
Resilient System deployment
using Kubernetes
Deployment widerstandsfähiger Systeme
mittels Kubernetes

Bachelorarbeit

verfasst am
Institut für Softwaretechnik und Programmiersprachen

im Rahmen des Studiengangs
Informatik
der Universität zu Lübeck

vorgelegt von
Lenard Jensen

ausgegeben und betreut von
Prof. Dr. Martin Leucker

mit Unterstützung von
Karam Kharraz, Maria Ostania, Tobias Braun

Lübeck, den 27. Mai 2020

Erklärung

Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und nur unter
Benutzung der angegebenen Quellen und Hilfsmittel angefertigt zu haben.

Lenard Jensen
Lübeck, den 27. Mai 2020

iii

Kurzfassung Mit der Zunahme von Software, welche in der Cloud betrieben wird,
insbesondere bei Programmen, die sich aufteilen lassen in viele einzelne Microser-
vices, muss es auch Werkzeuge geben, um jene Software zum laufen zu kriegen und
sie dabei zu verwalten. Eines dieser Werkzeuge zur Microservice Verwaltung ist
Kubernetes, welches schon in vielen DevOps-Pipelines zu finden ist. In dieser Ar-
beit wird eine Logistikplattform erstellt werden, welche viele verschiedene Anfragen
mithilfe des zentralen Microservice Apache Kafka verteilen wird. Dabei werden
alle Konzepte, die während des Vorgangs auftreten erklärt und in dem Kontext des
Beispiel-Deployments gezeigt. So erhält der Leser einen ersten Einblick in containe-
risierte Anwendungen durch Docker und wie jene Software durch Kubernetes ver-
waltet wird. Zusätzlich wird dieses Beispiel-Deployment dann auch noch auf seine
Widerstandsfähigkeit gegenüber Softwarefehlern getestet und auch wie gut sich Ku-
bernetes allgemein dabei bedienen lässt. Bei den Tests wird geprüft, ob die Software
widerstandsfähig bleibt bei Auslösungen verschiedener Fehlerzustände, als auch ob
die Software einer hohen Zahl an Anfragen pro Sekunde bearbeiten kann.

Abstract With the rise of software running in the cloud, especially programs that
are split into many microservices, there needs also to be tools to deploy and manage
that software. One of those tools for microservice orchestration is Kubernetes, which
already is part of many DevOps Pipelines. In this thesis we are demonstrating the
deployment of a logistics platform that will distribute many different requests using
Apache Kafka as one of its main microservices. All concepts that occur during that
process will be explained and shown in the context of that example-deployment. The
reader will gain a first insight into containerized applications with Docker and how
Kubernetes orchestrates those applications. Additionally, this example-deployment
will be tested for its resilience against failures and how well Kubernetes can be used
in general. Those tests checked whether the software remains resilient during various
failure states, as well as whether the software can handle a high number of requests
per second.

v

Contents

1 Introduction 1
1.1 Contributions of this Thesis . 1
1.2 Results of this Thesis . 2
1.3 Related Work . 2
1.4 Structure of this Thesis . 3

2 Preliminaries 5
2.1 Docker . 5
2.2 Automation and DevOps . 6
2.3 Kubernetes . 7

2.3.1 Docker Swarms in Comparison 9
2.4 Kafka . 10
2.5 Resilience . 12

3 Methodology 13
3.1 The Logistics Platform . 13
3.2 Deployments with Kubernetes . 14
3.3 Helm . 17

3.3.1 Kafka deployment . 17
3.4 Resilience Testing . 20
3.5 Load Testing . 20
3.6 Testbed Setup . 21

4 Evaluation 25
4.1 Functionalities of Kubernetes . 25
4.2 Resilience Testing of Kafka . 26

5 Conclusion and Outlook 33

vii

1 Introduction

During the lifecycle of any software, one will certainly encounter the phase of
software deployment, especially with services that run on servers instead of be-
ing shipped via an executable file to the user. That deployment process should,
best case, be rather efficient and uncomplicated, while the software itself should run
in a way that it could bear the expected workload and does not need a dedicated
developer to restart it after any small failure.

For that use-case, the platform Kubernetes was created to deploy and manage mi-
croservices running across any number of servers while keeping the process, once it’s
set up, simple and efficient. Additionally, Kubernetes supports continuous integra-
tion and automated pipelines, which are central parts of the DevOps development
style.
With all those claims about this platform, it may be worth to look into Kubernetes
and see if those claims hold, or if the needed work required exceeds the effort of
manual service deployment.

1.1 Contributions of this Thesis

The main goal of this thesis is to concisely explain the different aspects of Kuber-
netes, the parts and objects that appear during deployment, and whether it can
be used to make the software more resilient. This thesis will not replace any guide
about Kubernetes but instead tries to introduce the platform to the reader and help
them understand what Kubernetes does exactly. Additionally, one can find here an
introduction to DevOps and the motivation of using Kubernetes during the DevOps
process.

The reader will also find here an introduction to the concept of containerized soft-
ware, an explanation of Kubernetes functions, and what resilience means in the
context of deployed microservices.

1

1 Introduction

1.2 Results of this Thesis

In the end, Kubernetes upheld its claims and the expectations put into it. Software
deployment is made especially easy when the whole cluster is up and running. After
that, one can write a deployment manifest once for the whole system, that will be
applied to any later versions of the microservices, keeping the overhead of Kubernetes
manageable. Because of the level of automation available to the user and integrations
by platforms like GitLab, it turned out to be a great tool for DevOps as a part of
the automated pipeline.

Regarding the resilience, Kubernetes also turned out as expected. Kubernetes itself
cannot prevent any failures of the microservices, as those are a result of something
affecting the software itself, like faults in the coding or missing resources. However,
instead, Kubernetes manages to uphold the desired deployment state and will always
promptly correct everything to resemble that state. Because resilience for this thesis
was defined as an ability to recover from failures, it means that Kubernetes succeeded
in providing that resilience to the deployed software.

1.3 Related Work

As Kubernetes is a tool created to deploy software in a resilient way, there are many
other sources about this subject. While the main documentation of Kubernetes is
pretty solid in that regard, one of the main sources that aided during this thesis was
the book “Cloud Native DevOps with Kubernetes”[AD19], as it also works through
every step of the software deployment with Kubernetes.

Concerning Kafka and benchmarking it, the results of Jay Kreps[Kre14] may be
interesting as they load tested Kafka in a similar way done as in this thesis. As
there were some mismatches between the results in the blog post and this thesis it
might also give additional insight into the behavior of Kafka.

Another interesting talk about Kafka running on Kubernetes can be found with
“Kafka on Kubernetes: From Evaluation to Production at Intuit”[Jav18], as the
tested setup is very similar to the setup done in this thesis, with the same Kubernetes-
Kafka implementation.

2

1.4 Structure of this Thesis

1.4 Structure of this Thesis

This thesis is structured in a way that a reader without specific knowledge about
Kubernetes will learn about the most basic concepts first, followed by more complex
parts that are dependent on earlier sections. Therefore it is advised not to read the
chapter independent from one another, but rather read them in the order presented
here.

Chapter 2 is mainly concerned with introducing the reader to the different concepts
used in this thesis, with a quick overview of Docker, followed by the basics of
Kubernetes and the main use-case of Kubernetes in this thesis.

Chapter 3 will provide an insight into the deployment process of a microservice
using Kubernetes, while also explaining the methodology used in the resilience
tests of that deployment.

Chapter 4 evaluates the resilience tests that were described during the previous
chapter as well as the user experience of working with Kubernetes.

3

2 Preliminaries

In this chapter, we will take a look at the programs and concepts used in this work.
This chapter will not explain every detail of Kubernetes, Docker, and other things
but look at the relevant parts that will be used later to deploy the Logistics Platform
in Chapter 3.

2.1 Docker

Before focusing on the main piece of software that will be looked at in this thesis,
we first have to take a look at Docker and its provided functions. Docker is an open-
source software made to create images of containerized software. These lightweight
virtual machines run another software while keeping track of the needed depen-
dencies so that the user has to install almost nothing on his machine. The main
appeal of Docker and its containers is that the containerized software can run on
every machine where the Docker Engine is installed, without the need to install any
dependencies of the software, as they are already installed inside the container VM.
Additionally, the containers themselves are entirely isolated from the host machine,
reducing any interaction with other programs to network communication, as if the
containers were running on different machines inside the same network. Therefore, if
the software was able to run on the programmer’s machine, it should almost always
run the same way after deployment on any other machine while reducing the clutter
of dependencies on the deployed server, where they otherwise may conflict with each
other.

With Docker, one can simply take his compiled software and create a so-called
DockerFile containing instructions about any dependencies, such as external libraries
or even the OS inside the container[SD19]. After container creation, it will then
be saved as an image that can easily be uploaded to either Docker Hub or any
private repository and deployed. Additionally, one can even tag the images with
extra information such as the version number or the release name for later update
deployment.

It is easy to imagine why one would choose to use Docker containers to deploy any
type of microservice with its different functionalities and ease of use. That is also
precisely why Kubernetes takes advantage of containerized microservices instead of
running programs directly, as we will see in Section 2.3.

5

2 Preliminaries

2.2 Automation and DevOps

One of the main benefits of using Kubernetes, or any container orchestration plat-
form for that matter, is the number of automated processes it provides. For instance
with Kubernetes one does not need to manually delete old microservices and add
new ones to every server inside the cluster, Kubernetes updates the deployment
information and automatically adjust everything to the new parameters, e.g., five
microservices of version 1.0 get replaced by 10 new pods containing the 2.0 version
of the program via a rolling update.

With that in mind, would it be a good idea to look into the concept of DevOps
and how its aspects could help while working with Kubernetes and other similar
platforms?

DevOps is a rather new concept that was introduced in 2009[LKK+19] that is still
missing a definitive definition in the industry[WFW+19], but there are many def-
initions attempts that agree with one another. We will take a look at some key
parts of the different definitions that are relevant for the work with Kubernetes. In
DevOps, software developers will also look over the deployment and take on the re-
sponsibilities of the operations team. Hence the name DevOps being a portmanteau
of development and operations.
[WFW+19] defines, amongst other aspects, that DevOps is a concept where, during
the product’s life cycle, there will be many software versions with fast revisions dur-
ing a continuous integration process. The development will be aided by the use of
automated tool pipelines for testing, deployment, monitoring, and updating. On the
non-automated side of things, DevOps also describes how user feedback is directly
given to the developer team that will handle everything internally without the need
to communicate with other departments if not necessary. DevOps, with its focus on
automation and communication structure results in a highly efficient software life
cycle. While the key aspects of the DevOps method can be observed in one form or
another in many different companies[LKK+19], it is important to note that every
developer team is free to define what their version of DevOps is due to it being more
of a suggestion or guideline rather than a strict set of rules, making it applicable to
different types of software development.[WFW+19]

One may now have already noticed how the DevOps concept also fits into Kubernetes
and its primary use cases. While Kubernetes does not cover the collection of user
feedback or the coding of microservices, it helps with the deployment, monitoring,
and version controlling. Developers no longer need to account for manual restarts
or general resource management, as Kubernetes will try to keep everything running
inside its scalable cluster according to the specified deployment. Kubernetes is also
able to deploy rolling updates, which is an update that might only be deployed to a
certain percentage of users at a time in order to keep the software running if there

6

2.3 Kubernetes

is an error with the new version. In case of an update to a bugged version, one can
roll back the cluster to the older version without much work needed.

With the observed benefits of DevOps, as seen in [LKK+19], it is therefore impor-
tant to always keep the key aspects of it in mind while working with Kubernetes.
Instead of viewing the software as a web of replicated nodes and connections, one
can view it as an abstract cluster of services that can communicate with each other.
As Kubernetes can also be inserted into a continuous integration pipeline, it can
automatically update and deploy the software without any input by a developer,
therefore keeping the whole development process more efficient.

2.3 Kubernetes

We will now look at the main piece of software for this project, which will enable
the capability of higher resilience. Kubernetes is an open-source platform designed
to deploy, scale, and update applications that were containerized using Docker. Its
main appeal is the ability to create deployments, objects that describe a state of
the application that Kubernetes should maintain or try to achieve. An example of
a deployment may be that the application should run on two servers, each running
four instances of the microservice. If something unexpected were to happen and one
of those instances crashes, Kubernetes will try to restart it to maintain the desired
state.

It is now important to see how Kubernetes achieves what it does and what com-
ponents play a role in this. Deployments are not just vague descriptions of the
application but rather describe how the Pods running on the server should be work-
ing. A Pod is the Kubernetes object that represents a group of one or more contain-
ers[AD19], is one of the easiest explanations regarding Pods. When one is creating
a deployment, the main thing that happens is that Kubernetes creates a group of
Pods containing the containerized microservices that will then be distributed among
the servers, each running independently with the ability to communicate with other
Pods. Microservices that share the same pod also share their memory. As a rule of
thumb, if the containers still work as intended distributed among different machines,
one should put those containers inside multiple Pods.[AD19]

After understanding the nature of Pods, we will start to look at the structure between
servers and how Kubernetes can manage those. Kubernetes will group the provided
servers into a cluster, where each server acts as a node that will carry out the
necessary work like running a group of microservices. Those nodes will then be
organized by the master-node, a single server tasked with keeping the nodes running
according to the current deployments and the main server that is reached when

7

2 Preliminaries

using the kubectl interface. While the master is supposed to restart any crashed
or malfunctioning server, it has no other server monitoring the uptime. That means
in case of a crashed master that the whole cluster can not receive new information
regarding the deployments and any node crashing will not result in a quick restart
or redistribution of resources, but the nodes will still run their microservices in
accordance to the last commands of the master.
Due to the importance of the master node, one should not run any heavy services
on it and fully dedicate that specific server to being the master. It may be possible
to run multiple master nodes to increase the resilience of the whole system, but that
case will not be tested in this thesis due to the provided server setup as described in
Section 3.6. With multiple masters, it would be possible to always have one master
that keeps the other one alive in case of a failure, just like Kubernetes generally tries
to keep the whole cluster alive.

With every pod running and replicated, we are just faced with the issue that there
still needs to happen some kind of communication between the different servers and
pods. The solution to that problem are the Kubernetes services. Note that the term
“service” in this context stands for a specific type of interface used by Kubernetes for
pod communication and not the deployed software itself. To communicate with the
replicated microservices on the different nodes with their dynamic IPs it is necessary
to use those services that will reroute any traffic to its correct target.
Instead of discovering the microservice on a certain node that needs to be reached,
one can simply send the traffic to a specific service that knows the relevant IPs of the
nodes/pods and just simply connects to the correct pod, as depicted in Figure 2.1.
Pod-to-pod communication can, therefore, be viewed on a more abstract level by
just imagining a microservice-to-service communication with a constant complexity
regardless of replication factors. Services can be configured to run either on internal
or external IPs, e.g., the most basic service a “ClusterIP” is just an internal IP
reachable by other pods inside the cluster, while a “NodePort” uses the external IP
of a specified node in addition to an opened port to redirect the traffic.
A Kubernetes service could be described like a DNS, e.g., instead of finding the IP
address of the third instance of microservice X running on node 2, one can define
a service that will connect to any microservice X instances and using that service’s
name instead of the dynamic pod IP.
Additionally, those services also act as the main way to balance the load between
the different pods. Per default, any service will try to route the traffic to a random
pod matching the service description1. If that approach is not considered optimal,
or a more refined behavior is wished, Kubernetes allows the user to implement a
custom load balancer or the usage of an implementation build by an external cloud
host like Google or AWS.

1Since Kubernetes version 1.10 one can also replace the random default algorithm with a round-
robin or least-used selector on a system wide level.

8

2.3 Kubernetes

With the main components of a Kubernetes cluster out of the way, let us also have
a quick look over the different applications that will enable us to create and run a
Kubernetes cluster, Kubectl, Kubeadm, and Kubelet.

• Kubectl: Our main interface with the Kubernetes master that enables the
deployment of pods, listing of resources, and the general management of the
platform. Due to its complex nature with its many applicable arguments, there
will not be a specific explanation of Kubectl in this thesis.

• Kubeadm: By running Kubeadm on a server, it is possible to create and new
Kubernetes cluster and also promote that server to a master node that will
keep the whole system up and running. If there is already a running cluster,
kubeadm also enables the server to join the cluster as a new node.

• Kubelet: This is the main background process that will control any node ac-
cording to the directions of the master node, like creating new pods or updating
running services.

Service A Known static IP

Source

Microservice A
Pod 1

Dynamic IP

Microservice A
Pod 2

Dynamic IP

Microservice A
Pod 3

Dynamic IP

R
eq
ue
st

1

R
eq
ue

st
2

R
eq
ue
st

3

R
eq
ue

st
1 Request 2Re

que
st
3

Figure 2.1: Kubernetes service handling traffic with random distribution

2.3.1 Docker Swarms in Comparison

While Kubernetes is the software we will use in order to manage the containerized
microservices, it is not the only platform designed for that purpose. Docker itself
has its own container orchestration platform called “Docker Swarm”, another open-
source platform that is developed by the same company that is also working on
Docker. This raises the question of whether Docker Swarm is better or worse than
Kubernetes and why it was not chosen as the main platform.

9

2 Preliminaries

While both Kubernetes and Docker Swarm offer the same services, being a resilient
and scalable deployment of containerized software as a cluster, one can still find
differences between them. With both Kubernetes and Docker Swarm being first
released in 2014, they both managed to stay in a relative range to each other, with
neither one being the absolute best choice. For instance, it may be harder to install
and create a Kubernetes Cluster in regards to a Docker Swarm, the cluster managed
by Kubernetes will be stronger and more convenient in the long run with features
such as auto-scaling and in-build monitoring. On the other hand, Docker Swarm
will offer a simpler installation, while also being faster at container deployment and
scaling of the cluster[SD19]. Kubernetes is, in the end, the more popular choice due
to it offering more with its complex nature and features, making the hard installation
one of the only caveats[AJBB+19].

2.4 Kafka

Because Kafka will be the software mainly used in the resilience tests of Kubernetes
in Section 4.2, it is necessary to have a quick overview of some functions Kafka can
provide for the Logistics Platform. As stated before, there will not be an in-detail
explanation of Kafka like we have seen with Kubernetes, as this thesis is more about
the general deployment of software instead of the deployment of Kafka.
Nonetheless, as there will be mention of certain functions of Kafka in Section 4.2, its
important to generally describe them in order to avoid confusion. A brief overview
of the software components needed to run a Kafka server can be found in Subsection
3.3.1, where the deployment of Kafka was explained.

The main function of Kafka is to provide a platform that can accept a stream of mes-
sages published by other sources, like other components of the software, and share
those messages with anyone subscribed to a specific topic in Kafka. Something that
is generating messages is called a producer, while something reading the messages
is a consumer, both can be either a client or another microservice. Producers and
consumers both interact with so-called topics, those are predefined during the setup
and are used to categorize the messages sent to Kafka. Any single topic can run
on multiple Kafka nodes, also called brokers, where they are replicated and kept
synchronous. One can define on how many Kafka instances the topics are replicated
for redundancy and how many partitions are split between those replicated copies.
The partitions are used to split up the writing and reading process from a topic, like
in Figure 2.2, where messages are written onto different partitions instead of just a
single block of data. Those partitions may also be split up between the replicated
brokers to balance the load generated.
One thing to also keep in mind is that the messages written and consumed by Kafka

10

2.4 Kafka

will be grouped into a batch and compressed for a more efficient data transfer. If
a message exceeds the batch size, it will be split up into multiple batches, but if
a batch still has some space left, Kafka will try to fill that batch before sending
it. The batch sizes and the compression rate may also have an impact on Kafka’s
performance and should, therefore, be tweaked accordingly. However, as the options
to tweak those things were missing in the used software, those test cases could not
be made.
While multiple producers and consumers can publish to a single topic, or be sub-
scribed to the published data, one has to note that producers can only append data
to a topic and not insert it arbitrarily, while consumers can read the data from
anywhere in the topic as seen in Figure 2.3. The impact of replication and partition
numbers can also be found in the evaluation in Section 4.2.
Those replications with their different partitions have to be kept in sync, as they
would otherwise have an incomplete amount of data about any single topic. That
synchronization task is not done by the brokers themselves, but rather another
program called Apache ZooKeeper that will handle the traffic to the brokers and
coordinate them to keep the data replicated and in the right order on every node.
Because ZooKeeper is another program that runs alongside the main Kafka brokers
it complicates the whole Kafka setup, which is explained in Subsection 3.3.1.

Figure 2.2: Topic being split into 3 partitions with multiple producers writing
onto the same topic data
Source: https://kafka.apache.org/intro

11

2 Preliminaries

Figure 2.3: Different consumers reading the same partition with multiple pro-
ducers writing data
Source: https://kafka.apache.org/intro

2.5 Resilience

While the preceding sections were about types of software or a specific development
process, it is essential to look into the aspect of resilience itself. As the concept
of “resilience” is a broad term ranging from security concerns to resilience against
wrong user-input and so on, we first need a specification of what resilience means
for this thesis.

For this project, the resilience should be found in the capability to have “the ability
to recover from failures commonly encountered in the cloud”[HRJ+16], while staying
reachable at all times.

For instance, if we have a microservice replicated on n servers, we should only
ever observe n − 1 downed servers running the replications during the software’s
runtime. In a best-case scenario, one can then still reach and interact with the
deployed software, while the n − 1 servers are starting back up. A service with
multiple replications is, therefore, inherently more resilient to any kind of random
failures occurring during runtime, as the probability of that failure happening on
every replica or server in cluster is rather small. While there is undoubtedly a focus
on having the service withstand a big workload generated by external users, one has
to also pay attention to any software failures and errors that can render a specific
server unusable until it gets fixed. In this case, the workload present would be a high
number of accesses per second with only a few bytes sent per request, rather than
single large packs of data. There may even be the possibility of having additional
servers that are usually not concerned with running the software but could be used as
a backup strategy in case of any server outage inside the main cluster of workers.

The observed resilience will also be the primary benchmark if Kubernetes could
fulfill its expectations and will, therefore, be one of the main topics of Chapter 4.

12

3 Methodology

This chapter will cover the methodology used regarding Kubernetes and its mi-
croservices in the implementation of the ISP Logistics Platform. The platform will
be described in Section 3.1, but the chapter’s main focus will be on a more abstract
level due to the focus on Kubernetes rather than the platform itself.

Figure 3.1: Abstract overview of the Logistics Platform’s connections

3.1 The Logistics Platform

While the Logistics Platform and its specification is not the main focus of this
thesis, it is what prompted the usage of Kubernetes and provided the general goals.
Therefore we will take a quick look at the platform, and its idea. In this case,
the goal was to create a resilient cluster of microservices that will send and receive
information to and from different users. The users here will be different logistic
ports that all have their processes and databases, as depicted in Figure 3.1. In case
Port A wants to communicate something to Port B, like a ship leaving the port with

13

3 Methodology

an estimated time of arrival X, they would have to know each other’s preferred way
of communication while also using the correct data format.

The project’s motivation was to create a centralized hub where information in the
shape of events will pass through and get redirected to the correct target while
removing the heavy lifting from the users. For that approach, it was decided to create
a scalable cluster of microservices that are capable of working with the provided
data and sending it to the right port. For that was Kubernetes chosen as the
main platform to create and host the microservices that will parse and send the
data, while also hosting a Kafka Server as the persistence layer that distributes the
parsed information. Those messages sent to and from the platform will only consist
of JSON objects that carry information about the various SQL databases found on
the user’s side, therefore reducing the messages themselves to only a few kilobytes
per request. The data in this platform will only be stored temporarily until another
microservice consumes that data, lifting the necessity of having large data archives
that may take up server space. Kafka itself will not be explained in detail, as its
scope might be on the same level as Kubernetes, but we will look over its deployment
onto the Kubernetes cluster with Helm later in Section 3.3.

3.2 Deployments with Kubernetes

Now we will look into Kubernetes’ features used in this project, what the idea was
behind them and how it was done in the end. While the main idea is later to deploy
a whole set of microservices inside the cluster, for this thesis, only two groups of
microservices will be deployed, a microservice that collects data from a database,
and a Kafka cluster for temporary storage and sorting of the data. Both groups
were deployed differently, with the microservice using a handwritten manifest .yaml
file and the Kafka cluster using an external Helm chart. We will also look in Section
3.3 into the details of Helm and the advantages of using it.

First, we take a look at the containerized microservice used to collect database en-
tries and send them to the Kafka cluster. To create the deployment, one first needs
to generate a Docker container containing the application. In this case, the program
was already compiled into a JAR file, making the containerization rather simple.
However, regardless of the programming language used for the microservice, the
result will always be a container acting like a black-box making the following steps
of the process similar regardless of the libraries or other extras used. In order to
turn the container into a pod, it is now necessary to write a manifest file, a .yaml
file that specifies the created pod and its deployment.
While the term “deployment” used throughout this thesis in conjunction with gen-
eral pod creation, it is necessary to state that its possible to create and deploy a
pod without a “deployment”. A pod without one will still function correctly and
execute its functions, but the main difference and disadvantage is that Kubernetes

14

3.2 Deployments with Kubernetes

will not try to fix any crashes or other malfunctions. In the case of a crashed pod
without a deployment, Kubernetes will not restart or scale the pod, as there are no
specific instructions given.

Here are two pods that were deployed onto the Kubernetes cluster with varying
complexity, a Kafka cluster client used to directly issue commands to the Kafka
cluster and the SQL-to-Kafka connection microservice. Note that the Kafka client
is just a pod without a deployment, while the microservice is contained within a
deployment.
apiVersion: v1
kind: Pod
metadata:

name: kafka-client
namespace: my-kafka-namespace

spec:
containers:
- name: kafka

image: confluentinc/cp-kafka:5.0.1
command:

- sh
- -c
- "exec tail -f /dev/null"

Source Code 3.1: Pod containing the Kafka client

As we can see, the kind of manifest we have in Sourcecode 3.1 just a pod, the name
and namespace will help find and categorize the pod later on, while the spec contains
what image is put into the pod and the commands in the last few lines specify what
commands are issued to the container after creation. The deployment shown in
Sourcecode 3.2 is a little bit more complex than just a simple pod. First, one has to
specify the deployments name after that it is necessary to state how many replicas of
the same pod should exist at a time, followed by the normal pod declarations. This
specific pod also needs some environment variables, like the database and Kafka
IP, as well as some more or less private data, e.g., the database login credentials.
Because it would be bad to breach security and simply display something like a
password in plain text, one can also create local files containing such information.
Lastly, it may also be necessary to provide some kind of authentication token for
the Docker image registry, because not just everyone should be able to pull one’s
code.
For that case, Kubernetes allows the creation of secrets where one can store private
information inside the temporary storage of the kubelet application for later usage,
but be aware that while secrets are saved locally and usually should not leave the
cluster, they are still only just encoded in base64 and not hashed. The encoded
information can always be accessed and converted back into plain text, while this

15

3 Methodology

may be insecure against a human attacker with root access, any pod not authorized
to see the secret should not be able to get its contents, as Kubernetes will not provide
the secret to those pods.
apiVersion: apps/v1
kind: Deployment
metadata:

name: sql-producer-deployment
labels:

app: sql-producer
spec:

replicas: 1
selector:

matchLabels:
app: sql-producer

template:
metadata:

labels:
app: sql-producer

spec:
containers:
- name: sql-producer

image: docker-image-url/my-docker-image
env:
- name: KAFKA_SERVERS
value: my-kafka-server-ip

- name: SQL_SERVERS
value: my-sql-server-ip

- name: DATABASE
value: my-database

- name: USERNAME
value: my-username

- name: PASSWORD
valueFrom:
secretKeyRef:

name: db-pass
key: db-pass.txt

- name: JDBC_TYPE
value: mysql

imagePullSecrets:
- name: regcred

Source Code 3.2: Deployment of the sql-to-kafka microservice

16

3.3 Helm

3.3 Helm

As previously mentioned, not every microservice running in Kubernetes needs to be
deployed by handwritten manifest files. If, for instance, one wishes to deploy an
external microservice, written by someone else, for their platform, then they might
not want to read the complete documentation about any dependencies and special
parameters. Instead, one can opt for looking for an existing deployment template,
called a Helm chart, to simply install an deploy the specific microservice.

Helm is a package manager for Kubernetes that can create and install charts which
specify everything a specific software might need to run.[AD19] After pulling a chart
from a repository, one can then tweak certain flags put in place by the chart creator
to adjust the deployed software to one’s specific requirements and then simply deploy
the software. Behind the scenes, Helm uses a pre-written manifest file that will then
be filled with the information from the flags or config files and then handed to the
Kubernetes platform just like any other manifest would be. Those flags could be as
permissive or strict as the chart’s author wishes them to be. E.g., one could write a
helm chart with just a flag for a debug mode, or on the opposite side, have a helm
chart where almost any value can be edited from the default one. In the end, the
main difference between manual deployments and Helm chart installations are that
someone with more insight about the to-be-deployed software has already filled out
the forms necessary for a seamless deployment, lifting unnecessary work from the
developer and keeping them focused on the main tasks.

3.3.1 Kafka deployment

For this project, the software that needed to be deployed was Apache Kafka, a
streaming platform used to receive, store, and provide information used by the mi-
croservices. Kafka itself runs as a cluster with many nodes that need to communicate
with one another, while also temporarily storing data on the hard drive as a stateful
service. Those microservice clusters then also need to sync their storage data by
using another microservice called Apache ZooKeeper that runs as another cluster of
replicas besides the main Kafka brokers. Even ignoring the fact that a Kafka is not
just one monolithic microservice, but also requires persistent volume storage means
that a manual deployment via normal manifest files can quickly end in a logistical
nightmare that ends up taking valuable time away from the project.
However, with the usage of Helm suddenly, the whole deployment became a rather
trivial thing, where only some flags needed proper adjustment for the logistics plat-
form. Helm created a deployment for the Kafka and ZooKeeper nodes, made the
appropriate services for communication, and also filed volume claims that told Ku-
bernetes to allocate the correct storage volumes to the nodes.

17

3 Methodology

Persistent Volumes of Cluster
NAME CAPACITY ACCESS STATUS CLAIM
pv-volume-01 4Gi RWO Bound datadir-k-1
pv-volume-02 4Gi RWO Bound datadir-k-0
pv-volume-03 4Gi RWO Bound datadir-k-2

Persisten Volume Claims of Pods
NAME STATUS VOLUME CAPACITY ACCESS
datadir-k-0 Bound pv-volume-02 4Gi RWO
datadir-k-1 Bound pv-volume-01 4Gi RWO
datadir-k-2 Bound pv-volume-03 4Gi RWO

Source Code 3.3: Overview of peristent volumes and their claims by the Kafka
brokers

As Kafka needs allocated disk space inside the different nodes one has to create
placeholder volumes on the cluster that will be bound and used by pods that filed
a “persistent volume claim”. In the example found in Sourcecode 3.3, we can see
the three different volumes that each allocate 4Gi on their respective nodes, which
are then claimed by the pods to store any data that needs to be retained between
restarts.
In the end, the only manually written .yaml files were the ones creating the storage
spaces, as the helm chart did not create them, but that single step compared to the
work done by Helm is way more bearable for a developer not 100% familiar with
Kafka. Additionally, almost all parameters tweaked in the resilience test could be
easily found in the config file of Kafka’s Helm chart, as it contained a parameter for
almost everything that would have been otherwise found in the deployment mani-
fest. E.g., an important setting provided was the anti-/affinity between pods, as it
is recommended to prevent the different Kafka pods from staying on the same server
and group them with their respective ZooKeeper Node. Affinity is mainly used to
spread the workload of the microservices between the different servers, while also
grouping services together that would benefit from communicating quickly with one
another. It also prevents the case where a single server failure takes down a complete
set of replicas, if they were all grouped on that specific server.

18

3.3 Helm

Replication of the deployment
replicas: 3

The kafka image repository
image: "confluentinc/cp-kafka"

Configure resource requests and limits
resources: {}

e.g.,
limits:
cpu: 200m
memory: 1536Mi
requests:
cpu: 100m
memory: 1024Mi

Pod scheduling preferences
affinity:

podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:

matchExpressions:
- key: app
operator: In
values:
- kafka

topologyKey: "kubernetes.io/hostname"
podAffinity:

preferredDuringSchedulingIgnoredDuringExecution:
- weight: 50

podAffinityTerm:
labelSelector:

matchExpressions:
- key: app

operator: In
values:
- zookeeper

topologyKey: "kubernetes.io/hostname"

Persistence configuration.
persistence:

enabled: true
size: "4Gi"

Source Code 3.4: Parts of the Helm chart’s config file for Kafka
19

3 Methodology

3.4 Resilience Testing

A main part of this thesis next to the software deployment is also the part about
its resilience. The final results of the resilience test can be found in Chapter 4. In
this chapter, we will focus on the setup and the reasons behind it. Due to Kafka
being already deployed on the Kubernetes cluster as a service planned to be used
later in the production environment, made it the prime candidate to resilience test
it. Next to Kafka, there were only microservices running mockup or demo versions
that were never designed to be tested thoroughly in terms of resilience, as they are
going to be replaced by their proper counterparts in production. The good thing
was that Kafka will probably also be the component in the final product receiving
the main part of the incoming workload, as a central message hub between other
microservices. That is why the resilience of the Kafka service will greatly influence
the resilience of the whole platform.

With resilience being something that focuses on the tolerance of a system against
any failures, there needed to be a way to introduce failures into the system without
having to hope for a randomly occurring one. In the end, two ways were chosen
to generate them. The first one was to simply overload the system with too many
inputs per second, as it should result in software crashes due to missing resources
in the system. The other way was to simulate a pod/server malfunction by simply
terminating the currently working pods or shutting a server down. Any impact of
those failures during the resilience tests can be found in the Section 4.2. Therefore,
while load testing and resilience testing are two different things, was the load testing
in some way also a tool to trigger failures for the overarching resilience test.

3.5 Load Testing

In order to load test Kafka, some things were necessary to run those tests. First,
a tool for generating a significant number of messages per second to generate the
workload. Additionally, another tool had to be found for test automation, as it
would be infeasible to run a command line for each test manually and to download
the whole test environment for each new version.

For the load generation, the tool Apache JMeter1 was used. JMeter qualified itself
for its ease of use by allowing the user to work with a GUI, good documentation,
a large userbase, and the available number of plugins. With JMeter, one can easily
create test-cases for Kafka load generation while also being highly portable with
no installation requirements. After test-case creation, one can just send the whole

1https://kafka.apache.org/

20

3.6 Testbed Setup

directory containing JMeter and the tests to any other server and just run the
program.

The test automation was solved via Jenkins2, a program easily deployed via Docker
on an external server that will be hosting the load generation. Jenkins is a DevOps
centered tool, where the main goal is to automate the continuous integration process
during development. As one may recall, tool-chain automation is one main aspect of
the DevOps process, making such a program invaluable to the whole project, once
it is up and running.
Just like JMeter, one main advantage of Jenkins is the available web-interface where
the developer can define tests and their triggers. E.g., one could run a specific test
any n-days or every time a new software version is pushed onto the production
server. For this thesis, such specific build-triggers were not necessary due to the
nature of the tests, but they can make the development much easier and efficient.

While the tools for load testing were configured correctly, with the provided setup
there could be no true stress testing, as only one server had to generate the messages
against a cluster of multiple servers. The exact setup can be found in the following
Section 3.6, while the load testing results are in Section 4.2.

3.6 Testbed Setup

Only knowing what programs to use and how the tests themselves function is not
enough. One first has to set up a testbed where the tests can be executed and
monitored. For simulating the logistics platform the following configuration was
chosen: The tests themselves were executed on a remote server that was not inside
the Kubernetes cluster, shown in Figure 3.2. If we were to place the load generators
themselves inside the cluster, it would only result in a slowdown of the workload as
soon as the system would get overwhelmed. In the worst case, it could be possible to
crash the Jenkins or JMeter installation, making the results unusable as they would
not reflect the expected behavior.
With a remote server, it is possible to simulate a user that is sending their workload
to the Kubernetes cluster with no regard of the current resource usage of the cluster,
with the potential to cause an overload of events per second to the Kafka server.
The cluster itself was deployed between three different servers, as shown in Figure
3.3, each one functioning as a normal node except for a single server that also acted
as the master node for the whole cluster. While it is not a good practice to run the
master on an also working node, as stated in Section 2.3, it was the setup provided
for this project as at least three servers are needed to create a cluster that would
reasonably appear in a production environment.

2https://jenkins.io/

21

3 Methodology

Kafka ServiceExternal IP(141.83.159.60) (Any Node IP+Port 31090)

Jenkins with JMeter External Server141.83.159.64

Kubernetes Cluster

Kafka Broker 1
192.168.???.???

Kafka Broker 2
192.168.???.???

Kafka Broker 3
192.168.???.???

Figure 3.2: Jenkins and Kubernetes setup

On that external server would run a Jenkins installation, easily deployed with its
respective Docker image, where any tests could be launched via its web interface.
The tests themselves are executed by pulling the test-cases together with its portable
JMeter installation into the Jenkins workspace, where a shell command could start
everything.
./bin/jmeter.sh -n -t ./'Test Plans'/'Kafka Request-repl3.jmx'

-l ./output.jtl

Source Code 3.5: Example command for JMeter execution

As we can see in the Sourcecode 3.5, Jenkins is using Jmeter just like any user would
do on his own command line. One can think of Jenkins just like a normal developer
running some commands in their terminal during specific times or after a specific
case is fulfilled.

After the test was executed, one can look at any output files generated, which can
be parsed from Jenkins by installing the specific plugin. In our case, the output.jtl
file could give some insight into the average latency, the percentage of errors en-
countered, and how many bytes of data were transmitted to Kafka. One of the
main benchmark values used in this thesis, however, the number of messages per
second transmitted, was sadly not included in the output file of JMeter, but rather
something read from the console output of the specific test-case. The reason for
choosing that value specifically can be found in Chapter 4.

It is also important to consider the reliability of the results from the different tests.
As it turned out, tests that were done during the same day with at maximum only
being separated by a few hours were consistent enough when being re-done as to
claim that any observed change in the messages per second observed had to be the
result of the explicitly changed environment variables during the test.
Some tests were also being completely re-done during multiple days, with any ob-
servations being consistent with the previous days, to validate if the previously
observed behavior would stay the same. E.g., while the general speed between two

22

3.6 Testbed Setup

days varied, the message rates increased or decreased still accordingly.

Master Node
Node 1

Node 2

Node 3

Broker 1

ZooKeeper 1

Broker 2

ZooKeeper 2

Broker 3

ZooKeeper 3

Kubernetes Cluster

Figure 3.3: Kubernetes cluster node setup with Kafka pods

23

4 Evaluation

In this chapter, we will look into the results produced by the resilience tests of the
deployed software, as well as a performance overview of Kubernetes. During Section
4.1, we can see how hard it was to get Kubernetes to work correctly and what
obstacles need to be considered. Section 4.2 will go a little in-depth into the JMeter
test-cases and how the software reacted in certain conditions.

4.1 Functionalities of Kubernetes

First, we will have a look at Kubernetes itself. While it may be important to have
some statistics for the deployed software, it is also important to have a deploy-
ment platform that can be used without having some insight into old and cryptic
knowledge about it.

Please note that the server setup and getting them into a specific cluster was not
something that could be evaluated, as they were provided in an already functional
state. It is always possible to use a preconfigured Kubernetes cluster from the
many readily available cloud providers, such as Google or AWS. However, if no such
provider is used for one’s project, it may be necessary to combine some unconfigured
servers into a cluster, where the needed overhead may vary.

Let’s get one of the main concerns out of the way, the usability and user experience
with Kubernetes. Kubernetes as a platform is generally more complicated than its
competitors like Docker Swarm [SD19] but has a low barrier of entry once some basic
concepts are learned. While there is no direct comparison to something like Docker
Swarm in this thesis, as only Kubernetes was actively worked with, in a vacuum, it
was not that hard to use.
One can containerize their first piece of software and quickly deploy it, as seen in
Sourcecode 3.1. At its core, the manifest files containing the deployment instructions
can always easily be read, while writing them is also rather painless, especially if a
template was provided.
As also seen in this thesis, there are, of course, some pieces of software where the
deployment was a “logistical nightmare”, but that may also depend if the software
was written by someone else. If, for instance, there was something different to be
deployed that was coded by a dev team member, they may be able to instruct the

25

4 Evaluation

Kubernetes team how the software can be deployed with all the needed components.
They may also be able to simply write a Helm chart that can later be used for a
simple and automated deployment for that microservice.
At the beginning of this project, Helm was just something to maybe look into, but
it definitely evolved to one of the core components that helped in the deployment
of more complex structures like Kafka.

Before heading into the resilience aspect of Kubernetes, let’s also have a quick look
into the scalability of the deployed software. While horizontal scalability was not
something to be concerned about for this thesis, as the provided setup only contained
three server nodes to work with and no tests could be done about the speed or
stability of highly scaled services, it was still something that Kubernetes just does
out of the box. One could just state in their deployment specification how many
copies of a specific microservice were preferred, and Kubernetes tried to create and
manage that number of replicas. Scaling the microservices up or down was as simple
as changing an integer value in either the Kubernetes dashboard or the deployment
manifests, while Kubernetes created or deleted any number of deployed pods and
always routed the traffic to the correct targets.
Vertical scalability, on the other hand, was being tested on a smaller scale, within
the bounds of the provided servers. Instead of scaling the microservice horizontally
across multiple servers, vertical scalability is concerned about the resources and
computing power available to the microservices. As shown in the test done in Section
4.2, Kubernetes also allows to scale the resources of any pod to a specific threshold,
done via values in the deployment manifests.

4.2 Resilience Testing of Kafka

For the resilience tests, as described in previous chapters, the focus was on testing a
Kafka Server deployed on the Kubernetes Cluster and subjecting it to a continuous
workload of randomly generated messages. This section will deal with the different
test-cases and changes done to the Kafka Server between and in each test.

The main value that was taken from the different tests to evaluate them were the
messages per second produced onto the different Kafka brokers. Another valuable
measurement that maybe could have enhanced the observations would have been the
CPU and memory usage of the Kubernetes nodes to gain insight into the resources
used by the different tests. Sadly the metrics software that was supposed to run
alongside Kubernetes and measure those resources could not be installed and used
correctly on the provided servers due to unknown reasons with errors that could not
be fixed properly.
Nevertheless, the tests still produced some usable data, with the only metric being

26

4.2 Resilience Testing of Kafka

the messages per second. First, we take a look at why that specific metric was
chosen. In the beginning, the messages per second produced should have been only
a measurement if the Kafka brokers may crash during a workload of x messages
per second. But as it turned out, rather than crashing after a certain threshold is
reached the producer matches the maximum speed that Kafka can handle at that
moment in order to prevent any crashes.
A nice side effect of that behavior was that a drop in the messages per second
would always mean that the Kafka server had to throttle itself due to some loss in
resources, like having to use fever computational power when other processes had to
run alongside it. If, for instance, multiple users were to write onto the Kafka server
and some speed loss could be observed from either one, then that would mean that
too many users could, in theory, use up the complete bandwidth and effectively
crash the service.

Please note that, if not otherwise specified, the parameters were as follows, 8 threads
are creating the workload onto a Kafka topic running 3 replications with 3 parti-
tions and Kafka being able to claim as many resources as needed. The CPU of the
external server only allowed the use of 8 threads. Any two servers had a high enough
bandwidth of 5 Gbits/s that the bytes/s produced never came close to that value,
while there was also a ping latency of <1ms between them.
The latency found in the following tables is not the ping latency, but rather the
latency between a sent message and its respective acknowledgment, which may take
longer than a ping due to it also facting in the time the request is written and parsed.
Some test cases may also include if the behavior was also replicated by other bench-
marks such as [Kre14].

1. Effect of replication:
The effect of having multiple partitions and replications of a Kafka topic:
While the number of partitions has no effect on the performance, replicating
the topic causes a slowdown. This behavior was also observed in [Kre14], where
a replication factor of 3 would slow down the throughput from 800.000 msg/s
to 400.000 msg/s.

Replication 1 2 3
Avg msg/s 5000 4200 3300

2. Effect of broker failure:
What happens if any broker, or server running a broker, fails during a running
message stream:
Terminating any number of brokers with at least one broker remaining during
runtime has no effect of the messages, and there is no message loss.
Terminating the last running broker results in an unreachable Kafka service
that is quickly restored as Kubernetes restarts the pods.

27

4 Evaluation

While running tests with an active consumer on a topic with different replica-
tion factors, it was possible to observe a short service downtime due to crashes
on the different nodes, while having a replication factor of 1 or 2. Any Mes-
sages sent during that downtime were lost unless one implements a producer
with redundant message generation. Those observed downtimes were noted
down, as they would better reflect a genuine broker failure instead of the case
where one would manually terminate them.
Note that the downtime was significantly shorter the more brokers a topic was
assigned to, as the probability of any single pod finishing its restart went up,
with more available pods. On the other hand, the likelihood of a failure in all
pods at the same time also goes down with more pods.

Topic replication Messages lost during downtime
1 290
2 30
3 no downtime observed

3. Effect of topic consumers:
Does starting a consumer during runtime have any effect on the performance:
Creating a consumer on a topic with three replicas will just result in a slow-
down, with more consumers resulting in further linear slowdowns on the pro-
ducer side.
But creating a consumer running on a topic with only one or two replicas re-
sults in a pod failure after some messages. Kubernetes just quickly restarted
the failed pods, resulting in some intervals of downtime but no complete out-
age. Presumably, the load was balanced enough with three replicas that no
crash could occur, while two brokers could not handle the load.
However, there was no producer slowdown observed in [Kre14], instead the
rate of messages per second stayed around 790.000 msg/s.

Replication msg/s before Consumer msg/s after Consumer
1 5000 4000
2 3500 2500
3 2600 2300

Additionally, running two consumers:
Speeds depicted are observed by the producer, not the consumer.

0 Consumers 1 Consumer 2 Consumers
3800 msg/s 3300 msg/s 2900 msg/s

28

4.2 Resilience Testing of Kafka

4. Effect of topic producers:
What happens if multiple producers are running:
Running multiple producers on the same or different topics has no impact on
performance.
Additionally, two producers with a halved number of running threads resulted
in the same performance as a single producer running on the full 8 threads.
According to [Kre14] one should have observed a higher throughput with mul-
tiple producers, but the testbed had a bottleneck at the threads usable for
production, therefore one could not have run those tests.

Speed of single producer with 8 threads: 4000msg/s
Producers in the table are running on 4 threads:

Topic 1 Producer running 2 Producers running
same topic 2000 msg/s 1700 msg/s

different topics — 1700 msg/s

5. Effect of external components:
Does running an external consumer results in a different performance:
An external consumer still results in a performance loss, just like the consumer
running on the same server would.

6. Effect of reduced resources:
Do pods have a slowdown or crash with fewer resources available to them:
Decreasing the memory or CPU available to the Kafka broker pods results in
a linear decrease of performance, with a halved performance at either halved
memory or CPU available. Additionally, decreasing the CPU results in in-
creased latency, while decreasing the memory to a certain point causes the
brokers to become unstable and prone to crashing.
In the case of pod failures due to too few memory, Kubernetes still restarted
them in a short timespan.

CPUs available msg/s latency
0.5 CPU 2000 4 ms
1.0 CPU 4000 1 ms
1.5 CPU 5000 1 ms

Memory available msg/s Crashes observed?
512 Mi 2000 Yes
768 Mi 2500 Yes
1024 Mi 4700 No
1536 Mi 4700 No

29

4 Evaluation

7. Effect of slower producers:
Does decreasing the producers speed has any impact on performance, if the
pods are throttled by their resources:
Running a producer with halved threads on a throttled pod with halved CPU
available results in the same performance as a producer with full threads on
the same pod.
It appears that the broker lowers the cap of messages per second to a point,
that even a slower producer will outspeed it.

8. Effect of containerization:
Does Kubernetes has any impact on the performance of Kafka:
A server that is just running a non-containerized Kafka server without Ku-
bernetes shows a significantly higher performance. Additionally, there was a
latency of at least 1ms present while running the Kubernetes tests, while the
non-Kubernetes server showed a latency of near 0ms.

Kubernetes used? msg/s Latency
No 8200 0 ms
Yes 5700 1 ms

9. Effect of disk usage:
Is there any observable impact of using a topic filled with many messages:
After filling a topic with data for around 24 hours with approximately 8GB of
data transferred it was tested if any slowdown would occur.
While the topic behaved when writing data onto it similarly in either a filled
or empty state, a higher slowdown was observed when running a consumer.
Additionally, the brokers restarted multiple times in the 24-hour window due
to crashes, but due to their replication, no messages were lost. It is also
important to note that while only around 8GB of messages were sent to the
topic, the servers themselves were completely filled up with logs produced by
Kafka causing a disk usage of almost 100% with the downside of generally
slowing the servers down. Therefore, it is recommended to either reduce the
rate of incoming messages, have a large enough disk to save the logs, or reduce
the general retention time to the Kafka topic to a reasonable minimum time
frame.

Data on topic No Consumer running Consumer running
Empty topic 2400 msg/s 2200 msg/s
8 GB written 2400 msg/s 1700 msg/s

30

4.2 Resilience Testing of Kafka

One can see that the tests themselves were not always concerned with introducing
a failure into the running system, as the failures themselves could just be broken
down to “stop pod from executing”. The goal was also to run a general performance
test of Kafka to uncover some causes of failures, which certainly appeared like the
instability of pods with too few resources.

31

5 Conclusion and Outlook

With the resilience tests done on the deployed microservices, it is time to conclude
this thesis and review everything. Here one can also find suggestions for additional
tests and possible difficulties with Kubernetes.

Comparison with a similar benchmark:
First of, originally the plan was to compare the results of load testing Kafka with
the results from a similar test done in [Kre14], but as those instructions to replicate
the tests provided in their GitHub page were either outdated or incomplete it was
not possible to run the tests on this specific server setup. Therefore, the values had
to be taken from the source directly, where there might be a vast difference in the
hardware.
The benchmarks themselves were not designed with Kubernetes in mind, but rather
using the built-in functionalities of replicating a Kafka server. The goal was to
compare if the observed behavior of Kafka during the resilience tests will also occur
in a normal Kafka installation, in order to either validate the test results or gain
additional insight into a replicated microservice. Without being able to replicate
those tests the numbers in the article could not be verified, but one can compare
the behavior of Kafka to the local tests.
The slowdown observed when using multiple replicas of a topic also occurred, but
while there also appeared a slowdown when running a consumer or multiple produc-
ers in Section 4.2 the Kafka instance running in the article showed a linear increase
in throughput with more producers or consumers. The throughput may have not
increased due to some bottleneck the testbed that causes a single producer or con-
sumer to already occupy all available resources, but the exact reason is unknown.
Either way, those tests still provided some ideas what to look out for when test-
ing Apache Kafka and may spark the interest of the reader to further look into
optimizing Kafka in a highly scaled environment.

Kafka testing and deployment on Kubernetes:
Another thing regarding Kafka, while the resilience and loads tests were performed
using JMeter, the Kafka Plugin for JMeter turned out to be rather basic with not
much room to tweak any values like the batch size of messages or how the connec-
tion should be handled. In the final stage of this thesis the Plugin “PepperBox”
was considered as an alternative, as it provided more configuration details regarding
Kafka and a generally better performance. Sadly the Plugin was discovered so late

33

5 Conclusion and Outlook

into the thesis that there was no time to completely redo every test with the new
setup. Therefore it may be recommended to reconstruct the tests found here again
with PepperBox.
As it was shown in Section 4.2, Kafka had a general decrease in performance when
running on Kubernetes, even without any additional replicated topics. One should
therefore consider if the added resilience and automatic maintenance of running
Kafka in Kubernetes is worth the speed loss. Additionally, while an increased num-
ber of replicas might help to keep the data redundant in case of server failures, one
would have to take even more performance losses. In my opinion, having a slower
but more automated setup that provides resilience to the deployed software would
be the better choice in most cases, unless one were to build a platform specifically
with a high request throughput in mind.

Kubernetes’ general experience:
While the whole setup of Kubernetes and the testbed went rather smooth, one of the
main problems encountered during this thesis were errors resulting from wrong net-
work configurations. Every time two components did not seem to function correctly
between each other, there was always the question if the components themselves
were not working or if there were some connection problems.
E.g., during the setup of the first mockup, an external database was to be used for
data generation, but as the database was placed on a server with no possible route
to the testbed, nothing worked until that networking flaw was discovered. Another
example would be the Kafka service reachability of the Kubernetes cluster from the
Jenkins server, while the service ran on the port of a single node. Every node needed
to have their same respective ports opened to connect with the Jenkins server, even
though there was never a connection established between Jenkins and the other two
nodes.

Resilience with Kubernetes:
Nonetheless, Kubernetes did meet the expectations in terms of provided resilience
and also surprised with a rather good usability. The resilience tests showed that
Kubernetes upheld the definition of resilience “the ability to recover from failures”,
during testing. Kubernetes will, however, not try to prevent those failures in the
first place, as their root cause may be found in the microservice itself or just the
server missing resources to meet a specific workload. While an increased number of
pod replicas may shorten the downtime between failures or even nullify them due
to a better load balance between servers, are those aspects of scalability and not
resilience.

34

Kubernetes regarding scalability:
While at the topic of scaled software, it may also be interesting to see how Ku-
bernetes can handle things when scalability, rather than resilience, is at the center
of attention. For this thesis the software was only ever deployed on three different
nodes, which can be considered a rather minimalistic setup.
While it was shown that Kubernetes can keep a system resilient and running at
that level, what would happen if the replication number increased tenfold, or if a
sudden increase in the workload means that the software has to scale quickly during
runtime? Could Kubernetes keep up, or is there a certain point where maybe the
whole system gets unstable and everything fails? Additionally, one could use the
scalability server setup to create a better stress test than used in this thesis, as only
a single server had to create the workload. But with more servers provided, one
could easily scale the load generation alongside the microservices to reach a critical
mass of requests per second.

Kubernetes as a DevOps tool:
Either way, Kubernetes turned out as a great tool to integrate in a DevOps pipeline,
with that development style also being one that was looked at during this thesis. The
ways Kubernetes can be automated and integrated into a platform like GitLab, can
really lift some work from the developers and make the development process more
efficient. While for this thesis there were only deployments of externally written
services, there was still some insight gained into the available tools for continuous
integrations with Kubernetes. Those tools may not be interesting enough for re-
search, but are definitively something that should be considered by every developer
that wants to deploy their projects.
It seems that a pipeline with more automated tools is, in the end, more efficient
than having multiple smaller pipelines. While one may want to approve each small
phase of the deployment and testing manually, it seems that if one has correctly
configured every tool to process the software written, there would be no need to ap-
prove those sub-phases. With a properly set up logging method, one can completely
automate the process after the source code is pushed onto the repository via the
DevOps pipeline.

35

List of Figures

2.1 Kubernetes service handling traffic with random distribution 9
2.2 Topic being split into 3 partitions with multiple producers writing

onto the same topic data . 11
2.3 Different consumers reading the same partition with multiple produc-

ers writing data . 12

3.1 Abstract overview of the Logistics Platform’s connections 13
3.2 Jenkins and Kubernetes setup . 22
3.3 Kubernetes cluster node setup with Kafka pods 23

37

Source Code Listing

3.1 Pod containing the Kafka client . 15
3.2 Deployment of the sql-to-kafka microservice 16
3.3 Overview of peristent volumes and their claims by the Kafka brokers 18
3.4 Parts of the Helm chart’s config file for Kafka 19
3.5 Example command for JMeter execution 22

39

Bibliography

[AD19] Arundel, John ; Domingus, Justin: Cloud Native DevOps with Ku-
bernetes. O’Reilly Media, 2019

[AJBB+19] Al Jawarneh, Isam M. ; Bellavista, Paolo ; Bosi, Filippo ; Fos-
chini, Luca ; Martuscelli, Giuseppe ; Montanari, Rebecca ;
Palopoli, Amedeo: Container Orchestration Engines: A Thorough
Functional and Performance Comparison. In: ICC 2019-2019 IEEE In-
ternational Conference on Communications (ICC) IEEE, 2019, S. 1–6

[HRJ+16] Heorhiadi, Victor ; Rajagopalan, Shriram ; Jamjoom, Hani ; Re-
iter, Michael K. ; Sekar, Vyas: Gremlin: Systematic resilience testing
of microservices. In: 2016 IEEE 36th International Conference on Dis-
tributed Computing Systems (ICDCS) IEEE, 2016, S. 57–66

[Jav18] Javadekar, Shrinand: Kafka on Kubernetes: From Evaluation to
Production at Intuit. (2018)

[Kre14] Kreps, Jay: Benchmarking Apache Kafka: 2 Million Writes Per
Second (On Three Cheap Machines). https://engineering.
linkedin.com/kafka/benchmarking-apache-kafka-2-
million-writes-second-three-cheap-machines, 2014. –
Accessed: 2020-05-07

[LKK+19] Lwakatare, Lucy E. ; Kilamo, Terhi ; Karvonen, Teemu ;
Sauvola, Tanja ; Heikkilä, Ville ; Itkonen, Juha ; Kuvaja, Pasi ;
Mikkonen, Tommi ; Oivo, Markku ; Lassenius, Casper: DevOps in
practice: A multiple case study of five companies. In: Information &
Software Technology 114 (2019), 217–230. http://dx.doi.org/10.
1016/j.infsof.2019.06.010. – DOI 10.1016/j.infsof.2019.06.010

[SD19] Shah, Jay ; Dubaria, Dushyant: Building modern clouds: using
docker, kubernetes & Google cloud platform. In: 2019 IEEE 9th Annual
Computing and Communication Workshop and Conference (CCWC)
IEEE, 2019, S. 0184–0189

[WFW+19] Wiedemann, Anna ; Forsgren, Nicole ; Wiesche, Manuel ;
Gewald, Heiko ; Krcmar, Helmut: Research for practice: the

41

https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
http://dx.doi.org/10.1016/j.infsof.2019.06.010
http://dx.doi.org/10.1016/j.infsof.2019.06.010

Bibliography

DevOps phenomenon. In: Commun. ACM 62 (2019), Nr. 8, 44–49.
http://dx.doi.org/10.1145/3331138. – DOI 10.1145/3331138

42

http://dx.doi.org/10.1145/3331138

	Abstract
	Abstract
	Table of Contents
	Introduction
	Contributions of this Thesis
	Results of this Thesis
	Related Work
	Structure of this Thesis

	Preliminaries
	Docker
	Automation and DevOps
	Kubernetes
	Docker Swarms in Comparison

	Kafka
	Resilience

	Methodology
	The Logistics Platform
	Deployments with Kubernetes
	Helm
	Kafka deployment

	Resilience Testing
	Load Testing
	Testbed Setup

	Evaluation
	Functionalities of Kubernetes
	Resilience Testing of Kafka

	Conclusion and Outlook
	List of Figures
	List of Source Codes
	Bibliography

