
Parallel Analysis of Large Traces with Stream
Based Specifications

Master Thesis

for obtaining the Master of Science (M. Sc.) in
Computer Science
at the University of Lübeck

written by
René Kremer

supervised by
Prof. Dr. Martin Leucker

assisted by
Torben Scheffel

Lübeck, 19. December 2019

Preface

Before you lies the thesis Parallel Analysis of Large Traces with Stream Based Speci-
fications, which has been written to fulfil the graduation requirements of the Masters
Curriculum of Computer Science at the University of Lübeck and states my thoughts
on the question: How can parallel programming approaches be applied to Runtime
Verification engines?

My interest for Software-Verification started while I was studying for my bache-
lor’s degree and I became more interested in the field as I was confronted with the
problems raised as part of the Model Checking and Runtime Verification courses in
my Master’s Program. Therefore I would like to thank Prof. Martin Leucker for
introducing me to a more in depth view of the field.

The research question was formulated by Malte Schmitz and I would like to thank
him, Torben Scheffel and Sebastian Hungerecker for their guidance throughout the
writing of the whole thesis, their helpful thoughts but also support on getting my
teeth into TeSSLa, which originated at the Institute for Software Engineering and
Programming Languages of the University of Lübeck.

Before you dig into this analysis I would like to thank my friend Kilian Cohrs for his
time to debate about this topic while not being deep into this specific field and also
my girlfriend, Franziska Gläser, and parents, Uwe and Barbara Kremer, for being a
big support and motivation during this whole process.

I hope you enjoy reading and that you might gain helpful insights out of this work.

René Kremer

Lübeck, 19. December 2019

ii

Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit ohne unzulässige
Hilfe Dritter und ohne die Benutzung anderer als der angegebenen Hilfsmittel selb-
ständig verfasst habe; die aus anderen Quellen direkt oder indirekt übernommenen
Daten und Konzepte sind unter Angabe des Literaturzitats gekennzeichnet.

(René Kremer)
Lübeck, 19. December 2019

iii

Kurzfassung Runtime Verification (RV) ist in der Lage den Lauf eines Programmes
über seinen Trace zu überwachen. Genau wie RV ist Stream Runtime Verification
in der Lage nicht nur logische Eigenschaften sondern auch statistische Metriken zu
überprüfen. Dafür wird der Trace als Eingabestrom behandelt und daraus Zwischen-
und Ausgabeströme abgeleitet.

Diese Arbeit widmet sich der Frage, wie Parallelverarbeitung große Traces von
strombasierten Spezifikationen verarbeiten kann. Der vorgestellte Ansatz basiert
auf der Temporal Stream-based Specification Language (TeSSLa) und analysiert
verschiedene Fälle von Spezifikationen und Algorithmen.

Die Ergebnisse dieser Algorithmen werden anschließend im Vergleich zu einem se-
quenziellen Ansatz evaluiert und zeigen eine Steigerung hinsichtlich Verarbeitungs-
menge von Ereignissen und Leistung. Während der Evaluation der Parallelver-
arbeitung wurden auch einige Limitationen sowie die Signifikanz der Größe von
Chunks und Heap hinsichtlich der Leistungssteigerung und der Verarbeitungsmenge
von Ereignissen beobachtet. Die Korrektheit des parallelen Ansatzes wird über einen
Abgleich der Ergebnisse mit dem sequentiellen Ansatz bewiesen.

v

Abstract Runtime Verification (RV) is able to monitor a program by traces of
its run. Just like RV, Stream Runtime Verification (SRV) is able to check logical
properties from the trace but also statistical metrics. This is done by handling the
trace as input streams and derive intermediate as well as output streams.

This work is concerned with the question of how parallel computation can process
large traces of stream based specifications. The presented approach is based on
the Temporal Stream-based Specification Language (TeSSLa) and analyses different
cases of specifications and algorithms to handle them.

The results of those algorithms are then evaluated in comparison to a sequential
approach and show improvement in terms of speed-up and event throughput. While
evaluating parallel computation of large traces some limitations were observed but
also the importance of chunk and heap size for improving speed-up and event
throughput. The proof of correctness of the parallel approach is provided by an
equality check with the sequential trace result.

vii

Contents

1 Introduction 1
1.1 Related Work . 2
1.2 Structure of this Work . 4

2 Motivation 5

3 Preliminaries 11
3.1 Runtime Verification . 11
3.2 Stream Runtime Verification . 12
3.3 TeSSLa . 13
3.4 Parallel Programming . 16

3.4.1 Data Parallelism . 17
3.4.2 Task Parallelism . 17
3.4.3 Problems and Limitations . 17
3.4.4 Decomposition Techniques . 18
3.4.5 Map and Reduce . 19

3.5 Abstract Syntax Tree . 21
3.6 Symbolic Computation . 22
3.7 Sub-Specification . 22
3.8 Deterministic and Nondeterministic Finite Automata 23

4 Concept 25
4.1 Detecting Recursion . 25
4.2 Decomposing TeSSLa Input Data . 26
4.3 Specific Problem Cases . 28

4.3.1 Trace Data without Dependencies 28
4.3.2 Trace Data with Self-Dependency 28
4.3.3 Trace Data with Reset-Variable 30
4.3.4 Trace Data with N-Dependencies 32
4.3.5 Specification with Automata 34
4.3.6 Specification with Reset-Condition 35

4.4 Distributed Computation of SRV . 36

5 Implementation 37
5.1 Architecture . 37

ix

Contents

5.2 Implemented Cases . 40
5.2.1 Trace Data without Dependencies 41
5.2.2 Trace Data with Self-Dependency 42
5.2.3 Trace Data with Reset-Variable 46
5.2.4 Trace Data with N-Dependencies 47
5.2.5 Specification with Automaton 50
5.2.6 Specification with Reset-Condition 50

6 Evaluation 51
6.1 Hardware used . 51
6.2 Test Cases . 51

6.2.1 Reproducibility . 52
6.2.2 Trace Data without Dependencies 52
6.2.3 Trace Data with Self-Dependency 54
6.2.4 Trace Data with Reset-Variable 55
6.2.5 Trace Data with N-Dependencies 58
6.2.6 Trace Data on smaller Heap 59
6.2.7 A Real-World Example: Idle Engine 61

7 Conclusion and Outlook 63
7.1 Conclusion . 63
7.2 Outlook . 65

A Appendix 67
A.1 Test-Case Trace Scripts . 67

x

1 Introduction

Computer systems are more ubiquitous than ever in our everyday life. With com-
puters surrounding us everywhere, it is easier than ever to stay in touch with friends
and family, organize the daily life or participate in a community while being mo-
bile. But not only consumer electronics contain a vast amount of software, but also
transport machinery and medical devices for example.

In the age of Internet of Things (IoT) [AIM10] devices, starting with lamps to
televisions and robots for cleaning or mowing the lawn, are getting more and more
aware of their surroundings. Sensors in IoT devices and other machinery gather
large amounts of data every second and a system or machine needs to filter, store
and evaluate the data to act upon their environment. With increasing network
bandwidth and coverage of internet connectivity more data than ever is gathered and
processed via distributed systems and used to improve software or enable a system
to make the right decisions. In case of transportation machines (like automobiles,
ships or airplanes) the data could be used to automate the driving process to a
certain degree by using an autopilot or at least give an assistance to the driver via
surveillance and warnings.

Such a transport machinery and its subsystems (e.g. a braking or airbag system
inside of a car) are safety-critical systems and a failure in those systems could lead
to severe damage on the environment or people’s health. But also systems that are
directly affecting the health of a person like medical, life supporting systems (e.g.
heart-lung machines or pacemaker) are safety-critical. For these kinds of systems
standards exist (in case of automotive ISO 262621 and IEC 623042 for medical
devices) that describe an approach to carefully develop, inspect, document, test,
verify and analyse these systems, so that the risks of failure and their severity are
known and minimized. Therefore verification techniques are necessary to provide
formal proofs that these designed systems are correct and functioning.

Safety-critical systems and their sensors benefit from the trend of higher compu-
tational power via computer clusters, computing cloud engines and lower cost for
data storage. On the other hand this means that safety-critical systems are more
often designed as distributed systems, which lead to having increased complexity

1see https://www.beuth.de/en/standard/iso-26262-6/300423967
2see https://webstore.iec.ch/publication/22794

1

https://www.beuth.de/en/standard/iso-26262-6/300423967
https://webstore.iec.ch/publication/22794

1 Introduction

and also higher demand for data. This results in a higher risk of software failures
due to the increasing complexity, but also provides more resources for testing and
analysing the behaviour of the system. Different verification techniques can provide,
in comparison to testing, a proof to a correctness of theorems and software systems.
Runtime Verification (RV) is one of the techniques used at runtime and checks a run
of a system against specified properties, therefore detecting incorrect states of the
system and unexpected behaviours. It also allows to act whenever an incorrect state
of the system is detected by using design patterns like runtime reflection. [LS09]

Temporal Stream-based Specification Language (TeSSLa) is a stream based specifi-
cation language used for runtime verification that takes input streams of a given
input trace and, while checking on logical properties of a given specification, derives
output streams. Due to TeSSLas nature it can generate intermediate streams that
allow for computing temporal metrics and statistics. [CHL+18] As a runtime verifi-
cation engine TeSSLa is able to process large batches of input data, but due to its
current implementation is limited to a single thread for computation.

Offline analyses of large amounts of data (e.g. as logs or data streams in size of tera-
or petabytes) need high computational power. Traces, like logs or data streams in
this context, can contain for example recorded values of sensors or computation
results and are basically the output a program generates. Processing these traces
can be done with single-threaded programs, but as described in [TSBR18] parallel
programs might speed up the time needed to solve problems if one can design parallel
algorithms for them. By designing such parallel algorithms one can use the benefit
of multi-core CPUs or computing nodes in a distributed system. One example for
such an algorithm is the MapReduce algorithm. [DG04]

Based on the TeSSLa specification language and engine, this work will analyse the
question: How can parallel programming approaches be applied to such a runtime
verification engine? The insight gained from this work might enable parallel pro-
gramming on the topic of large stream-based runtime verification and therefore make
it more applicable to the verification process of safety-critical systems and increase
the reliability of especially such software systems in general by checking against
correctness properties like real-time constraints or heat values of a temperature sen-
sor.

1.1 Related Work

This work is based on TeSSLa as described in [CHL+18] – in comparison to LOLA in
[DSS+05] – because it allows for asynchronous Stream Runtime Verification (SRV)
while granting (un)bounded data types which allow for low memory consumption.

2

1.1 Related Work

This is especially helpful in embedded systems due to limitations of the used hard-
ware. Another benefit of such a specification language like TeSSLa or LOLA is that
it is easier to use and write compared to logics like Linear Temporal Logic (LTL)
introduced in [Pnu77].

Regarding parallel programming [Kum02] introduces different kinds of parallelism
like task and data parallelism and their problems as well as limitations. Furthermore
decomposition techniques on how to split tasks and data for parallelization are
described. This work introduces task parallelism as an alternative to data parallelism
but will focus more on data parallelism. Decomposition techniques are restricted to
data decomposition and speculative decomposition. Techniques such as exploratory
and recursive decomposition are not relevant in this work and will not be part of
it.

In [DG04] the MapReduce algorithm is introduced. As part of the main question
of how such a parallel algorithm can be used to process large traces the MapRe-
duce algorithm is a reference on handling large files on single computing nodes but
also on clusters of nodes. Therefore the MapReduce algorithm will be shortly in-
troduced in Subsection 3.4.5 but for further insight one should read [DG04]. The
implementation presented in this work will be a proof of concept. It will relate to
the MapReduce algorithm but not use a framework like Apache Hadoop to allow for
a flexible customization of the algorithms needed to solve the problem of processing
large traces.

[BCE+14] shows different slicing strategies for metric first-order temporal logic
(MFOTL) and how to apply them on MapReduce frameworks. To apply those
slicing strategies on the MapReduce approach different configurations containing
slicing functions were necessary. It was also discovered that most slices were be-
tween 61 and 135 MB but also that nested operators substantially increased the time
needed to process. Compared to [BCE+14] this work will focus on slicing functions
for different SRV cases based on TeSSLa specifications.

In [SBB+18] the presented slicing framework of [BCE+14] was applied to online
rather than offline monitoring using sub-monitors and the stream processing frame-
work Apache Flink. The base for the splitting strategy was the hypercube algorithm
[Ost87]. It was shown that the sequential Splitter was a bottleneck. The proposed
solution was a parallel splitter to further improve the event throughput. A restric-
tion for the usage of a parallel splitter is the need to chronologically order incoming
events. It is necessary to have the split events ordered for processing because of
online monitoring and the verification of the system under scrutiny at runtime.
This work will not use sub-monitors for offline monitoring but the full capability
of TeSSLa. Nonetheless the bottleneck of a sequential splitter, it’s influence on the
performance and possible solutions will also be discussed in this work.

3

1 Introduction

The author of this work is aware of [HKG17] and its implementation of a multi-
threaded approach for BeepBeep. The difference is that [HKG17] discusses an im-
plementation around pipelining streams on multiple CPU processor instances while
this work covers different slicing functions for TeSSLa specifications based on a
MapReduce like approach on a local machine with possible portability to a MapRe-
duce or similar distributed processing framework like Apache Hadoop.

1.2 Structure of this Work

Besides this introduction and the conclusion at the end, the thesis will consist of
the following chapters:

Chapter 2 will compare existing verification techniques and motivate the paral-
lelization of a runtime verification engine based on a TeSSLa example.

Chapter 3 will clarify concepts, terms and basics which are necessary to follow
this thesis. The focus will be on an overview of verification techniques and
parallelization concepts as well as TeSSLa.

Chapter 4 will present examples of specifications and traces as different cases of
the parallelization question. These cases will be investigated and possible ap-
proaches derived and discussed.

Chapter 5 describes the prototypical implementation of the approaches mentioned
in Chapter 4 in Scala for TeSSLa and shows how the concepts for parallelization
might be put to practical use.

Chapter 6 compares each parallel approach with the single-threaded solution and
thus shows how effective a parallelization in different scenarios is as well as the
limitations.

4

2 Motivation

As mentioned in Chapter 1 a failure in a safety critical system (like an automobile
or medical device) could lead to severe damage in the environment or to people’s
health. Therefore it is essential to prove the correctness of such systems to minimize
risk of a failure.

In the context of software there are different techniques to verify that a system works
as intended. One such technique is software testing. Testing is an activity that
examines the software under development and is a primary method in the industry.
Based on the specifications and requirements of the software under development
tests are designed to be executed against the software. The results of this execution
are then reviewed by software testers or software developers to determine faults in
the software. [AO08]

One of the goals of software testing is to find incorrect behaviour and ways to fix
their origin. There are different test activities for each software development phase
as shown in Figure 2.1. This will not be explored in detail, but shows the depth of
software testing. Coverage criteria are introduced to determine which input is used
and most likely to find failures, as software testing is not exhaustive and ranges from
large to effectively infinite. [AO08].

On the downside, as the limitation stated in [AO08] and pointed out by the famous
citation of Edsger W. Dijkstra in [Dij72]: "Program testing can be a very effective
way to show the presence of bugs, but is hopelessly inadequate for showing their
absence." suggest, finding all failures in a program with tests alone is no easy task
and impossible.

A more formal way to check the correctness of a program is by using a mathematical
proof. [LS09] To show the correctness the mathematical steps are broken into logical
steps, which are checked all the way back to the axioms of mathematics. This
is manually done and can be assisted by theorem provers. In the last decades
many theorem provers use higher-order logic (HOL) to assist mathematicians and
computer scientists in their work of theorem proving. [Hal08]

In comparison to theorem proving and software testing, model checking (MC) is a
model-based verification technique that describes the systems behaviours in a model
of the system, which represents the states of the system in a mathematically pre-
cise way. [BK08] The modelling of the system itself might lead to the discovery

5

2 Motivation

Figure 2.1: Software development activities and testing levels - the "V-Model"
as shown in [AO08, p. 6]

of incompleteness of the system or specification, because the person designing the
model might find insufficient correctness properties or functions of the system ful-
filling those properties. MC explores all possible system states of the model in a
brute-force manner. [BK08] Therefore MC finds incorrect states regarding the spec-
ification, if those states exist. Properties of a modelled system can also be checked
for qualities like is the result ok? Could a state lead to a deadlock? Does the system
responds within 8 minutes of a request?

The problem is that a very realistic model of the system is needed as the verification
of the system under scrutiny is only as good as the model of it. The benefit of model
checking is that it is easy to examine states that violate a property. As the states
are checked against different variations of the states of the system, if a state violates
a property, a counterexample to the expected behaviour is found. [BK08]

As the verification is just as good as the model of the system complementary tech-
niques are necessary to find hardware faults or errors in the model and therefore
software. MC is also in general not effectively computable as it is subject to decid-
ability issues due to infinite-state systems or deciding about abstract data types with
undecidable or semi-decidable logic. Another big issue is the state-space explosion
problem, meaning that the number of states needed to model the system requires
more space than the computer memory might provide. [BK08]

6

A more lightweight verification technique is runtime verification (RV) which detects
violations or satisfactions of correctness properties by observing the execution of the
software. In RV a monitor is used to read a finite trace of an execution of the pro-
gram. The monitor results in three different truth values (true, false, inconclusive)
to indicate whether or not a correctness property is violated. RV will be described
in more detail in Section 3.1.

Proving the correctness of a safety-critical system is possible with the aforementioned
techniques. Some might be used in combination and model checking in particular
provides a heavy analysis of the models and thus the systems behaviour. In terms
of hardware MC is limited. RV is a compromise between software testing as well as
theorem proving and checking all states contrary to MC only a trace of an execution
of the program is checked against the specification. Using a design pattern like
Fault-Detection, Fault-Isolation and Recovery Techniques (FDIR) the RV monitor
can be used as a watchdog and as it is not part of the program it can react based
on incorrect behaviours. This reaction can be for example a restart of the system
or a warning message to the user. [LS09]

The correct behaviour of a program or system does not need to be defined only
based on a single property being true or false but could also be based on some
statistical measurement. One such example could be a freezer that mustn’t have an
inner temperature above a certain degree Celsius over time. A simple check if the
temperature hits that threshold might not be sufficient as due to the fine regulation
of the freezer it might sometimes hit that threshold for some milliseconds. One
could measure the average temperature over time and determine whether or not
the inner temperature of the freezer was in average sufficient or just use the average
temperature as a reference value for further processing. Regardless, the possibility of
aggregating statistical measures as part of RV allows for more detailed verification
of correctness properties. SRV allows to aggregate these measurements by using
streams consisting of multiple events to a certain time. SRV will be described in
more detail in Section 3.2.

TeSSLa is a SRV language able to build an SRV monitor based on a given specifi-
cation. Due to its current implementation the processing capability is limited and
therefore large traces can’t be processed efficiently. Many sensor values are gathered
in tests and need to get analysed. In case of automobiles this might lead to hun-
dreds of sensors gathering data every millisecond, so the size of data is easily in the
range of terabytes. Analysing this amount of data in a sequential way takes a huge
amount of time (weeks to maybe months), which could be reduced by using parallel
methods to analyse the data and in consequence the system under scrutiny.

The question for this work is how a parallel algorithm such as MapReduce could be
applied to a runtime verification engine. The goal is to decrease the time needed to

7

2 Motivation

compute a qualitative and quantitative verdict based on a given specification and
input trace.

Parallelization, as later shown in Section 3.4, has its own limitations and problems.
It is often not an easy task to split input or operations to process them concurrently.
The task of finding suitable cut points in the input trace to chunk it, is further called
intelligent chopping in this work. In terms of automobile data, lets imagine the test
data is gathered while driving, in which the data is stored dynamically on multiple
hard disks. The data is split naturally due to the fact that at some point a hard
disk is full and the next one is used for writing data. This means that the input
trace could not only be classified by size, but also by number of files.

The size of traces could be in-memory size, single-hard-disk size and all above a
size of terabyte(s) usually leads to multiple-hard-disk size. Regardless of the size
there could be reasons why multiple trace files have to be written at runtime of a
program. The size of a file might indicate why the file is chunked in the first place,
but might not be the only reason. That means that a trace can be a single-file trace
or multi-file trace regardless of size.

If a trace is stored on a single hard disk, the data is usually ordered and sorted
inside of the file. Therefore intelligent chopping is needed to figure out where a
cut is possible to get all the necessary dependencies for the parallelization task. In
case of multiple files (on even multiple hard disks) one could assume that there is a
natural ordering due to the writing process. Even in that case intelligent chopping
is needed to find points to cut, because the natural ordering does not necessarily
mean that each end of a disk is a good point to split the input trace on. It heavily
depends on the data and its dependencies as later shown in Section 3.4.4.

The level of parallelization can reach from one machine with a multi-core CPU to
multiple computation nodes in a network. This work will focus on an approach one
could think of as a local MapReduce first and then show based on a prototype how
this approach can be distributed on multiple machines.

MapReduce partitions the input data to schedule the execution of tasks, which
contain those data partitions, on multiple machines. Parallelization is therefore done
via data parallelism and data decomposition, as later described in Subsection 3.4.1
and Subsection 3.4.4.

The first problem is to find a partition function that splits the input files into
pieces that can be used in the mapping and reducing step. Another problem is
that based on the specification the map and reduce function needs to be defined. A
recursive equation, as later described in Section 3.3, in a specification might require
a different approach than a non recursive equation or reference to the past via the
last operator.

8

In Section 4.3 different cases will be shown and explained but to clarify the previous
statement two examples of Section 3.3 and Section 3.1 will be explained here. Based
on the task at hand – checking a temperature in TeSSLa as shown in Figure 2.2 and
calculating the average temperature shown in Listing 2.1 – one can see that those
tasks are different and might conclude that parallel processing is also different for
both cases.

Figure 2.2: A basic example of derived streams in TeSSLa as described in [CHL+18]

To get the average temperature it is necessary to compute all values and at the end
divide them by the number of events. Splitting the input values can be done freely,
but mapping and reducing needs to ensure that each chunk of input results in a sum
of temperatures and count of events. Thus the mapping function needs to know
which values are needed in the reducing step and therefore need to be stored. In the
reducing step the sum and count of events for each chunk have to be added to the
previous sums and counts to get to the final average temperature of the whole input
trace. To get the final average temperature the reducing step could run the result of
each chunk against a sub-specification which computes the average temperature.

1 in temperature: Events[Int]
2
3 def count: Events[Int] := merge(last(count, temperature) + 1, 1)
4 def sum: Events[Int] := merge(last(sum, count) + temperature, temperature)
5 def avg: Events[Int] := if (count > 0) then sum / count else 0
6
7 out sum
8 out avg

Listing 2.1: A TeSSLa specification to get the average temperature

In comparison the check whether a temperature is lower than 3 or higher than
8 (Figure 2.2) does not need special chopping algorithms and neither a complex
mapping or reducing phase. Each time step is independent thus each chunk is inde-
pendent. The mapping just needs to run the input chunk against the specification
while the reducing will put all results together. The mapping and reducing phase
do not need to store meta information as in the previous example for calculating

9

2 Motivation

an average temperature. Similar cases are shown in Section 4.3 as specifications
without dependencies and self-dependency.

Another question could be how one needs to chop if each chunk needs the results of
the previous one. This is the main problem of Subsection 4.3.4. In that specific case
multiple streams are needed to compute the result. The problem is that based on
the cutting point for the chunks a chunk may not have a start event for each stream.
In Subsection 4.3.4 two approaches will be discussed. One of them is speculative
decomposition, as it will be described in Section 3.4.4. Speculative decomposition
will be used to compute the result of the next chunk based on multiple possible
pre-results. After receiving the previous chunks result all wrong possibilities will be
discarded.

These problem descriptions imply that in this work we have a look at each identified
case individually. The cases which are part of this work are examples and might not
be exhaustive.

The general problem can be summarized into these sub-problems:

1. Identify the case of specification

2. Intelligent Chopping: Partition the input trace according to partition function
for that specification case

3. Apply map and reduce algorithms for the identified specification case

In step 3, the application of map and reduce algorithms does not have to happen
on the same machine, but could also be done on different computation nodes in a
bigger distributed system.

10

3 Preliminaries

This chapter introduces concepts and terminology necessary for the following ap-
proach described in Chapter 4 and its implementation in Chapter 5. The beginning
of the chapter will start with a short overview of runtime verification and stream
runtime verification as well as specifics of the used specification language and RV
engine called TeSSLa. This chapter also introduces programming approaches as
well as the MapReduce algorithm which are used and discussed in the following
chapters.

3.1 Runtime Verification

This section references mostly [LS09] and will otherwise explicitly cite another
work.

Runtime Verification is a verification technique although it is a bit more lightweight
than MC. It itself only detects violations or satisfactions of correctness properties.
This means that runtime verification does not influence the execution of the software,
but observes the software only.

In this work the following definitions are used in the context of RV:

Definition 3.1 (Runtime Verification). Runtime verification is the discipline of
computer science that deals with the study, development and application of those
verification techniques that allow checking whether a run of a system under scrutiny
satisfies or violates a given correctness property.

Definition 3.2 (Run of a System). A run of a system is a possibly infinite sequence
of the system’s state, which are formed by current variable assignments, or as the
sequence of actions a system is emitting or performing. Formally, a run may be
considered as a possibly infinite word or trace.

Definition 3.3 (Execution of a System). An execution of a system is a finite prefix
of a run and, formally, it is a finite trace.

11

3 Preliminaries

Theorem Proving and Model Checking – and thus static verification methods –
are interested in answering the question if all (infinite) runs of a system satisfy
the correctness properties and therefore the specification. On the other hand, RV is
interested in answering the question if a single run (execution) of the system satisfies
the specification. In that regard RV can be viewed as an extension of testing with
more powerful specification languages. [DSS+05] To accomplish the task of checking
an execution of the system against a given specification a monitor is used which
observes the execution and decides if the correctness properties are satisfied.

A monitor is defined as a device that reads a finite trace and yields a certain verdict.
A verdict is a truth value from some truth domain e.g. the standard two-valued
truth domain B = {true, false}. If a monitor is checking the current execution
of a system it is called online monitoring. The monitor is incrementally fed with
the statements of the execution. On the other hand, if a monitor works on (finite)
recorded executions, e.g. logs as traces, it is called offline monitoring.

A monitor should consider impartiality and anticipation. Impartiality means that a
finite trace is not evaluated to true or false if there still exists an (infinite) contin-
uation that might change the verdict. Anticipation on the other hand means that
once every (infinite) continuation of a finite trace leads to the same verdict, then
the finite trace leads to that verdict as well.

Therefore a monitor should have three different truth values: true, false, inconclusive
with inconclusive being used if neither an answer to impartiality nor anticipation is
found yet.

3.2 Stream Runtime Verification

As shown, RV uses a Monitor to yield a verdict over a programs execution checked
against correctness properties noted in a specification. SRV and languages like
LOLA and TeSSLa focus on enrichment of the monitors functionality while writing
specifications within this language is easier for engineers compared to using logics
like LTL as described in [Pnu77]. [DSS+05, CHL+18]

The enrichment of the monitors is achieved by allowing another type of property.
In RV correctness properties are specified while in SRV one can also specify sta-
tistical measure properties. [DSS+05] Specifications are accepted as sets of stream
expressions and the verification engine is run on a set of input streams. A stream
in this context is a finite sequence of values with each value being mapped with
a timestamp. While running the monitor, multiple intermediate streams might be
generated to obtain the output streams. These output streams contain the desired
information about satisfying correctness properties and quantitative measures. This

12

3.3 TeSSLa

allows for other usages besides bug-finding, namely profiling, coverage and other
analyses based on the statistical measurements like counting, minima, maxima etc.
[DSS+05]

An example shall clarify what kind of enrichment is achieved by SRV. Consider a
specification with temperature being an input stream of integers. low is checking
whether the value of temperature is below 3 while high checks whether the value is
above 8. A temperature is unsafe in the specification if either low or high are true.
This example is shown in detail in Figure 3.1. The specification can validate a given
run of a program and state if there are times where the temperature is unsafe or
not. SRV can enrich these statements by measuring more statistical means. Without
going into further details regarding the syntax, Listing 3.1 shows that the number of
temperature events can be counted alongside the sum of all temperatures to get the
average temperature. In some cases one might want to check a correctness property
not only against the current value but statistical values.

1 in temperature: Events[Int]
2
3 def count: Events[Int] := merge(last(count, temperature) + 1, 1)
4 def sum: Events[Int] := merge(last(sum, count) + temperature, temperature)
5 def avg: Events[Int] := if (count > 0) then sum / count else 0
6
7 out sum
8 out avg

Listing 3.1: A TeSSLa specification to get the average temperature

Monitoring in this context is distinguished between online – monitoring that happens
at runtime – and offline – monitoring that happens on a recorded trace on a hard
drive. [DSS+05]

This numeric data provided by evaluating streams of the past and the future al-
lows for, amongst other things, context-free properties like checking if after memory
allocation memory is freed exactly once. [DSS+05]

This work focuses on offline monitoring and the parallelization of it by using TeSSLas
language specifics as an example.

3.3 TeSSLa

This section references mostly [CHL+18] and will otherwise explicitly cite another
work.

13

3 Preliminaries

As mentioned in Section 3.2 RV can be used offline on previously recorded traces or
online to evaluate correctness properties at runtime of the system under scrutiny.
As also mentioned in Section 3.2 SRV also allows for quantitative measures.

TeSSLa is described as a language tailored for SRV of cyber-physical systems where
timing is critical. For that purpose TeSSLa supports timestamped events natively
as well as recursive definitions.

TeSSLa has six elementary operators that are used to provide more advanced oper-
ations like merge. Namely those operators are time, last, lift, delay, nil and unit. nil
and unit are used internally by the TeSSLa compiler and not relevant in this work.
While the time operator allows to get the timestamp of an event the last operator
allows access to the previous value of the stream. New timestamps can be created by
the delay operator which periodically creates an event unless a reset event occurred.
The lift operation lifts a function f from values to streams. An example of such
a function f could be merge or typical mathematical functions and operators. In
Figure 3.1 the greater or lesser operators for example are lifted internally so that
low or high checks the temperature stream against the condition and not only the
value. The same applies to the or operator in unsafe.

Figure 3.1: A basic example of derived streams in TeSSLa as described in [CHL+18]

Input measurements are generated streams based on the given specification but new
(intermediate) streams could also be derived while computing. A stream in TeSSLa
may consist of multiple events which each have a value and timestamp. In Figure 3.1
the temperature is checked. low returns true or false if the temperature is below 3
and high returns true or false if the temperature is over 8. Those two streams are
generated based on the input measurement, the temperature. unsafe on the other
hand is a derived stream of the streams low and high.

TeSSLa can process asynchronous streams. It is required that the events of all
streams are in a global order but not all streams need to have synchronous events.
For this purpose each event has a timestamp in the time domain T which contains
positive numbers in R. Therefore a stream may contain infinite events. Asyn-
chronous streams allow that at a timestamp t only one stream has a new event and
causes not all streams to respond with an event. This asynchronous behaviour is
more suitable for cyber-physical systems that receive or raise signals at unstable

14

3.3 TeSSLa

frequencies. On receiving a new event on a stream a new signal is generated. If a
property needs to evaluate a stream and there is no new signal on that stream at the
latest timestamp the last known value of the stream is used. The signal is therefore
held until a new signal arrives just like a rising or falling edge in electronics. This
is called signal semantics.

Like in [DSS+05] TeSSLa relates a set of input streams to a set of output streams.
This is done via mutually recursive equations and allows self-references to the past.
The last operator (last(parameter, trigger)) references the last known value of a given
parameter at a given trigger. A trigger in this context is an event of a stream. The
combination of recursion and the last operator allows for recursive equations. As last
only refers to events in the past those equations can be computed incrementally. But
to use last it might be necessary to provide a starting point. The merge operation
(merge(event a, event b)) fills that gap. By providing two streams, merge combines
the events of those streams. If the user wants to count events of stream x he might
call count := map(last(count, x) + 1, 0) to merge a start stream with value 0
(as the starting point) with the last value of count (when event x happens) while
incrementing the count value and assigning it to count again.

In TeSSLa each event has a timestamp to establish a global order without having syn-
chronous events. This timestamp is accessible via the time operator (time(event)).
The global order is based on a global clock and no two same timestamps are allowed
for an event. Thus a timestamp is unique for its stream. By accessing the timestamp
of an event it is possible to determine ordering but also perform computations based
on the information about the timestamp.

The delay function (delay(period, event)) allows to create new timestamps. For this
purpose the first argument is a value for a timeout and the second argument relates
to the event that resets the timeout. In Figure 3.2 it is shown how this function is
used to report errors as fast as possible. The const function (const(value)(event))
in that example maps the constant value 5 to the write stream. The result of that
const function is the period for delay so that delay expects a write event every 5
time units. At timestamp 12 the last write event was seen at 7 and an error is
thrown because delay triggers and creates an event at timestamp 12. The behaviour
of time, delay, last and the global ordering via timestamps support the statement
of TeSSLa that Time is a First-Class Citizen.

TeSSLa is designed to run on FPGAs which are more restricted by their hardware
than desktop computers or servers. Therefore TeSSLa follows two principles to
ensure Efficient Parallel Evaluation on those systems. The first principle is explicit
memory usage. Streams in TeSSLa can operate on unbounded and bounded data-
types. The latter however are used in practice because they have a constant size.
The operators in general only need finite memory as only one data value is stored
by an operator. The second principle is local operator composition. Semantics in

15

3 Preliminaries

Figure 3.2: A basic example of creating new timestamps with the delay operator
in [CHL+18]

TeSSLa are defined so that individual operators can be locally composed. That
allows message passing without global synchronization. The progress of a stream is
known so that passing this information is sufficient for recursive TeSSLa equations.

Two additional terms are defined regarding time in TeSSLa: timestamp conservative
and future independence. A function is called timestamp conservative if and only
if it does not introduce new timestamps. On the other hand, a function is future
independent if and only if output events only depend on current or previous events.

Specifications in TeSSLa without delay operators are timestamp conservative as
only delay can introduce new timestamps. Furthermore every TeSSLa specification
is future independent because the only operators referring to events with different
timestamps are last and delay and they refer to the past.

3.4 Parallel Programming

Nowadays computers, even in embedded environments, are benefiting from multi-
core CPUs. Problems which need high computation power can be solved by using
parallel programming. Those problems could range from sorting algorithms and
physics simulations to non-deterministic state machine simulations.

But even simpler sequential programs might benefit from parallelization. Redesign-
ing a program’s execution flow might lead to a significant speed-up compared to the
sequential code according to [Kum02]. But this does not mean that programming
a parallel algorithm or even software is easy as it introduces a new dimension of
problems and limitations.

The following sections focus on the topic of parallel programming its different ap-
proaches and techniques but also problems and limitations in this field so that it is
easier to understand the proposed solution in Chapter 4 and Chapter 5.

16

3.4 Parallel Programming

3.4.1 Data Parallelism

In data parallelism similar operations are performed on different sets of data. The
data is decomposed into tasks and onto computing nodes which perform those oper-
ations.

For further clarification the definitions of [Kum02] are used for decomposition and
tasks:

Definition 3.4 (Decomposition). The process of dividing a computation into smaller
parts, some or all of which may potentially be executed in parallel, is called decom-
position.

Definition 3.5 (Task). A task is a programmer-defined unit of computation into
which the main computation is subdivided by means of decomposition.

Depending on the location of the nodes those might be on a local computer, for
example on different CPUs or CPU cores, or even different computers connected
via a network. The decomposition of data is mostly done by partitioning the data
which needs to consider dependencies. Those dependencies can be expressed in a
data-flow-graph. Therefore for a node to compute the correct result it needs all
necessary dependencies. In fact the computation does not need to be in a single
phase but could consist of several phases of computation to lessen the burden on
each node or use specialized nodes for certain computations, for example based on
the hardware configuration. [Kum02]

3.4.2 Task Parallelism

In contrast to data parallelism, task parallelism concerns itself with the objective to
execute different tasks on computation nodes. So instead of partitioning data the
execution of a program is decomposed into different tasks which can be expressed
in a task-dependency-graph. Like in data parallelism, one problem may be the com-
putation based on the task dependencies. A node performs a task on the same or
different data in relation to the other nodes. [Kum02]

3.4.3 Problems and Limitations

The performance and effective speed-up (sequential processing time
parallel processing time) of a parallel program

is not only determined by the CPU but also the memory size and speed which
feeds data to the CPU. In [Kum02] the difference between latency – when does the
data flow – and bandwidth – the speed of the data flow – are discussed. These are

17

3 Preliminaries

important for the hardware as differences in speed between memory and processor
lead to times where the processor might not compute as it waits for data. In these
times the processor can focus on other tasks.

Another important part is the size of the memory. The interesting question is, what
happens when the size of the data exceeds the size of the memory and in consequence
does not fit in it. In [DG04] the MapReduce algorithm is proposed that deals with
that issue for large files. In short it chunks the data and provides those chunks
to computation nodes that can perform tasks on them and finally map the results
together. This could provide a solution for operations that cannot be effectively
done in constant memory space like computations with a large data dependency.

3.4.4 Decomposition Techniques

One of the biggest challenges of parallelization can be the split of necessary com-
putations into tasks that can be executed in parallel. This is was defined in Defini-
tion 3.4 as decomposition. There are different techniques to decompose a problem
into smaller portions that can be handled simultaneously. Some of those techniques
are introduced in the following sections.

Data Decomposition

One way of decomposing is based on possibly large data structures. This technique
is called data decomposition and does the decomposition in two steps. First the data
is partitioned and in a second step these partitions are used to get a partitioning of
the computations. This results in tasks as defined in Definition 3.5 which operate
on those different data partitions. [Kum02]

Partitioning the output data can be done independently as a function of the input.
In this case the partition is a decomposition of a certain problem into tasks. Because
of this the function can be executed in parallel already. [Kum02] shows this on the
example of dense matrix-vector multiplication where a dense n × n matrix A is
multiplied with a vector b. Each task represents one of n rows which is multiplied
with b.

A downside is that partitioning the output data can only be performed if the output
can be computed as a function of the input. Not every algorithm is capable of
doing that. But it might be possible to partition the input data instead. For this
to happen the input data is partitioned into a task. In consequence each partition
of input data is a task used for computation. It might be necessary to combine
the results as those partial results do not solve the original problem. In that case,

18

3.4 Parallel Programming

the results are combined to solve the original problem in a following computation.
[Kum02]

An example algorithm for data decomposition is the MapReduce framework de-
scribed in Subsection 3.4.5.

Speculative Decomposition

Another way is to use speculative decomposition. This technique is used when de-
pending on a preceding computation a certain (following) branch needs to be pro-
cessed. Before the currently computed output is known following branches are pro-
cessed in parallel. When the output is ready and known the following branch is
chosen and all other non-relevant branches are discarded.

As this wastes computation power one could think about a formulation of this specu-
lative decomposition to only take the most promising branch. In case the anticipated
branch is not the right one the computation is rolled back and the correct branch is
taken instead. [Kum02]

One prominent example for its usage and effectiveness are processor architectures
which use speculative branching to speed-up the execution of instructions. [MG13]

3.4.5 Map and Reduce

This section references mostly [DG04] and will otherwise explicitly cite another
work.

The map and reduce framework allows parallel execution on large data sets (many
terabytes and even petabytes) and thousands of machines. Based on the map and
reduce functions of Lisp and other functional programming languages, users define
those functions while the framework handles execution of these functions on possibly
large clusters of machines, partitions the input data, schedules the execution and
handles inter-machine communication as well as failures.

The whole computation model takes a set of input value and key pairs and produces a
set of output value and key pairs. The map function takes an input pair and produces
a set of intermediate key/value pairs. All intermediate values will be associated to
the same intermediate key. Those pairs are passed to the reduce function which is
another user written function. It accepts an intermediate key and a set of values of
that key. It merges these values together to form a smaller set of values, typically
just zero or one output.

19

3 Preliminaries

Figure 3.3: The execution overview of the MapReduce Framework shown in [DG04]

In Figure 3.3 the whole execution and its components is described. First the frame-
work splits the input files into a number of pieces. Those pieces are typically 16 to
64 MB in size.

The next step is to start up many copies of the program on the cluster of machines.
One of those copies is special as it is the master. The rest are workers. The master
picks idle workers and assigns a map or reduce task to them.

A worker with a mapping task reads the contents of its corresponding input split,
parses the key/value pairs out of it and passes it to the user written Map function.
As already mentioned the map function generates intermediate pairs. Those pairs
are buffered in memory.

Periodically the buffered pairs are written to a local disk. But before that they are
partitioned into regions by a framework specific partitioning function. The location
of each file is passed to the master who will pass a location with a reduce task to
an idle worker in the reduce phase.

A reduce worker uses remote procedure calls to read the buffered data. It sorts the
data by their intermediate keys. If the data is too large for the memory an external
sort is used. The worker iterates over the set of intermediate keys and passes key

20

3.5 Abstract Syntax Tree

and the corresponding set of values to the Reduce function which is also defined by
the user. The final result is output to a final output file for this reduce partition.
Therefore for each reduce task a separate result file is written.

The master writes periodic checkpoints of its data structures. In the case that the
master dies, the master is restarted from the last checkpoint.

It may also be noted that the network communication may lead to errors. Broken
connections, unreachable or otherwise frozen computation nodes might lead to faulty
results which might impede the whole MapReduce process. Because of this fault
tolerance has to be graceful. The master pings every worker periodically. If no
response is received after a certain amount of time the worker is marked as failed
and all map tasks the worker completed or currently works on are reset. Completed
tasks are re-executed because the intermediate results are saved on the local disk of
the worker and inaccessible if he cannot be reached.

3.5 Abstract Syntax Tree

An abstract syntax tree (AST) is a directed graph G = (V,A) with V being a set
of nodes and A being a set of arrows. An arrow is a directed edge in the form of
a = (head, tail) with a ∈ A and head, tail ∈ V , therefore going from head node to
the tail node.

Every important token in an AST has a node and uses operators as subtree roots.
An AST is used for implementing source code analysers, translators and interpreters.
[Par09]

1 in x: Events[Int]
2
3 def sum: Events[Int] := merge(last(sum, x) + x, 0)
4
5 out sum

Listing 3.2: Summation Specification showing a recursion in TeSSLa specifications

To show an AST of TeSSLa in this section, the example of Section 4.1 is duplicated.
Consider the specification shown in Listing 3.2. The AST generated by TeSSLa can
be seen in Figure 3.4.

21

3 Preliminaries

Figure 3.4: AST of a recursion example in TeSSLa specification

3.6 Symbolic Computation

All mathematical objects and their representations in computers can be symbolic
objects. This thought gave rise to two research topics, namely computational algebra
or symbolic computation and computational logic. Symbolic computation is, among
others, used to manipulate mathematical expressions and objects. [Buc85]

The term symbolic computation in this work restricts itself to the manipulation
and calculation of formulas that have no specific values. Those values are therefore
substituted with an algebraic expression as long as the value is unknown. This
allows for computations without knowing values and the usage of techniques such
as speculative decomposition as described in Section 3.4.4.

3.7 Sub-Specification

A sub-specification ϕsub in the context of this work is a partial of a specification ϕ
and contains a subset of operations and functions of ϕ.

22

3.8 Deterministic and Nondeterministic Finite Automata

For example lets consider the specification in Listing 3.3. One can see that ϕsub only
consists of the summation of the event values of x while ϕ also consists of an error
check.

1 # parent specification ϕ
2 in x: Events[Int]
3
4 def sum: Events[Int] := merge(last(sum, x) + x, 0)
5
6 def error: Events[Bool] := x > 5
7
8 out sum
9 out error
10
11 # sub−specification ϕsub

12
13 in x: Events[Int]
14
15 def sum: Events[Int] := merge(last(sum, x) + x, 0)
16
17 out sum

Listing 3.3: Summation Specification with examplary Sub-Specification

3.8 Deterministic and Nondeterministic Finite
Automata

Some specifications of TeSSLa could be written so that those specifications resemble
an automaton. In this work an deterministic finite automaton (DFA) is defined as
a 5-tuple (Q,Σ, δ, q0, F), consisting of a finite set of states Q, an finite set of input
symbols Σ, a transition function δ : Q × Σ → Q, an initial state q0 ∈ Q and
accepting states F ⊆ Q.

A nondeterministic finite automaton (NFA) is defined in this work as a 5-tuple
(Q,Σ,∆, q0, F) consisting of a finite set of states Q, an finite set of input symbols
Σ, a transition function ∆ : Q × Σ → P (Q) (with P (Q) being a power set of Q),
an initial state q0 ∈ Q and accepting states F ⊆ Q.

23

4 Concept

This chapter starts with an approach to detect recursions in runtime verification
engines and will explain how specific problems in the task of parallelization of a
SRV engine like TeSSLas can be solved and how distributed approaches could be
designed.

4.1 Detecting Recursion

As shortly noted in Chapter 2, one needs to identify the specific case that is put into
the TeSSLa engine. One important information is whether or not the specification
contains a recursion.

TeSSLa’s compiler generates an AST to interpret the input specification. This AST
can be used to analyse the structure of the specification and therefore check all tokens
that are part of the specification, e.g. operators, input and output streams.

Observation 4.1 (Recursions are cycles in an AST). To check whether a TeSSLa
specification contains a recursive call, one can look for a cycle in the AST generated
by TeSSLa.

By traversing the AST and its subtrees one can store the root node and check
whether the current node is the root node. If it is not, traversing the current tree
is continued. If it is the root node there is a recursion. After traversing all nodes
without encountering the root node again the algorithm can conclude that there is
no recursion in the specification.

The specification in Listing 4.1 intends to sum up all values of the events of x. These
events are part of the input trace. sum is initialized with 0 and gets, when an event
of x occurs, the last value of x (sum) and adds it to the current x. The result is
assigned to sum again. Lastly sum is output as an output-stream. As one can see,
the result which is calculated by using sum is reassigned to sum. Thus the recursion
is part of the calculation of sum. An example of the output is shown in Figure 4.1.

25

4 Concept

1 in x: Events[Int]
2
3 def sum: Events[Int] := merge(last(sum, x) + x, 0)
4
5 out sum

Listing 4.1: Summation Specification showing a recursion in TeSSLa specifications

Figure 4.1: Output streams of summation example by TeSSLa playground
visualization

The Figure 4.2 shows the corresponding AST of Listing 4.1 generated by TeSSLa.
The root is last and contains sum and input(x). One can see that sum is a merge of
slift and default. default is an initial stream of 0 for the merge here, as mentioned
in Section 3.3. slift contains an addition of input(x) indicated by the + operator.
Because last is the root node one can deduct that last contains sum which contains
last. Therefore the recursion led to a cycle in the AST.

4.2 Decomposing TeSSLa Input Data

As mentioned in Section 3.2 SRV evaluates a program’s execution against correct-
ness properties. The program’s execution can be evaluated online or offline. In
either case, in this works context it is the trace of the program’s execution which is
evaluated against the specification.

Decomposing the input data of TeSSLa means partitioning the given trace and spec-
ification. It might be necessary to partition only the trace or only the specification
or even both, based on the specific case of specification.

Due to TeSSLa’s signal semantics TeSSLa computes a verdict of an event when a
new event happens. The principle of explicit memory usage allows TeSSLa to work
with a small footprint which is necessary for TeSSLa to work on low memory systems
such as embedded ones. This means that in the mapping phase the evaluation of
sub-traces and specification will be done just-in-time and the reducing step will focus
on merging the results.

26

4.2 Decomposing TeSSLa Input Data

Figure 4.2: AST of a recursion example in TeSSLa specification

In the reducing phase the result is combined by applying the reduce function to the
set of mapping results. To combine each result of the workers of the mapping phase,
it might be necessary to run a sub-specification against those results.

The example shown in Listing 4.1 would generate sums for each sub-trace given
to a worker in the mapping phase. The final result needs to combine all previous
calculated results. So the specification needs to be run again in the reducer phase
with the results of each mapper as new input trace.

Partitioning the specification means that one needs to know the AST nodes and
therefore TeSSLa operations to write a new sub-specification with only the opera-
tions needed in the reduce step.

A task for TeSSLa, in this work, is a partial trace acquired by partitioning the trace
which is related to a specific (sub-)specification. This task can then be evaluated by
a computation node (in a distributed system or locally). That means that in each
phase, mapping or reducing, it might be necessary to evaluate different tasks not
only divided by the trace but also specification. Which map and reduce algorithm
is used and how the resulting tasks are mapped and reduced will be described in
Section 4.3 for each specification case separately.

27

4 Concept

4.3 Specific Problem Cases

In this section a number of examples for specific problem cases in the task of par-
allelization of SRV engines are given. The theoretical approach for each case is dis-
cussed here and the implementation of those cases using TeSSLa will be discussed
in Chapter 5.

4.3.1 Trace Data without Dependencies

The simplest case one might think of is an input trace without dependencies be-
tween the single input streams. A look at Figure 3.1 shows that the input stream
temperature is used to determine the value of low and high to get to the verdict
whether the temperature is unsafe or not. That case can be identified by checking
the AST generated out of the specification for references on input streams. If input
streams are not used in operations with other input streams or values of other time
stamps then there are no dependencies.

Figure 4.3 shows abstractly how intelligent chopping can be applied to this example
case. Because the values are not dependent on anything, chopping the input trace
into smaller pieces can be done freely. The resulting chunks are then used as input
to the TeSSLa specification ϕ. In the reduce step for each chunk a result will be
produced. If one wants to have a combined result it can be done by appending the
results in ascending order.

The map function simply runs the trace against the specification, while the reduce
function has no further steps to take other than outputting the result of each chunk
of the input trace.

4.3.2 Trace Data with Self-Dependency

Another example is to compute a verdict or other statistical measurements based

on previous values. To give an example one could think of a summation like
10∑

t=0
a.

As one can see it sums up the value of a. Instead of using a loop one could use a
recursion to solve this summation. This leads to sumt = sumt−1 + at and therefore
sum being dependent on the previous value of sum.

As shown in Figure 4.4 every point cuts off a dependency. Therefore the intelli-
gent chopping can focus again on creating chunks with the best possible size. It
is important, though, to analyse the specification ϕ for a recursion as explained in

28

4.3 Specific Problem Cases

Figure 4.3: Abstract way to handle Trace Data without Dependencies

Section 4.1. The lines of the recursion are necessary to build the sub-specification(s)
ϕsub which are needed in the reduce function.

Themap function is responsible for computing the last values for each output stream.
The result of each of those streams is used by the reduce function as an input to
the sub-specification ϕsub. This way a final verdict is gained from computing each
partial result.

In this case there is no need to use symbolic computation (and thus simulate the
unknown value at the start of each chunk with an algebraic variable) on each step.
There is a need to define a default value as the start value for each chunk. The reason
for that is that the computation has no dependency to other variables besides itself
and therefore the chunk results starting with a default value can be combined in
the reducing step to gain the final result of each chunk. That is also the reason for
the aforementioned need to create a sub-specification ϕsub based on the operations
of the recursion.

29

4 Concept

Figure 4.4: Abstract way to handle Trace Data with Self-Dependency

4.3.3 Trace Data with Reset-Variable

If the trace data has a recognizable reset variable intelligent chopping is done na-
tively. On each reset event the trace will be chopped. In this case the input of the
trace is not analysed further and each chunk will be run against the specification ϕ
and a separate output will be produced for each chunk. The mapping and reducing
phase is similar to the ones in Subsection 4.3.1.

The algorithm used to process this case would need to read the trace and look for
reset points, chop at those reset points, run every chunk against the specification

30

4.3 Specific Problem Cases

Figure 4.5: Abstract way to handle Trace Data with Reset-Variable

and output a result for each chunk. This procedure is shown in Figure 4.5.

Just like in the MapReduce approach defined in [DG04] each chunk has its own
output. Therefore a second specification ϕcombine could be run after the parallel
computation to combine the chunked results. For this to happen the output of the
chunked traces needs to be combined into a single output which is the input trace
for the combining specification.

A specification for this case is shown in Listing 4.2. At some time t an input event
E1 or E2 happens and increments the sum1 or sum2 accordingly. These two sums
are also the output streams.

1 in E1: Events[Int]
2 in E2: Events[Int]
3

31

4 Concept

4 def sum1: Events[Int] := merge(last(sum1, E1) + E1, 0)
5 def sum2: Events[Int] := merge(last(sum2, E2) + E2, 0)
6
7 out sum1
8 out sum2

Listing 4.2: Example specification for Trace Data with Reset-Variable case

A trace for this specification is shown in Table 4.1. The Event R is the reset variable.
After analysing the trace each event R could be used as a cut point to chunk the
trace. In the example shown in the table there would be 4 chunks of the trace. A
chop would happen after timestamp 10, 20, 25 and 40.

Table 4.1: Example trace for Trace Data with Reset-Variable
Timestamp Events Value Timestamp Events Value

5 E1 1 25 E1 3
R 0

10 E2 1 30 E1 4
R 0 E2 4

15 E1 2 35 E2 5
E2 2

20 E2 3 40 R 0
R 0

Each chunk will be checked against the specification shown in Listing 4.2 and result
in Table 4.2. As seen the total result would be sum1 : 10 and sum2 : 15. But
as already mentioned this needs to be computed in a second specification with
Table 4.2’s results as input trace.

Table 4.2: Result for each chunk of the example trace for Trace Data with Reset-
Variable

Chunk Result Chunk Result
1 sum1 : 1 3 sum1 : 6

(t = 5 to 10) sum2 : 1 (t = 25) sum2 : 6
2 sum1 : 3 4 sum1 : 10

(t = 15 to 20) sum2 : 6 (t = 30 to 40) sum2 : 15

4.3.4 Trace Data with N-Dependencies

Previously shown were cases of traces and their respective specifications without
dependencies (Subsection 4.3.1) and with self-dependency (Subsection 4.3.2) but

32

4.3 Specific Problem Cases

one could easily think of a propositional logic formula with multiple variables. In
that case a verdict might need to compute multiple variables in a single time step.

An example could be an error check. Let G be the gear of a car, R the revolutions
per minute and V the velocity. A condition could be G ≥ 0∧G ≤ 6∧R ≥ 0∧R ≤
8000 ∧ V ≥ 0 ∧ V ≤ 200. This formula has multiple dependencies. On a each time
step t there is a need to know the value of G, R and V .

The problem is that each chunk needs to have those information about G, R and
V after the cut point. One solution would be to use speculative decomposition as
shown in Section 3.4.4. Based on the input range a branch for each possible input
value could be computed. In the worst case this leads to computing a branch for
each possible system state and to the problem of Model Checking as described in
Chapter 2.

Figure 4.6: Error Check example showing overlapping of event values between chunks

In the simple example of getting a truth value as a verdict one could reduce the
necessary branches by checking the conditions. The number of branches of the error

33

4 Concept

check example of this section could be reduced to branches that are within the ranges
and those that are not.

Table 4.3: Speculative Branches for error check example
Branch G R V

1 4 3250 125
2 8 3250 125
3 4 13250 125
4 4 3250 -125

The branches 2, 3 and 4 shown in Table 4.3 could be reduced to one branch as it
does not make a difference in this example whether and which single value or even all
values turn the formula to false. This is the case because the formula only computes
a truth verdict and there are only two cases to cover: All values are in the specified
ranges and thus there is no error or one or more values do not satisfy the formula
and in consequence an error is detected. Having 3 branches to cover that one error
case could be reduced to only one formula covering the error situation.

However this changes if the specification is not only about getting a truth verdict
but also about statistical measurements. If one wants to get the average velocity (V)
and corresponding revolutions per minute (R) one needs the values of the previous
chunk. Therefore a branch for each possible value needs to be computed and after the
previous chunk returns a result all branches that do not fit the result are discarded.

Another approach would be to overlap events between chunks. This means that the
first and last few time steps around the cutting point are added to the chunk before
and after the cutting point. In case of the error check example it is possible to only
include the last few time steps of the previous chunk because it is not necessary to
process the input events in any other way than checking against another value. This
is shown in Figure 4.6. There the event g2 is overlapping to the next chunk as well
as v4 from the second chunk to the third. If the input events are used to compute
other intermediate events this approach might not work.

4.3.5 Specification with Automata

A specification that resembles an automaton has the same problem that the error
check example with a simple truth verdict in Subsection 4.3.4 has. Each transition
from one state to the other requires a specific set of values of the input alphabet.
Each chunk after the first needs to know the current position of the input. Thus
speculative decomposition can be used to create different branches based on each
possible state as it is unknown which state was the last in the previous chunk.

34

4.3 Specific Problem Cases

For DFA each state has only one transition to follow. The number of branches is
therefore limited due to the size of the set of states of the DFA. For a NFA branching
is not limited on the size of the set of states as each state might have multiple
transitions. In that case branches for each state and each possible transition have
to be created. Based on the condition for the specific transition even branching for
different values on which the correct transition is chosen is needed. After getting
the result of the previous chunk all but the right branch are discarded.

4.3.6 Specification with Reset-Condition

If the specification has a reset condition – a condition that results in setting a
value to a constant – the problem is based on the condition itself. The error check
condition in Subsection 4.3.4 could be a reset condition and needs to be handled
with an approach like previously shown with speculative decomposition. The same
applies to the cases shown in Subsection 4.3.1, Subsection 4.3.2 and Subsection 4.3.3.
If the specification has no deep dependencies using overlapping is also a possibility.
Examples for these cases as reset conditions are shown in Listing 4.3.

1 in G: Events[Int]
2 in D: Events[Int]
3 in V: Events[Int]
4 in Reset: Events[Bool]
5
6 # Reset Condition with N−Dependencies
7 def count: Events[Int] := if (G >= 0 && G <= 6 && D >= 0 && D >= 8000

&& V >= 0 && V <= 200) then 0 else count + 1
8
9 # Reset Condition without dependency
10 def count: Events[Int] := if (G >= 0 && G <= 6) then 0 else count + 1
11
12 # Reset Condition with self−dependency (last and current G between 0 and 6)
13 def count: Events[Int] := if (merge(last(G, G), 0) >= 0 && merge(last(G, G), 0)

<= 6 && G >= 0 && G <= 0) then 0 else count + 1
14
15 # Reset Condition with reset variable
16 def count: Events[Int] := if (Reset == true) then 0 else count + 1
17
18 out count

Listing 4.3: Example specification for Trace Data with Reset-Condition case

35

4 Concept

4.4 Distributed Computation of SRV

It is shown in Subsection 3.4.5 how to design a distributed system which orchestrates
multiple map- and reduce-workers. The approach described in this chapter is close
to the idea of MapReduce. Therefore the distributed approach is in most parts the
same. A master will split and assign chunks to mapper workers. The result of each
mapper is returned to the master. The mapping results are then assigned to reducer
workers. Those workers output a result for each output of the mapping step. This
approach is shown in Figure 3.3 in Subsection 3.4.5.

The approach is nearly the same as on a single computer with a multi-core CPU. The
difference is that network communication needs to be modelled and implemented.
By adding the dimension of network communication one also includes problems
such as fault tolerance which might be a more complex problem due to the chosen
strategy on how to handle broken connections or computation nodes.

36

5 Implementation

The implementation is using TeSSLa 0.76-Snapshot and implements a parallel en-
gine which takes the input trace and specification and will determine whether paral-
lelization is possible (based on the known and implemented cases). In case that it is
possible to use parallel computation the engine will then run the TeSSLa engine in
parallel to compute the result of the task at hand. In this chapter the architecture
of this parallel engine is described as well as the specific algorithms used for the
cases described in Section 4.3.

5.1 Architecture

The architecture consists of multiple components that implement analysing algo-
rithms but also the mapping and reducing logic for the specific cases described in
Section 4.3. An overview is shown in Figure 5.1.

A more technical overview can be seen in Figure 5.2.

Figure 5.1: Graphic showing the architecture of TeSSLa Parallel

The parallel engine is responsible for starting the process of analysing the input
trace and specification. If a possible parallel processing and corresponding case of

37

5 Implementation

parallel computation is found the engine hands the results of each component to the
next. It acts in that way as a coordinator. In case no known parallel computation
is found the engine will start the TeSSLa Interpreter in sequential mode with the
given specification and trace. The result of that is simply returned to the user.

Figure 5.2: Diagram showing the technical architecture of the core parallel en-
gine for TeSSLa

The analyser checks whether the specification contains a recursion using the ap-
proach described in Section 4.1. It also stores the input and output streams as well
as the reference of where to find these streams inside the specification as shown in
Listing 5.1.

This is necessary for some cases to process sub-specifications to gain the final result
of the computation of input trace and specification. The final verdict of the anal-
yser is the parallelization case that states which case of Section 4.3 is identified.
The propertyList contains for this task a list of properties found during the analyse
process. One such example of properties would be the information whether the spec-
ification contains a last operator or a recursion. All properties together lead to the
unique case which will be stored in the variable identifiedCase for later references.

38

5.1 Architecture

The parallel engine branches based on the identified case and uses the specific al-
gorithms for splitting, mapping and reducing according to the identified case. The
first step after the analyser is to split the input trace.

Chunking the input trace is done inside of the splitter. The splitter cuts the trace
based on the identified case in parts of equal size and stores them in chunk files.
The size of files is based on the number of processors and size of the heap. This
is a more technical problem because of garbage collection. The garbage collection
triggers at a certain percentage of heap usage. In single-core TeSSLa mode it is not
problematic because TeSSLa computes and stores only a single value at a time. This
is because of TeSSLa’s feature of explicit memory usage (described in Section 3.3).
When using multiple cores the memory usage is multiplied as well. The problem
here is that the parallel computation needs the intermediate results in later phases,
e.g. the result of the mapping phase is needed in the reducing phase. Because of
this the implementation of the splitter splits the files according to the hardware
configuration so that the garbage collection is not using too much CPU power and
the program is not running into memory shortage. The partial files are stored to the
hard disk and the filenames are put into a list for later reference. The basic splitter
algorithm is shown in Listing 5.2.

1 va l variableName = stream . as InstanceOf [Tess laCore . Stream] . id .
nameOpt . get

2 var subSpec : L i s t [S t r ing] = L i s t ()
3
4 va l inputKey = getStreamLocat ion (specs , inputKey)
5 va l l a s tStreamLocat ion = getStreamLocat ion (specs , variableName)
6
7 va l s r c = Source . f romFi l e (specPath)
8 va l s r cL in e s = s r c . ge tL ine s . toStream
9 subSpec = createSubSpec (inputStreamLocation , lastStreamLocat ion ,

variableName)
10 s r c . c l o s e
11
12 // map sub−spec to input key and s t o r e in spec map
13 sp l i t Sp e c . specMap = sp l i t Sp e c . specMap + (inputKey −> subSpec)
14 // s t o r e input key in l i s t
15 sp l i t Sp e c . inputKeys = inputKey : : s p l i t Sp e c . inputKeys
16 // map output key to input key
17 sp l i t Sp e c . outputKeys = sp l i t Sp e c . outputKeys + (variableName −>

inputKey)

Listing 5.1: Algorithm to store input streams and locations in the specification

After splitting the input trace into chunks those chunks are passed to the mapper.
Here the specific algorithm for the detected case is used and each chunk is computed

39

5 Implementation

in parallel. The result of each partial input file is stored in a map with the name of
the partial file being the key and the result being the value.

The reducer now applies the reducing step onto the result of each file chunk the
mapper produced. The reducing function is also case specific. The result of the
reducing phase is returned to the parallel engine and from there returned to the
user.

The specific implementations for each case are described in Section 5.2.
1 var f i l e I n d e x = 0
2 var beginIndex = 0
3 var endIndex = 0
4 f o r (i <− 1 to numberOfSplits) {
5 f i l e I n d e x = i
6 endIndex += t r a c eS i z e / numberOfSplits
7 va l f i leName = writeChunkFile (f i l e I nd ex , t raceF i l ePath ,

beginIndex , endIndex)
8 beginIndex = endIndex
9 // add chunk f i l e name to re turn l i s t

10 r e t L i s t = fi leName : : r e t L i s t
11 }
12 // i f a f t e r t h a t i t e r a t i o n the beg inIndex i s not the t r a c e S i z e

t he r e are s t i l l l e f t o v e r s
13 i f (t r a c eS i z e != beginIndex) {
14 f i l e I n d e x += 1
15 va l f i leName = writeChunkFile (f i l e I nd ex , t raceF i l ePath ,

beginIndex , t r a c e S i z e)
16 r e t L i s t = fi leName : : r e t L i s t
17 }

Listing 5.2: Basic Splitter Algorithm

5.2 Implemented Cases

This section shows the specific implementation for the cases named in Section 4.3.
Some code fragments will be used to show in listings how certain algorithms are
implemented.

The analyser identifies the case by using a bit mask. Each entry in the already
mentioned propertyList references a numeric value. Those values are converted to
bits. This is shown in Listing 5.3 but for simplicity only the cases LastWithRecursion
(Trace-Data with Self-Dependency) and NoLastNoRecursion (Trace-Data without

40

5.2 Implemented Cases

Dependencies) are shown. The other case is MultipleDependencies (Trace-Data with
N-Dependencies).

1 va l spec s = getSpecs ()
2 i f (spec s == n u l l) re turn f a l s e
3 va l mask = getBitMask (analyseToken (spec s))
4 mask match {
5 case LastWithRecursion . property => {
6 i d en t i f i e dCa s e = Para l l e lCa s e (LastWithRecursion . name ,

LastWithRecursion . property)
7 t rue
8 }
9 case LastNoRecursion . property => {
10 i d en t i f i e dCa s e = Para l l e lCa s e (LastNoRecursion . name ,

LastNoRecursion . property)
11 t rue
12 }
13 . . .
14 case _ => f a l s e
15 }

Listing 5.3: Bitmask and Identified Cases

5.2.1 Trace Data without Dependencies

For this case a TeSSLa specification and a trace are given. According to the spec-
ification the input streams do not hold any dependencies with themselves or other
input data. Each input stream is therefore independent. The temperature example
of Figure 3.1 shows that independence. temperature is the input stream and used to
check the condition unsafe := temperature < 3∨ temperature > 8. temperature is
used by unsafe and necessary to check that condition but is not dependent on any
other data of the trace nor itself.

As mentioned in Subsection 4.3.1 we can split at random and in regards to chunk
size. The splitter uses the algorithm as shown in Listing 5.2.

The bit mask for this identified case is 0. The strategy for this case will be used iff
no last operator and no recursion is found. If there is a last operator or recursion
in the specification but no other matching case is found and therefore no multiple
dependencies, recursions, reset variables etc. exist, the analyser will return that
parallelization is not possible and the parallel engine will proceed with starting a
single thread with TeSSLa’s interpreter.

41

5 Implementation

The mapper uses the algorithm shown in Listing 5.4. The mapper simply loads each
chunk and the specification file and runs the interpreter of TeSSLa to get the result
of the input trace (chunk) corresponding to the given specification. Afterwards the
chunk file is deleted and the result returned. Futures (as seen on line 2 of Listing 5.4)
are Scalas way of running multiple threads simultaneously and a major tool used in
each implemented case.

The reducer simply returns the result of the mapper. The mapper returns a stream of
iterators of trace events and so does the reducer. Depending on the next processing
step of the user those results can be output in a parallel multi threaded fashion or
sorted and flattened into one stream that is sorted by the events timestamps.

One problem with the implementation – which is a problem of parallelization in
general – is memory usage. Iterators in Scala are consumed on iteration. This is
necessary to process large files or chunks of traces. The stream of iterators contains
the reference to the start of those iterators of each result of a chunk. If those are
compared the memory is depleted as sorting the timestamps is done in memory and
depending on the trace size might need too much memory for the garbage collector
to handle.

1 de f noLastNoRecursion (sourcePaths : Stream [St r ing] ,
specSourceFi l ePath : Str ing , timeUnit : S t r ing) : Stream [
I t e r a t o r [Trace . Event]] = {

2 va l f = Future . t r a v e r s e (sourcePaths) (path => Future {
3 va l r e s u l t = I n t e r p r e t e r . run (Unwrapper . unwrapResult (

Compiler . compi le (CharStreams . fromFileName (
specSourceFi l ePath) , Some(timeUnit))) , Trace . f romFi l e
(path) , None)

4 new F i l e (path) . d e l e t e ()
5 r e s u l t
6 })
7 va l r e s u l t = Await . r e s u l t (f , Duration . I n f)
8 r e s u l t
9 }

Listing 5.4: Trace Data without Dependencies Mapper Algorithm

5.2.2 Trace Data with Self-Dependency

In this case the given TeSSLa specification defines a stream with a reference to itself.
One simple example would be an addition such as a = a+ b. As seen in this simple
example and as stated in Subsection 4.3.2 it is necessary for this case to identify the
recursion that leads to the self-dependency. For this purpose, as mentioned earlier

42

5.2 Implemented Cases

the analyser whose core logic is shown in Listing 5.5 analyses the AST of the given
specification.

The algorithm starts at a stream and checks recursively whether a reference to the
start stream exists somewhere in the child nodes of the AST of said start stream.
A flag for recursion is added to the bit mask that specifies the identified case by the
analyser if a recursion is found in the specification.

In this particular case we need to know what the input and output variables are.
This is also done by the analyser as shown in Listing 5.1 (lines 13, 15, 17). The
analyser not only stores the input variable and its occurrence in the specification but
also the resulting output variable. This reference is used by the reducer to find the
specific output variable and create a sub-specification with the value of the output
key of the previous chunk.

The splitter works the same way as for Subsection 5.2.1 and therefore the splitter
chunks the trace according to a certain size.

1 de f r e cu r s i onDe t e c t i on (specs : Tess laCore . Sp e c i f i c a t i o n ,
currentStream : Tess laCore . StreamDescr ipt ion , s tartStream :
Tess laCore . StreamDescr ipt ion) : Boolean = {

2
3 de f re so lveStream (s : Tess laCore . StreamRef , uid : Tess laCore .

I d e n t i f i e r) : Boolean = s match {
4 case _: Tess laCore . Ni l | _: Tess laCore . InputStream =>

f a l s e
5 case stream : Tess laCore . Stream => {
6 i f (i sNotStartStream (stream . id)
7 && ex i s t s InSpecSt reams (stream . id . uid)) {
8 r e cu r s i onDe t e c t i on (specs , spec s . streams . f i nd (s =>

s . id . uid == stream . id . uid) . get , s tartStream)
9 } e l s e {
10 t rue
11 }
12 }
13 }
14 . . .
15 }

Listing 5.5: Recursion Detection by Analyser

The mapper creates a thread for each trace chunk and runs that chunk against
the specification. Afterwards the result is filtered according to the output variables
which the analyser stored at the analysing step before. If the filtered result is not
empty the last event is stored in an output list. The output list contains tuples

43

5 Implementation

which itself contain the name of the output stream, the value and timestamp of the
output event. The complete output list of each chunk is stored in a map with the
key being the name of the chunk file and the value the output list. This result map
is needed by the reducer. An overview of this structure is shown in Figure 5.3.

Figure 5.3: An overview of the output list and result map structure of the map-
per for Trace Data with Self-Dependency

The reducer creates new traces for each output value of the result map and a sub-
specification based on the information of the analyser. For each output variable the
result of the previous chunk is stored in a map. If no end result of a previous chunk
exists a default value based on the type of value (string, boolean or integer) is used
instead.

These new traces and specification are then processed by the TeSSLa interpreter
with the result being stored in a final result list. The core algorithm is seen in
Listing 5.6.

This approach has a limitation, though. Processing a specification that counts events

44

5.2 Implemented Cases

will lead to a faulty result. This approach calculates a result for each chunk. This
result is then used again for the operation defined in the specification leading to the
final result. For specifications that calculate something with the stream values this
works fine.

To count events, though, there needs to be a number of events. This approach has
only one event per chunk, as all other results are processed to get the result of a
chunk. Applying the sub-specification of a "count event specification" therefore leads
to counting the chunk files as each file contains a single event.

1 var tmpList : L i s t [Trace . Event] = L i s t ()
2 var l a s tVa lue s : Map[Str ing , Tess laCore . Value] = Map()
3 r e s u l t . f o r each (r e s u l t F i l e => {
4 r e s u l t F i l e ._2 . f o r each (outputValue => {
5 sp l i t Sp e c . specMap . f o r each (entry => {
6 va l t raceValue = outputValue ._2
7 va l traceTimestamp = outputValue ._3
8 va l inputKey = entry ._1
9 va l outputKey = getOutputKey (sp l i tSpec , inputKey)
10 va l sp e cS t r i ng s = entry ._2
11 i f (outputValue ._1 . name == outputKey) {
12 va l de fau l tVa lue = getDefau l tValue (la s tVa lues ,

outputKey)
13 va l t r a c eS t r i n g = crea t eTraceS t r ing (traceTimeStamp ,

inputKey , de fau l tValue , t raceValue)
14 va l f i leName = writeTraceTempFile (t r a c eS t r i n g)
15 va l r e s u l t = In t e r p r e t e r . run (Unwrapper . unwrapResult (

Compiler . compi le (CharStreams . f romStr ing (
sp e cS t r i ng s . mkString (" \n ")) , Some(timeUnit))) ,
Trace . f romFi l e (f i leName) , None) . toStream . l a s t

16 l a s tVa lue s = updateMap (outputKey , r e s u l t . va lue)
17 // add r e s u l t event f o r f i l t e r i n g l a t e r on
18 tmpList = r e s u l t : : tmpList
19 }
20 })
21 })
22 })

Listing 5.6: Reducer Self-Dependency

It is not an unsolvable problem, though. One possible solution to handle this sit-
uation could be to introduce a keyword to symbolize such a case. This would be
similar to the introduced reset variable in Subsection 5.2.3. Another solution would
be to distinguish such specifications from ordinary self-dependency cases with spe-
cial checks based on the expressions of the AST. The core logic of Trace Data with

45

5 Implementation

Self-Dependency would still hold but would need to be extended to a differentiation
between counting and non counting cases in the reducer. The mapper would sum
up and count the events for each chunk. The reducer on the other hand would need
to use a specification to sum up not simply each event last seen but the result of
each chunk.

5.2.3 Trace Data with Reset-Variable

The last cases analysed the given TeSSLa specification but this particular case adds
the ability to enhance the chopping logic natively by analysing the trace. A reset
variable will be introduced to mark the point of chopping. The analyser will search
for that variable and chop at that point. In Subsection 4.3.3 an example is shown
in which the input values of two streams are summed up.

The analyser identifies the case of the specification as normal. Thus this Trace Data
with Reset-Variable case is an addition to the existing and already mentioned cases.
The analyser also processes the trace and looks for a variable named ResetVariable
as TeSSLa does not support a keyword for reset points at the time of writing. A
list of numbers called resetVariableCutPoints will store the line number of the reset
variable in the trace. A flag is also set inside the analyser to signal that a reset
variable was found and therefore splitting shall proceed accordingly.

The information (reset variable found and on which line numbers the cut points are)
is given by the parallel engine to the splitter.

The splitter thus uses the number of reset variables as the number of iterations. Two
index variables are introduced to mark the last end index and the begin index of the
next chunk. In consequence the beginning is the end of the previous chunk. The end
of a chunk is the line number of the reset variable stored in resetVariableCutPoints.
This is shown in Listing 5.7.

After splitting the trace into chunks the algorithm for mapping and reducing is
used according to the identified case. As an example, if the analyser detected self-
dependent streams, the mapper and reducer of that case are used.

The Trace Data with Reset-Variable case shows in that regard that the core algo-
rithm for the specific cases can be modified by changing parameters of the splitting
process.

Due to the implementation details at this point it is not possible to enable online
splitting. The idea behind online splitting is that in certain cases one might be able
to map and reduce while splitting of the trace is not done yet. For this to happen
splitter, mapper and reducer each need to run in separate threads. A communication
needs to be established so that the splitter might inform the mapper that new chunks

46

5.2 Implemented Cases

are available. A coordinator might be the smartest choice as it would not be intrusive
to the mapper/reducer process and could also start new mapper/reducer threads.
This is the approach of [DG04] but on a local machine.

1 var beginIndex = 0
2 var endIndex = 0
3 f o r (i <− 1 to re s e tVar iab l eCutPo int s . s i z e) {
4 va l t r a c eS r c = Source . f romFi l e (t raceF i l ePath)
5 va l t r a c e I t = t ra c eS r c . ge tL ine s
6 endIndex = rese tVar iab l eCutPo int s . head
7 va l f i leName = createFi leName (i , or ig inFi leName)
8 // add chunk f i l e name to re turn l i s t
9 r e t L i s t = wr i t eF i l e (f i leName , t r a c e I t . s l i c e (beginIndex ,

endIndex)) : : r e t L i s t
10 // drop head a f t e r p roce s s ing to l e s s e n burden on memory
11 re s e tVar iab l eCutPo int s = re se tVar iab l eCutPo int s . drop (1)
12 // move po in t e r
13 beginIndex = endIndex
14 t ra c eS r c . c l o s e
15 }

Listing 5.7: Splitting on cut points of reset variables

5.2.4 Trace Data with N-Dependencies

This case revolves around the question what happens when a stream has multiple
dependencies. An example is given in Subsection 4.3.4. In that example is a stream
that returns a boolean stating whether or not an error was detected. To detect
errors, the values of G (gear), R (revolutions per minute) and V (velocity) of a car
are checked.

Mentioned in Chapter 4 was the idea to use speculative decomposition to branch in a
speculative manner. Over the course of the implementation that idea was discarded
for another solution – overlapping.

Similar to checking for a recursion in the specification of self-dependency for n-
dependencies a check is needed regarding multiple dependencies. For multiple de-
pendencies the analyser stores those dependencies in a map. The key of that map
is the stream and the value is a list of other streams that are necessary for that key
stream. That is the map of dependencies. Therefore the analyser builds that map
and if that map holds an entry the n-dependency case is detected. Additionally the
analyser stores all input streams in a map. This map has the name of the stream as
key and the value is a list of tuples. A tuple consists of a primitive operator which

47

5 Implementation

is a TeSSLa specific class to implement infix operators like +, −, /, ∗, <, <=, >,
>=, &&, || etc.

The splitter – just like in Subsection 5.2.1 – splits regarding size. Every split cuts
off dependencies necessary for the computation of an intermediate or output stream.
Because of this the splitter does not need any kind of special logic. The mapper on
the other hand holds the core logic to solve the problem of cutting off dependencies.
The chunks of the trace and the specification file are given to the mapper but also
the map of input streams. In a parallel fashion each chunk is checked for missing
input streams. The idea behind that is that if there are multiple dependencies we
need all input variables to ensure that the necessary input streams are available.
While checking, the missing input streams are added and a temporary chunk is
written to disk. The crucial part is adding the missing values.

1 whi le (t r a c e . hasNext && isFirstTimeStamp) {
2 va l event = t ra c e . next
3 i f (f i r stTimestamp == −1) {
4 f i rstTimestamp = event . timeStamp . time . b i g I n t e g e r .

intValue
5 }
6 // s t o r e seen v a r i a b l e s to l i s t i f i t ' s s t i l l t he f i r s t

timestamp
7 i f (f i r stTimestamp == event . timeStamp . time . b i g I n t e g e r . intValue

) {
8 va l variableName = event . stream . name
9 i f (! s e en InputVar iab l e s . conta in s (variableName)) {

10 seenInputVar iab l e s = variableName : :
s e en InputVar iab l e s

11 }
12 } e l s e {
13 isFirstTimeStamp = f a l s e
14 }
15 }

Listing 5.8: Adding the seen Input Streams of a chunk for the case of N-Dependencies

For each chunk file a list of seen input variables (seenInputVariables) is filled. This
is shown in Listing 5.8. TeSSLa uses timestamps to distinguish events on the same
stream. The mapper therefore checks the first timestamp of a chunk for its input
streams. All seen streams are written into seenInputVariables. Afterwards the pre-
vious chunk is read and all events of that chunk are read backwards starting with the
latest timestamp. This is shown in Listing 5.9. The reason for that is that the miss-
ing input streams are gathered from the last timestamps of the previous chunk. All
input streams gathered this way are stored in a separate list (addInputVariableList)

48

5.2 Implemented Cases

to add later. Each tuple in that list contains the name of the stream but also its
value and timestamp. Lastly, it is ensured that in case one input stream was not
found in the previous chunk the remaining not seen variables are initialized with a
default value at least (mostly this will be the case for the first chunk as there is no
chunk before that). Afterwards the temporary file is written with the addition of
the elements of addInputVariableList.

1 va l previousChunkFileName = getPreviousFi leName (traceFi leName)
2 var events = Trace . f romFi l e (previousChunkFileName) . toStream .

r e v e r s e
3 var isDone = f a l s e
4 lastTimestampPrevious = events . head . timeStamp . time . b i g I n t e g e r .

intValue
5 // add miss ing input v a r i a b l e s o f the l a s t even t s o f the

prev ious chunk
6 whi le (events . nonEmpty && ! isDone) {
7 va l event = events . head
8 va l variableName = event . stream . name
9 i f (! s e en InputVar iab l e s . conta in s (variableName)) {
10 addInputVar iab leL i s t = (variableName , event . value ,

lastTimestampPrevious) : : addInputVar iab leL i s t
11 seen InputVar iab l e s = variableName : : s e en InputVar iab l e s
12 } e l s e {
13 isDone = t rue
14 }
15 events = events . drop (1)
16 }
17 // add s t i l l miss ing input va l u e s wi th i n i t i a l va lue
18 i f (s een InputVar iab l e s . l ength != inputMap . s i z e) {
19 inputMap . f o r each (entry => {
20 i f (! s e en InputVar iab l e s . conta in s (entry ._1)) {
21 addInputVar iab leL i s t = (entry ._1 , Tess laCore . IntValue (

new BigInt (new Big Intege r (" 0 ")) , Locat ion . unknown) ,
lastTimestampPrevious) : : addInputVar iab leL i s t

22 seen InputVar iab l e s = entry ._1 : : s e en InputVar iab l e s
23 }
24 })
25 }

Listing 5.9: Adding the missing input streams for the case of N-Dependencies

This procedure adds the missing input streams in a fashion that resembles the whole
trace file. The gap that is created by splitting the trace into chunks destroys the
chain of dependency as cutting might split up variables that are necessary for the
first calculation of a chunk. Those missing parts are added as if the split did not

49

5 Implementation

happen. Because of this the timestamps of the previous chunk are written into the
new (temporary) chunk file. Basically the mapper is rewriting the chunks to include
all variables at the first timestamp. Missing variables are gathered from the chunk
before and added to the first timestamp of the temporary chunk. In cases that a
variable is rarely written it might even be possible that a missing variable is not
present in the previous chunk. In such cases it is necessary to search in previous
chunks for the missing variable and if it could not be found, a default value is
necessary to initialize that variable.

After adding all input streams that were missing and writing a new temporary file,
the old chunks are deleted and the specification is applied in parallel to each new
chunk. The result is a stream of iterators of trace events like in Subsection 5.2.1.

The reducer – just like in Subsection 5.2.1 – returns the result of the mapper. The
same limitations of that previous case apply here. The order of timestamps might be
incorrect due to parallelism. Based on the sorting algorithm, it might be necessary
to process the whole output in a single thread again which would nullify the speed-
up. It might not be necessary to order the timestamps and otherwise the user can
still choose to do so and decide how.

5.2.5 Specification with Automaton

The implementation for specifications with automaton was not done in time for the
deadline of this thesis. Therefore in regards to finishing up the remaining chapters
and evaluating the done cases the implementation was left open for a later time.

5.2.6 Specification with Reset-Condition

The implementation for specifications with reset-conditions was not done in time
for the deadline of this thesis. Therefore in regards to finishing up the remaining
chapters and evaluating the done cases the implementation was left open for a later
time.

50

6 Evaluation

In this chapter the aforementioned cases are evaluated. The main interest is to
compare the runtime of the single- and multi-threaded approach of each case. The
mentioned cases are not exhaustive and this section is meant to determine whether
the implementation of other cases is worth the effort. Another constraint for com-
paring the multi-threaded approach to the already existing processing of TeSSLa
specification and traces with a single thread is that the result is still the same. Even
when using multiple threads, it must not return an incorrect result.

6.1 Hardware used

All tests are run on an Ubuntu 18.04.3 LTS with 16 GB RAM DDR3 at 1.600 MHz,
a 256 GB SSD with SATA III (6 Gbps; reading speed of 520 MB/s and writing
speed of 420 MB/s) and an AMD Fx-8120 eight-core processor at 3.100 MHz.

6.2 Test Cases

In the following section all tested cases and their results are described. A subsection
will explain the limits of reproducibility and how to accomplish a reproduction of
the test cases.

Each test case will have its own subsection and also describe the used specification
to test the specific case. The sizes of the traces of the test sets are 100, 250, 500,
1,000 and 2,000 MB. These sizes might not be as large as mentioned in Chapter 2
but are sufficient to show the difference for traces with millions of events in terms of
speed-up. After determining whether or not a higher performance can be achieved
using multiple CPU cores the second question is for which cases and configurations
it is most beneficial.

The results of each test case are gathered over the course of running the test with a
given configuration three times to lessen the possibility of outliers.

51

6 Evaluation

6.2.1 Reproducibility

Each of the following cases needs a specification and trace that TeSSLa can interpret.
The trace is then used by TeSSLa as input to check against the given specification.

To generate traces as part of these test cases NodeJS scripts were written and can
be found in Appendix A. Those scripts generate random values for the traces to
prevent that the implementation only works on input traces with specific values.

The Parallel Engine discussed in Chapter 5 accepts four arguments. The first ar-
gument is the trace file. The second argument is the tessla file while the third and
forth argument check if those arguments are the strings debug and diagnostic. These
strings will tell the parallel engine to start in debug and/or diagnostic mode. Not
providing the third and fourth argument or writing those words (debug and diag-
nostic) wrong will disable the respective debug and diagnostic mode. The user can
decide by providing a wrong input to the third or forth argument to start either the
debug, diagnostic mode or none at all. In debug and/or diagnostic mode additional
evaluations are gathered. In those modes the engine will provide a result based on a
single thread and multi thread computation. If neither of those modes are enabled
the parallel engine will try to use a multi-threaded approach if possible and will use
as fallback single-threaded.

6.2.2 Trace Data without Dependencies

As previously mentioned, this case has input streams that are not used in any
dependency with other input streams.

To test this case the specification shown in Listing 6.1 is used.
1 in value: Events[Int]
2
3 def lowerBound := value > 0
4 def upperBound := value < 10
5
6 def inBound := lowerBound && upperBound
7
8 out lowerBound
9 out upperBound

10 out inBound
Listing 6.1: TeSSLa specification for the test case of Trace Data without Dependencies

52

6.2 Test Cases

The script for generating an input trace (shown in Listing A.1) will set value on
each timestamp with a value between -12 and 12.

The correctness of the multi-threaded approach is tested by checking the output
events one by one against the single thread result. It is assumed that the single
thread result is correct. Testing large traces might lead to out of memory exceptions.
This is because the whole result will be read into memory for comparing. Testing
correctness was in consequence limited to files less than 100 MB because files larger
than that threw out of memory exceptions while comparing the TeSSLa results. As
no faults in correctness were detected with 100 MB sized files however, it can be
reasonably assumed that larger files were correct too.

Table 6.1: Evaluation of Time needed in case of Trace Data without Dependencies
Size Single Thread Multi Thread Speed-Up

Time (Minutes) Time (Minutes)
100 MB 4.45 1.10 4.05

Events/Second 18,728 75,914
250 MB 11.87 2.89 4.10

Events/Second 17,528 71,936
500 MB 23.63 5.42 4.36

Events/Second 17,260 75,215
1,000 MB 47.07 10.97 4.29

Events/Second 17,686 75,866
2,000 MB 77.81 18.36 4.24

Events/Second 20,329 86,172
10,000 MB 371.99 142.15 2.62

Events/Second 20,589 53,880

The corresponding numbers of input events are 4,995,000 (100 MB), 12,487,500
(250 MB), 24,475,000 (500 MB), 49,950,000 (1,000 MB), 94,905,000 (2,000 MB)
and 459,540,000 (10,000 MB). In this test set a trace of roughly 10 GB was added
to analyse the speed-up trend of the system using a bigger size step.

As shown in Table 6.1, the speed-up ranges from 2.62 to 4.36 with an average of
3.94. The speed-up is reduced by larger traces. In relation to the sizes up to 2,000
MB though it isn’t crucial. The step to 10,000 MB suggest that bigger files in this
configuration will have lower speed-up rates. The reason for the loss of speed-up
is based on the splitter implementation and chunk sizes calculated by the software.
The importance of chunk sizes in relation to performance is further analysed in
Subsection 6.2.4 while the reason is discussed in Subsection 6.2.6.

It should be noted that the result is in random order due to multiple threads pro-
cessing the trace. Asserting the correctness of the result is done by sorting the result

53

6 Evaluation

which is not part of the speed-up. Sorting was a sequential process and therefore
needed additional time. But it is up to the user if the order of events is necessary and
if it can be done in a subsequent processing step. Another possible solution could be
to write the results into separate files and provide them to the user if necessary.

6.2.3 Trace Data with Self-Dependency

As described in Subsection 5.2.2, this case calculates input streams that depend on
themselves by creating a sub-specification based on the input and output streams
but also the expression of those streams in the specification.

To test this case the specification shown in Listing 6.2 is used.

The script for generating an input trace (shown in Listing A.2) will randomly gen-
erate an event for x or y with values ranging from -2 to 2.

The specification will then sum up the values of all x and y events. This tests also
the behaviour of multiple input streams having a self-dependency. Asserting the
correctness is done by comparing the final results and their timestamps.

The number of events of the test sets for Trace Data with Self-Dependency are
6,993,000 (100 MB), 14,985,000 (250 MB), 29,970,000 (500 MB), 59,940,000 (1,000
MB) and 121,878,000 (2,000 MB). The results are shown in Table 6.2. It is shown
that the multi-threaded approach is faster than the single-threaded one. The speed-
up in this case is ranging from 3.91 to 4.72 with an average of 4.33.

1 in x: Events[Int]
2 in y: Events[Int]
3
4 def sum: Events[Int] := merge(last(sum, x) + x, 0)
5 def summation: Events[Int] := merge(last(summation, y) + y, 0)
6
7 out sum
8 out summation

Listing 6.2: TeSSLa specification for the test case of Trace Data with Self-Dependency

This test set has more events than the one used in Subsection 6.2.2 and the imple-
mentation (see Subsection 5.2.2) shows the additional steps which are necessary to
gather the result in a parallel processing. Still the speed-up is higher.

This indicates that more complex specifications benefit more from parallelization.
The multi CPU core approach splits the task of calculating the result of each trace
chunk into multiple jobs. These are done in parallel and use a fraction of the

54

6.2 Test Cases

Table 6.2: Evaluation of Time needed in case of Trace Data with Self-Dependency
Size Single Thread Multi Thread Speed-Up

Time (Minutes) Time (Minutes)
100 MB 5.79 1.43 4.06

Events/Second 20,135 81,688
250 MB 12.73 2.70 4.72

Events/Second 19,624 92,549
500 MB 23.76 6.07 3.91

Events/Second 21,027 82,269
1,000 MB 53.39 11.46 4.66

Events/Second 18,712 87,135
2,000 MB 104.36 24.13 4.32

Events/Second 19,464 84,177

time the single core approach would need. As shown in the implementation (see
Subsection 5.2.2) some overhead is generated by using parallelization – namely the
initialization of threads but also filtering the mapper result according to output
variables. Even with larger traces that overhead seems not to have a heavy impact
on the speed-up. Rather smaller files are less performant because of that additional
overhead. In consequence this means that the simultaneous processing enables the
use of the full computation power of the CPU at the cost of a small overhead.

6.2.4 Trace Data with Reset-Variable

This case adds a new input stream called ResetVariable. If the analyser reads that
stream it marks a cut point for the splitter later on. More details are described in
Subsection 5.2.3.

The specification shown in Listing 6.3 is used for this test case. The specification is
basically the same as the one used in Subsection 6.2.3.

1 in E1: Events[Int]
2 in E2: Events[Int]
3
4 def count1: Events[Int] := merge(last(count1, E1) + E1, 0)
5 def count2: Events[Int] := merge(last(count2, E2) + E2, 0)
6
7 out count1
8 out count2

Listing 6.3: TeSSLa specification for the test case of Trace Data with Reset-Variable

55

6 Evaluation

The input trace generated with Listing A.3 adds a reset variable every one million
events. Thus, the chunks each count a million events.

Table 6.3: Evaluation of Time needed in case of Trace Data with Reset-Variable
Size Single Thread Multi Thread Speed-Up

Time (Minutes) Time (Minutes)
100 MB 5.14 1.32 3.90

Events/Second 19,445 75,898
250 MB 14.91 3.97 3.75

Events/Second 16,752 62,891
500 MB 24.12 6.48 3.72

Events/Second 19,328 71,914
1,000 MB 49.30 13.50 3.65

Events/Second 18,912 69,050
2,000 MB 94.38 34.98 2.70

Events/Second 20,288 54,741

In this configuration, Table 6.3 shows a speed-up of 2.70 to 3.90. The average is 3.54.
The number of events are 5,994,006 for 100 MB, 14,985,015 for 250 MB, 27,972,028
for 500 MB, 55,944,056 for 1,000 MB and 114,885,115 for 2,000 MB.

This case also shows properly the importance of chunk size. The cases before used
the configuration (number of CPU cores and 15 % of the maximal heap size of the
Java Virtual Machine (JVM)) of the computer to calculate the number of chunks to
prevent exceeding the memory while processing the TeSSLa specification.

Using the Reset Variable as input stream, but also manually set cut points, the
choice of how large chunks will be is in the hands of the person writing the trace.
The speed-up differs based on total trace size and frequency of cut points. This is
shown by two additional configurations of the test set.

Previously the test set used a reset variable cutting the trace into chunks of one
million events. To show the importance of chunk size the test set is cut into chunks
of half a million events and two million events respectively.

Starting with half a million events the results are shown in Table 6.4. Compared to
one million event chunks the processing speed of half million event chunks is always
lower. At a trace size of 100 and 250 MB the chunk size of half a million events
seems to be on par with one million event chunks. But in general a chunk size of
one million events has a higher speed-up on the chosen chunk sizes. The highest
difference is at a trace size of 1,000 MB or roughly 55 - 61 million events in total.
At that size chunks with half a million events are processed at a speed-up of 2.66
while processing chunks with one million events achieve a speed-up of 3.65.

56

6.2 Test Cases

Table 6.4: Evaluation of Time needed in case of Trace Data with Reset-Variable
cutting half million event chunks

Size Single Thread Multi Thread Speed-Up
Time (Minutes) Time (Minutes)

100 MB 5.37 1.41 3.82
Events/Second 18,617 71,035

250 MB 13.99 3.68 3.80
Events/Second 17,262 65,536

500 MB 24.69 7.83 3.15
Events/Second 19,217 60,626

1,000 MB 55.49 20.88 2.66
Events/Second 18,604 49,431

2,000 MB 94.27 45.88 2.05
Events/Second 19,782 40,644

When increasing the chunk size to two million events the opposite is observed. The
results are shown in Table 6.5. At a trace size of 100 MB the speed-up is less
than in case of half or one million event chunks. Trace sizes above 100 MB (mostly)
result in higher speed-ups regarding the processing time of those traces. The biggest
difference is here at 250 MB or roughly 14,5 - 15 million events in total. The speed-up
for one million event chunks is 3.75 while two million event chunks have a speed-up
of 4.36.

Comparing two million event chunks to half a million event chunks leads to the
highest differences at a trace size of 100 MB and 2,000 MB or roughly 6 and 112
million events respectively. For a trace size of 100 MB the half million event chunks
achieve a speed-up of 3.82 while the two million event chunks processing speed-up is
at 2.53. In case of 2,000 MB the half million event configuration achieves a speed-up
of 2.05 and the two million event one a speed-up of 3.20.

The conclusion of this observation is that choosing a chunk size is critical to the
performance of the parallel approach. While the calculation of chunk size based
on the number of CPU cores and available memory enforces a safe execution, it
is possible – by carefully placing a number of reset variables – to achieve a higher
performance. The problem of finding the right amount of cut points and therefore
a most efficient size for each chunk is an optimization problem and not part of this
work.

57

6 Evaluation

Table 6.5: Evaluation of Time needed in case of Trace Data with Reset-Variable
cutting two million event chunks

Size Single Thread Multi Thread Speed-Up
Time (Minutes) Time (Minutes)

100 MB 5.14 2.03 2.53
Events/Second 19,428 49,247

250 MB 13.32 3.06 4.36
Events/Second 18,123 79,011

500 MB 25.31 5.92 4.27
Events/Second 18,421 78,743

1,000 MB 44.20 12.27 3.60
Events/Second 21,096 75,981

2,000 MB 90.47 28.26 3.20
Events/Second 20,613 65,991

6.2.5 Trace Data with N-Dependencies

Another implemented and already discussed case is a specification including streams
with multiple dependencies. In Subsection 5.2.4 this is shown in detail with a specifi-
cation checking multiple conditions to determine whether or not the system entered
an error state. This specification is also used to evaluate the performance of Trace
Data with N-Dependencies and is shown in Listing 6.4.

The trace for this test set was generated with the script shown in Listing A.4. The
values of G are within -8 and 8 while the values of R lie in the range of -9000 to
9000. Lastly the values of V are within -300 and 300.

Compared to the other cases Table 6.6 shows that the speed-up is less for N-
Dependencies. This is likely because of a higher complexity in processing such
specifications.

1 in G: Events[Int]
2 in R: Events[Int]
3 in V: Events[Int]
4
5 def error: Events[Bool] := if (G < 0 || G > 6 || R < 0 || R > 8000 || V < 0 || V >

200) then true else false
6
7 out error

Listing 6.4: TeSSLa specification for the test case of Trace Data with N-Dependencies

58

6.2 Test Cases

The speed-up in this case is ranging from 2.79 to 3.00 with an average of 2.88.
The number of events processed are 5,994,000 (100 MB), 13,986,000 (250 MB),
27,472,500 (500 MB), 54,945,000 (1,000 MB), 109,890,000 (2,000 MB). The same
trend of speed-up rates – as in previous cases – can be observed.

Table 6.6: Evaluation of Time needed in case of Trace Data with N-Dependencies
Size Single Thread Multi Thread Speed-Up

Time (Minutes) Time (Minutes)
100 MB 7.22 2.59 2.79

Events/Second 13,843 38,589
250 MB 16.55 5.71 2.90

Events/Second 14,086 40,855
500 MB 34.72 11.57 3.00

Events/Second 13,186 39,586
1,000 MB 61.12 21.39 2.86

Events/Second 14,983 42,817
2,000 MB 133.21 46.90 2.84

Events/Second 13,749 39,049

6.2.6 Trace Data on smaller Heap

After mentioning the importance of chunk size in Subsection 6.2.4, this section shows
the performance on a different size of the heap. The JVM uses a default maximum
heap size of 25 % of the RAM. This was observed in this thesis but is also stated in
[Ata18].

Thus the size of the heap – given the hardware configuration presented in Section 6.1
– is roughly 4 GB. Every used trace size in the test sets is within the bounds of that
heap and because of that in-memory size. To test the behaviour of the implemented
algorithms and parallel engine in case the input is larger than the available memory
– and as a consequence at least single-hard-disk size instead of in-memory size – the
size of the available heap space of the JVM is reduced in this test set. It is worth
mentioning that the implementation of this work does not use the whole heap of the
JVM for computation. In some cases the heap is sized at only around 1 - 2 GB of the
assigned 4 GB. But as shown in the evaluation in this section there is a correlation
between speed-up and available heap size for the computation. It can be observed
that the Garbage Collector has to do a lot more deconstructing and deallocating of
objects based on the available heap size. In consequence this decreases the speed-up
because of the CPU (cores) being busy with tasks of the Garbage Collector instead
of computing the result of the trace at hand.

59

6 Evaluation

The TeSSLa specification shown in Listing 6.2 was used as well as the trace of
Subsection 6.2.3. The heap size was limited to 64 MB by adding the JVM Option
-Xmx64m.

Table 6.7: Evaluation of Time needed in case of using a Heap smaller than the Trace
Size Single Thread Multi Thread Speed-Up

Time (Minutes) Time (Minutes)
100 MB 6.80 2.60 2.62

Events/Second 17,143 44,836
250 MB 14.31 6.61 2.17

Events/Second 17,447 37,809
500 MB 25.70 18.93 1.36

Events/Second 19,443 26,389
1,000 MB 53.56 58.62 0.91

Events/Second 18,653 17,041
2,000 MB 106.60 214.67 0.50

Events/Second 19,055 9,462

The memory consumption using parallel processing is higher than processing se-
quential. Multiple collections or iterators are created, consumed and referenced
while using multiple threads. Introducing a Reset Variable showed the difference in
processing speed based on the chunk size. It was mentioned that finding the best
chunk size for the hardware configuration can improve the performance. Regard-
ing heap size the statement is a lot easier. If more memory is available less CPU
power is used for garbage collection but also input/output operations like reading
and writing chunk files. But it should also be mentioned, as a reminder, that the
default chunk size is calculated by the parallel engine based on available heap space.
In consequence this means that more space results in larger chunk sizes.

Comparing the results of Subsection 6.2.3 with the same run on a smaller heap (as
shown in Table 6.7) it is observed that the achieved speed-up is lower. In case of
the 100 MB trace its speed-up is 2.62 instead of the previous 4.06 and it steadily
decreases with larger traces. The average for this smaller heap situation is 1.51
while processing Trace Data with Self-Dependency with a heap size of 4 GB has an
average of 4.33.

The worst case is a speed-up below 1 and consequently a lower performance with
multiple threads than with a single thread. The core problem is the splitter as the
default algorithm of calculation currently is based on the maximum heap size and
splitting is done sequentially. Setting the maximum heap size to 64 MB reduces
the chunk size. Thus more chunks are generated and the amount of I/O operations
increases as well. Less time is used on computation of the specification than for

60

6.2 Test Cases

overhead tasks like creating threads and allocating memory. It needs to be tested
and evaluated but in an upscaled environment this should create the same issue.
This observation indicates that with a large discrepancy between heap and trace
size the speed-up declines more rapidly. In Subsection 6.2.3 the splitter needed
68.76 - 100.17 seconds to create chunks for the 2,000 MB trace. With a smaller
heap the time of the splitter rose to 10,000 - 12,357 seconds. Because of this, the
aforementioned online splitting (see Subsection 5.2.3) should be further reviewed as
a possible countermeasure. Another solution is the use of a Reset Variable and thus
manually setting the cut points of the chunks.

6.2.7 A Real-World Example: Idle Engine

A company recorded sensor data of an engine. A TeSSLa specification is used to
determine whether or not that engine is in an idle state. The idle state is defined as
an engine speed below 100 rpm. The specification is shown in Listing 6.5.

1 include "inputs.tessla"
2
3 def EngSpeedThreshold := 100
4
5 def idle := EngSpeed <= EngSpeedThreshold
6 out pureBool(idle) as idle
7
8 def t := time(EngSpeed) / 10s
9 out pureInt(t) as t
10
11 def pureInt(x: Events[Int]) := if default(x != last(x,x), true) then x else 0
12
13 def pureBool(x: Events[Bool]) := if default(x != last(x,x), true) then x else true

Listing 6.5: TeSSLa specification for a real-word example of an idle engine

Only a single trace is given. That trace has the size of 18.7 MB and roughly 591,000
events. As shown in Table 6.8 the speed-up is at 2.42.

Table 6.8: Evaluation of Time needed in case of Real-World Example: Idle Engine
Size Single Thread Multi Thread Speed-Up

Time (Minutes) Time (Minutes)
18.7 MB 0.27 0.14 1.92

Events/Second 36,777 70,631

61

6 Evaluation

This test case also introduced a new case to the parallel engine. Until then only
the case using the last operator with a recursion existed. The specification shown
in Listing 6.5 introduced the case of using the last operator without leading to a
recursion. As already mentioned, Trace Data with Self-Dependency uses the last op-
erator but in combination with recursion. Trace Data without Dependencies neither
uses the last operator nor a recursion. Last without a recursion behaves the same
as Trace Data without Dependency though because only the last value is used. Thus
no dependencies to other streams exist in this case, too.

62

7 Conclusion and Outlook

This chapter concludes the work, discusses the results and possible limitations as
well as problems but also improvements to the concept and design. The outlook will
focus on topics for future works.

7.1 Conclusion

Different cases of specifications (see Section 4.3) and their problems were identified.
Algorithms were developed to compute the result of a trace and specification in
parallel. This list of cases and algorithms is not exhaustive and future works might
present unhandled cases as well as algorithms for them. The problem of process-
ing the input trace was decomposed into smaller tasks, computed in parallel and
evaluated in comparison to a sequential approach. The discussed algorithms (see
Section 5.2) provided specific solutions for parallel processing of traces for specifica-
tions based on the MapReduce approach presented in [DG04].

In Subsection 4.3.4 the use of speculative decomposing was discussed for solving
specifications with multiple dependencies. This method was dropped later for a
much simpler solution of overlapping input streams to adjacent chunks of the trace.
Nonetheless speculative decomposition could be a promising approach for the un-
handled cases of specifications with automata (see Subsection 4.3.5) as transitions
could be modelled as branches. This situation is similar to the behaviour of some
CPUs choosing a branch for execution which is in fact a currently used method to
improve the performance of a CPU [MG13].

The evaluation in Chapter 6 showed an improved performance in comparison to a
single-threaded computation. The speed-up ranged from 2.05 to 4.72 on an eight-
core CPU. Besides measuring an increased performance, some limitations were also
observed.

The test cases in Subsection 6.2.4 presented the importance of chunk sizes in regards
to the performance by using a Reset Variable instead of letting the system calculate
the chunk size based on the available heap size. Using a manually set Reset Variable
in the trace to force a cut at the Reset Variable resulted in higher speed-ups at larger
input traces if the chunk size increased as well. The opposite was observed if there

63

7 Conclusion and Outlook

were less chunks than CPU cores or if the chunks were too small. The reason for
the latter is that the used Splitter is working sequentially. Cutting a large trace into
smaller chunks can lead to an overhead that is larger than the computation of the
chunk itself. Online Splitting was discussed in Subsection 5.2.3 and Subsection 6.2.6
as a possible solution to reduce the overhead of the Splitter. If this approach is used
in a productive environment the architecture of the parallel approach should be
switched to a more event based processing architecture. Running the parallel engine
as coordinator while listening for events of incoming traces/chunks and results of
the submodules (Splitter, Mapper, Reducer) as well as informing those submodules
via events might allow for a higher level of parallelization.

As described in Section 3.3, TeSSLa is designed for explicit memory usage. The
JVM still needs to store references and objects used by TeSSLa. In consequence the
garbage collector will at some points will destruct objects and deallocate memory
on the heap. Therefore based on the available heap and trace size but also the
level of parallelization the garbage collector will be called more often and thus using
more CPU time. Testing on smaller heap sizes (see Subsection 6.2.6) showed this
behaviour and subsequently the reduced speed-up compared to the other test cases.
For larger traces, an even lower performance than with a sequential computation
was observed. The test case for showing this behaviour was constructed and might
not happen too much in the field. Nevertheless optimizing the point of cutting
a trace into chunks has a big impact on the performance and might lead to such
behaviour. Further works should focus on that part too so that the drop of perfor-
mance is lessened on larger traces (see Table 6.1). One possibility to handle such
cases is the already mentioned Online Splitter or exploring a distributed solution
using a MapReduce or similar parallel computation framework that allows to inject
customizable algorithms.

No solution for combining different cases of specifications is presented in this work.
Each case is handled in singularity. This is a limitation one needs to be aware of. On
the other hand, in its current state the usage of SRV in the industry is sparse and
thus more real world examples are needed to show if there is a necessity for combining
multiple cases such as those presented in this work or if those cases are rare or can be
computed in smaller but multiple steps instead of one large combined computation.
The aforementioned injection of customizable algorithms forces that problem onto
the engineer that wants to apply SRV on a specification that uses multiple cases or
is not handled by the algorithms designed for generic specifications.

This work serves as a proof of concept for the topic of parallel computation of large
traces with stream based specifications. To be as flexible as possible, this work did
not use any MapReduce frameworks so that the necessary algorithms could be freely
customized. Nevertheless the implemented and evaluated approaches for the specific
cases are based on MapReduce and because of that it should be possible to port

64

7.2 Outlook

these algorithms on frameworks like Apache Hadoop. This would enable the usage
of multiple computation nodes and thus distributed parallel processing and even
lessen limitations based on hardware configuration and in consequence the heap size
problem.

7.2 Outlook

The improved performance due to parallelization suggests that other works should
dive further into the topic of making SRV more applicable for real world use cases.
TeSSLa enables a more fluent way of defining specifications and handles the part of
transforming those specifications into a RV monitor to check the logical properties
based on an input trace. On the other hand, the impact of chunk and heap size was
shown in this work and impedes the performance of an applied algorithm. The prob-
lems and limitations of the parallel approach were described and should be subject of
future research. Namely in the field of engineering, improvements to the architecture
and discussed processing algorithms in form of using Online Splitting, Event-based
Parallel-Architectures and distributed parallelization frameworks in general should
be explored as an infrastructure to deploy the described algorithms and those that
follow in the future. A more logical approach would be to solve the problem of
finding the best chunk size based on a trace and given hardware configuration.

Nevertheless, this proof of concept was successful in showcasing novel ways of par-
allelizing large traces of stream-based specifications. The benefit of parallelization
in real world cases seems crucial based on the size of a trace. Depending on the
complexity of the specification it might be necessary to design a parallel algorithm
for that specification. A groundwork is described in this work. Future works not
only in science but in the industry as well will tell if those solutions presented here
can be used on established frameworks like Apache Hadoop or Apache Spark or will
be used to write a specific SRV framework around languages like TeSSLa. Providing
examples or implementations of algorithms for generic specifications but also being
able to add custom algorithms might be crucial for practical use of parallelization
for large traces of stream-based specifications.

65

A Appendix

A.1 Test-Case Trace Scripts

In this section the NodeJS scripts used for the test-cases of Section 6.2 are listed.
These scripts were run with NodeJS v10.16.3.

1 const f s = r equ i r e (' f s ') ;
2 var f i l ename = proce s s . argv [2] | | " output . t r a c e " ;
3 var i t e r a t i o n s = proce s s . argv [3] | | 1000 ∗ 1000 ∗ 1 ;
4 var s t r = ' ' ;
5
6 f s . wr i t eF i l eSync (f i l ename , s t r) ;
7
8 f o r (l e t i = 0 ; i < i t e r a t i o n s ; i++) {
9 i f (i % 1000 === 0) {
10 conso l e . l og (`Writing l i n e s ${ i } to ${ i + 1000} `) ;
11 f s . appendFileSync (f i l ename , s t r) ;
12 s t r = ' '
13 } e l s e {
14 s t r += `${ i } : va lue = ${getRandomInt (2) > 0 ? '− ' : ' ' }$

{getRandomInt (12) } \n ` ;
15 }
16 }
17
18 i f (s t r) {
19 f s . appendFileSync (f i l ename , s t r) ;
20 }
21
22 f unc t i on getRandomInt (max) {
23 re turn Math . f l o o r (Math . random () ∗ Math . f l o o r (max)) ;
24 }

Listing A.1: Trace Generation Script for Trace Data without Dependencies

The scripts accept two parameters, the output file name and the number of lines to
create. An example to create a file called inbound.trace for the specification shown
in Figure 3.1 with 80.000.000 input events would be:

67

A Appendix

node create-no-last-no-recursion-trace-file.js inbound.trace 80000000

The create-no-last-no-recursion-trace-file.js in this case is the script shown in List-
ing A.1.

1 const f s = r equ i r e (' f s ') ;
2 var f i l ename = proce s s . argv [2] | | " output . t r a c e " ;
3 var i t e r a t i o n s = proce s s . argv [3] | | 1000 ∗ 1000 ∗ 1 ;
4 var s t r = ' ' ;
5
6 f s . wr i t eF i l eSync (f i l ename , s t r) ;
7
8 f o r (l e t i = 0 ; i < i t e r a t i o n s ; i++) {
9 i f (i % 1000 === 0) {

10 conso l e . l og (`Writing l i n e s ${ i } to ${ i + 1000} `) ;
11 f s . appendFileSync (f i l ename , s t r) ;
12 s t r = ' '
13 } e l s e {
14 s t r += `${ i } : ${getRandomInt (2) > 0 ? 'y ' : 'x ' } = ${

getRandomInt (2) > 0 ? '− ' : ' ' }${getRandomInt (2) } \n`
15 }
16 }
17
18 i f (s t r) {
19 f s . appendFileSync (f i l ename , s t r) ;
20 }
21
22 f unc t i on getRandomInt (max) {
23 re turn Math . f l o o r (Math . random () ∗ Math . f l o o r (max)) ;
24 }

Listing A.2: Trace Generation Script for Trace Data with Self-Dependency

68

A.1 Test-Case Trace Scripts

1 const f s = r equ i r e (' f s ') ;
2 l e t f i l ename = proce s s . argv [2] | | " output . t r a c e " ;
3 l e t i t e r a t i o n s = proce s s . argv [3] | | 1000 ∗ 1000 ∗ 1 ;
4 l e t r e s e tVa r i ab l eA f t e r = 1000 ∗ 1000 ;
5 l e t s t r = ' ' ;
6
7 f s . wr i t eF i l eSync (f i l ename , s t r) ;
8 l e t i ;
9
10 f o r (i = 0 ; i < i t e r a t i o n s ; i++) {
11 i f (i % r e s e tVa r i ab l eA f t e r === 0 && i !== 0) s t r += `${ i } :

ResetVar iab le = 0 \n ` ;
12 i f (i % 1000 === 0) {
13 conso l e . l og (`Writing l i n e s ${ i } to ${ i + 1000} `) ;
14 f s . appendFileSync (f i l ename , s t r) ;
15 s t r = ' '
16 } e l s e {
17 s t r += `${ i } : ${getRandomInt (2) > 0 ? 'E2 ' : 'E1 ' } = ${

getRandomInt (2) > 0 ? '− ' : ' ' }${getRandomInt (2) } \n`
18 }
19 }
20
21 i f (s t r) {
22 s t r += `${ i } : ResetVar iab le = 0 \n ` ;
23 f s . appendFileSync (f i l ename , s t r) ;
24 }
25
26 f unc t i on getRandomInt (max) {
27 re turn Math . f l o o r (Math . random () ∗ Math . f l o o r (max)) ;
28 }

Listing A.3: Trace Generation Script for Trace Data with Reset-Variable

69

A Appendix

1 const f s = r equ i r e (' f s ') ;
2 l e t f i l ename = proce s s . argv [2] | | " output . t r a c e " ;
3 l e t i t e r a t i o n s = proce s s . argv [3] | | 1000 ∗ 1000 ∗ 1 ;
4 l e t s t r = ' ' ;
5
6 f s . wr i t eF i l eSync (f i l ename , s t r) ;
7 l e t i ;
8
9 f o r (i = 0 ; i < i t e r a t i o n s ; i++) {

10 i f (i % 1000 === 0) {
11 conso l e . l og (`Writing l i n e s ${ i } to ${ i + 1000} `) ;
12 f s . appendFileSync (f i l ename , s t r) ;
13 s t r = ' '
14 } e l s e {
15 switch (getRandomInt (3)) {
16 case 0 :
17 s t r += `${ i } : G = ${getRandomInt (2) > 0 ? '− ' :

' ' }${getRandomInt (8) } \n`
18 break ;
19 case 1 :
20 s t r += `${ i } : R = ${getRandomInt (2) > 0 ? '− ' :

' ' }${getRandomInt (9000) } \n`
21 break ;
22 case 2 :
23 s t r += `${ i } : V = ${getRandomInt (2) > 0 ? '− ' :

' ' }${getRandomInt (300) } \n`
24 break ;
25 }
26 }
27 }
28
29 i f (s t r) {
30 f s . appendFileSync (f i l ename , s t r) ;
31 }
32
33 f unc t i on getRandomInt (max) {
34 re turn Math . f l o o r (Math . random () ∗ Math . f l o o r (max)) ;
35 }

Listing A.4: Trace Generation Script for Trace Data with N-Dependencies

70

List of Figures

2.1 V-Model . 6
2.2 A basic example of derived streams in TeSSLa as described in [CHL+18] 9

3.1 A basic example of derived streams in TeSSLa as described in [CHL+18] 14
3.2 TeSSLa Delay Example . 16
3.3 Execution Overview of the MapReduce Framework 20
3.4 AST of a recursion example in TeSSLa specification 22

4.1 Output streams of summation example 26
4.2 AST of a recursion example in TeSSLa specification 27
4.3 Abstract way to handle Trace Data without Dependencies 29
4.4 Abstract way to handle Trace Data with Self-Dependency 30
4.5 Abstract way to handle Trace Data with Reset-Variable 31
4.6 Error Check example showing overlapping of event values between

chunks . 33

5.1 Graphic showing the architecture of TeSSLa Parallel 37
5.2 Diagram showing the technical architecture of the core parallel engine

for TeSSLa . 38
5.3 An overview of the output list and result map structure of the mapper

for Trace Data with Self-Dependency 44

71

List of Tables

4.1 Example trace for Trace Data with Reset-Variable 32
4.2 Result for each chunk of the example trace for Trace Data with Reset-

Variable . 32
4.3 Speculative Branches for error check example 34

6.1 Evaluation of Time needed in case of Trace Data without Dependencies 53
6.2 Evaluation of Time needed in case of Trace Data with Self-Dependency 55
6.3 Evaluation of Time needed in case of Trace Data with Reset-Variable 56
6.4 Evaluation of Time needed in case of Trace Data with Reset-Variable

cutting half million event chunks . 57
6.5 Evaluation of Time needed in case of Trace Data with Reset-Variable

cutting two million event chunks . 58
6.6 Evaluation of Time needed in case of Trace Data with N-Dependencies 59
6.7 Evaluation of Time needed in case of using a Heap smaller than the

Trace . 60
6.8 Evaluation of Time needed in case of Real-World Example: Idle Engine 61

73

List of Theorems and Definitions

3.1 Definition (Runtime Verification) . 11
3.2 Definition (Run of a System) . 11
3.3 Definition (Execution of a System) 11
3.4 Definition (Decomposition) . 17
3.5 Definition (Task) . 17

4.1 Observation (Recursions are cycles in an AST) 25

75

Table of Listings

2.1 A TeSSLa specification to get the average temperature 9

3.1 A TeSSLa specification to get the average temperature 13
3.2 Summation Specification showing a recursion in TeSSLa specifications 21
3.3 Summation Specification with examplary Sub-Specification 23

4.1 Summation Specification showing a recursion in TeSSLa specifications 26
4.2 Example specification for Trace Data with Reset-Variable case 31
4.3 Example specification for Trace Data with Reset-Condition case . . . 35

5.1 Algorithm to store input streams and locations in the specification . . 39
5.2 Basic Splitter Algorithm . 40
5.3 Bitmask and Identified Cases . 41
5.4 Trace Data without Dependencies Mapper Algorithm 42
5.5 Recursion Detection by Analyser . 43
5.6 Reducer Self-Dependency . 45
5.7 Splitting on cut points of reset variables 47
5.8 Adding the seen Input Streams of a chunk for the case of N-Dependencies 48
5.9 Adding the missing input streams for the case of N-Dependencies . . 49

6.1 TeSSLa specification for the test case of Trace Data without Depen-
dencies . 52

6.2 TeSSLa specification for the test case of Trace Data with Self-Dependency 54
6.3 TeSSLa specification for the test case of Trace Data with Reset-Variable 55
6.4 TeSSLa specification for the test case of Trace Data with N-Dependencies 58
6.5 TeSSLa specification for a real-word example of an idle engine 61

A.1 Trace Generation Script for Trace Data without Dependencies 67
A.2 Trace Generation Script for Trace Data with Self-Dependency 68
A.3 Trace Generation Script for Trace Data with Reset-Variable 69
A.4 Trace Generation Script for Trace Data with N-Dependencies 70

77

Abbreviations

IoT Internet of Things
RV Runtime V erification
TeSSLa Temporal Stream-based Specification Language
SRV Stream Runtime V erification
MFOTL Metric F irst-Order Logic
LTL Linear Temporal Logic
HOL H igher-Order Logic
AST Abstract Syntax T ree
DFA Deterministic F inite Automaton
NFA Nondeterministic F inite Automaton
JVM Java V irtual Machine

79

Bibliography

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of
things: A survey. Comput. Netw., 54, 2010. Elsevier North-Holland,
Inc.

[AO08] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cam-
bridge University Press, New York, NY, USA, 1 edition, 2008.

[Ata18] Roman Ataman. JVM Memory Settings in a Container Environment,
2018.

[BCE+14] David Basin, Germano Caronni, Sarah Ereth, Matúš Harvan, Felix
Klaedtke, and Heiko Mantel. Scalable offline monitoring. In Runtime
Verification. Springer LNCS, 2014.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking
(Representation and Mind Series). The MIT Press, 2008.

[Buc85] Bruno Buchberger. Symbolic Computation (An Editorial). Academic
Press Inc., Harcourt Brace Jovanovich Publishers, London, 1985.

[CHL+18] Lukas Convent, Sebastian Hungerecker, Martin Leucker, Torben Scheffel,
Malte Schmitz, and Daniel Thoma. Tessla: Temporal stream-based spec-
ification language. In Formal Methods: Foundations and Applications.
Springer LNCS, 2018. Conference: SBMF 2018.

[DG04] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data pro-
cessing on large clusters. In OSDI’04: Sixth Symposium on Operating
System Design and Implementation, San Francisco, CA, 2004. USENIX
Association.

[Dij72] Edsger W. Dijkstra. The humble programmer. Commun. ACM, 15, 1972.

[DSS+05] B. D’Angelo, S. Sankaranarayanan, C. Sanchez, W. Robinson,
B. Finkbeiner, H. B. Sipma, S. Mehrotra, and Z. Manna. Lola: runtime
monitoring of synchronous systems. In 12th International Symposium
on Temporal Representation and Reasoning (TIME’05). IEEE Computer
Society, 2005.

81

Bibliography

[Hal08] Thomas C Hales. Formal proof. Notices of the AMS, 55, 2008. American
Mathematical Society.

[HKG17] Sylvain Hallé, Raphaël Khoury, and Sébastien Gaboury. Event stream
processing with multiple threads. In Shuvendu Lahiri and Giles Reger,
editors, Runtime Verification. Springer International Publishing, 2017.

[Kum02] Vipin Kumar. Introduction to Parallel Computing. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2002.

[LS09] Martin Leucker and Christian Schallhart. A brief account of runtime
verification. The Journal of Logic and Algebraic Programming, 78, 2009.
Elsevier BV.

[MG13] Pece Mitrevski and Marjan Gusev. On the performance potential of
speculative execution based on branch and value prediction. FACTA
UNIVERSITATIS Series Electronics and Energetics, 16, 2013.

[Ost87] G. Ostrouchov. Parallel computing on a hypercube: An overview of the
architecture and some applications. In 19th Symposium on the Inter-
face of Computer Science and Statistics. American Statistical Associa-
tion, 1987.

[Par09] T. Parr. Language Implementation Patterns: Create Your Own Domain-
Specific and General Programming Languages. Pragmatic Bookshelf,
2009.

[Pnu77] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977). IEEE Computer Society,
1977.

[SBB+18] Joshua Schneider, David Basin, Frederik Brix, Srđan Krstić, and Dmitriy
Traytel. Scalable online first-order monitoring. In Runtime Verification.
Springer International Publishing, 2018.

[TSBR18] Roman Trobec, Bostjan Slivnik, Patricio Bulic, and Borut Robic. In-
troduction to parallel computing. In Undergraduate Topics in Computer
Science. Springer International Publishing, 2018.

82

	Preface
	Kurzfassung
	Abstract
	Table of Contents
	Introduction
	Related Work
	Structure of this Work

	Motivation
	Preliminaries
	Runtime Verification
	Stream Runtime Verification
	TeSSLa
	Parallel Programming
	Data Parallelism
	Task Parallelism
	Problems and Limitations
	Decomposition Techniques
	Map and Reduce

	Abstract Syntax Tree
	Symbolic Computation
	Sub-Specification
	Deterministic and Nondeterministic Finite Automata

	Concept
	Detecting Recursion
	Decomposing TeSSLa Input Data
	Specific Problem Cases
	Trace Data without Dependencies
	Trace Data with Self-Dependency
	Trace Data with Reset-Variable
	Trace Data with N-Dependencies
	Specification with Automata
	Specification with Reset-Condition

	Distributed Computation of SRV

	Implementation
	Architecture
	Implemented Cases
	Trace Data without Dependencies
	Trace Data with Self-Dependency
	Trace Data with Reset-Variable
	Trace Data with N-Dependencies
	Specification with Automaton
	Specification with Reset-Condition

	Evaluation
	Hardware used
	Test Cases
	Reproducibility
	Trace Data without Dependencies
	Trace Data with Self-Dependency
	Trace Data with Reset-Variable
	Trace Data with N-Dependencies
	Trace Data on smaller Heap
	A Real-World Example: Idle Engine

	Conclusion and Outlook
	Conclusion
	Outlook

	Appendix
	Test-Case Trace Scripts

	List of Figures
	List of Tables
	List of Theorems and Definitions
	List of Listings
	List of Abbreviations
	Bibliography

