Figure 5.4: A visualization of the streams that are filled with events by the sendCalledOncemonitor during
the execution of the testWithdraw test case is shown in figure 5.4a. Figure 5.4b shows the corresponding
test case execution summary within the IntelliJ IDE. As shown in the figure, both the JUnit Jupiter and the
JUnitSRV test cases were executed successfully.

send

deposit

withdraw

deposit_withdraw

cnt_send

condition

error

error_message

100

50

100 50

“…”

0 1 0 1 2

f t

(a) (b)

Figure 5.5: A visualization that corresponds to the one in figure 5.4 with the difference that in the
ATM.withdraw method the NotificationService.send method is now called twice. As a result, the events
that appear on each stream change so that finally a unit event on the error stream and a message on the
error_message stream appears.

the NotificationService.send method twice, the corresponding test case would fail. This
scenario is visualized in figure 5.5.

5.2 The Data Service Example

This section uses the example DataService from listing 4.2 on the page 39, which originally
comes from [DLT13]. In this case it is examined whether the method calls on instances of
the class DataService correspond to a predefined specification. Unlike the example in the
previous section, the following example focuses on combining the capabilities of LTL and
TeSSLa monitors. Both monitors have their own strengths and weaknesses. While LTL is
useful for defining properties over an execution path, especially the system state in the fu-
ture, the specifications of TeSSLa can focus on quantitative measurements. In the following,
the LTL monitor checks whether the method calls on the SUT are in the correct order, while

The Data Service Example 65

the TeSSLa monitor checks whether the relative execution time of certain methods is within
predefined limits. Defining the LTL property in TeSSLa would result in a relatively complex
specification, so this property is checked by a LTL monitor. On the other hand, it is impos-
sible to define the TeSSLa measurement property in LTL. Therefore, this example shows the
synergy of LTL and TeSSLa monitors when used simultaneously.

-- A macro that sums up the events on the arguments stream.
def sum(values: Events[Int]) := s where {

def s: Events[Int] := merge(last(s, values) + values, 0)}

-- A macro that sums up the time elapsed between an event that occurred on the stream of the
-- first argument and the subsequent event that occurred on the stream of the second
-- argument.
def sum_time_difference[A, B](a: Events[A], b: Events[B]) := std where {

def dif := time(a) - time(b)
def std := sum(if dif > 0 then dif else 0) / 1000000}

-- A macro that calculates the relative proportion of the event value on one stream from the
-- event value on the other stream.
def rel(event_time: Events[Int], overall_time: Events[Int]) := r where {

def r := if overall_time == 0 then 0 else 100 * event_time / overall_time}

-- The declaration of input streams that are made up of instrumentation events in the
-- application code.
in modify: Events[Unit] -- modify invoked
in modified: Events[Unit] -- modify returned
in commit: Events[Unit] -- commit invoked
in committed: Events[Unit] -- commit returned
in disconnect: Events[Unit] -- disconnect invoked
in disconnected: Events[Unit] -- disconnect returned

-- First, calculate the elapsed time during the modify, commit and disconnect operations.
def modify_time := sum_time_difference(modified, modify)
def commit_time := sum_time_difference(committed, commit)
def disconnect_time := sum_time_difference(disconnected, disconnect)

-- Then, calculate the overall elapsed system time for these operations.
def all_time := modify_time + commit_time + disconnect_time

-- Then, calculate the relative values of elapsed time during these operations.
def modify_rel_t := rel(modify_time, all_time)
def commit_rel_t := rel(commit_time, all_time)
def disconnect_rel_t := rel(disconnect_time, all_time)

-- Finally, define the error condition and throw an error unit along with an error message
-- in case the condition is violated.
def condition := disconnect_rel_t > commit_rel_t || disconnect_rel_t > modify_rel_t
def error := if condition then ()
def error_message := if condition then "disconnect took longer than commit and modify"

-- Consider all input and intermediate streams as output streams.
out *

Listing 5.6: The TeSSLa specification that calculates how much relative execution time is required
within each method DataService.modify, DataService.commit and DataService.disconnect. The time
is calculated using the two macros sum and sum_time_difference. It then checks whether the method
DataService.disconnect takes more time than DataService.commit or DataService.modify. If this is the
case, both a unit event on the error stream and a message on the error_message stream are provided.

66 Case Study

Listing 5.6 contains the specification in which the maximum relative time portion of the
DataService.disconnect method is defined. First, the specification receives called and re-
turned events on the streams for the methods DataService.modify, DataService.commit,
and DataService.disconnect. The elapsed time between the call event and the return
events of the respectivemethod is then calculated and added up. Then, the elapsed time of all
methods is added to the total elapsed time. Finally, the total elapsed time is used to calculate
the percentage of each method. If the relative time portion of the DataService.disconnect
method is greater than for the DataService.modify or DataService.commit methods, the
error condition is met and a unit event is provided on the error stream and a message on
the error_message stream.

First the LTL monitor and the events necessary for its declaration are declared. Figure 5.7
shows the commitBeforeClose monitor that ensures that DataService.commit is called at
least once before a client calls DataService.disconnect if DataService.modifywas called.
The interface DataService is declared in the package DataServiceExample. The monitor
and therefore the LTL formula used for the synthesis of this monitor is the same as in list-
ing 4.4 on page 40.

private static final String dataServiceQname = "DataServiceExample/DataService";
private static final Event modify = called(dataServiceQname, "modifyData");
private static final Event committed = returned(dataServiceQname, "commit");
private static final Event disconnect = called(dataServiceQname, "disconnect");
private static final Monitor commitBeforeClose = new FLTL4Monitor(

Always(implies(modify, Until(not(disconnect), committed))));

Listing 5.7: First, the fully qualified name of the class DataService is saved as a variable. Then, events
for calling the methods DataService.modify and DataService.disconnect are defined. An event is also
defined for returning from the DataService.commit method. Finally, these events are used to construct a
monitor to which a LTL formula is passed that uses the declared events.

Additional events are required to declare the TeSSLa monitor. Listing 5.8 contains the miss-
ing event declarations for the time monitor. The monitor is then declared using the events
and the corresponding input streams are configured immediately. In addition, the monitor
is configured to fail if an event is present in the error stream. If this is the case, the message
is reported to the developer in the error_message stream.

private static final Event modified = returned(dataServiceQname, "modifyData");
private static final Event commit = called(dataServiceQname, "commit");
private static final Event disconnected = returned(dataServiceQname, "disconnect");
private static final Monitor time = TesslaMonitor.forSpec("spec.tessla")

.inputStream("modify", modify).inputStream("modified", modified)

.inputStream("commit", commit).inputStream("committed", committed)

.inputStream("disconnect", disconnect).inputStream("disconnected", disconnected)

.failOnEvent("error")

.reportOn("error_message");

Listing 5.8: First the missing events for the time monitor are declared. Then, the declaration of the time
monitor is done with the help of the events declared before and the events from listing 5.7. In addition, the
monitor is configured to fail if an event is present in the error stream. If this is the case, the message is
reported to the developer in the error_message stream.

The Data Service Example 67

modify

modified

commit

committed

disconnect

disconnected

modify_rel_t

commit_rel_t

disconnect_rel_t

condition

error

error_message

0 100 76 66

0 23 19

0 13

f

(a) (b)

Figure 5.9: The visualization of the execution of the test case test2. Figure 5.9a shows the visualization of
the TeSSLa streams. The corresponding representation of the results in the IntelliJ IDE is shown in Figure 5.9b.
Both test cases pass because neither the TeSSLa monitor nor the LTL monitor fails.

Finally, test cases are required for a DataClient. The DataClient is the SUT in these test
cases. The test cases aim to monitor the communication between the DataClient and the
DataService. Only JUnitSRV test cases are considered here. In addition to such test cases
the SUT would have to be checked by conventional JUnit Jupiter test cases.

@Monitors({"commitBeforeClose", "time"})
@MonitoredTest
void test1() {

client.authenticate("daniel");
client.addPatient("Mr. Smith");
client.switchToUser("ruth");
client.getPatientFile("miller-2143-1");
client.setPhone("miller-2143-1", "012345678");
client.exit();

}

@Monitors({"commitBeforeClose", "time"})
@MonitoredTest
void test2() {

client.authenticate("daniel");
client.addPatient("Mr. Smith");
client.addPatient("Mr. Smith");
client.exit();

}

Listing 5.11: Two test cases, which cause a communication between the DataClient and DataService by
means of different method calls on an instance of the DataClient class. This communication is monitored
by the two attached monitors commitBeforeClose and time.

The visualization in Figure 5.9 shows the execution of the test case test2. Both monitors
commitBeforeClose and time check the execution of the test case. Since the implementation
of the DataClient is correct, the TeSSLa monitor and the LTL monitor do not fail and both
test cases pass. By making the DataService.disconnect method more time-consuming,
the time monitor will fail because the time spent executing DataService.disconnect is

68 Case Study

modify

modified

commit

committed

disconnect

disconnected

modify_rel_t

commit_rel_t

disconnect_rel_t

condition

error

error_message

0 100 76 60

0 23 18

0 21

f t

“…”

(a) (b)

Figure 5.10: A variant of the test case execution test2 where the DataService.disconnect method con-
sumesmore time than the DataService.commitmethod. As a result, the timemonitorwill fail after receiving
the disconnected event. Figure 5.17a shows the corresponding visualization of the corresponding streams
and figure 5.17b shows the test case summary from the IntelliJ IDE.

more than the elapsed time in DataService.commit. However, since the method call or-
der remains the same, the monitor commitBeforeClose does not fail. This case is shown in
figure 5.10.

5.3 The Autonomous Robot Example

In this section the mocking feature of the JUnitSRV framework is demonstrated by an ex-
ample. The example consists of an autonomous robot vehicle that uses a bumper as a sensor
to determine whether it has collided with an obstacle. It is assumed that the control of the
vehicle in such a case will move away from the obstacle by driving in the opposite direction.
If the bumper is still pressed after a certain time, the vehicle detects a defect and stops imme-
diately. Using the JUnitSRV framework, the bumper is replaced by a mock object controlled
by a TeSSLa specification. The scenario takes place within a simulation in a test case. In
the following, the interfaces of the components are shown first. Then, as in the previous ex-
amples, the TeSSLa specification is created and explained. The monitor that monitors the
application during test case execution is subsequently created. The monitor is an important
component in this case, as the mock object in the test cases is connected to this monitor to
be controlled by the TeSSLa specification. These test cases are specified at the end. Finally,
as in the previous examples, an execution of the test case is visualized.

Listing 5.12 shows the modules used within an autonomous robot vehicle. The Clock class is
used to determinewhen certain actions are performedwithin a vehicle. For example, a Clock
is used to decide whether to still drive forward or backward. Also the check of the sensors
is triggered by Clock.tick events. A Component represents a module in the system which

The Autonomous Robot Example 69

public interface Clock {
void tick(int time);

}

public interface Component {
int consumedTimeInMilliseconds();

}

public interface AutonomousVehicle extends Component, Clock {
void start();
boolean isDriving();

}

public interface Bumper extends Component {
boolean isPressed();

}

public interface Motor extends Component {
void moveForward();
void moveBackward();
void stop();
int getDirection();

}

Listing 5.12: The example application consists of several modules. At the top level are the modules Clock
and Component. The Clock class ensures that actions are triggered within the system at a certain point in
time, while the Component class corresponds to a component within the system that can perform actions.
The class AutonomousVehicle is the entire robot vehicle as such. The Bumper class represents the sensor used
by the vehicle to determine if it has collidedwith an obstacle. Finally, the class Motor ensures that the vehicle
can be moved.

can perform actions. The method Component.consumedTimeInMilliseconds supplies the
time that this component needs for its action. The class AutonomousVehicle represents the
complete vehicle as such. The only sensor class in this application is the Bumper class which
checks if the vehicle has collided with an obstacle. Finally, the motor ensures that the vehicle
can move.

-- The declaration of input events supplied by the monitor
in t: Events[Int]
in stopped: Events[Bool]

-- The output stream that are used by the mock object to determine its behavior
def bumper_pressed := t >= 150 && t <= 750

-- The error condition that makes the monitor fail
def error := if stopped then ()
def error_message := if stopped then "The motor should not stop!"

-- The definition of output streams
out *

Listing 5.13: The TeSSLa specification gets three information from the monitor. The time of the simulation,
the call event of the method Bumper.consumedTimeInMilliseconds and whether the vehicle was stopped
due to an error. The specification provides two output streams that control the mock object. The output
stream bumperReactionTime gives the bumper the time it takes to perform its action, while the stream
bumperPressed indicates whether the bumper was pressed or not. Finally, the specification provides an
output stream error that provides an event when the vehicle is stopped due to an error. A message about
the error is provided on the stream error_message.

70 Case Study

Listing 5.13 shows the TeSSLa specification used tomonitor the application code and control
themock object. The input streams are t, the simulation time of the test case and the stopped
stream, which contains a truth value indicating whether the AutonomousVehicle stopped
due to a defect. The specification checks if the simulation time is within a certain interval.
If this is the case, a true value is provided on the output stream bumper_pressed, which
triggers the Bumper, otherwise it provides false. Depending on how the interval is defined in
this specification, it can be checked whether the vehicle stops automatically if the maximum
duration for a pressed Bumper is exceeded. Finally, the specification generates a unit event
on the error stream and a corresponding message on the error_message stream when the
vehicle has stopped itself. An event on the error stream signals the monitor to fail.

private static final String componentQName = "RobotExample/Bumper";
private static final String clockQName = "RobotExample/Clock";
private static final String motorQName = "RobotExample/Motor";
private static final Event calledTick = called(clockQName, "tick");
private static final Event calledConsumedTime = called(componentQName,

"consumedTimeInMilliseconds");
private static final Event calledStop = called(motorQName, "stop");
private static final Monitor vehicleBehavior = TesslaMonitor.forSpec("spec.tessla")

.inputStream("bumperProcessTime", calledConsumedTime)

.inputStream("t", intEventsFromArg(1), calledTick)

.inputStream("stopped", boolLiteral(true), calledStop)

.failOnEvent("error")

.reportOn("error_message");

Listing 5.14: The monitor declaration for an autonomous robot vehicle. First the events for the
instrumentation of the methods Bumper.consumedTimeInMilliseconds, Clock.tick and Motor.stop are
provided. Themonitor is then created using these events. The three events are used to create input streams
that are passed to the specification. The monitor is additionally configured to fail at an event on the error
stream using the information from the error_message streammessage as a reason.

Listing 5.14 shows the declaration of the monitor for the TeSSLa specification from list-
ing 5.13. The declaration is only slightly different from the previous use cases. First, the
fully qualified names of the components to be instrumented are declared. In this case the
classes are Clock, Bumper and Montor. The monitor is then constructed with the help of
these events. The difference lies in the declaration of the two input streams t and stopped.
For the input stream t, the first parameter of themethod Clock.tick, which receives the sim-
ulation time, is used as the stream event, whereas for the stopped stream, when Motor.stop

is called, true is always output on the stream. Therefore, calling the Motor.stopmethod will
cause the monitor to fail.

Next, a test case is required that allows the monitoring of the application code. In contrast
to the previous use cases, however, a simulation and a mock object are now used here, since
the behavior of the system as such is to be assessed and manipulated by the TeSSLa spec-
ification. Listing 5.15 is a test case which uses the simulate method to run a simulation
of the application. The test case executes the simulation for one second in the model time.
The important thing in the simulation method is creating and using the mock object. The

The Autonomous Robot Example 71

mock object bumper is created using the MockFactory.mock method, then configured us-
ing an InvocationHandler and finally connected to the monitor vehicleBehavior. If the
method Bumper.consumedTimeInMilliseconds is called, an user-defined handler ensures
that a value of about 50 milliseconds, with a deviation of 5 milliseconds in both directions,
is returned. This random part ensures that the sensors in the simulation are not checked
regularly, but with a slight irregularity.

@Monitors({"vehicleBehavior"})
@MonitoredTest
void test1Second() {

simulate(1);
}

private void simulate(int tInSeconds) {
// Setup
Random r = new Random();
InvocationHandler handler = (instance, method, args, argTypes) ->

method.getName().equals("consumedTimeInMilliseconds")
? 50 + r.nextInt(11) - 5
: defaultValue(method.getReturnType());

Bumper bumper = MockFactory.mock(Bumper.class)
.connectToStream("isPressed", "bumper_pressed", "vehicleBehavior")
.newInstance(handler);

AutonomousVehicle vehicle = new RobotVehicle(bumper, new ServoMotor());
int maxTime = tInSeconds * 1000;

// Simulation
vehicle.start();
while (time <= maxTime) {

time += vehicle.consumedTimeInMilliseconds();
vehicle.tick(time);

}
}

Listing 5.15: The test case for the robot example including the simulation method used. The logic of
the system execution takes place in the simulation method. The test case is responsible for starting the
simulation. In addition, the previously declared monitor is attached to the test method.

The simulation method recreates the required units for each simulation. Then, the current
time in the simulation is stored in a variable. This variable is incrementally increased until
the time for the simulation has elapsed. The difference between the simulation steps in the
model time results from the time required during one step by the AutonomousVehicle. In
order to obtain this time, the required times of all individual components, such as the motor
and sensor, are summed up. After this time elapsed the method Clock.tick on the instance
of AutonomousVehicle is called to cause a re-evaluation of all sensors and possible reaction
to the measurement.

The figures 5.16 and 5.17 show a successful and a failed execution of test1Second method.
The vehicle simulated in this test case initiates an emergency stop after 500 milliseconds. In
figure 5.16 the Bumper is only pressed for a period of 451milliseconds, so the vehicle does not
initiate an emergency stop. On the other hand, in figure 5.17 there is a test case execution in

72 Case Study

t

bumper_pressed

stopped

error

message

0 146 300 454 600 751 906

f t f

(a) (b)

Figure 5.16: The execution of the test case test1Second. On the t stream the specification gets the sim-
ulation time. At the event with the value 300 the value true is provided for the mock object on the
bumper_pressend stream, so the bumper is pressed. The event with the value 751 ensures that the bumper
is in accordance with the specification no longer pressed. The difference of these times is 451 and is thus
below the limit of the vehicle, which is why it does not perform an emergency stop and the monitor does
not fail.

t

bumper_pressed

stopped

error

message

0 153 300 446 595 747

f t f

t

“…”

(a) (b)

Figure 5.17: With this execution of the test case test1Second, the components finish processing their tasks
faster in the respective steps, which leads to the Bumperbeingpressed faster. Since the specificationdoes not
release the bumper when the event with the value 747 appears, the Bumper is now pressed 594milliseconds.
Thus, the vehicle initiates an emergency stop, which the monitor recognizes and consequently fails.

which the Bumper is pressed for 594milliseconds. Thus, the vehicle detects a potential defect
and initiates an emergency stop. The monitor recognizes this and fails. Since the monitor
fails and therefore also the test case, the simulation is not continued despite remaining time.
Depending on how the interval is selected in the TeSSLa specification, the mocked Bumper

object can change from the pressed state to the unpressed state and vice versa at certain
times.

73

6 Discussion and Conclusion

The purpose of this thesis was to combine JUnit, the jUnitRV library, TeSSLa and a mocking
framework tailored to these tools into a single tool. The concepts introduced in chapter 3
were used as a template and were applied in the use cases presented in chapter 5 in a real con-
text. As these use cases illustrate, the JUnitSRV framework offers all features presented in the
concepts. It enables the instrumentation of the application code without having to actively
change it. It is also possible to use LTL and TeSSLa based monitors simultaneously when ex-
ecuting unit tests. Because the JUnitSRV framework is based on the JUnit Platform, not only
monitored test cases can be used, but it is also possible to declare and execute conventional
JUnit test cases alongside monitored test cases simultaneously within the same test suites.
This allows developers to integrate JUnitSRV into existing software projects with little effort.
One of the main features that distinguishes JUnitSRV from all existing testing frameworks
is the ability to replace instances of classes and interfaces in the application code with mock
objects that can be controlled by a monitor. This type of mocking allows additional aspects
such as self-healing properties of a system to be investigated more elegantly and dynamically
while being exercised in a test case. The declaration of the monitors is highly configurable as
developers can control the transformation of instrumentation events into streams as well as
evaluate the output streams themselves. In addition to the extensive configuration options,
the JUnitSRV framework also offers predefined auxiliary methods that allow a simplified
monitor declaration for common use cases. Like the monitors, the mock objects can also be
configured using two different approaches. On the one hand a user-defined call handler can
be used and on the other hand a mock object can be controlled by monitors. It is possible
that individual methods are controlled by a call handler, while other methods of the same
mock object are controlled by different monitors.

Although the implementation meets the original requirements, there are still some improve-
ments that can be made through additional development time. First, the SRVTestEngine

offers only the basic functionality of a test engine. Test classes and test cases are recognized
correctly and can be executed afterwards. However, apart from the test cases, only the meth-
ods for setup and teardown, i.e. methods that are annotated with @BeforeAll, @BeforeEach,
@AfterAll and @AfterEach, are executed. More extensivemechanisms such as the Extension
system of JUnit Jupiter are not implemented. Templated test cases and test case factories are
also missing. To integrate these features either additional development time is necessary or
the JUnit Jupiter test engine can be utilized to detect and execute test cases using the adapter
pattern [Gam+95]. However, this option generates dependencies between JUnitSRV and JU-
nit Jupiter which have to be maintained regularly and requires a deep understanding of the
JUnit Jupiter implementation. Another point that is currently not considered is the paral-
lel execution of test cases. To enable a parallel execution of test cases, some aspects of the

74 Discussion and Conclusion

jUnitRV library and some components of the JUnitSRV framework have to be restructured or
redesigned as this aspect has not been considered as a requirement. Regarding the mocking
framework, the interface can be adapted to be more similar to the interface of the Mockito
framework. This would make it easier for potential developers to transfer expertise in the
use of the Mockito framework to the build-in JUnitSRV mocking framework.

75

List of Abbreviations

CLI command line interface . 48

DIP Dependency-Inversion Principle . 3

IDE integrated development environment . 38

JVM java virtual machine . 2

LTL linear temporal logic . 13

OOP object-oriented programming . 4

RV runtime verification . 1

SPI service provider interface . 29

SRV stream runtime verification . 1

SUT system under test . 4

TeSSLa Temporal Stream-based Specification Language . 1

UML Unified Modeling Language . 25

77

List of Listings

1.1 A working example consisting of Account, ATM and NotificationService 3
1.2 The class OffSiteATM which implements the ATM interface 5
1.3 A JUnit 5 test class testing the OffSiteATM class. 6
1.4 An example for a nested test class in JUnit 5. 7
1.5 Asserting equality of objects using the Assertions.assertEquals method 8
1.6 Verifying that an exception was thrown within a test case. 9
1.7 State verification by example with the SUT and two collaborator objects . . 11
1.8 A stub class AccountStub for the Account interface 11
1.9 Mocking the NotificationService interface using Mockito 12
2.1 A TeSSLa example specification. 15
2.9 Summing up values in TeSSLa using recursion 20
2.10 A TeSSLa specification using some utility operations 21
2.12 Defining the summation of values as a macro in TeSSLa 22
2.13 Using the complex data type Set in a TeSSLa specification 23
3.1 The event declaration concept by example 27
3.2 The simplified event declaration using static methods 27
3.4 A concept of attaching monitors to test classes and test methods 29
3.5 Defining monitors purely as annotations 30
3.6 An example of how to declare monitors by instance variables. 32
3.7 The functional interface for the TesslaMonitor declaration. 32
3.8 Mocking classes or interfaces within test cases 34
3.10 The InvocationHandler interface . 35
3.11 Connecting the mock objects methods to monitor output streams 35
4.2 The DataService interface . 39
4.3 Event declaration for instrumentation and monitoring in jUnitRV 40
4.4 Declaration of a LTL4Monitor. 40
4.6 Monitoring the DataService class using a LTL based monitor 42
4.9 A simple example declaring a TesslaMonitor 46
4.10 Monitoring test cases using static helper methods 47
4.11 JUnits TestEngine interface for custom test engines 48
4.17 A test class containing JUnitSRV tests . 54
4.19 The proxy class for OffSiteATM generated by the MockFactory 56
4.20 Creation of a mock object for the Account class 57
4.21 Connecting a mock object to a monitor and an InvocationHandler 58
5.1 A TeSSLa specification dedicated to the NotificationService.send method 62

78 List of Listings

5.2 The monitor declaration for the TeSSLa specification in listing 5.1. 62
5.3 The three test cases that are executed to check the OffSiteATM class. 63
5.6 A TeSSLa specification calculating the elapsed time in the SUT methods . . 65
5.7 Declaring a LTL monitor for the class DataService 66
5.8 Declaring a TeSSLa monitor for the specification in listing 5.6 66
5.11 Two test cases that use a LTL and a TeSSLa monitor. 67
5.12 A listing containing the interfaces for the autonomous robot vehicle. 69
5.13 A TeSSLa specification controlling a Bumper mock object 69
5.14 The monitor declaration for the AutonomousVehicle class 70
5.15 A test case for AutonomousVehicle and the corresponding simulation method 71

79

List of Figures

2.2 Stream processing for an exercised Account instance 15
2.3 A visualization for lifting an arbitrary function f : D⊥ → D′

⊥ to streams. . 16
2.4 Merging two non-synchronized streams x and y using merge(x, y). 17
2.5 An example for the last operation . 17
2.6 The slift operation, an enhanced version of the lift operation 18
2.7 Accessing the timestamp of events using the time operator 19
2.8 An illustration for the recursive evaluation on streams 19
2.11 Visualization of the specification in listing 2.10 processing a deposit stream. 22
2.14 Visualization of listing 2.13. 23
3.3 An UML sequence diagram illustrating the execution of a monitored method 28
3.9 AnUML sequence diagram illustratingmethod invocations onmock instances 34
4.1 The Runner class hierarchy of JUnit 4 . 38
4.5 The context of the Monitor, MonitorDescriptor and Dispatcher classes. . 41
4.7 A hierarchical overview of the TesslaMonitor and its dispatcher 44
4.8 An overview of the structure of the TesslaMonitor 44
4.12 The layers of a project that uses JUnit 5 . 49
4.13 The class hierarchy of the TestDescriptor 49
4.14 Discovering and Exeucting test cases in JUnit 5 50
4.15 SRVTestEngine and all related classes . 52
4.16 A graphical representation of SRVTestEngines data structures 53
4.18 Class hierarchy for the Mock and all related classes 55
4.22 Interactions with mock objects . 59
5.4 A visualization of the execution of the testWithdraw test case. 64
5.5 A visualization of the failing JUnitSRV testWithdraw test case. 64
5.9 A visualization of the execution of the test2 test case 67
5.10 A visualization of the failing execution of the test2 test case 68
5.16 A visualization of the execution of the test1Second test case 72
5.17 A visualization of the failing execution of the test1Second test case 72

81

References

[BC10] Y. Bertot and P. Castran. InteractiveTheorem Proving and ProgramDevelopment.
1st. Springer Publishing Company, Incorporated, 2010.

[BS14] L. Bozzelli and C. Sánchez. “Foundations of Boolean Stream Runtime Verifica-
tion”. In:RuntimeVerification. Ed. by B. Bonakdarpour and S. A. Smolka. Cham:
Springer International Publishing, 2014, pp. 64–79.

[CGP99] E. M. Clarke Jr., O. Grumberg, and D. A. Peled. Model Checking. Cambridge,
MA, USA: MIT Press, 1999.

[Chi19] S. Chiba. Javasssist, Java bytecode engineering toolkit since 1999. 2019. url: http:
//www.javassist.org (visited on 06/06/2019).

[Con+18] L. Convent et al. “TeSSLa: Temporal Stream-Based Specification Language”. In:
Formal Methods: Foundations and Applications. Ed. by T. Massoni and M. R.
Mousavi. Cham: Springer International Publishing, 2018, pp. 144–162.

[DAn+05] B. D’Angelo et al. “Lola: Runtime Monitoring of Synchronous Systems”. In: 12th
International Symposium on Temporal Representation and Reasoning (TIME’05).
Burlington, Vermont: IEEE Computer Society Press, June 2005, pp. 166–174.

[DLT13] N. Decker, M. Leucker, and D. Thoma. “jUnitRV–Adding Runtime Verification
to jUnit”. In: NASA Formal Methods. Ed. by G. Brat, N. Rungta, and A. Venet.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 459–464.

[Fow07] M. Fowler. Mocks Aren’t Stubs. 2007. url: https://www.martinfowler.com/
articles/mocksArentStubs.html (visited on 06/06/2019).

[Gam+95] E. Gamma et al.Design Patterns: Elements of Reusable Object-oriented Software.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1995.

[Jia15] Z. Jiang. “Load Testing Large-Scale Software Systems”. In: 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering (ICSE). Los Alamitos,
CA, USA: IEEE Computer Society, May 2015, pp. 955–956.

[JUn19a] JUnit Team. Class Assertions. 2019. url: https://junit.org/junit5/docs/5.
0.1/api/org/junit/jupiter/api/Assertions.html (visited on 06/06/2019).

[JUn19b] JUnit Team. JUnit 4.12 API. 2019. url: https://junit.org/junit4/javadoc/
4.12 (visited on 06/06/2019).

[Lin05] J. Link. Softwaretests mit JUnit: Techniken der testgetriebenen Entwicklung. 2nd.
Heidelberg: dpunkt, 2005.

http://www.javassist.org
http://www.javassist.org
https://www.martinfowler.com/articles/mocksArentStubs.html
https://www.martinfowler.com/articles/mocksArentStubs.html
https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html
https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html
https://junit.org/junit4/javadoc/4.12
https://junit.org/junit4/javadoc/4.12

82 Literaturverzeichnis

[Lin17] J. Link. JUnit 5 Design und Architektur eines Frameworks. 2017. url: https :
/ / johanneslink . net / downloads / JUnit5 - Architektur . pdf (visited on
06/06/2019).

[LS09] M. Leucker and C. Schallhart. “A brief account of runtime verification”. In: The
Journal of Logic and Algebraic Programming 78.5 (2009), pp. 293–303.

[LT93] N. G. Leveson and C. S. Turner. “An Investigation of the Therac-25 Accidents”.
In: Computer 26 (July 1993), pp. 18–41.

[Mar03] R. C.Martin.Agile SoftwareDevelopment: Principles, Patterns, and Practices. Up-
per Saddle River, NJ, USA: Prentice Hall PTR, 2003.

[Mes07] G. Meszaros. xUnit Test Patterns: Refactoring Test Code. Addison-Wesley Signa-
ture Series. Upper Saddle River, NJ: Addison-Wesley, 2007.

[Moc19] Mockito. Tasty mocking framework for unit tests in Java. 2019. url: https://
site.mockito.org (visited on 06/06/2019).

[Mol09] I. Molyneaux. The Art of Application Performance Testing. 1st. O’Reilly Media,
Inc., 2009.

[MS01] J. D. McGregor and D. A. Sykes. A Practical Guide to Testing Object-oriented
Software. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
2001.

[Mye11] G. J. Myers. The Art of Software Testing. 3rd. Hoboken, New Jersey: John Wiley
& Sons, Inc., 2011.

[Ora19] Oracle Corporation.The Java ReflectionAPI. 2019. url: https://docs.oracle.
com/javase/tutorial/reflect/ (visited on 06/06/2019).

[PL05] A. Pretschner and M. Leucker. “Model-Based Testing – A Glossary”. In: Model-
BasedTesting of Reactive Systems. Ed. byM.Broy et al. Berlin,Heidelberg: Springer
Berlin Heidelberg, 2005. Chap. 20, pp. 607–609.

[Pra95] V. Pratt. “Anatomy of the PentiumBug”. In:TAPSOFT ’95:Theory and Practice of
Software Development. Ed. by P. D. Mosses, M. Nielsen, and M. I. Schwartzbach.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 97–107.

[TKS03] V. Trenkaev, M. Kim, and S. Seol. “Interoperability Testing Based on a Fault
Model for a System of Communicating FSMs”. In: Proceedings of the 15th IFIP In-
ternational Conference onTesting of Communicating Systems. TestCom’03. Sophia
Antipolis, France: Springer-Verlag, 2003, pp. 226–242.

https://johanneslink.net/downloads/JUnit5-Architektur.pdf
https://johanneslink.net/downloads/JUnit5-Architektur.pdf
https://site.mockito.org
https://site.mockito.org
https://docs.oracle.com/javase/tutorial/reflect/
https://docs.oracle.com/javase/tutorial/reflect/

	Introduction
	Unit Testing and Mocking in JUnit
	Unit Testing
	The JUnit Testing Framework
	Assertions
	Mocks and Stubs

	Stream Runtime Verification
	Runtime Verfication
	Stream Processing
	Temporal Stream-based Specification Language (TeSSLa)

	TeSSLa-Based Monitoring and Mocking in JUnit
	Application Code Instrumentation
	Monitors for Test Cases and Test Suites
	Class and Interface Mocks

	The JUnitSRV Framework
	The jUnitRVLibrary
	TeSSLa-Based Monitors
	The JUnit Platform
	The SRVTestEngine
	TeSSLa-Based Mock Objects

	Case Study
	The ATM Example
	The Data Service Example
	The Autonomous Robot Example

	Discussion and Conclusion
	List of Abbreviations
	List of Listings
	List of Figures
	References

