
Synthesis of Stream-based Monitors
on FPGAs
Synthese von strombasierten Monitoren
auf FPGAs

Masterarbeit

im Rahmen des Studiengangs
Informatik
der Universität zu Lübeck

vorgelegt von
Thiemo Bucciarelli

ausgegeben und betreut von
Prof. Dr. Martin Leucker

mit Unterstützung von
Malte Schmitz
Daniel Thoma

Lübeck, den 1. März 2020

Erklärung

Ich erkläre hiermit an Eides statt, dass ich diese Arbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

(Thiemo Bucciarelli)
Lübeck, den 1. März 2020

iii

Abstract In this thesis, a method to synthesise stream-based monitors on FPGAs
is presented. For this, a translation from specifications written in the language
TeSSLa to hardware descriptions is defined, which can then be synthesised by use
of CAD tools on an FPGA. Additionally, there are multiple optimisation phases
motivated and defined, with the purpose of improving the performance or resource
consumption on the hardware. This is implemented as a Scala program which takes a
TeSSLa specification and produces Verilog code which represents this specification
in hardware. This implementation is then used to evaluate the performance and
resource usage of the introduced concept and optimisation phases.

v

Kurzfassung In dieser Arbeit wird eine Methode zur Synthese von Strom-basierten
Monitoren auf FPGAs eingeführt und implementiert. Hierfür wird eine Übersetzung
von Spezifikationen in der Sprache TeSSLa zu Hardwarebeschreibungen definiert,
welche dann mittels CAD tools auf FPGAs synthetisiert werden kann. Zusätzlich
dazu werden mehrere Optimierungsphasen motiviert und definiert, mit dem Ziel die
Performanz oder Ressourcenverbrauch auf der Hardware zu optimieren. Dies ist
implementiert als ein Scala Programm, welches eine TeSSLa Spezifikation einliest
und Verilog Code generiert welcher diese Spezifikation in Hardware darstellt. Diese
Implementierung wird dann verwendet um die Performanz und den Ressourcenver-
brauch des eingeführten Konzepts und der Optimierungsphasen zu evaluieren.

vii

Contents

1. Introduction 1
1.1. Related Work . 5
1.2. Outline . 6

2. Basics 7
2.1. TeSSLa . 7

2.1.1. Syntax . 7
2.1.2. Semantics . 8
2.1.3. Recursive Definitions . 11

2.2. Synthesis . 14
2.2.1. Logic Synthesis and HDLs . 15
2.2.2. High-Level Synthesis . 15
2.2.3. Chisel . 15

3. General structure 17
3.1. Communication . 17

3.1.1. Ready-Valid Interface . 18
3.2. Atomic Modules . 21

3.2.1. Queues . 29
3.3. Translation . 35
3.4. IO Adapters . 37

3.4.1. Trace and Message Format . 38
3.4.2. Input-Adapter . 39
3.4.3. Output-Adapter . 41

4. Optimization 45
4.1. Stream Merging: Motivation and Definitions 45

4.1.1. Motivation . 45
4.1.2. Classification . 54

4.2. Stream Merging: Application . 61
4.2.1. Identity and Accessors . 61
4.2.2. Lift . 63

4.3. Bit Width Inference . 69
4.3.1. Algorithm . 71

ix

Contents

4.4. Queue Placement . 73
4.4.1. Placement . 74
4.4.2. Depth . 77

5. Implementation 79
5.1. Used Tools . 79
5.2. Architecture . 80
5.3. Chisel Modules . 82
5.4. Data Types . 84
5.5. Configurations . 86
5.6. Example . 86
5.7. Testing . 89

6. Evaluation 93
6.1. Performance: Setup . 93

6.1.1. Metrics . 97
6.2. Performance: Measurements . 98

6.2.1. Effect of IO . 98
6.2.2. Adapters . 101
6.2.3. Optimisation . 103

6.3. Area . 105
6.3.1. Bit Width Inference . 106
6.3.2. General . 108

7. Conclusion and outlook 109
7.1. Outlook . 110

A. Appendix 115
A.1. Pseudo-Codes . 115

x

1. Introduction

Nowadays, electronic systems can be found in many areas around us. Often, like
in avionics or railway applications, malfunctions can have severe outcomes and may
even endanger human lives. Hence a system — depending on the risk it may pose
to its environment — requires a certain level of safety to assure correct behaviour in
critical situations. One crucial aspect of this is the software verification whose objec-
tive is to ensure the specified functionality of the system. The common verification
tools can be split into two categories:

Static analysis focuses on the use of formal methods to analyse the system and
assure correctness of it (or parts of it). Prominent tools for this are Hoare
logic or Model Checking. With increasing size and complexity of systems —
for example concurrency or distributed systems — formal methods increase
drastically in their required workload, often making them unviable to prove
correctness of the whole system.

Dynamic analysis extracts its information from runs of the system. This allows for
a better scalability, at the expense of it not being an actual proof of correctness,
as it is usually not possible to cover all possibly existing runs. One category
of this is runtime verification. The basic idea of runtime verification is to
specifically evaluate a single run of the system in question, during runtime.
This is usually accomplished by describing the required properties by using a
logical formula, which can then be translated into a monitor. Since runtime
verification takes place during the execution of the system, it can also be used
to react to malfunctions accordingly and attempt to lead the system back to
a valid state, which is called recovery.

One possibility to define such monitors is by the use of specification languages,
which allow to describe a system on a high level and thus allow to directly define
the monitor itself.

TeSSLa (Temporal Stream-based Specification Language) [CHL+18] is a specifica-
tion language using stream-processing. Here, a stream is a timed sequence of discrete
events, where each event has a timestamp and a value, as shown in the following
example, showing two streams x which has events at timestamps 1 and 2, and y
with events at timestamps 1, 3 and 4:

1

1. Introduction

1 2 3 4
1 0x

7 2 6y

Events on a stream are shown as circles with their associated value, the timestamp
is written above. Note that the timestamps are not limited to be natural numbers,
they may also be from a continuous domain like R. Here and in following examples
however, natural number timestamps are used for the sake of simplicity. As you
can see here, events on streams are not limited to simple boolean values but can
be of more complex data domains, thus also allowing not only to represent logical
assertions but also more complex computations.

Streams denote a timed sequence of events, which, in case of an online analysis, may
not be yet known in their entirety at a specific point in time. Taking the previous
example, the stream x might only be known up to timestamp 2, meaning it is not yet
known if the stream has a value on timestamp 3 or not. This is called the progress
of a stream. Additionally, this progress can be inclusive or exclusive, which in our
example denotes the difference whether or not it is known for timestamp 2 itself if
there is a value or not. The following figure shows two versions of x, the first one
having an exclusive progress of 2, the second one with an inclusive progress of 2,
where the bar on their right side marks the progress of the stream:

1 2
1x

1 0x

As such a stream is also required to be totally ordered in their timestamps, the
progress for each stream is effectively denoted by the most recent timestamp of that
stream.

Each definition in TeSSLa is effectively a transformation from such a stream to
another stream. In the following, you can see an example1 for a TeSSLa specifica-
tion:
in temp: Events[Int]

def low := temp < 3
def high := temp > 8
def unsafe := low || high

out *

1taken from: https://www.tessla.io/

2

https://www.tessla.io/

Here, an input stream temp is expected, which is then checked to be in a safe range
between 3 and 8. An evaluation of this specification could then look as follows:

1 2 4 5
1 3 9 4temp
> ⊥ ⊥ ⊥low
⊥ ⊥ > ⊥high
> ⊥ > ⊥unsafe

The evaluation of those streams is event-based, which means that the occurrence of a
new event on stream temp triggers the computation of a new event for its dependent
streams. Furthermore, the already existing events can not be affected by that newly
occurring event. One further important aspect to note is that such a stream-based
approach does not define any sequential execution order, but instead models the
data-flow between operations. Such a data-flow oriented language is inherently
parallel, as can be seen in the data-flow diagram of the previous example:

temp

low
< 3

high
> 8

unsafe
||

Here you can see that the streams low and high are not dependent of each other
and can therefore be computed in parallel. Note that the parallelism described here
does not refer to data parallelism, but instruction level parallelism, meaning that
multiple different operations can be executed in parallel on the same data. This
property of TeSSLa allows to make use of parallelism significantly easier compared
to imperative languages. As previously described, each stream is a timed sequence,
containing their timestamps and progress explicitly. Therefore TeSSLa does not
require synchronisation of streams on a global level, but only locally. This allows for
asynchronous streams which are also independent in their data-flow to be computed
in parallel even when progressing at different frequencies, thus TeSSLa is also viable
for asynchronous or decentralised systems. [LSS+18, LSS+19a]

3

1. Introduction

While a purely software based solution can make use of the parallel properties of
TeSSLa, it can only do so on a high level, as for example by using thread- or task-level
parallelism by using multi-core or multi-processor systems. However, this requires
the use of features like scheduling of threads and communication or synchronisation
between tasks, entailing a significant amount of overhead, which may very well
exceed the gain from executing it in parallel. Especially when considering a very
fine-grained parallelism such an approach would most likely not yield any satisfying
results. Additionally, use cases like performing online analysis on debug data of
processors as discussed in [DDG+18], require a high-performance solution to be able
to process events with the required frequency.

A hardware solution would allow for an optimal use of TeSSLas inherent parallelism.
Furthermore, the previously described feature of TeSSLa not using global synchro-
nisation also allows to use pipelining. Referring to the previous example again, this
means that while unsafe is processing an event of a certain timestamp, low and high
can already process the following event. Another advantage of a hardware-based ap-
proach is that it would also prove beneficial to use cases where real-time constraints
apply, as ensuring such constraints is significantly more difficult in a software solu-
tion, since its execution time is a lot more fluctuant. This is due to the fact that the
execution time of a software solution is affected by many factors, like scheduling or
caching.

As described in [CHL+18], as long as TeSSLa operates only on streams with bounded,
constant-sized values, each operator only needs a constant amount of memory as
it does not require to store the entire stream, but only needs to store one single
data value at most. This is important for an implementation in hardware, as this
permits to implement the operators with constant space usage and thus only using
registers, without having to rely on random access memories. This allows for a more
performant implementation of TeSSLa specifications on hardware compared to us-
ing random access memory, as accessing random access memory takes significantly
longer than accessing a register.

However, compared to a software-based solution, an implementation in hardware
comes at the expense of flexibility. A popular compromise for this is the use of
FPGAs, which allow to define hardware in a reconfigurable way, such that some
flexibility is being retained.

The goal of this thesis is to describe an automated synthesis of arbitrary TeSSLa
specifications to FPGAs. Specifically, this is accomplished by defining TeSSLa op-
erators as hardware modules which are responsible for computing the according
events. Furthermore, we introduce queues, which handle storing and dispatching of
events. This effectively forms a separation of modules into functionality and storing
modules. This separation of concerns is essential for later optimisations. Addition-
ally, a communication interface and protocol for communicating between modules

4

1.1. Related Work

is introduced. Afterwards, through analysing properties and inferring information
on TeSSLa specifications, multiple different optimisation phases are defined, with
aiming to improve the performance and area used on the hardware. In particular:

• Some streams can be known to only have events at exactly the same times-
tamps. This allows to perform optimisations with the goal of reducing syn-
chronisation overhead between those streams, as they are effectively already
synchronised on their logical time.

• Depending on the used operators and potential additional metadata, it is pos-
sible to infer required and sufficient bit widths for values. This may allow to
reduce the amount of resources required on the hardware.

• Definition of a hardware circuit always comes with timing constraints, as a
signal can not travel arbitrary distances within a single clock cycle. As queues
are used to store events in between stream operations, their placement has a
direct impact on the path lengths and thus timing of signals. Additionally,
if an event is led through multiple paths where one path requires more clock
cycles than the others, this path would act as a bottleneck. Therefore, the
deduction of a useful depth for queues is crucial as well.

The discussed translations and optimisations have been implemented in the con-
text of this thesis. The implementation allows to automatically generate hardware
descriptions of TeSSLa specifications for a specific hardware setup, which are then
benchmarked in respect to their throughput and resource usage. Additionally, a
second, slightly different setup was realised which allows an accurate measurement
of the effect of the optimisation phases on the overall performance. Those measures
are then used to evaluate the concept and to conclude future work.

1.1. Related Work

In [DDG+18] and [DGH+17], a online analysis for trace data in embedded systems
is described which defines a configurable, low-level interpreter for TeSSLa specifi-
cations on FPGAs. This approach allows reconfiguring the hardware for different
specifications without repeating the synthesis process. The approach taken in this
thesis however aims to directly synthesise TeSSLa specifications on hardware, in
order to maximise performance and optimally use parallel properties of TeSSLa.

There have been approaches to synthesise monitors from logics like STL (Signal
Temporal Logic) [MN04] onto FPGAs as well. [JBG+15][SJN+17] However, those
approaches are fundamentally different as they don’t use the concept of event stream
processing.

5

1. Introduction

1.2. Outline

The thesis is divided into the following main chapters:

Chapter 2 formally introduces the specification language TeSSLa with its syntax
and semantics. Furthermore, different approaches to designing hardware are
analysed and the here taken approach is motivated. Additionally, FPGAs,
high-level synthesis and HDLs are introduced.

Chapter 3 describes the general idea on how to represent a TeSSLa specification
as hardware. This is accomplished by splitting the operators into separate
modules which can then be combined into one main module describing the
initial specification. A significant focus lays on the definition of the atomic
modules, the introduction and usage of queues, and the description of the
communication between modules.

Chapter 4 focuses on the optimisation of the concept by introducing three phases:
Stream merging, bit width inference and queue placement.

Chapter 5 then highlights the implementation of the previously defined concept.
This also includes an introduction of the used tools and languages, a visualised
overview of the compiler pipeline, the test framework used and a full example
on how the compiler can be used.

Chapter 6 evaluates the described implementation in respect to performance and
area used, by introducing appropriate benchmarking setups and then evalu-
ating different specifications for those aspects. A high focus here is on the
evaluation of the optimisation phases, thus mostly comparing an optimised
specification with its non-optimised counterpart.

6

2. Basics

In this chapter, the language TeSSLa is formally introduced with its syntax, se-
mantics and properties relevant for this thesis. Specifically, recursive definitions in
TeSSLa are being discussed as those are of high relevance for the further chapters
of this thesis, for example assuring that there are no combinatorial loops occurring
or when defining the different optimisation phases. Additionally, logic synthesis
and high-level synthesis are being introduced and different approaches are being
discussed.

2.1. TeSSLa

After shortly introducing TeSSLa and its concepts in the previous chapter, it will
be formally introduced here with its syntax and semantics. Specifically, the subset
of TeSSLa without the operator delay is used here. Note that the syntax used in
the previous chapter differs from the one introduced here, as that was the syntax of
the already existing TeSSLa front-end1, which allows to define TeSSLa specifications
with definitions of input and output streams, types, annotations and macros. This
front-end will also be used in Chapter 5 and Chapter 6. Examples depicted in the
following chapters use either of both syntax.

The following definitions are adapted from [CHL+18], and figures visualising streams
are adapted from [ST20].

2.1.1. Syntax

A TeSSLa specification ϕ is defined in [CHL+18] as a set of definitions of the form
x := e with x ∈ V and V being a finite set of variable symbols, where

e ::= nil | unit | x | lift(f)(e,. . . , e) | time(e) | last(e, e)

Additionally, the notion of input variables for every variable not occurring on the
left-hand side and flat for a specification without nested expressions are adapted as
well.

1https://www.tessla.io/

7

https://www.tessla.io/

2. Basics

2.1.2. Semantics

The TeSSLa semantics are defined in [CHL+18] over an abstract time domain T as
follows:

Definition 2.1 (Time Domain [CHL+18]). A time domain is a totally ordered semi-
ring (T, 0, 1,+, ·,≤) that is not negative, i.e. ∀t∈T0 ≤ t.

Additionally, such a time domain can then also be extended to T∞ = T∪{∞} with
∀t∈Tt <∞.

Definition 2.2 (Event stream [CHL+18]). An event stream is defined over a time
domain T and a data domain D as a finite or infinite sequence

s = a0a1 · · · ∈ SD = (T · D)ω ∪ (T · D)+ ∪ (T · D)∗ · (T∞ ∪ T · {⊥})

where a2i < a2(i+1) for all i with 0 < 2(i+ 1) < |s|.

Intuitively, an event stream therefore describes an alternating sequence of times-
tamps and values, where the timestamps are strictly monotonic. Therefore, this
explicitly denotes up to which timestamp a stream is known, which is called the
progress. This progress can be inclusive or exclusive, depending on whether or not
the value for the current timestamp is known. As an example:

s1 = 1 1 4 ⊥
s2 = 1 1 4
s3 = 1 1 ∞

Here, the timestamps are marked in bold for easier readability. All three streams
shown here have a value 1 at timestamp 1. The stream s1 has an inclusive progress
of 4, as it is already known not to have a value at timestamp 4, contrary to s2 which
has an exclusive progress of 4. The stream s3 has an infinite progress, denoting that
it is fully known and does not have any values after timestamp 1.

Also, as described in [CHL+18], an event stream s can alternatively be seen as a
function s ∈ T → D ∪ {⊥, ?} where s(t) = d if the stream s at time t has value d,
s(t) = ⊥ if it has no value at that timestamp, and s(t) =? if it is unknown.

Definition 2.3 (TeSSLa semantics [CHL+18]). For a specification ϕ of stream def-
initions yi := ei, every ei can be interpreted as a function from input streams
s1, . . . , sk ∈ SD1 × · · · × SDk

and output streams s′1, . . . , s′n ∈ SD′1 × · · · × SD′
n by

composition of primitive functions, such that for fixed input streams si, . . . , sk

JeiKsi,...,sk
∈ SD′1 × · · · × SD′

n → SD′
i

8

2.1. TeSSLa

which can then be composed into a function over all definitions as follows:

Je1, . . . , enKsi,...,sk
∈ SD′1 × · · · × SD′

n → SD′1 × · · · × SD′
n

The semantics of the specification ϕ can then be denoted as the least fixed-point of
this function:

JϕK ∈ SD1 × · · · × SDk
→ SD′1 × · · · × SD′

n

JϕK(s1, . . . , sk) = µ(Je1, . . . , enKs1,...,sk
)

The computation of the fixed-point here is required as stream definitions in TeSSLa
can also be recursive. This will be shown by use of an example after introducing the
primitives. In the following, the primitive functions making up JeiKsi,...,sk

are listed
as defined in [CHL+18]:

nil is a constant denoting the completely known stream without any events

JnilK =∞ ∈ SD

unit is a constant for the stream with only a single event at timestamp zero

JunitK = 0�∞ ∈ SU

where U = {�} is used as the unit type, which is used for streams with only
a single value.

time returns the stream of timestamps of its encapsulating stream e. The semantics
of the time operator is defined as Jtime(e)K = time(JeK) where time is a
function ∈ SD → ST with time(s) = s′ such that

∀ts′(t) = t⇔ s(t) ∈ D ∀ts′(t) = ⊥ ⇔ s(t) = ⊥

The following example shows a stream x which has events at the timestamps
1, 3 and 4 and the time(x):

1 3 4
x

1 3 4time(x)

lift is used to lift an n-ary function f on values to streams. In the following, the
notation A1 × · · · × An� B is used to describe the set of functions where all
Ai and B have been extended by ⊥.

9

2. Basics

The semantics of a binary lift is defined as Jlift(f)(e1, e2)K = lift2(f)(Je1K, Je2K)
with lift2 ∈ (D1×D2 � D′)→ (SD2 ×SD2 → SD′) with lift2(f)(s, s′) = s′′ such
that

∀t,d∈D′s′′(t) = d⇔ (s(t) ∈ D1 ∨ s′(t) ∈ D2) ∧ known(t) ∧ f(s(t), s′(t)) = d

∀ts′′(t) = ⊥ ⇔ (s(t) = ⊥ ∧ s′(t) = ⊥) ∨ known(t) ∧ f(s(t), s′(t)) = ⊥
where known(t) := s(t) 6=?∧ s′(t) 6=? denotes if the stream is known up to the
given timestamp.

The definition of binary lift can then be extended to define n-ary lifts for n > 2
as described in [CHL+18].

Also, a unary lift is defined as Jlift(f)(e)K = lift1(f)(JeK) where lift1 ∈ (D�
D′)→ (SD → SD′) and lift1(f)(s) = s′ such that

∀t,d∈D′s′(t) = d⇔ s(t) ∈ D ∧ f(s(t)) = d

∀ts′(t) = ⊥ ⇔ s(t) = ⊥ ∨ s(t) ∈ D ∧ f(s(t)) = ⊥

An example usage for lift is shown in the following example. Here, an operator
merge, which merges two streams into one, is defined as follows:

merge(x, y) = lift(f)(x, y)
f : D⊥ × D⊥ → D⊥

f(a, b) =
b if a = ⊥
a else

Applying this stream operation on two example streams x and y could then
look like follows:

2 4x

1 3y

2 1 4merge(x, y)

last takes two streams as input and returns the last known value (exclusively) of
the first stream at the timestamps of the second. The semantics of last are
defined as Jlast (e1, e2)K = last(Je1K, Je2K) where last ∈ SD × SD′ → SD and
last(s, s′) = s′′ such that

∀t,d∈Ds′′(t) = d⇔ s′(t) ∈ D′ ∧ ∃t′<ts(t′) = d ∧ noData(t′, t)
∀ts′′(t) = ⊥ ⇔ s′(t) = ⊥ ∧ defined(t) ∨ ∀t′<ts(t′) = ⊥

with

noData(t, t′) := ∀t′′|t<t′′<t′s(t′′) = ⊥

10

2.1. TeSSLa

defined(t) := ∀t′<ts′′(t′) 6=?

The following example shows the result of last applied to the two streams x
and y:

1 2 3 4x

y

1 3 3last(x, y)

With last allowing to access previous values, and using lift to lift arbitrary functions
on values to streams, this set of operators already provides a sufficient expressiveness
for many use cases. As discussed in [CHL+18], TeSSLa without the delay operator as
handled here, is able to describe every function f ∈ SD1×· · ·×SDk

→ SD′1×· · ·×SD′
n ,

as long that function is monotonic (order preserving), continuous (preserving the
supremum), timestamp conservative (not introducing new timestamps) and future
independent (outputs are only dependent on current and previous events).

2.1.3. Recursive Definitions

Streams in TeSSLa can also be recursively defined. However, some recursive def-
initions, like for example x = x do not have a unique fixed point. Therefore, the
notion of a well-formed specification was introduced in [CHL+18], declaring that a
specification is well-formed if every cycle in the dependency graph contains at least
one delayed labelled edge, and that edges to the first argument of a last operator
are labelled with delayed. Furthermore, it is stated that the least fixed point of such
a specification is also the only fixed point.

For the rest of this thesis, specifications used are always considered to be well-formed,
which means that a recursive definition is only possible using the first argument of
the last operator.

Considering the following example specification:

count = merge(last(count, x) + 1, 0)

Here you can see that the stream count is defined recursively by referring to its own
previous value. This value is then increased by one, and the use of the previously
introduced merge allows to merge it with a constant 0. This stream therefore imple-
ments a counter, keeping count of the amount of events occurred on x. Note that,
for the sake of simplicity, the 0 is here assumed to be lifted to a stream 0 0 ∞, which

11

2. Basics

can be obtained by use of lift with unit. Additionally, for this and future examples,
arithmetic operations like + are interpreted as lift(total(+))(x, y) where

total(f)(a, b) =
f(a, b) if a 6= ⊥ ∧ b 6= ⊥
⊥ else

which applies the function f to the inputs only if both are defined, requiring both
inputs to occur on the same timestamp. Another possibility would be to interpret
such operators with signal semantics, by applying it to the last known values of each
stream. This would not require the events of both streams to be at the exact same
timestamp, which is a more natural interpretation of adding two streams. Such a
signal lift operator can be implemented by using a combination of lift with last.
However, this is omitted here as it is of no direct relevance for the concepts described
in the following chapters. The implementation supports lift with signal semantics
as well, as discussed in Section 5.3.

The dependency graph of this specification looks as follows:

x

last

lift
+

const
0

lift
merge

Such a recursive definition can be evaluated by sending the progress and values
through the dependency graph until a fixed point is reached. The evaluation process

12

2.1. TeSSLa

2 4x

00
last(c, x)

last(c, x) + 1
c

(a) Initial streams

2 4x

00
last(c, x)

last(c, x) + 1
0c

(b) Progression up to t1

2 4x

00
0last(c, x)
1last(c, x) + 1

0 1c

(c) Fixed-point

2 4x

00
0last(c, x)
1last(c, x) + 1

0 1c

(d) Progression up to t2.

2 4x

00
0 1last(c, x)
1 2last(c, x) + 1

0 1 2c

(e) Fixed point

2 4x

00
0 1last(c, x)
1 2last(c, x) + 1

0 1 2c

(f) Final result

Figure 2.1.: Example evaluation for counter.

13

2. Basics

is visualised in Figure 2.1 with the example of a stream x = 1 2 3 4 ∞. The
occurrence of an timestamp 1 on x allows last(c, x) to progress up to timestamp
1 (exclusive), since at that point it is known that no earlier events occur on x.
Specifically, for timestamp 0, last(c, x) evaluates to ⊥, allows the dependent streams
to be computed as well, and then finally count(0) = 0. At this point, count, being
the left-hand side input of last, only has a progress of 0, while x has a progress of
1. The semantics of last, in particular x(t) = ⊥∧defined(t)⇒ ∀t last(c, x)(t) = ⊥,
cause the stream to increase its progress by propagating it through the cycle up to
1. This is shown in 2.1a.

After the progress has been propagated through, the value for last at 1 can be
computed, and with this also its dependent streams (2.1b). Similarly, the progress
3 at x then causes that progress to be propagated through the cycle again, and c(3)
can be evaluated.

2.2. Synthesis

As the goal of this thesis is to define a translation from TeSSLa specifications to
FPGAs, a rough overview on FPGAs is given, followed by different approaches on
how such a synthesis could be performed.

In hardware design, synthesis in general describes the process of transforming a
higher level description of a system into an actual electronic circuit representing it.
There are multiple different levels of abstraction, where logic synthesis and high-level
synthesis are probably the most prominent.

An FPGA (field-programmable gate array) is an integrated circuit which consists
of an array of reconfigurable logic blocks. Those configurable logic blocks (CLB)
usually contain multiple look-up tables (LUT) which can be used to implement logic
functions, and other components such as flip-flops. Those CLBs are then intercon-
nected through routing channels, which are configurable through switch blocks at
each intersection. This allows to define how data should be routed through the
logic blocks. Additionally, there are specialised I/O blocks for external connections.
FPGAs can be programmed by use of a bit-stream, which is usually automatically
generated by a CAD tool, allowing description of the hardware on a higher level,
which is then synthesised to a bitstream for the FPGA. However, those tools mostly
only support a very specific set of languages, mainly Verilog and VHDL.

14

2.2. Synthesis

2.2.1. Logic Synthesis and HDLs

In logic synthesis, the input is a description of the hardware on register-transfer level
(RTL), describing the circuit to be implemented. The logic synthesis then is the
transformation of this circuit definition into a definition on gate-level, describing
a net of logic gates implementing the described functionality. Languages used to
describe hardware on this level are called hardware description languages (HDL),
where well-known examples are Verilog and VHDL.

A significant difference between HDLs and programming languages are that HDLs
contain a notion of time. The behaviour of a system is thus defined over time,
which is essential for defining a hardware circuit. Also, since inherent concurrency
is one of the main features of hardware, HDLs are usually data-flow instead of
control-flow oriented and provide tooling specifically designed to support concurrent
implementations. The design is usually split into modules with defined input and
output ports and some attached behaviour.

2.2.2. High-Level Synthesis

High-level synthesis, or also called behavioural synthesis aims to design the system
in a more abstract way, focusing more on the architecture and interfaces than on
implementation details. This is especially useful for architectural exploration on
more complex designs, as it allows quick prototyping, simulation and validation of
the design compared to using an HDL. One framework often used in this context is
SystemC, which is a library for C++.

2.2.3. Chisel

Chisel [BVR+12] is a domain specific language integrated as a framework into the
functional programming language Scala. Contrary to SystemC however, Chisel is not
used to describe the system on a behavioural level, but instead directly describes
the logic and wiring similar to VHDL or Verilog. The advantage of Chisel over
other HDLs is that, as a framework for Scala, it allows definition of hardware as
meta programming while having access to all language features of Scala as well, such
as higher order functions or type parameters. This allows defining hardware in a
flexible and easy manner, while still maintaining control over implementation details
like in conventional HDLs. The Chisel code written in Scala can then be compiled
into Verilog code, which is useful as Verilog is widely supported by synthesis tools.
Therefore, Chisel can be seen as a framework to generate parametrised Verilog code
within Scala through meta programming.

15

2. Basics

A significant drawback of defining an entire system using high-level synthesis is
that the increased amount of abstraction also shrouds the automatically generated
implementation, which may lead to unsatisfactory results as discussed in [htt]. As
synthesising individual TeSSLa operators does not come with major architectural
challenges and as it would be favourable to maintain control over implementation
details, there is no incentive to use high-level synthesis for our purpose. Additionally,
defining the resulting HDL code through meta programming would be useful, as the
goal is to translate arbitrary specifications and thus many aspects of the translation
requiring to be parametrised on a meta level. Therefore, Chisel has been chosen for
the implementation in Chapter 5. Hence, for the following chapters, modules are
being described in an HDL-like pseudo-code.

16

3. General structure

The TeSSLa dependency graph already provides a data-flow oriented view on the
specification. Thus, an intuitive way to model a specification into hardware would
be to define each stream operation as a module, and their dependencies as communi-
cation channels. This way, the data-flow diagram could nearly directly be translated
into the module graph, by replacing every operator in the graph with the according
module. However, there are four main tasks to take into account here:

• The communication between the submodules needs to be defined, such that
the progression of the streams represented by each module can be properly
defined.

• The atomic modules need to be defined.

• The output of one module may be read by multiple other modules. This needs
to be considered as there is no global synchronisation, therefore the targets may
read the outgoing event asynchronously. This should be supported without
blocking the source module.

• A hardware description also poses timing constraints to the design, as a signal
can not traverse arbitrary distances within a single clock cycle. Depending on
the complexity of the specification it may therefore be required to buffer values
in between to be able to resume their processing in the next clock cycle.

3.1. Communication

The main requirement posed to the communication between modules is that there
needs to be some form of handshake or agreement between the communication part-
ners, signalling that the transfer has been completed. This is necessary since there
is no global synchronisation, and modules it cannot directly be foreseen when a
module is actually outputting a new event or ready to process the next incoming
event. A very popular choice for this purpose is the ready-valid interface, which is
described in the following.

17

3. General structure

3.1.1. Ready-Valid Interface

The ready-valid interface extends each outgoing data port d by another outgoing
flag v and an ingoing flag r. Those two ports are intended to signal whether the
data laying at d of the source is valid (v), and if the target is ready (r) to read the
value. The use of those two flags allows the definition of simple two-way handshake
protocols. This type of communication is also used in the AXI interface[axi17].

d
v
r

d
v
r

A B

Figure 3.1.: Ready-Valid Interface

Figure 3.1 illustrates a simple example usage of the ready-valid interface. In this
case, a data value should be transferred from module A to B. The communication
channel features three wires:

• The data wire d, which is used to transfer the data from A to B

• The valid flag v, signalling B that the data on d is valid

• The ready flag r, signalling A that B is ready to process the incoming data

However, in the context of TeSSLa each stream has timestamps and values to trans-
mit, which is not covered so far. In the following, different options of how to imple-
ment this are being discussed. As the properties and structure of a TeSSLa stream
play an important role in evaluating those options, remember that a TeSSLa stream
is an alternating sequence of timestamps with values. Additionally, note that the
notion of progress defines up to which timestamp the stream is currently known.

1. One option would then be to transfer timestamps and values as a tuple over
one channel. However, keeping the evaluation of recursive definitions in mind,
where the progress was effectively decoupled of the value by being propagated
through the cycle until a fixed point is reached, shows that handling timestamps
and values as associated tuples would be problematic.

2. Another possibility would be to transfer timestamps and values over one single
data channel d. This would stay close to the formal definition of a stream,
by transferring timestamps and values in an alternating manner, thus also
not requiring any further flag to identify which of both the current value is.
However, values and timestamps will usually not be of the same data type,

18

3.1. Communication

thus requiring different bit lengths and interpretations for them. This would
complicate the implementation as type casts and padding of values would be
required.

3. Timestamps and values could also be transferred over separate channels, while
sharing the r, v flags and using a third flag to differentiate between timestamps
and values. This is significantly easier to implement as they are handled sep-
arately, however the drawback here is that the channel requires a higher bit
width compared to the previous option.

Additionally, depending on how the input is being generated it may very well be that
a timestamp and its associated value are both present at the same time. Being able
to properly handle this would naturally increase the performance of the resulting
design as well. However, for the sake of simplicity and consistency to the formal
definition of streams and the TeSSLa operators, this is not directly considered yet.
Therefore, the third option is chosen for this implementation, while the extension
to support presence of both inputs at the same time is mentioned in the outlook
in Chapter 7. This solution also allows to perform a progress update simply by
sending multiple timestamps after each other. As an example, if a stream x would
at a certain point in time be x = 0�5�6⊥, the last transmitted data was the
timestamp 6. Updating the streams progress to x = 0�5�7⊥ would then result in
sending the timestamp 7.

The here chosen interface is visualised in Figure 3.2, where

• The wire t contains the current timestamp value

• The signal t? signals if the current value is a timestamp.

d
t
t?
v
r

d
t
t?
v
r

A B

Figure 3.2.: Ready-Valid Protocol with a timestamp wire

The interface so far could also have been realised by using AXI instead. However,
one very important limitation to AXI is that the ready-valid handshake has to be
performed for every data transfer. This is an issue since the progress of a stream,
denoted by its timestamp, can be transmitted even if the r flag of the target module
is not set. As an example, given the stream x = 013 with an exclusive progress
of 3. The occurrence of timestamp 3 at this point also provides the information
that there will be no event on timestamp 2 occurring. While this information is

19

3. General structure

being processed, it may be that the stream progresses further to x = 017, signalling
that there will be no events up to timestamp 7. Therefore, this is providing more
information than the previous value, meaning that instead of finishing to process the
previous one and then starting to process this new input, the new input can just be
taken over directly. This optimisation requires allow timestamps to be overridden,
which can not be accomplished with AXI.

Furthermore, the implementation of modules communicating with such a two-way
interface needs to ensure that no combinatorial loops can occur, which would happen
if v and r are defined in a way that they r is generated by a combinatorial circuit
from v and vice versa, which is visualised in Figure 3.3. In other implementations

v
r

v
r

Comb.
Circuit

Comb.
Circuit

Figure 3.3.: A combinatorial loop using r and v.

like AXI [axi17], this is solved by only allowing v to be combinatorially generated
from r, but not vice-versa. The same concept is also adapted here, although by
allowing only r to be generated from v. This then results in the following guidelines
for the communication between modules:

• Neither r nor v can be unset after being set, until the data transfer is complete

• The transfer is assumed to be performed at the rising edge of the next clock
cycle when r and v are both set.

• The output of the target module sets the value of t according to the progress
of the stream, even without r being set.

• v is not combinatorially generated from r

• The data transferred is consistent with the formal definition of TeSSLa streams,
in particular the timestamps being strictly increasing and values are not over-
riding each other.

The following modules comply with those rules, and it is assumed that all modules
they communicate with do so too.

20

3.2. Atomic Modules

3.2. Atomic Modules

After the discussing the communication, the next step is to define modules repre-
senting the TeSSLa operators. As described previously, the idea is to have each
primitive stream operation of TeSSLa replaced by a module which represents that
operator while retaining their semantics. Specifically, the primitive operations intro-
duced in Subsection 2.1.1 are time, lift and last. In the following sections, a module
definition will be derived from their respective semantics for each of those primitives.
Those modules are described and explained step by step; The full pseudo-code for
each module can then be seen in Chapter A.

Time

Intuitively speaking, the semantics of time introduced previously defines it as a
unary function which returns a stream with the same timestamps as the input
stream, but with the values replaced with the timestamp itself. As a unary operator,
the respective module only requires a single input and output port. Additionally,
as the input and output are both streams, they are using the ready-valid interface
extended by timestamps which was introduced previously:
port in {...}
port out {...}

Furthermore, the module needs to store the last seen timestamp to be able to emit
it as a value when a value occurs at the input, requiring a register to store it in.
If there is a timestamp laying at the input, then this is obviously the most recent
timestamp, otherwise the value in the register is still the most recent one.
register timeReg = 0

wire time = if in.valid && in.isTimestamp
then in.timestamp else timeReg

timeReg := time

As time only manipulates the value without filtering or adding elements to the
stream, the ready, valid and isTimestamp signals of its ports can just be
forwarded. The value as well as timestamp signals of the output are simply
the most recent timestamp time. This results in the full module shown in Listing
A.1.

21

3. General structure

Lift

Intuitively, lift applies the function f on the current values of its two input streams.
There are multiple things to consider here:

• At least one of the two inputs has a value (there are no events generated)

• The values have to be of the same timestamp. This requires synchronisation
between both input streams on their timestamps.

• The progress of both streams needs to be known up to this timestamp included,
since otherwise the value may still change.

• As the domain and range of f are extended by ⊥, f can also filter out values
depending on the input.

Apart of the two input streams, lift also takes the function f as parameter. As this
is an arbitrary function and its implementation therefore varies depending on the
context, it is beneficial to separate the function from the rest of the lift module.
This can be accomplished by defining another port for the function, which has
outgoing wires for both input values and an ingoing wire for the result of the function.
This then allows to attach functions onto existing lift modules dynamically. For
simplicity, it is assumed that the function computes within one clock cycle, thus not
requiring any two-way communication. This results in the following IO definition:
port a {...}
port b {...}
port op {
in aValid := ...
in a := ...
in bValid := ...
in b := ...
out outValid :=
out out :=

}
port out {...}

As previously noted, the semantics of lift require a synchronisation between both
operands on their logical time, since it is required that both streams are known
up to the current timestamp. This can be realized by keeping one stream from
progressing until the second one caught up to it with its progress, by setting the
ready flags accordingly. First off, to keep both inputs synchronised, assert that the
ready signal of an input should only be set if both inputs are currently valid:
a.valid && b.valid

22

3.2. Atomic Modules

Furthermore, either one of the following conditions has to hold true, which are
defined here for a, whereas the conditions for b are analogue:

Progress: Since lift requires both operands to be known up to the current times-
tamp, the progress of lift is the lowest progress of its inputs. As the progress
is also emitted as output, the ready signal of the output has to be set as well.
Additionally, to allow the input with the lower progression to catch up, keep
the other input from progressing until their timestamp values are the same.
This results in the following constraint for a:
wire progress = a.isTimestamp && b.isTimestamp
wire progressA = a.timestamp <= b.timestamp
progress && progressA && out.ready

Value: If the input is a value !a.isTimestamp, it can be forwarded to the op-
erator op. Asserting that the valid flag of that input is set is not required
anymore, as both inputs are already synchronised by asserting that both are
valid. Under the previously made restriction that the calculation of op finished
within one clock cycle, there are two possible scenarios:

• The function call produced a resulting value, so op.outValid is set. In
this case, since there is a value to emit and the input is not stored in any
register, the output needs to be ready as well, otherwise the value would
be lost.

• The function call filtered the value out, meaning that op.outValid is
false. Here, no output is produced, therefore the input can simply be
consumed.

This results then in the following assertion:
!a.isTimestamp && (!op.outValid || out.ready)

In conclusion, the circuit for the ready flag of a looks as follows:
ready := hasInput && (progress && progressA && out.ready

|| !a.isTimestamp && (!op.outValid || out.ready))

The input values can then simply be forwarded to the op port:
port op {

aValid := !a.isTimestamp
a := a.value
bValid := !b.isTimestamp
b := b.value

}

23

3. General structure

As previously noted, the progress of lift is the lowest progress of both inputs:
if progressA then a.timestamp else b.timestamp

The resulting value is then the result of applying the function f to the values of
both input streams at the current timestamp. Since the synchronization was already
taken care of and under the assumption that op calculates the function f , the wire
op.out contains the value of the resulting stream for this timestamp.

The valid flag should then be set if both inputs are synchronized and there is
either a progress or a value to emit. This results in the following definition for the
out port:
port out {

valid := hasInput && (progress || op.outValid)
isTimestamp := progress
value := op.out
timestamp := if progressA then a.timestamp else b.timestamp

}

The full pseudo code of lift can be seen in Listing A.2.

Unary Lift

A unary lift could also be defined by using the binary lift. However, this is unde-
sirable as a separate definition of a unary lift is significantly less complex, as shown
in the semantics of TeSSLa in Subsection 2.1.2. In particular, in the case of lifting
a unary function, there is no need for synchronisation between operands. For a
hardware module, this means that no comparison of timestamps is required, which
results in less logic cells required for the module, dependent of the bit width of
timestamps. This plays also a major role in the first optimisation phase shown in
Section 4.1.

The unary lift module uses a single input port a and output port out, and similar to
the binary lift module, a port op as interface for the synthesised function f , which
uses the wires a, out and outValid. Note that contrary to the binary lift, the
operator port does not require a wire to determine if the input is valid, as there is
only one input.

The input can then be consumed if one of the two following cases apply:

• The output is ready, in which case the input can be processed.

24

3.2. Atomic Modules

• The output is not ready, but the value has been filtered out, meaning that the
input was a value !a.isTimestamp and the operator result not being valid
!op.outValid

This results in the following definition of the input:
port a {

ready := out.ready ||
!a.isTimestamp && !op.outValid

}

The input is simply forwarded to the operator port:
port op {
a := a.value

}

The output is then valid if:

• The input is valid timestamp, marking a progress update

• The input is valid and the operator did not filter the value out, meaning that
op.outValid holds

The timestamp is then forwarded from the input, and the value is taken from the
operator result, concluding in the following definition for the output:
port out {
valid := a.valid && (a.isTimestamp || op.outValid)
isTimestamp := a.isTimestamp
value := op.out
timestamp := a.timestamp

}

Again, the full pseudo code for this module can be seen in Listing A.3.

Last

As a reminder, the semantics of last are defined as Jlast (e1, e2)K = last(Je1K, Je2K)
where last ∈ SD × SD′ → SD and last(s, s′) = s′′ such that

∀t,d∈Ds′′(t) = d⇔ s′(t) ∈ D′ ∧ ∃t′<ts(t′) = d ∧ noData(t′, t) (3.1)
∀ts′′(t) = ⊥ ⇔ s′(t) = ⊥ ∧ defined(t) ∨ ∀t′<ts(t′) = ⊥ (3.2)

25

3. General structure

with

noData(t, t′) := ∀t′′|t<t′′<t′s(t′′) = ⊥
defined(t) := ∀t′<ts′′(t′) 6=?

Intuitively, the last operator returns the last known values of the first stream at the
timestamps of the second one. For the following deductions, it is important to be
aware of the edge case where both streams have an event at the same timestamp,
as shown here at the occurrence of value 4 on x:

1 2 3 4x

y

1 3 3last(x, y)

As you can see, the last known value is evaluated excluding the current timestamp.
This is relevant as in this case, the value 3 has to be emitted, and the new value 4
has to be stored.

Since last is a binary operator, it requires two input ports (here called value and
trigger, since the first stream provides the values for the result while the second
stream triggers the output of events) as well as one output port. Hence the IO of
the last module looks as follows:
port trigger {...}
port value {...}
port out {...}

The terms s(t′) = d and noData(t′, t) in (3.1) imply that last needs to know the last
seen value (since there are no values between the timestamp t′ and t, the value d is
effectively the most recent value), thus requiring a register to store that value.

Additionally, (3.1) requires a comparison of timestamps t and t′. However, contrary
to lift the timestamps do not require to be synchronised, hence instead of blocking
both inputs, the timestamps of each input should rather be stored in a register.
This allows the streams to still progress independently — however, with limitations
introduced later — from each other.

As defined in (3.2), if the value stream s does not have any value yet up to a
timestamp t, the result is undefined as well. For this, it is necessary to know if a
value already occurred on value. Thus, a flag telling if the previously declared
value register is initialised is needed.

In total, this results in the following registers and initialization values:

26

3.2. Atomic Modules

register initReg = false
register valueReg
register triggerTimeReg = 0
register valueTimeReg = 0

The registers valueTimeReg and triggerTimeReg store the most recent times-
tamps for their respective input, (which is analogue to the register in Section 3.2):
wire valueTime = if value.valid && value.isTimestamp
then value.timestamp else valueTimeReg
valueTimeReg := valueTime

wire triggerTime = if trigger.valid && trigger.isTimestamp
then trigger.timestamp else triggerTimeReg
triggerTimeReg := triggerTime

last requires in (3.1) that there is no data between timestamps t′ and the triggered
timestamp t, therefore only requiring the last occurred value to be stored. If an
event on the trigger stream occurs, the most recent value of the value stream
should be emitted. However, since both inputs progress independently from each
other, the currently stored value is only be known to be the most recent value if the
progress of value is equals or higher than the one of trigger. Otherwise, the
stored value might be outdated. At this point, trigger needs to be prevented from
progressing any further until value caught up, as previous trigger events are not
stored. To make it clearer, consider the following example with two input streams
x and y:

1 2 3 6
7 1x

4 2 3y

The bar on their right side marks the progress of the stream. If the module would
now compute last(x, y), it would not yet be possible to emit a value for the trigger
event on y at timestamp 6, since there might be another event occurring on x at
timestamps 4 or 5, hence returning the currently last seen value 1 of x would be
incorrect.

Additionally, if trigger has a value, the module will emit a value, thus it requires
out to be ready. An exception to this is if the value register was not yet initialized,
in which case there is no value to emit and the trigger is ignored. This results in
the following definition for the ready port of trigger.

27

3. General structure

port trigger {
ready := if trigger.isTimestamp then out.ready
else (triggerTime <= valueTime)
&& (!initReg || out.ready)
}

The next step is to define the logic when to actually store the value in valueReg.
As previously defined, the trigger stops progressing when an event occurs until
value caught up. This means that it is known that no other trigger events occurred
on the interval between both of their progresses. Therefore, if there is a new event
on value occurring, it can simply be overridden. However, this is only the case if
the progress of value is strictly smaller than the one of trigger. If both streams
have the same progress, the previously described edge case may occur, where both
have an event at the same timestamp. In that case, the previous value needs to
be emitted and the new value needs to be stored in the register. This means that
the value is only allowed to be overridden if the previous value was already emitted.
Therefore, if their timestamps are the same and an event occurs on value, the value
can not be stored in the register yet, until either trigger progresses further, or an
event on trigger occurs and the previous value is emitted. However, occurrence
of an event on trigger alone is also not sufficient. It has to be ensured that the
value can also be processed in this clock cycle, meaning that the either the output
has to be ready or the register was not yet initialised, in which case the value can
be freely stored.

The ready signal of value is then only set if it is a timestamp (in which case it
would be passed to the valueTime register) or if the value can be stored currently.
This ensures that the value does not progress past the trigger, which could lead to
losing events. Also, as value is written to a register and not directly affecting the
output, its ready signal does not require the out port to be ready.
wire triggered = trigger.valid && !trigger.isTimestamp
wire mayStoreValue = triggerTime > valueTime

|| (triggerTime == valueTime
&& triggered
&& (!initReg || out.ready))

wire storeValue = value.valid && !value.isTimestamp
&& mayStoreValue

port value {
ready := value.isTimestamp || mayStoreValue

}

The register valueReg and flag initReg can then be set in dependence of storeValue:

28

3.2. Atomic Modules

initReg := initReg || storeValue
valueReg := if storeValue then value.value else valueReg

The final step is the definition of the out port. The timestamp to be emitted
can simply be forwarded from the trigger input, as last can only emit values if a
trigger value occured, and the trigger input not progressing past an occurrence of
a trigger value. Hence the progress of last effectively is the progress of trigger.

The output is valid under two possible conditions:

• The trigger is a valid timestamp, meaning progress of the last module.

• The trigger is a valid data and the value register has been initialized, as well
as the previously described constraint to their progress. This is the case where
last emits a value.

port out {
valid := trigger.valid && (trigger.isTimestamp

|| (triggerTime <= valueTime) && initReg)
isTimestamp := trigger.isTimestamp
value := valueReg
timestamp := trigger.timestamp

}

3.2.1. Queues

In a TeSSLa specification, one stream a may be used in the definition of multiple
other streams throughout the rest of the specification. As hardware, this means that
the result of the module representing a has to be transferred to multiple different
target modules. A simple way to approach this would be to wire the output of said
stream to all target modules, and aggregating all ready flags of the targets to form
the ready flag of a. However, this would effectively synchronise all outputs of a.
Additionally, if one path would need significantly more clock cycles than the others,
this solution would lead to stalling the other paths since they have to wait until all
targets are ready, thus resulting in a bottleneck.

Concluding from this, it would be favourable to be able to buffer a certain amount
of events, and dispatch them in an asynchronous way. A possible approach meeting
those requirements would be to use a queue with a reading pointer for each output.
Using multiple reading pointers allows asynchronous reading of the result by differ-
ent target modules, and with an according depth it provides buffering of values to
balance out differences in path lengths for the targets.

29

3. General structure

Definition 3.1 (Queue). A queue of depth d and fan-out n is defined as

Qd,n = (v, h, r1, . . . , rn)

where v is an array of size 2d, where the indices 0, 2, . . . , 2d are used to store
timestamps and the indices 1, 3, . . . , 2d − 1 to store values. A head pointer h ∈
{0, . . . , 2d − 1} pointing at the most recent value and r1, . . . , rn ∈ {0, . . . , 2d − 1}
being the reading pointers.

The distinction of values and timestamps within the queue is necessary because
timestamps are handled differently than values are. As long as the input of a queue
is only updating its timestamp (progressing further without emitting a value), it is
not needed to actually buffer every single timestamp occurring, as there are no values
occurring in between those progressions. This was already discussed in Subsection
3.1.1. The opposite case of multiple valid data values occurring without any pro-
gression in between is semantically not possible and can therefore be ignored. This
means that timestamps, contrary to values, are allowed to be overridden within the
queue. This also leads to the conclusion that storing pairs of timestamps and values
in the queue would be disadvantageous, as this would make it significantly more
difficult to describe such a progress update.

The idea is to use the here defined data structure as a modified FIFO ring buffer
with h pointing at the most recently written data, and for each output ri pointing
at the next data to be read by target i. A value can be considered as read if all ri
read said value. If the queue is full the inputs should be blocked such that no values
are overridden. Additionally, since the decision whether or not to read a value in
the previously defined modules is dependent on what kind of value is present, it
is needed that the value can be peeked without it being removed from the queue.
This feature of a FIFO is called first word fall through (FWFT). Overall, the here
described structure differs from a usual FIFO ring buffer in the following aspects:

• Storing of two different types of data (timestamps and values), allowing over-
riding of timestamps

• Using multiple reading pointers to allow asynchronous reading.

• Using FWFT

In Figure 3.4, you can see an example run on a queue with depth 4 and two outputs
with their associated reading pointers r1 and r2. The valid range of the queue is
implicitly defined by h and the furthest reading pointer. Entries in blue coloured
registers are assumed to be timestamps, while the other ones are data values. In
this representation, the queue is processed in a counter clockwise manner.

30

3.2. Atomic Modules

36

0
8

1

h

r1 r2

(a) Initial configuration

36
0

8

1 9

h

r1

r2

(b) Insert 9, Read r1

36

0
8

1 9

6

h

r1

r2

(c) Insert 6

36

0
8

1 9

6
10 h

r1

r2

(d) Insert 10

6

0
8

1 9

6
10 h

r1

r2

(e) Read r1, Read r2

0
8

1 9

6
15 h

r1

r2

(f) Read r2, Update head

Figure 3.4.: Example for Q4,2.

31

3. General structure

As you can see in 3.4b, if a reading pointer other than the currently furthest pointer
(here r2) progresses, the valid range of the queue does not diminish as the value still
awaits reading by other targets. After the value has been read by every participant
in 3.4e, the register can be considered as free again.

In 3.4c and 3.4d there are values inserted up until the point that the queue is
completely filled. At this point, the queue should signal its input that no more
values can be accepted at this point.

Timestamps can override each other if no data values occur in between. This can be
seen in 3.4f, where the last written input was the timestamp 10, which got overridden
by a newer incoming timestamp 15.

Pseudocode

The here described module expects the depth to be of d = 2n, n ∈ N, since this
allows the use of overflows to reset the pointers.

As a module, the previously described data structure requires a set of registers for
timestamps and values respectively, as well as registers for the pointers h and ri.
Additionally, the scenario that all pointers are pointing at the same register can
have two different meanings:

• The queue has one element and at least one of the reading participants still
needs to read that value, or

• The queue is empty.

To differentiate between those two cases, a register where each bit is a flag to signal
whether or not the queue for its associated participant is empty can be used. This
leads to the following IO and register definition:
port in{...}
port out[n]{...}

register values[d]
register timestamps[d]
register head = 0
register tails[n]
register isEmpty = 2n − 1

The registers head and tails(i) are expected to be of log2(d) bits, and isEmpty
to be of n bits.

32

3.2. Atomic Modules

First, it needs to be checked whether or not the queue is able to accept more inputs.
As seen in Figure 3.4, there are two cases as to when the queue is ready: Either the
queue is not full or the input would be a timestamp override. Deciding if the queue
is full requires that for each reading participant, the reading pointer ri differs from
the next writing position h + 1, or ri is at h + 1 but the value has already been
read.
wire nextHead = head + 1
wire notFull = (isEmpty(0) || tail(0) != nextHead)

&& ...
&& (isEmpty(n-1) || tail(n-1) != nextHead)

wire headIsTimestamp = !head(0)
wire timestampOverride = headIsTimestamp && in.isTimestamp
wire ready = notFull || timestampOverride

in.ready := ready

If there is a valid input additionally to ready being set, it can be inserted into the
queue. Inserting a value into the queue also requires an update of the pointer h,
unless it was a timestamp override (see 3.4f).
wire writing = ready && in.valid
wire proceed = writing && !timestampOverride
wire writePos = if proceed then nextHead else head
head := writePos

To then write the value to a certain register, writing has to be set and the pointer
writingPos needs to point at said register. Note that here, two separate sets of
registers are used, therefore the pointer is split such that even and odd values point
at the values and timestamps registers respectively.
values(i) := if (writing && writingPos == 2 * i + 1)

then in.value else value(i)
timestamps(i) := if (writing && writingPos == 2 * i)

then in.timestamp else timestamps(i)

Next, each tail pointer ri needs to be updated as well. There are 3 different cases
to consider:

• The queue was empty for i in the previous clock cycle. Then it should be set
to the current writing position.

• The output i is ready and ri is different from the writing position. In this case
ri should be incremented by 1.

33

3. General structure

• The output i is not ready, or ri is equal to the writing position (which is the
case during timestamp overrides). Here, ri should remain unchanged.

tails(i) := if isEmpty(i) then writePos else
if out(i).ready && tails(i) != writePos then
tails(i) + 1 else tails(i)

The final register to update is isEmpty. The queue can only be empty for i if there
is no value inserted in the current clock cycle and:

• The queue was already empty for i in the previous clock cycle.

• The output i is ready and ri is the same as h, meaning that there is only one
value left to read.

isEmpty(i) := !writing && (isEmpty(i) ||
out(i).ready && tails(i) == head)

Finally, the wires of each output i can be defined:

• valid is set as long as the queue is not empty for i.

• isTimestamp is set if the pointer ri is even, since it then points to a times-
tamp.

• timestamp and value are selected from the respective sets of registers at
index b ri

2 c.
wire pos = tails(i) >> 1
out(i).valid := !isEmpty(i)
out(i).isTimestamp := !tail(i)(0)
out(i).value := values(pos)
out(i).timestamp := timestamps(pos)

Recursive Definitions

An important aspect to take into account when wanting to synthesise TeSSLa specifi-
cations on hardware are recursive definitions. In TeSSLa, streams can be recursively
defined by using the last operator as shown in Subsection 2.1.3. With the concept of
replacing every node in the data-flow diagram by a module, a cycle in the data-flow
diagram would then also result in a cyclic dependency between modules. In such a
case it has to be ensured that there is no combinatorial loop forming when synthe-
sising those definitions on hardware. It can be assumed that a recursive definition
will always contain at least one queue on its cyclic dependency. The reason for this
is that a queue is required to dispatch events to multiple targets, meaning that if

34

3.3. Translation

the cycle does not contain a queue, the result of the recursive definition would never
be used, making it obsolete, in which case the entire recursive definition could be
removed.

Since a queue buffers the values in a register before transmitting them further, there
is no possibility for a combinatorial loop to occur in a recursive definition.

Assuming that all atomic modules previously described represent the TeSSLa se-
mantics of their associated operator correctly and that all specifications considered
here are assumed to be well-formed, such a recursive definition then also computes
the only fixed-point correctly.

3.3. Translation

All modules defined up to this point are sufficient to translate TeSSLa specifications
into a hardware module. As TeSSLa is a data-flow oriented language its represen-
tation as hardware can be described as a transformation of the data-flow diagram,
which is done here by use of an example.

Given the following specification, which contains the recursively defined stream sum,
calculating the sum of all values on the input stream x:
in x: Events[Int]

def sum := merge(last(sum, x) + x, 0)
out sum

Listing 3.1: Example specification

As stated in [CHL+18], every TeSSLa specification can be brought into a flat repre-
sentation where each definition contains exactly one operator. This can be accom-
plished by moving each sub-expression into a new stream definition as follows:
in x: Events[Int]

def sum := merge(s2, 0)
def s1 := last(sum, x)
def s2 := s1 + x
out sum

This then directly represents the data flow graph shown in 3.5a. The specification
can then be transformed into a module definition by replacing every node in this
graph by its corresponding atomic module, and the edges within the data-flow di-
agram representing the wiring of the modules. Furthermore, every node with more

35

3. General structure

than one outgoing edge needs a queue module attached to it, which is responsible for
handling the distribution of its events to the target modules. The resulting module
graph of this specification is then shown in 3.5b.

The translation with use of IO adapters only differs in the way that the respective
adapters (with their required queues) are wired around the specification module as
shown in Figure 3.6.

x

last

lift
+

const
0

lift
merge

(a) Data flow diagram

in

0 1

val trig

out

a b

out out

a b

out

in

0 1

x

sum

Queue

last

lift
+

const
0

lift
merge

Queue

(b) Module graph

Figure 3.5.: Data flow diagram and module graph of Listing 3.1

36

3.4. IO Adapters

3.4. IO Adapters

If TeSSLa specifications have more than just one single input / output, the resulting
hardware module would do so too. While this may be useful in most cases, like
when incorporating the module as a part of a bigger hardware configuration, it
can sometimes be unwanted. One example for this could be in an offline runtime
verification scenario like in a log analysis. Here, all the input data to be processed
would be stored inside a log file on the system and would need to be transferred
to the hardware. Such a setup is also used in Chapter 6. For such a scenario, it
would be preferable to be able to insert the inputs of multiple streams as one single
aggregated, synchronised stream.

This mainly poses two requirements:

• Since such a aggregated, synchronised stream of data contains timestamps and
events for every input, it is necessary to define of a binary event format as
interface between the source and the specification module.

• Implementation of adapters which are able to interpret and accordingly modify
the incoming data, as well as segregating and dispatching the events to the
correct port on the specification module and vice versa (shown in Figure 3.6).

in

0 1 2

a b c

o1 o2

0 1

out

In-Adapter

Specification

Out-Adapter

Figure 3.6.: A specification module with 3 inputs a, b, c and 2 outputs o1, o2,
with adapter usage

37

3. General structure

In the following sections, the format for a single event and for such a synchronised
input are defined. Afterwards, the input adapter and output adapter are defined.

3.4.1. Trace and Message Format

The first step is to define the expected structure of such a synchronised input.
Given a specification with n input streams si = t0,i d0,i t1,i . . . ∈ SDi

, i ∈ {1, . . . , n}.
Those streams can then be grouped by their timestamps and condensed into a single
stream

s = t0 d0 t1 . . .

where di = s0(ti) . . . sn(ti). The following example visualises this, by aggregating
two streams x and y into a stream s. The timestamp values are marked bold for
better readability:

x = 1 5 3 ⊥
y = 1 6 3 2
s = 1 5 6 3 ⊥ 2

In the following, a synchronised input is expected to be in such a format, and also
called trace.

Directly encoding the trace as shown here would have the advantage of not having
to differentiate between timestamps and values with a flag, as the order is fixed (in
the previously showcased example, each timestamp is followed by two values). Ad-
ditionally, the order of the values directly reflects which stream they are associated
with, thus also not requiring any addressing. However, this may lead to a signifi-
cant overhead when only a few events are defined at the same timestamp, having to
transfer ⊥ with the same bit width of a data value for each other value. Therefore,
to minimise the amount of values to transfer, a different approach is chosen:

1. A single bit flag is used to differentiate between timestamps and values.

2. An address is used to denote which stream a certain value is associated with.
The corresponding field requires at least log2(n) bits for n streams.

Figure 3.7 visualises the event format for a 16-bit channel and a 3-bit address
range.

As TeSSLa supports arbitrary data types, it is required to transform the incoming
binary data into the correct value of the data type it represents. However, this is
solely dependent on the implementation and what data types it supports. Since this
is of no further relevance here, those will be discussed in Chapter 5.

38

3.4. IO Adapters

0123456789101112131415

0 addr data
0123456789101112131415

1 timestamp

Figure 3.7.: Format of values/timestamps for a 16-bit channel with 3-bit address
range.

The described approach allows to drop all ⊥ values in the trace s when encoding.
For the previously used example, this means that instead of 6 messages, only 5
messages would be required to transfer. With a total bit width of 8 bit, and an
address width of 1 bit, the encoded format would look like follows:
1 0000001 -- timestamp 1
0 0 000101 -- x = 5
0 1 000110 -- y = 6
1 0000011 -- timestamp 3
0 1 000010 -- y = 2

The adapters then expect (respectively produce) a sequence of messages in such an
encoded the format of s, where each tj is encoded as timestamp and each element
of dj as a data message, skipping those which are ⊥ at that timestamp.

3.4.2. Input-Adapter

The input adapter needs to split the incoming data into an address and a payload,
which then is distributed to the according output. This process is visualized in
Figure 3.8. One important aspect to discuss here is the use of storing mechanisms.
Without buffering the decoded inputs, the input adapter would require every output
outi to have read the value before being able to read the next one. Additionally, for
n input streams, the trace serving as input for the adapter has at most n values at a
specific timestamp, one for each input stream. Based on to [LSS+19b, CHL+18] one
can argue that if every input stream has a known value for a timestamp, at least one
operation in the TeSSLa specification can fire. This can also be seen by analysing
the module definitions for each atomic module; if there is new data at every input of
a module, it will always consume at least one of those inputs. Therefore, to ensure
that no deadlock can occur, the input adapter for n streams would need to be able
to output at least n events independently from each other. A simple solution for
this is to attach a queue of depth 1 at each output of the input adapter. This allows

39

3. General structure

Input Data

Addr

Selector ...

...

...

out1

outn

Figure 3.8.: Visualization of Input-Adapter

for a compact definition of input adapters, while buffering and dispatching is being
handled by the queues.

The input adapter is a parametrized module, requiring the following three parame-
ters:

• n being the amount of targets

• wa being the bit width of the address range used, where it is expected that
wa ≥ log2(n)

• wi describing the bit width of the input, with wi > wa + 2.

Furthermore, wd = wi − wa − 1 is used to describe the bit width of values, and
wt = wi−1 as bit width of timestamps. Both can be deduced directly by the format
introduced in Figure 3.7.

The input adapter requires one single input port, which expects a bit sequence of
size wi. One important difference to the other module defined so far is that the input
is here uninterpreted, meaning that using the extended ready-valid interface with
timestamps would not make sense. Hence, the input is using the normal ready-valid
protocol as depicted in Figure 3.1.

The amount of outgoing ports is then characterized by the parameter n. Since the
adapter is used as an interface to the specification module, the outgoing ports are
using the extended ready-valid interface.
port in
port out[n]

40

3.4. IO Adapters

The data then needs to be split into the different fields as specified in Figure 3.7:
wire isTimestamp := in.value(wi - 1)
wire addr := in.value(wi - 2, wi - wa - 1)

Distributing the values is then covered by the following two cases:

• If the input is a timestamp, wait for all targets to be ready and then distribute
it to them. This is needed as the trace is synchronised and all streams therefore
progress simultaneously.

• If the input is a data value, set the valid flag for the associated target.

This leads to the following definition for the output ports:
wire allReady := out(0).ready && ... && out(n - 1).ready
for (i <- 0 to n - 1){

out(i).valid := in.valid &&
if isTimestamp then allReady
else addr == i

out(i).isTimestamp := isTimestamp
out(i).timestamp := in.value(wi - 2, 0)
out(i).value := in.value(wd - 1, 0)

}

Finally, the module needs to signal to its input if it can process the next input:
in.ready := if isTimestamp then allReady

else out(addr).ready

3.4.3. Output-Adapter

The general idea of the output adapter is analogue to the input adapter: The in-
coming data from n different inputs need to be merged into a single output where
in the format of Figure 3.7. One major difference here is that multiple valid inputs
may occur at the same time, requiring a decision making on which input to process
next. Adding to that, the resulting output should be a binary format of a valid
TeSSLa trace, which requires the timestamps to be monotonically increasing. This
means that processing the incoming values in the order they physically arrive is not
an option, as their logical time needs to be considered.

The output adapter is parametrized with the same values n,wi, wd as the input
adapter. The IO definition of the output adapter is as follows:

41

3. General structure

port in[n]
port out

Here, out is using the non-extended ready-valid interface, analogue to the input
adapter.

As the timestamps of the resulting trace are expected to be monotonically increasing,
the next timestamp should only be emitted if it is certain that no value will occur
for the current timestamp anymore. This can be accomplished by synchronizing the
inputs on their isTimestamp flag, such that every input currently is emitting a
timestamp, and then progressing only those with the lowest timestamp value. This
also assures that no values are emitted at incorrect timestamps, as the participants
need to emit their timestamp first before being able to emit a value. Therefore,
the timestamp to be emitted as well as the isTimestamp flag can be defined as
follows:
wire isTimestamp =

∧
i
in(i).isTimestamp

wire timestamp = mini{in(i).timestamp}

The address to emit can then be defined as the index of one valid input (the order
does not matter as they all occur at the same timestamp):
wire isTimestamp =

∧
i
in(i).isTimestamp

wire timestamp = mini{in(i).timestamp}
wire addr = switch{
case in(0).valid && !in(0).isTimestamp -> 0,
...
case in(n-1).valid && !in(n-1).isTimestamp -> n-1,
else -> n

}

There are two cases to consider when deciding if an input i should be ready:

• A timestamp is emitted and this input emits the same timestamp, in which case
this input should be allowed to progress further. Furthermore, all other inputs
should be valid to assure that there is no possibility for a lower timestamp to
occur in the future.

• A value is emitted and the selected address corresponds to this participant.
for (i <- 0 to n - 1) {

wire othersValid =
∧
j,i6=j

in(j).valid

in(i).ready := out.ready &&
if isTimestamp then

42

3.4. IO Adapters

in(i).timestamp == timestamp
&& othersValid

else addr == i
}

The output is then valid if all inputs are valid (for timestamps) or at least one valid
value exists.

The output data is using the binary format shown in Figure 3.7. Since the address
width wa may be 0 in case of only one single output, this case needs to be handled
separately.
wire allValid =

∧
i
in(i).valid

wire hasValidData = addr != n
out.valid := allValid || hasValidData
if (wa == 0){
out.data := if (isTimestamp) then

1 ## timestampwo−1 else
0 ## valuewd

}else {
out.data := if (isTimestamp) then

1 ## timestampwo−1 else
0 ## addrwa ## valuewd

}

The operator ## describes a bit concatenation operator, and the notation xb repre-
sents the value x, zero-padded or trimmed to the size b.

This chapter introduced the basic concept to synthesise TeSSLa specifications on
hardware, including adapters and a trace format for the use case of synchronised
traces. This is already sufficient to translate TeSSLa specifications to hardware
definitions. However, to potentially improve performance and resource usage of
those specifications, the next chapter motivates and defines multiple optimisation
phases. This concept, including the optimisation phases of the following chapter,
has been implemented which is described in Chapter 5 and evaluated afterwards.

43

4. Optimization

In the previous chapter, the general translation schema for translating TeSSLa spec-
ifications to a module description was described. However, realising a system in
hardware is often motivated with an aim towards high performance. Additionally,
hardware always comes with only a limited amount of resources. Therefore, while
the previously described translation is already sufficient to translate specifications
to hardware descriptions, this chapter introduces multiple different optimisation
phases, whose aim is to improve performance or reduce the amount of resources
used on the hardware.

4.1. Stream Merging: Motivation and Definitions

The purpose of this optimisation is to reduce synchronisation overhead and thus also
reduce the amount of logic required, by inferring whether or not two streams are
implicitly synchronous and modifying the specification accordingly in such cases.

4.1.1. Motivation

For lifted functions, as seen in Section 3.2, both inputs are synchronised on their
logical timestamp in case of a binary lift. As timestamps are numeric values, and
in realistic use cases can be expected to be up a width of 32 or more bits, this is
an expensive operation. However, a stream s := lift(f)(x, y) using a binary lift can
be rewritten as unary s′ := lift1(f ′)(x′) where x′ is a stream of tuples such that
x′(t) = (x(t), y(t)) for x(t) 6= ? and y(t) 6= ?, and f ′(a) = f(π1(a), π2(a)), where πi
is the projection on the i-th element of a tuple. Since this stream s′ is using a unary
lift, no synchronisation is required.
In general, the tupled stream x′ of course still needs to be generated, which could
be accomplished by x′ := lift(g)(x, y) where

g(a, b) :=
⊥ if a = ⊥ ∧ b = ⊥

(a, b) else

45

4. Optimization

By this, the function application and the synchronisation logic got effectively decou-
pled. Naturally, in the general case this provides no benefit as the synchronisation
still needs to be performed. However, depending on the scenario, this decoupling
and merging of streams can be propagated through the dependency graph and lead
to an overall reduction of synchronisation. One important thing to note here is that
this is not always favourable, as merging multiple streams into one synchronised
stream generally defeats the purpose of making optimal use of parallelisation on the
hardware. However, in the particular case where streams are implicitly synchronous,
merging them comes with no drawbacks.

The following examples are used to illustrate the different scenarios and how they
could be optimised according to this. Additionally, some examples also highlight
the cases in which such a process would likely not prove useful.

Example 4.1. Considering the following example specification written in TeSSLa
using the syntax of the TeSSLa compiler, calculating (x−1)!

(x−5)! :

in x: Events[Int]
out (x - 1) * (x - 2) * (x - 3) * (x - 4)

x

l2:lift1
−2

l1:lift1
−1

l3:lift1
−3

l4:lift1
−4

l5:lift
∗

l6:lift
∗

l7:lift
∗

Figure 4.1.: Data-flow diagram for Example 4.1.

Assuming that all arithmetic operations get internally lifted to lift operations as
already described in Subsection 2.1.3, this results in the data-flow diagram shown
in Figure 4.1. It may seem counter-intuitive to not aggregate the entire chain of
operations into one single liftable function f(a) = (a− 1) · (a− 2) · (a− 3) · (a− 4).
However, considering that a function is assumed to be computed within a single clock

46

4.1. Stream Merging: Motivation and Definitions

cycle, this may lead to timing issues, requiring to break up the function into multiple
sub-functions to be lifted, such that the values can be buffered in between by using
queues. By merging the sub expressions into a chain of unary lifted operations, the
result of the here described operation will effectively be of such a form, which can
be seen at the end of this example in Figure 4.3.

It is evident that without further modifications, this specification would require
three pairwise synchronisations. Taking into account that every intermediate result
here is generated solely by applying arithmetic operators on the input stream x, we
can infer that their events will always occur at the same timestamps. This means
that for every timestamp, the binary lifts shown here will have events either on both
or none of their inputs, making the synchronisation obsolete.

In such a case where both inputs of a binary lift are already implicitly synchronous,
it can be rewritten as a unary lift by merging its inputs into a tuple. In this case,
l5 and l6 can be merged into a 4-ary lift l5,6, taking l1, l2, l3 and l4 such that

l5,6 := lift4(f5,6)(l1, l2, l3, l4) where f5,6(a, b, c, d) = (a · b, c · d)

This allows l7 then to be redefined as a unary lift. This step is shown in Figure 4.2.
In the next step, the inputs of l5,6 also have events at exactly the same timestamps.

x

l2:lift1
−2

l1:lift1
−1

l3:lift1
−3

l4:lift1
−4

l5,6:lift4

l7:lift1

Figure 4.2.: Data-flow diagram for Example 4.1 after the first optimisation step.

Additionally, merging all 4 inputs into one single lift results in a unary lift, as all
inputs are directly generated from the same input x, and also allows to rewrite l5,6
as a unary lift as well.

47

4. Optimization

In conclusion, the specification could therefore be rewritten as a chain of unary lift
operators by merging the l5 with l6, and then l1, l2, l3 and l4 shown in Figure 4.3,
resulting in the following definitions:

l1,2,3,4 := lift1(f ′1)(x) where f ′1(a) = (a− 1, a− 2, a− 3, a− 4)
l′5,6 := lift1(f ′2)(l1,2,3,4) where f ′2(a) = (π1(a) ∗ π2(a), π3(a) ∗ π4(a))
l′7 := lift1(f ′3)(l′5,6) where f ′3(a) = π1(a) ∗ π2(a)

where the synchronisation is omitted.

x

l1,2,3,4:lift1

l′5,6:lift1

l′7:lift1

Figure 4.3.: Final data-flow diagram for Example 4.1.

Example 4.2. The first example depicted the general case for stream merging.
However, it may also be that inputs of a stream are dependent from one another, in
which case directly merging them is not an option. This scenario is analysed here.
Consider the following specification:
in x: Events[Int]
def sqr = x2

out (sqr * (sqr + 1)) / 2

which calculates ∑x2

k=1 k, with the associated data flow diagram shown in 4.4a. Just
as in Example 4.1, there is a binary lift used even though it is easy to see that both
inputs are already synchronuous on their logical time. The difference here is that
the inputs of l3 cannot simply be merged as l2 is dependent of l1. This can be solved
by inserting a lifted identity lid between l1 and l3 as shown in 4.4b, with

lid := lift1(f ′)(l1) where f(a) = a

48

4.1. Stream Merging: Motivation and Definitions

x

l1:lift1
·2

l2:lift1
−1

l3:lift
∗

l4:lift1
÷2

(a) Initial data flow diagram.

x

l1:lift1
·2

l2:lift1
−1

lid:lift1
id

l3:lift
∗

l4:lift1
÷2

(b) Modified data flow diagram.

Figure 4.4.: Data flow diagrams of Example 4.2.

This allows the specification to then be merged in the same way as in Example 4.1,
resulting in the following chain of unary lifts:

l′1 := lift1(f ′1)(x) where f ′1(a) = a2

l′2 := lift1(f ′2)(l′1) where f ′2(a) = (a− 1, a)
l′3 := lift1(f ′3)(l′2) where f ′3(a) = π1(a) ∗ π2(a)

l′4 := lift1(f ′4)(l′3) where f ′4(a) = a

2
Example 4.3. The two examples shown so far only considered cases where the
streams were entirely synchronised on their timestamps. However, there may also
be cases where streams are similar in terms of the occurrence of their events, but not
exactly equivalent. For this, we consider the following specification, which performs
a comparison of events on x with its previous events.
in x: Events[Int]
def prev := last(x, x)
out prev * 2 > x + 10

Looking back at the semantics of last in Subsection 2.1.2, you can see that the
timestamps of last are a suffix of the timestamps of its second input (trigger), due

49

4. Optimization

x

l:last

l1:lift1
∗2

l3:lift1
>

l2:lift1
+10

Figure 4.5.: Data flow diagram for Example 4.3.

to the fact that no result will be produced until the value stream is defined as well.
From this follows that the two inputs of l3 are not completely synchronous, but the
sequence of timestamps of l1 is a suffix of those of l2. In particular, this means that
there is a timestamp t after which both streams will be synchronous.

Specifically, here both streams are synchronous after initialisation of l1. In such a
case, it can still be desirable to merge the streams, under the assumption that the
majority of both streams is synchronous. However, as the streams are not entirely
synchronous, it is necessary to check if l1 is already defined. This then results in
merging l1 and l2 into l′1 := lift(f ′1)(l, x) with:

f ′1(a, b) =
(a ∗ 2, b+ 10) if a 6= ⊥

(⊥, b+ 10) else

and rewriting l3 as unary lift l′2 := lift1(f ′2)(l′2) where

f ′2(a) =
π1(a) > π2(a) if π1(a) 6= ⊥
⊥ else

Note that in this specific case there is only one single merge performed, thus there
was no direct benefit from it. However, the here described step can be propagated
and combined in the same way as shown in the previous examples.

The inputs l and x of the newly created stream l′1 actually fall under the same
category, with both streams being synchronised after l is initialised. The issue here
is that they cannot be merged into a shared lift as l is a last operator. This is

50

4.1. Stream Merging: Motivation and Definitions

not considered here, but possible approaches to optimise such cases are discussed in
Section 7.1.

Example 4.4. This example now focuses on recursive definitions and how they
should be handled, showing that in some cases, merging streams in a recursion
might actually result in a worse performance. The following specification contains
two recursive definitions y1 and z1, where y1 counts occurrences of events on x, and
z1 adopts the new counter value on every 5th event.

y1 := last(merge(lift1(f1)(y1), 0), x) where f1(a) = a+ 1

z1 := last(merge(lift(f2)(y2, z1), 0), x) where f2(a, b) =
a if (a mod 5) = 0
b else

r := y3 − z3

For the following, the flattened form of this specification is used:

y1 := last(y3, x)
y2 := lift1(f1)(y1)
y3 := merge(y2, 0)
z1 := last(z3, x)
z2 := lift(f2)(y2, z1)
z3 := merge(z2, 0)
r := y3 − z3

The resulting data flow diagram is then shown in Figure 4.6. As none of the lifted
operators perform any filtering of events, and both recursive definitions are triggered
by x, both recursions will have the same timestamps. According to the examples
seen so far, one could now decide to merge y3 with z3 and then z2 with y2 by passing
the value through an identity operation.

However, as the recursion z is dependent of the other recursion y, merging both of
them would result in a single recursion with a longer path. This may then result in
requiring to place more queues within the cycle to counter potential timing issues,
and therefore increasing the latency within the cycle. As a cycle has to be completely
process an event before the next event can be processed, an increased latency inside
a cycle directly decreases the throughput of the entire path.

Therefore, when considering cycles, merging should only be considered if the to be
merged streams are not of two separate cycles.

Example 4.5. This final example represents the scenario of having streams with
entirely different timestamps, in which case merging streams would provide no gains

51

4. Optimization

x

y1:last

y2:lift
f1

y3:merge

const
0 z1:last

z2:lift
f2

z3:merge

const
0

r:lift
+

Figure 4.6.: Data-flow diagram for Example 4.4.

or even have negative effects. In this example, two inputs x and y are processed in
parallel in two recursions z1 and z2. Finally, both partial sums are aggregated in
the end:
in x: Events[Int]
in y: Events[Int]

z1 := merge(last(z1, x) + x, 0)

52

4.1. Stream Merging: Motivation and Definitions

z2 := merge(last(z2, y) + y, 0)
out y + z

x y

last last

lift
+

lift
+

const
0

const
0

merge merge

lift
+

Figure 4.7.: Data-flow diagram of Example 4.5.

The resulting data-flow diagram is shown in Example 4.5. As both paths use dif-
ferent input streams, their timestamps may be entirely different. Furthermore, they
also may differ in their frequency and delays of how often events occur on them.
In this case, merging would result in synchronising both streams, and rewriting
the specification as a single recursion, defeating the entire purpose of the parallel
computation of those streams. Another example where merging is unwanted would
be a segragation of a single input stream on multiple paths for an efficient parallel
computation.

Those examples show that it is necessary to infer information about timestamps of
events of a stream and defining a comparison between them to be able to identify the
scenarios where stream merging should be applied. Thus, the goal of the following
sections are to:

1. Define a classification and ways of comparing different stream definitions in
respect to their timestamps.

2. Define rules for when and how to modify those definitions to reduce the amount
of synchronisation needed.

53

4. Optimization

4.1.2. Classification

The purpose of this classification is to partition the streams of a specification in
accordance to the timestamps where their events will occur. Thus, for a specification
ϕ with a set of stream definitions A = {x0, . . . , xn}, the objective is to find partitions
Ai ⊆ A, 1 ≤ i ≤ m, with A = ⋃

i
Ai, i 6= j =⇒ Ai ∩ Aj = ∅ and

∀i
(
x, y ∈ Ai ⇐⇒ ∀s1,...,snJtime(x)Ks1,...,sn = Jtime(y)Ks1,...,sn

)
where s1, . . . , sn denote fixed input streams for this specification. Informally, this
means that, if two streams are placed in the same partition, the evaluation of time
— and thus the timestamps where their events occur — are always identical. How-
ever, the classification is taking place before the execution and therefore without an
actual input for the streams. Furthermore, it is not possible to test this property
for all possible combination of input streams. Thus, an abstraction of this property
is required, which allows to classify the streams without considering input streams,
while still entailing the described property of the partitions. Therefore, in the fol-
lowing section, timing expressions and a translation τ from TeSSLa definitions to
those expressions is introduced, such that

τ(x) ≡ τ(y) =⇒ ∀s1,...,snJtime(x)Ks1,...,sn = Jtime(y)Ks1,...,sn

The general idea is to see each stream as a set of timestamps, which is then manip-
ulated by the different stream operations. As an example, for the specification:
in x: Events[Int]
def r := x + 5
out r

the timestamp of x are unknown as it is an input stream, thus defining the abstrac-
tion τ(x) = vx, denoting that the stream x has a certain set of vx of timestamps. As
the lifted addition operation does not filter nor add any events, it can be deduced
that τ(r) = vx as well. This shows that by assigning symbols denoting the set of
timestamps for each input stream, deductions on the timestamps of their dependent
streams can be made.

Syntax

The syntax of timing expressions should be able to decently represent the modifi-
cations a stream operation can perform on the timestamps. As shown previously, a
valid timing expression can be a variable symbol of the specification. Additionally,

54

4.1. Stream Merging: Motivation and Definitions

to represent the timestamps of the constants nil and unit, the symbols ∅ and 0 are
used.

As last (x, y) trims off events at the beginning of a stream, the notation of a suffix
is required, which is denoted as yx. Additionally, lift allows applying arbitrary
functions to streams, allowing to filter events or also combine events of both streams.
To classify the effect of those functions f on the timestamps, the operation symbols
∪,∩, are used. Additionally, a fallback expression f [x, y] is needed if the effect of
f cannot be represented by those operations.

This results in the following syntax definition for timing expressions: For a set x ∈ V
of variables of a specification ϕ, a timing expression is an expression t of the form

t ::= ∅ | 0 | vx | tt | t ∪ t | t ∩ t | t

where vx ∈ V′ are variable symbols, using x ∈ V as index to associate this variable
symbol with the symbol x in the specification.

Semantics

Definition 4.6 (Time projection). Let s ∈ SD be an arbitrary stream on a time
domain T. The time projection δt : SD → P(T) is a projection from that stream
onto its timestamps

δt(s) = {t ∈ T | s(t) ∈ D}

For a TeSSLa specification ϕ with input streams s1, . . . , sn, those timing expressions
can then be substantiated. This means that the semantics of a timing expression can
be defined as a function mapping from a configuration for those input streams to the
resulting set of timestamps. However, the timing of some streams can not be decided
purely on the timing behaviour of inputs (for example when filtering a stream based
on the occurring values). Therefore, we abstract from the specification in that case
by considering those streams to be an input as well, adding it as parameter to the
function. This then allows to define the semantics of a timing expression as a n+k-
ary function mapping from n input streams, extended by k additional streams, to a
set of timestamps:

J·Kt : T → SD1 × · · · × SDn+k
→ P(T)

with T being the set of all timing expressions. The semantics function is defined as
follows:

J∅Kt = (s1, . . . , sn+k) 7→ ∅

55

4. Optimization

J0Kt = (s1, . . . , sn+k) 7→ {0}
JvsKt = (s1, . . . , s, . . . , sn+k) 7→ δt(s)
JuvK = (s1, . . . , sn+k) 7→ {t ∈ JuKt(s1, . . . , sn+k) | t > min (JvKt(s1, . . . , sn+k))}

Ju ∪ vKt = (s1, . . . , sn+k) 7→ JuKt(s1, . . . , sn+k) ∪ JvKt(s1, . . . , sn+k)
Ju ∩ vKt = (s1, . . . , sn+k) 7→ JuKt(s1, . . . , sn+k) ∩ JvKt(s1, . . . , sn+k)

JuKt = (s1, . . . , sn+k) 7→ T \ JuKt(s1, . . . , sn+k)

where u, v describe arbitrary timing expressions, and vs the variable symbol associ-
ated with the stream s.

In the following section, the translation from TeSSLa stream definitions to such
timing expressions is defined.

Translation

For a TeSSLa specification ϕ with variables x ∈ V, the translation schema τ mapping
from an expression e of a stream definition to its timing expression is defined as
follows:

τ(nil) = ∅
τ(unit) = 0

τ(x) = vx

τ(time(x)) = τ(x)
τ(last(x, y)) = τ(y)τ(x)

As for lift(f)(x, y), the function f to be lifted is able to filter or combine events
of its input streams, and as such it has an effect on the timing of the resulting
stream. Therefore, it is required to analyse said effect of function f to determine
the resulting timing expression. As the function f is arbitrary, an abstraction is used
for an easier classification of those functions. The chosen abstraction only considers
functions where the information whether or not the result is defined can completely
be inferred from the information which parameters are defined, meaning that it is
not dependent from specific values. Those functions are represented by a set F ,
where for x 6= ⊥ and y 6= ⊥:

F = {f : D1 × D2 � D | (∀x,y : f(x, y) 6= ⊥ ∨ ∀x,y : f(x, y) = ⊥)
∧(∀y : f(⊥, y) 6= ⊥ ∨ ∀y : f(⊥, y) = ⊥)
∧(∀x : f(x,⊥) 6= ⊥ ∨ ∀x : f(x,⊥) = ⊥)}

56

4.1. Stream Merging: Motivation and Definitions

Note that� is used to denote functions where the domains and range are extended
by ⊥.

Functions contained in F allow an abstraction f ′ of f where f ′ : {>,⊥}×{>,⊥} →
{>,⊥} which only considers if a value is defined, and a homomorphism h mapping
from f to the associated f ′, such that for all x ∈ D1, y ∈ D2:

f ′(h(x), h(y)) = h(f(x, y)) where h(x) =
> if x 6= ⊥
⊥ else

Resulting from the signature of f ′, it is evident that there are only 8 possible func-
tions f ′. This permits to introduce representative functions f ′0, . . . , f ′7, which can
then be used to classify the functions in F accordingly. The functions f ′0, . . . , f ′7 are
then defined as follows:

x y f0 f1 f2 f3 f4 f5 f6 f7
⊥ > ⊥ ⊥ ⊥ ⊥ > > > >
> ⊥ ⊥ ⊥ > > ⊥ ⊥ > >
> > ⊥ > ⊥ > ⊥ > ⊥ >

Finally, the translation of lift can be defined as follows.

τ(lift(f)(x, y)) =



∅ if f ′ = f0

τ(x) ∩ τ(y) if f ′ = f1

τ(x) ∩ τ(y) if f ′ = f2

τ(x) if f ′ = f3

τ(x) ∩ τ(y) if f ′ = f4

τ(y) if f ′ = f5

(τ(x) ∩ τ(y)) ∪ (τ(x) ∩ τ(y)) if f ′ = f6

τ(x) ∪ τ(y) if f ′ = f7

vz if f 6∈ F

This abstraction provides an accurate interpretation of the effect for all functions in
F . In the final case, the behaviour of the function cannot be represented by any of
the functions f0, . . . , f7. In this case, a new variable vz is introduced, where z is the
variable symbol of this stream definition z := lift(f)(x, y).

Using the TeSSLa semantics, it can then be shown that for every x := e, input
streams s1, . . . , sn and additional streams y1, . . . , yk of a specification ϕ,

Jτ(e)Kt(s1, . . . , sn, Jy1K, . . . , JykK) = δt(JeK)

57

4. Optimization

holds true, meaning that applying the substantiation of the timing expression, given
the input streams and the evaluation of the additional streams y1, . . . , yk, results in
the same set of timestamps than evaluating the expression e with TeSSLa semantics
and performing a projection on their timestamps does.

Equivalences

As the timing expressions need to be compared without the context of a specific
input which would allow evaluation with J·Kt, it is necessary to define an equivalence
relation.

Definition 4.7 (Equivalence). Let u, v be two timing expressions. Then, define u
as equivalent to v in respect to their timing, written u ≡t v, as follows:

u ≡t v ⇐⇒ JuKt = JvKt

With the previous observation, this also entails that for two stream definitions x :=
e1 and y := e2,

τ(x) ≡t τ(y) =⇒ ∀s1,...,sk
δt(Je1Ks1,...,sk

) = δt(Je2Ks1,...,sk
)

stating that if the timing expressions associated with x and y are considered equiv-
alent, their set of timestamps are the same for every possible configuration of input
streams.

Using the previously defined semantics of timing expressions, we can observe that
the usual equivalence properties from set algebra for the operators ∪,∩ and A hold
here. Additionally, we observe the following properties:

yx ∩ 0 ≡t ∅
0x ≡t ∅
∅x ≡t ∅
x∅ ≡t ∅

y(
⋃

i
xi) ≡t

⋃
i

y(xi)

(y0)x ≡t yx
(yx)x ≡t yx(⋃
i

yi
)
x
≡t

⋃
i

(yi)x(⋂
i

yi
)
x
≡t

⋂
i

(yi)x

58

4.1. Stream Merging: Motivation and Definitions

So far, an abstraction for the timing of events, as well as a translation function from
TeSSLa definitions to those expressions and an equivalence relation between them
have been defined. This now allows us to define a classification of stream definitions
as follows:

Definition 4.8 (Timing Classification). Let ϕ be a TeSSLa specification with input
variables xi and stream definitions yi := ei. Let Y be the set of those stream
definitions.

We define the timing classification of ϕ as a partition Ai ⊆ Y with Y = ⋃
i
Ai and

i 6= j =⇒ Ai ∩ Aj = ∅ such that

∀i
(
yj, yk ∈ Ai ⇐⇒ τ(ej) ≡t τ(ek)

)
Intuitively, this means that all the stream definitions in Ai, when evaluated for
any configuration of input streams s1, . . . , sn, will have events on the the same
timestamps. This partition is therefore an abstraction of the partition defined at
the very beginning of this section.

This timing classification can now be used to decide which streams should be merged
with each other. However, the previous examples showed some special scenarios in
which further information is needed. As Example 4.3 shows, the timings of two
definitions don’t have to be equivalent. Specifically, merging of two streams is still
useful if the timing of one stream is a prefix of the other one. Therefore, we define
a subsumption relation for timing expressions in this context:

Definition 4.9 (Subsumption). Let u, v be two timing expressions. Then, call u
subsumed under v, written u vt v, if

{t ∈ v′ | t ≥ min(u′)} = u′

where

u′ = JuKt(s1, . . . , sn, Jy1K, . . . , JykK)
v′ = JvKt(s1, . . . , sn, Jy1K, . . . , JykK)

for every possible configuration of input streams s1, . . . , sn. Intuitively, this means
that if τ(x) vt τ(y), from the point on where x has its first timestamp, x and y have
the same timing.

With the semantics of timing expressions, the following subsumption properties can
be observed:

yx vt y

59

4. Optimization

⋃
i

y(xi) vt y⋂
i

y(xi) vt y

Furthermore, as seen in Example 4.2, the merging procedure varies if inputs are
dependent on each other. For those cases, a notion of dependence between two
stream definitions is required.

Definition 4.10 (Dependence). Given a TeSSLa specification ϕ with its associated
data flow diagram G = (V,E).

Then there is an acyclic modification of this diagram, G′ = (V,E ′) which is obtained
by removing the edges going back into the initial last of each recursive definition.
The reason for this is that a connection over such a path does not affect the value for
this very timestamp, but for the next occurring event. This notion of dependence
will be used to detect whether or not it is necessary to insert a lifted identity as
shown in the previous examples, to then be able to merge them. This is not needed
if they are only dependent over a delayed edge, hence removing those edges here.

A definition y1 := e1 is then called dependent of y2 := e2, written y2 y1 if there is
a directed path from y2 to y1 in the modified graph G′ = (V,E ′):

y2 y1 =⇒ (y2, y1) ∈ E ′+

where E ′+ is the transitive closure of E ′.

Furthermore, Example 4.4 shows that it is not favourable to merge recursions which
are dependent on each other, since that may actually reduce the throughput of the
resulting specification. For this, it is necessary to be able to associate a node in the
graph with its cycle and analyse how it stands in relation to other cycles in the graph.
For this, strongly connected components can be used, which allow an abstraction of
the graph by partitioning them according to their cycles. The following definition
is derived from [Tar72].

Definition 4.11 (Strongly Connected Components [Tar72]). Given a directed graph
G = (V,E), a strongly connected component of G is then a maximal set G′ ⊆ G for
which there is a directed path between any two nodes u, v ∈ G′:

∀u,v ∈ G′ : (u, v) ∈ E+

The graph G can then be partitioned into its strongly connected components V ′ =
{V ′1 , . . . , V ′2}, allowing to define an acyclic graph SG where each node is a strongly
connected component of G:

SG = (V ′, E ′)

60

4.2. Stream Merging: Application

E ′ = {(X, Y) ∈ V ′ | ∃u ∈ X, ∃v ∈ Y : (u, v) ∈ E}

An example for this is shown in Figure 4.8.

Furthermore, a node u ∈ V ′i is called dependent of v ∈ V ′j in respect to SG, written
v SG

u, iff (V ′i , V ′j) ∈ E ′+.

As an example, z SG
b holds true in Figure 4.8.

x

y z

V ′1 a

b

V ′2

Figure 4.8.: Example for a graph G with SG.

4.2. Stream Merging: Application

In the previous section, the different scenarios to account for were introduced, as well
as all required notions to infer which case applies for a given input. In particular,
the notions introduced included an equivalence relation for two timing expressions
τ(x) ≡t τ(y) for stream definitions x and y, their partitioning according to this
relation, as well as subsumption τ(x) vt τ(y), dependence y x, and dependence
regarding their strongly connected components x SG

y.

Using those definitions and the previously shown examples, this section now defines
the stream merging procedure.

4.2.1. Identity and Accessors

Before being able to define the different scenarios on when and how to merge streams,
some helper procedures need to be defined first. Those are then used later in this
section.

As shown in Example 4.2, it can be that two inputs are dependent of each other,
which can be alleviated by inserting a lifted identity to the specification. A lifted

61

4. Optimization

identity can be defined in a generalised manner as follows:
Given two stream definitions

y1 := e1

y2 := ◦(a1, . . . , ak−1, y1, ak+1, . . . , an)

where ◦ is an arbitrary n-ary TeSSLa operator, with y1 as parameter at the k-th
position. Then, an identity stream description sid can be added, modifying the
definitions as follows:

y1 := e1

sid := lift1(f)(y1) where f(a) := a

y2 := ◦(a1, . . . , ak−1, sid, ak+1, . . . , an)

This process is visualised in Figure 4.9.

y1.

y2

(a) Initial data-flow diagram

y1

sid

.

y2

(b) Inserted sid between y1 and y2

Figure 4.9.: Example for a lifted identity

Furthermore, stream merging groups multiple streams into one stream of tuples.
However, it may be that one of those initial streams is still required by another
definition. Therefore, a lifted accessor is required, extracting elements of those
tuples:

Given a stream definition y : SD1×···×Dn representing a n streams in a tupled form.
To extract the stream SDk

representing the k-th value of each event, the following
stream definition can be defined:

ak := lift1(f)(y) where f(a) := πk(a)

An example for this can be seen in Figure 4.10, where on the right hand side, y1 and
y2 have been merged into y, and a lifted accessor a1 has been inserted to extract y1
which is required by z2.

62

4.2. Stream Merging: Application

y1 y2

z1z2

(a) Initial data-flow diagram

y

z′1a1

z2

(b) Merged y1 and y2 into y, and added
accessor a1.

Figure 4.10.: Example for a lifted accessor

4.2.2. Lift

Using the previously defined helper procedures, we can now define the general case
for merging lift operators. Hereby, this is split into two parts, first introducing the
stream merging for a binary lift, followed by the procedure for n-ary lift. This is
required as stream merging may result in generating lift operators of higher arity
than 2, as shown in Figure 4.2. As stated in the semantics of TeSSLa in Subsection
2.1.2, an n-ary lift can be represented by using binary lifts, allowing to break up
those generated n-ary lift into binary lifts again. However, this would defeat the
purpose of the optimisation as it may have been possible to merge multiple inputs of
the n-ary lift and propagating this change through the dependency graph. There-
fore, this optimisation step has to be defined for n-ary lifts as well. After processing
the entire specification, any still existing n-ary lifts can then be represented through
binary lifts again.

Binary Lift

In this section, the process of merging two lift operations into one merged lift
operation is described. An example is shown in Figure 4.11. In particular, the
following tasks have to be performed:

• Check if the scenario allows a merge.

• If it does, merge the inputs into a lift of according arity, and rewrite the target
definition as unary lift.

63

4. Optimization

y1:lift1 y2:lift2

z:lift2

(a) Initial data-flow diagram

y:lift3

z′:lift1

(b) Merged y1 and y2 into y, and rewrite z
as unary.

Figure 4.11.: Example for a merge of two lifts

Given two stream definitions

y1 := liftn1(f1)(u1, . . . , un1)
y2 := liftn2(f2)(v1, . . . , vn2)
z := lift2(fz)(y1, y2)

where ni describe their respective arities.

The streams y1 and y2 are eligible for merging if the following conditions hold true:

• They are not part of two different cycles which depend on each other:

y1 6 SG
y2 ∧ y2 6 SG

y1

• The timing expression of one of them is subsumed by the other one:

τ(y1) vt τ(y2) ∨ τ(y2) vt (y1)

Note that this also holds true if τ(y1) ≡t τ(y2).

If y1 and y2 fulfill those conditions, they can potentially be merged. It may still be
that one of them is dependent of the other by

y1 y2 ∨ y2 y1

However, this can be alleviated as described in Example 4.2, by using the previously
introduced insertion of a lifted identity operation for the input causing the depen-
dence. Therefore, for the following steps, y1 and y2 are assumed to not be dependent
of each other.

64

4.2. Stream Merging: Application

The inputs y1 and y2 can then be merged into one n1 + n2-ary lift operation

y := liftn1+n2(f ′)(u1, . . . , un1 , v1, . . . , vn2)

where in general

f ′(a1, . . . , an1 , b1, . . . , bn2) = (r1, r2)

r1 =
⊥ if ∀iai = ⊥
f1(a1, . . . , an1) else

r2 =
⊥ if ∀ibi = ⊥
f2(b1, . . . , bn1) else

Catching the case where all ai respectively bi are ⊥ is necessary, because f1 are f2
not directly lifted anymore. The semantics of lift already caught the case where all
inputs are ⊥, but since now both functions are nested into a new function f ′, this
case needs to be handled explicitly. However, this is only the general case, and can
be simplified depending on the inferred timing of streams. We can observe that for
two streams x and y:

τ(x) vt τ(y) =⇒ (y(t) = ⊥ ⇒ x(t) = ⊥)

This means that the set of parameters needed to check for ⊥ in r1 can be simplified
to

r1 =
⊥ if ∀a∈Aa = ⊥
f1(a1, . . . , an1) else

where A = {ai | ∀j,j 6=i : ui 6vt uj} being the set of parameters whose associated
stream is not subsumed under any other stream for this partition of inputs. If
A = ∅, then all inputs are equivalent regarding their timestamps and any ai can be
used.

Additionally, if

∃u ∈ {u1, . . . , un1}∀a ∈ {u1, . . . , un1 , v1, . . . , vn2} : a vt u

meaning that all other inputs of y are subsumed under u, r1 can be further simplified
to:

r1 = f1(a1, . . . , an1)

The reason for this is that the semantics of lift allows to assume that f ′ is always
called with at least one stream not being ⊥. As u subsumes all other streams, this
means that the case for all inputs ui being ⊥ cannot occur.

65

4. Optimization

Those simplifications can then also be naturally adapted to r2.

Furthermore, the stream definition z can be rewritten as a unary lift z′ as follows:

z′ := lift1(f ′′) where f ′′(a) = fz(π1(a), π2(a))

Finally, if there are other stream descriptions using y1 or y2 as well, a lifted accessor
as introduced previously is inserted.

n-ary Lift

The previous description for a binary lift can for most parts be naturally extended
for a n-ary lift as well. One notable difference here however is that for an n-ary
lift not necessarily all n inputs are eligible to be merged together. Therefore, it
is necessary to partition the inputs into maximal subsets such that each subset
fulfills the previously noted conditions to be eligible for merging. The procedure to
merge those partitions can be directly adapted from the binary lift. However, as
a consequence of only merging subsets of inputs, the target stream z might not be
rewritten as a unary lift as it was the binary case. Instead, it will result in a k-ary
lift assuming that the inputs have been split into k partitions. As an example, if
the stream definition in question is

z := lift5(f)(y1, y2, y3, y4, y5)

and assuming that the timing of inputs allows merging of y1, y3 into y′1, and y2, y4, y5
into y′2 respectively, z could be rewritten as

z′ := lift2(f ′)(y′1, y′2)

However, as a difference to the previous case, this requires explicit handling of the
case where the value for y′1 respectively y′2 is ⊥. Specifically, this means that f ′ is
then defined as follows:

f ′(a, b) =


f(⊥ , π1(b),⊥ , π2(b), π3(b)) if a = ⊥
f(π1(a),⊥ , π2(a),⊥ ,⊥) if b = ⊥
f(π1(a), π1(b), π2(a), π2(b), π3(b)) else

A visualisation of this example is given in Figure 4.12, where the inputs are coloured
depending on their timing.

66

4.2. Stream Merging: Application

y1:lift y2:lift y3:lift y4:lift y5:lift

z:lift5

(a) Initial data-flow diagram

y′1:lift y′2:lift

z′:lift2

(b) Merged inputs into y′1 and y′2, and rewrite z as binary.

Figure 4.12.: Example for a merge of 5 lifts

Last

This case covers the scenario of merging n last having a shared lift as target:

y1 := last(u1, v1)
. . .

yn := last(un, vn)
z := liftn(f)(y1, . . . , yn)

In this case, the general idea is to insert another lift definition which merges all ui
into one n-tuple, and using a single last to return the last known value of this tuple.
This also effectively propagates the merge through lasts, allowing to then merge the
inputs ui further, if possible. This process is visualised in Figure 4.13.

67

4. Optimization

y1:last y2:last

z:lift2

(a) Initial data-flow diagram

m: lift

y′:last

z′:lift1

(b) Create tupled input in m, replace last and rewrite z as unary.

Figure 4.13.: Example for a merge of two lasts

For a set yi to be eligible for merging, the following conditions have to hold:

• They are not part of different, dependent cycles:

∀i,j,i6=j : yi 6 SG
yj ∧ yj 6 SG

yi

68

4.3. Bit Width Inference

• One of their value inputs has to subsume all other value inputs:

∃i∀j,i6=j : τ(uj) vt τ(ui)

• The trigger inputs are be equivalent regarding their time:

∀i,j,i6=j : τ(vi) ≡t τ(vj)

The condition for the trigger input are derived from the fact that applying last
to a stream of tuples returns the previous tuple of values. This means that all
triggers need to be equivalent regarding their timing, as otherwise it would generate
unwanted events for some of the merged terms. The other conditions are similar to
the previous case with lift and can directly be deduced from the examples.

Additionally, similar to the lift case, dependencies between the yi are assumed to
be resolved by inserting lifted identities at the according positions.

Then, the inputs ui can be merged into a stream definition u as follows:

u := liftn(f ′)(u1, . . . , un) where f ′(a1, . . . , an) = (a1, . . . , an)

and the last operations yi can be replaced by a single last y with

y := last(u, v1)

Note that here, v1 is used as trigger. Any other vi would be valid as well, as they
are all equivalent regarding their timestamps.

Finally, z can then be rewritten as a unary lift:

z′ := lift1(f ′′)(y) where f ′′(a) = f(π1(a), . . . , πn(a))

If only a subset of inputs of z are eligible for merging, the same solution as described
for merging n-ary lift applies.

4.3. Bit Width Inference

In some use cases, there may be additional information known about the required
(or sufficient) bit widths of values, allowing to adapt the bit width. This can lead
to less space used on the actual hardware. In general, the underlying synthesis tool
performs optimisations on the hardware description as well. However, using complex
data types, which are being wrapped in a communication interface, stored in regis-
ters and dispatched with queues, it may be that those lower level optimisations are

69

4. Optimization

not able to accurately detect every case where a lower bit width would be sufficient.
Additionally, metadata provided with the specification can allow for further optimi-
sation, and it can be used to take overflows into account as well by selecting the bit
width of the result accordingly. For those reasons, a general way of performing a bit
width inference on TeSSLa specifications is defined in this chapter.

The following example is used to highlight how a bit width inference for TeSSLa can
be defined.

Example 4.12. Consider the following specification:
in x: Events[Int]
in y: Events[Int]

def u := x * 2
def v := u - y
def r := v % 4

For this example, we assume that there is additional information known about the
inputs: Values of x are 6 bit signed integers, and values of y are 4 bit signed integers,
meaning that their values are in the intervals [−32..31] and [−8..7] respectively.

Initially, the following bit widths for values of each stream definition can be deduced:

• Values of u are in [−64..62] and require 7 bits.

• Values of v are in [−71..70] and require 8 bits.

• Values of r are in [0..3] and require 2 bits.

Then, considering how the modulo operator % affects its operands, and as v is not
used in any other operator, it can be deduced that its left-hand side input v can
therefore also be trimmed to 2 bits. This would then furthermore allow to trim u
and y to 2 bits as well, and x to 1 bit.

Deducing from this example, the general idea is to first propagate the known input
bit widths through the specification according to its data flow, which results in the
required bit widths for each stream definition. In a second step, based on the context
where a value is used, it can then be inferred how many bits are sufficient to still
produce valid results for every input. These changes can then be propagated in the
opposite direction to the data flow. Note that in the case of a recursive definition,
this propagation may require multiple iterations through the cycle until a fixed-
point is reached. Practically, such a fixed-point exists under the assumption that
a maximum bit width for values is defined, and that there exists a total order on
those values. However, reaching this fixed point may require an unfeasible amount

70

4.3. Bit Width Inference

of iteration steps to reach, thus in the implementation requiring a limiting condition
for the amount of iterations. In the following section, these steps are described in
more detail and the required notions are introduced.

4.3.1. Algorithm

For the rest of this section, all data domains are treated as being finite, and it is
assumed that there is a total order for them. Requiring the domains to be finite
is no significant limitation, since values are in general limited by a maximum bit
width anyway. Additionally, it is assumed that the total order is also reflects the
bit width of those values in their binary representation, meaning that for a ≤ b, the
bit width of a is also less or equal to the bit width of b. In the following, a more
general notion of such an interval is given, also called value range.

Definition 4.13 (Value range). Given a domain D with a total order ≤ on this
domain. Additionally, let x := e be a stream definition of a specification ϕ, with
input streams s1, . . . , sk. Then, the interval [a, b] ⊆ D = {d ∈ D | a ≤ d ≤ b} is
called a value range for x if

∀s1, . . . , sk
(
∀t : JeKs1,...,sk

(t) ∈ D =⇒ JeKs1,...,sk
(t) ∈ [a, b]

)
Meaning that every possible evaluation of x only has values within this interval.

For a specification ϕ with input streams of SD1 , . . . ,SDn , initial value ranges are
defined by their domain [ai, bi] = Di.

Those values can then be propagated along the dependency graph by calculating
a resulting value range for each stream definition, based on the value ranges of its
inputs:

Definition 4.14 (Value range generation). Let y be a stream definition of ϕ which
uses an arbitrary TeSSLa operator f : SD1 × · · · × SDn → SD. Then, a value range
for y can be generated by a function vf : VD1 × · · · × VDn → VD with

vf ([a1, b1], . . . , [an, bn]) = [a, b]

such that for all s1, . . . , sn, s with f(s1, . . . , sn) = s:(
∀i∀t∈δt(si) : si(t) ∈ [ai, bi]

)
=⇒ ∀t∈δt(s)s(t) ∈ [a, b]

Intuitively, this means that for streams s1, . . . , sn, if vf is applied to value ranges of
those streams, the result is a value range for the resulting stream as well.

71

4. Optimization

This general definition of the function vf can then be used to define vf for each
TeSSLa operator.

• nil defines the empty stream, not returning any value. Thus, vnil = ∅.

• As the domain of unit contains only a single value �, the value range is always
vunit = {�}.

• As time returns the current timestamp of a stream, the resulting value is a
value of the time domain T:

vtime([a, b]) = T

• last either filters or returns the value of its first input at a different timestamp:

vlast([a1, b1], [a2, b2]) = [a1, b1]

• For lift(f), the effect of its application on the resulting values is solely depen-
dent on the function f . Assuming f to be arbitrarily composed from a set
of primitives F = {f1, . . . , fk}, the value range vlift(f) can then be defined in
dependence of those primitives as well, by defining the vlift(f ′) for each f ′ ∈ F
and then composing vlift(f) in the same manner as f .

As an example, given primitives F = {+,mod}, the vlift(f ′) can be defined as
follows:

vlift(+)((a1, b1), (a2, b2)) := (a1 + a2, b1 + b2)
vlift(mod)((a1, b1), (a2, b2)) := (0, b2 − 1)

Then, a function f(x, y) = (x + 5) mod y can have its value range computed
by the function

vlift(f)((a1, b1), (a2, b2)) = vlift(mod)(vlift(+)((a1, b1), (5, 5)), (a2, b2))

For each stream definition in a specification ϕ, such a function vf can then be created
and the initially defined value ranges for input streams can be propagated through
the dependency graph. Therefore it is necessary to combine the value range of the
previous iteration with the newly computed one.

So far, a general definition of the effect of TeSSLa operators on their value ranges
and the propagation of those computed values has been defined. As this part of
the computation only has an affect on its dependent stream definitions, this step
is also called forward propagation. For the second part, as seen in Example 4.12,
after having computed all value ranges for streams, it is possible to infer where value
ranges may potentially be shortened without changing the outcome. This effect can
be propagated in the direction opposite to the data-flow, therefore it is also called
backwards propagation.

72

4.4. Queue Placement

Definition 4.15 (Value range update). Given a stream definition y using a TeSSLa
operator f : SD1 × · · · × SDn → SD and its computed value range [a, b] as well as
known value ranges [ai, bi] for each input of y. Then, replacing the value range of
the i-th parameter xi by [a′i, b′i] is called a value range update for y if the following
conditions hold true:

• The binary representation of any value of [a′, b′] requires less bits than of [a, b]

• For every possible input sj:

f(s1, . . . , si, . . . , sn) = s =⇒ f(s1, . . . , s
′
i, . . . , sn) = s

where s′i is a modification of si with si(t) ∈ [ai, bi] =⇒ s′i(t) ∈ [a′i, b′i], project-
ing the values of s into the new value range by trimming its most significant
bits.

Intuitively, this means that in such a case, a certain amount of bits may be trimmed
from the i-th input without affecting the result.

Additionally, since the stream xi may be used at other stream definitions apart
of y, having different effects on the value range of xi. Therefore, the updates are
computed locally as rj = (a′j, b′j) for each yj using xi as input, and then aggregated
as

(a′i, b′i) :=
⋃
j

rj

ensuring that the resulting interval is correct for every target yj.

Analogue to the forwards propagation, this update can then be propagated through-
out the specification.

Applying the here described algorithm to a specification ϕ results in every stream
definition being annotated with a value range, which can then directly be used to
deduce the bit width for the value port for that stream definition on the hardware.

4.4. Queue Placement

In Subsection 3.2.1, queues were introduced to provide the possibility to buffer values
and to dispatch values to their target modules. As the use of queues is very resource-
intensive, with an amount of registers used directly proportional to the bit width of
values and timestamps, it is preferable to use as few queues as possible. Therefore,
this chapter introduces a heuristics based algorithm to define the placement and
depth of queues.

73

4. Optimization

The timing of paths on hardware plays a crucial role for placing queues. In static
timing analysis, the notion of slack is used to check for timing constraint violations.
There, the slack is defined as the difference between the required arrival time of a
signal and its actual arrival time s = tr − ta. As an example, on a frequency of
125 MHz, the period and therefore the maximum time a signal is allowed to need
within one clock cycle is tr = 8 ns. A negative slack then denotes a violation of
timing constraints by the design and therefore needs to be avoided.

The time a signal needs can be split into two main aspects: The logic, or more specif-
ically the amount of look-up-tables required to implement the logic on a path, and
the networking, meaning the distance the signal has to travel between the look-up-
tables and registers. As both of those aspects are highly dependent on the specific
hardware and synthesis tool used, and especially for network in general hardly pos-
sible to infer, the approach here is to use a heuristic to try and reduce the amount
of queues required without invalidating the resulting hardware description.

Additionally, the depth of queues is also a relevant optimisation criteria, as an
increased depth of a queue allows for more buffering, which depending on the speci-
fication increases the throughput, but at the same time uses up more resources. To
further motivate this, consider the following example:
in x: Events[Int]
def l3 := last(last(last(x, x), x), x)
def diff := l3 - x
out diff

In this example, computation of the left input of diff is a chain of three last
operators, which each require storing of the incoming value in a register. Thus, that
path requires three clock cycles to compute, while the right hand side takes the
value at x directly. This means that the input at x can only be consumed if the
final lift operator is ready to consume it. The difference in path lengths here would
then cause the specification to only be able to consume one message every 4 clock
cycles. Adjusting the depth of x to 4 would allow full pipelining of the left path and
thus allow to consume one message per clock cycle.

4.4.1. Placement

To estimate the amount of logic a certain path requires on the hardware, a weighing
for the data-flow diagram is used. As modules can have multiple inputs, which then
also traverse different paths throughout the module, it is necessary to differentiate
between each input signal and their passage through a module to deduce the timing.
This is represented by assigning each stream definition y using an n-ary TeSSLa

74

4.4. Queue Placement

operator f : SD1 × · · · × SDn → SD an n-tuple of internal weights iny ∈ (N ∪ {⊥})n
which are empirically determined. The value at position i in the tuple denotes the
weight of that path through the module representing this stream definition. An
example is shown in the following figure:

x y

5 3 2

⊥ 1

Such a data-flow diagram, extended with the internal weights for each stream def-
inition, can then be used to compute the weighting. The weighting of a stream
definition y := f(x1, . . . , xn) is defined as a function wy : N×· · ·×N→ N, mapping
from weights of all incoming edges to the resulting output weight, where

wy(v1, . . . , vn) = max
1≤i≤n

0 if there is a queue on the edge (xi, y)
vi + πi(iny) else

where πi(iny) denotes the projection on the i-th value of iny.

Applying this weighting function iteratively on the graph where the edges of input
streams are weighted with 0 then allows to fully weight the graph. Recursive defi-
nitions pose no issue here since they cannot have a combinatorial loop, as discussed
previously.

Using the previous example again, the weighted graph would then look as follows:

75

4. Optimization

x y

0 0 0

5 3

4

5 3 2

⊥ 1

This weighted graph can then be used to deduce placement of queues. The following
describes and motivates the different conditions on when a queue is placed:

• If the result of a definition y is used at multiple targets z1, . . . , zn, a queue is
placed. This is necessary as queues handle the dispatching.

• If the stream definition y uses an n-ary operator with n > 1, a queue is
placed at each input xi of y. The reason for this is that with an increasing
amount of inputs, the probability for at least one of the wires of its inputs
being located at a significant distance to the destination in the synthesised
layout increases, which in turn also increases the time the signal needs to get
from its source to its destination and thus also reducing the slack. Therefore,
for this optimisation, only unary operators are considered. This limitation is
also addressed in Chapter 7.

• If the stream definition y uses a unary operator with an input x of weight wx,
and wx < tw ∧ wy > tw for a globally specified threshold tw, signalling that
applying y additional to the current path length of x might cause a timing
violation, hence a queue is placed on the edge between x and y. The threshold
to choose varies depending on the specific hardware in question.

These conditions can then be applied repeatedly, recalculating the weights of affected
nodes after insertion of new queues, until either no more queues can be placed none
of the conditions apply any more. The result is then a specification extended with
annotations about which edges require a queue to be inserted.

So far, only the placement of queues got discussed, without taking the depth of
queues into account. This is the focus of the next section.

76

4.4. Queue Placement

4.4.2. Depth

As motivated earlier, cases where one value is split onto multiple paths which require
different amount of clock cycles to compute can significantly decrease the throughput
of a specification. This can be alleviated to select a fitting queue depth, allowing to
sufficiently buffer values, balancing out the difference in path lengths. This difference
in path lengths can be deduced by comparing the latency of each path. Computing
the latency of a path can be achieved by using the data-flow diagram, including
the previously generated placements for queues. The weight of each node is then
defined as the maximum of the weight of its inputs added with the latency of its
associated module itself. The latencies of each module can directly be inferred from
the module definitions of each module, specifically: last and queues have a latency
of one, while time and lift have a latency of zero clock cycles.

Those weights then represent a simulated run of a data value through the system,
where the weight denotes the clock cycle at which the value passes through the
module. An example for such a weighting can be seen in the following figure:

x

Queue

y1:last

y2:lastx1:time

y3:last

z:lift

1

2

3

4

4

1

77

4. Optimization

As this queue depth inference only considers paths which dispatch a value to multiple
paths, there will always be a queue present at that position. Given the latencies of
those paths, the difference can be computed, which in this example is ∆ = 4−1 = 3.
This difference denotes the depth to add to the initial queue depth of one, meaning
that the optimal queue depth required here would be 4.

It is important to note that increasing the depth of a queue also drastically increases
the amount of resources required to represent the queue in hardware. Thus, it would
be useful for a future improvement to define a more complex mechanism to decide
the depth of queues, allowing to prioritise where an increase in depth proves more
beneficial. Also, using metadata on the frequency and delays of different input
streams would also allow further conclusions to the required depths of queues. This
is discussed further in Section 7.1.

In this chapter, we defined methods to analyse and modify TeSSLa specifications to
allow for more performant or more resource-friendly implementations on hardware.
The following chapter then highlights aspects of an implementation of this concept,
including all here introduced optimisation phases.

78

5. Implementation

So far, the concept for a translation of TeSSLa specifications to a hardware descrip-
tion was defined, followed by multiple optimisation phases aiming to improve the
result in terms of their performance and resource usage. The described transla-
tion including the optimisations have been implemented, some aspects of which are
highlighted in this chapter.

5.1. Used Tools

The programming language chosen for the implementation is Scala [OSV08], which
is a staticly typed, functional programming and object oriented language compiled
to Java bytecode, thus also providing the platform independence of Java. The func-
tional language features of Scala allow easy manipulations of collection data struc-
tures. Considering that the purpose of the implementation is to compile TeSSLa
code into a hardware description, and that all described optimisation phases are
relying on graph structures in some manner, this is beneficial. Another reason for
this choice is the fact that the implementation of the TeSSLa front-end is written
in Scala as well, which is used as an interface to this implementation. The input to
the front-end is a TeSSLa specification, potentially with annotations or macro def-
initions, and handles parsing, type checking, macro expansion and cycle detection
on the specification. The result of this is then a core language TeSSLaCore, which
represents a flat TeSSLa specification with all types known. Using this core repre-
sentation as input allows to branch off multiple different back-ends from TeSSLa,
such as here the translation to Verilog.

As described in Subsection 2.2.3, we use the language Chisel to generate describe
hardware modules in Scala. More specifically, the here implemented compiler de-
scribes the hardware in Chisel, and then uses the back-end provided by the Chisel
framework to compile Chisel code into Verilog.

79

5. Implementation

5.2. Architecture

Cfg

Spec
TeSSLa
↓

TeSSLaCore
Optimi-
sations

TeSSLa
+ Metadata

↓
Chisel

Chisel
↓

Verilog
Veri-
log

Port-map

Figure 5.1.: Compiler Pipeline

This chapter gives a broad overview on the architecture of the implementation.
Figure 5.1 shows an overview of the compiler pipeline. The input consists of the
TeSSLa specification, which will first be processed into TeSSLaCore as described
previously, and a configuration file (which is discussed in more detail in Section
5.5) containing values for every user-configurable parameter. In the next step, the
optimisations described in Chapter 4 are applied, and finally the optimized result
is transformed into a Chisel module. This Chisel description can then be compiled
into Verilog code by using the back-end provided by the Chisel framework. Finally,
there are then two results:

• The resulting module in Verilog

• If IO adapters are used: A mapping, assigning an address to each input and
output stream of the initial specification, which is required for en-/decoding of
input/output trace data. Additionally, the mapping also stores the names of
streams, to restore those when decoding.

Additional to the compiler pipeline, an encoder and a decoder are implemented,
which are visualised in 5.2a and 5.2b. They are used to transform a human-readable
trace file into a binary format and vice-versa, as described in Subsection 3.4.1. Here,
the TeSSLa front-end is used once again, to transform a give trace-file into an iterable
data structure. In combination with the bit widths provided by the configuration
file and the mapping from streams to addresses through the port map, this trace
file can then be transformed into a binary trace. The supported data types are
introduced in Section 5.4.

In the next sections, some aspects of the implementation are described in more
detail, namely: The implementation of operators as Chisel modules, data types,

80

5.2. Architecture

Trace

Port-map

Cfg

Trace
Parser Encoder Bin

Trace

(a) Encoder

Bin
Trace

Port-map

Cfg

Decoder Trace

(b) Decoder

Figure 5.2.: Architecture of encoder and decoder

configuration files, and the test framework. Additionally, a full example is given to
demonstrate the use of the entire toolchain.

81

5. Implementation

5.3. Chisel Modules

Each atomic module is defined in Scala by using Chisel. Those modules are using
type parameters allowing to instantiate those modules for different data types and
widths in use. As an example, see the following – slightly simplified – definition of
the time operator in Scala:
class Time[T <: Data, V <: Data] extends Module {

val io = IO(
val a = new ChannelInterface[T, V]()
val out = Flipped(new ChannelInterface[T, T]())

)
val timeReg = RegInit(0)
val time = Mux(io.a.valid && io.a.isTimestamp,

io.a.timestamp, timeReg)
timeReg := time

io.a.ready := io.out.ready
io.out.valid := io.a.valid
io.out.isTimestamp := io.a.isTimestamp
io.out.value := time
io.out.timestamp := time

}

It can be seen that for most parts, the implementation of a module in Chisel can
be directly deduced from the pseudo-code definitions used previously. The type
parameters T and V represent the type for timestamps and data values to be used.
The IO ports can then be defined calling IO. The ChannelInterface in this
case implements the modified ready-valid interface used, by defining the signals and
their direction:
class ChannelInterface[+T <: Data, +V <: Data] extends Bundle {

val ready = Output(Bool())
val valid = Input(Bool())
val isTimestamp = Input(Bool())
val value = Input(dataType.tpe)
val timestamp = Input(timeType.tpe)

}

As Chisel is a framework for Scala, all features of Scala can freely be used to modify
and connect Chisel constructs, for example by using type parameters to easily define
hardware modules for varying data types or bit widths. Another aspect where this

82

5.3. Chisel Modules

is useful is when defining an aggregate signal, as in this code extract from the output
adapter:
val minTime = io.a.map(_.timestamp).reduce[T]{
case (a,b) => Mux(a <= b, a, b)

}

In this case, the Collection API of Scala is used to take the timestamp flag of each
port of a (which is a vector of ports), and aggregating them to a signal returning
the smallest of all timestamps.

Another aspect to note is that the TeSSLa front-end also uses a standard library,
which also allows defining additional built-in operators. This allows to extend
TeSSLa by more operators and also define specific Chisel modules for those op-
erators, allowing for some case specific modules and hand-crafted optimisations
compared to defining them as a combination of the existing TeSSLa operators.

The implementation features multiple custom built-in operators, some of which are
of greater importance and are thus described here:

SignalLift As discussed in Subsection 2.1.3, an operation x + y can be interpreted
to be lifted in different ways. In the previous chapters, such an operation was
interpreted as a total function, such that both inputs are required to be present
at that timestamp for an output to be produced:

2 4x

1 3y

7x+ y

However, especially for arithmetic or logic operators, it may be wanted to
interpret those inputs as signals rather than events, thus not requiring them
to occur at the same timestamp, but rather taking the most recent value:

2 4x

1 3y

3 7x+ y

Using the base TeSSLa operators, such a signal lift can be defined as follows:

aa := merge(a, last(a, b))
bb := merge(b, last(b, a))

slift(f)(a, b) := lift(f)(aa, bb)

where aa and bb take the current value of their respective stream if it exists,
or the last seen value otherwise. However, as this would require the use of 3

83

5. Implementation

lift modules and 2 last modules, this would result in a significant amount of
overhead. Instead, we use a dedicated module for this purpose. This module
is very similar to the lift module, the difference being that it includes registers
for each input to store the last seen value, and use that value of no value exists
for the current timestamp.

Fold A folding functionality is well known from functional programming languages,
allowing to iterate over a sequence and applying a function on the previous
value and the current input, generating the next value and thus aggregat-
ing the entire sequence. In the context of timed streams, folding a func-
tion f : A × A → A over a stream x = t0 d0 t1 d1 . . . would result in
x′ = t0 f(0, d0) t1 f(f(0, d0), d1) . . . for a starting value 0. Such a stream
can also be defined recursively, however, as a recursive definition always uses
at least one last their output is delayed by one clock cycle, which may cause
its dependencies to stall depending on the situation. Simple definitions like a
counter should instead rather be defined by using a built-in fold operator and
its according module, which uses a register to store the last result and applies
an arbitrary function to the stored value and the input.

As previously shown, the Chisel modules support different data types by use of type
parameters. In the next section, the different supported data types which can be
used with those modules are introduced.

5.4. Data Types

Since so far, only a generalised encoding for traces has been given, this section in-
troduces the supported data types as well as their encodings to a binary format.
In particular, this binary format is also used by the encoder and decoder to trans-
form traces into the correct binary representation and vice-versa. The primitive
data types supported are integer, boolean and unit. Integers are encoded using the
two’s complement representation in case of being signed, and the natural binary
representation for unsigned integers. The TeSSLa front-end also allows the defini-
tion and use of annotations to attach meta-data to definitions. This is used here to
declare the bit width and the sign of an integer input. As an example, the following
definition:
@unsigned
@width(8)
in x: Events[Int]

84

5.4. Data Types

declares x as an 8 bit unsigned integer. If no bit width is given for an integer stream,
a default integer bit width is applied, which is given in the configuration file (see
Section 5.5). This information can then also be used by the bit width inference.

The primitive type unit represents the data domain U = {�} used in unit repre-
senting a single element. As there is no distinction of values to be made here, the
value itself would not require any bits to be encoded, resulting in a bit width of
zero. This does not mean that the entire communication channel can be omitted,
as each value is wrapped in a message using the ready-valid interface, and the value
only being one part of it. However, Chisel does not allow a bit width of zero for
any wire, thus a bit width of 1 bit for unit is used, where the value of the bit is
ignored.

Additionally, in the previous chapters we made use of tuples as well as values which
might be undefined (⊥), which therefore need to be supported as well. To permit
definition of more complex interfaces, Chisel provides the Bundle class, which acts
as an aggregation of multiple other data types, while per default its binary repre-
sentation is defined as the concatenation of the binary representation of its fields. A
data type for optional values would require two fields: A single bit flag signalising
whether or not the value is set, and a field for the value itself. The latter requires the
interface to have a type parameter, as any supported value type should be allowed
to be used with an optional as well. The following shows a simplified variant of the
Chisel code for this interface:
class OptionInterface[V <: Data] extends Bundle {
val value: V
val defined: Bool

}

A tuple can be defined by using one field for each value of the tuple, each with their
respective type parameter:
class Tuple2Interface[A <: Data, B <: Data]

extends Bundle {
val a: A
val b: B

}

To avoid having to define separate interfaces for different tuple arities, n-ary tuples
are represented as nested binary tuples (x1, . . . , xn) = (x1, (x2, (. . . , (xn−1, xn) . . .))).

85

5. Implementation

5.5. Configurations

As some aspects of the synthesis are parametrised (as for example the previously
described default bit width for integer data types) and can thus be configured de-
pending on the users needs, a configuration file is used for an intuitive way of defining
those parameters. The existing parameters are as follows:

• Bit widths of address, data and the total width of the input and output channel.
Missing widths are being inferred from given ones, if possible.

• Bit widths for the integer type and timestamps, which are mandatory.

• The threshold for spacing of queues which was introduced in Section 4.4 and
a maximum depth for queues, which is used to limit queues in their size if
needed.

• The strategy to use by the bit width inference. The algorithm described in
Section 4.3 can be instantiated in multiple different ways. The strategies used
differ in the way that on one of them, the bit width inference takes overflows
into accounts (for example, adding two 32 bit values resulting in a 33 bit value),
while the second strategy ignores those overflows.

• Flags whether or not the input-adapter or the output-adapter should be used.

As format for the configuration files, both JSON and YAML are supported, as both
allow an intuitive, human-readable definition of data structures. Additionally, the
format is being validated against a schema file to ensure proper use. An example
for a configuration file can be seen in Section 5.6.

5.6. Example

We now show an example on how the toolchain can be used by use of an example.
Given the following specification file spec.tessla:
in x: Events[Int]
in y: Events[Int]

def sum = fold(filter(x, x == y), 0,
(a: Int, b: Int) => a + 1)

def total = fold(x, 0, (a: Int, b: Int) => a + 1)
out sum
out total

86

5.6. Example

which returns the amount of events on x where x == y and the total amount of
events on x. Also, the following configuration file config.yaml is used:
widths:

in: 32
out: 32
integer: 20
timestamp: 20

queueSize: 4
queueSpacing: 10
bwiStrategy: dynamic
inputAdapter: true
outputAdapter: true

Here you can see the input and output width each being defined as 32 bit. Given
that the specification uses 2 streams as input and output each, the required bit width
for addresses is 1. With this, the maximum allowed with for data types of 31 bits
can be inferred. Additionally, the bit widths for the integer type and timestamps
are both set to 20 bits. The queue size defines the maximum depth of a queue,
here being 4, while the queue spacing defines the threshold wt defined in Subsection
4.4.1. The bit width inference strategy is set to dynamic, denoting the mode which
adapts to overflows. Furthermore, both adapters are enabled.

Then, the Verilog code can be generated by calling the synthesis toolchain of the
implementation as follows:
java -jar tessla-synthesis.jar synthesize

--config config.yaml
--file out.v
--mapping ports.map
tessla.spec

This generates the previously described port mapping for the encoder/decoder and
stores it in ports.map, and the resulting Verilog code in out.v. The Verilog
code can then be used in combination with a synthesis tool like Xilinx Vivado to
synthesise the specification on an FPGA. To define the IO between the system and
the FPGA, Xillybus is used, which is an FPGA IP core using PCIe. This is described
in more detail in Chapter 6. The synthesised layout is visualised in the following
figure:

87

5. Implementation

The used resources are represented using three colors, where pink is the Xillybus
module, yellow being the used FIFO queues as connection between the Xillybus and
the generated specification, and green being the generated specification.

Then, an input trace file trace.txt which looks as follows:
1: x = 5
1: y = 3
2: x = 7
2: y = 7
4: x = 8
5: x = 7

can be encoded using the previously defined configuration file and the generated
mapping:
java -jar tessla-synthesis.jar encode

--config config.yaml
--bin trace.bin
--map ports.map
trace.txt

This generates a binary representation of that trace file in trace.bin, which can
then be used as input to the input adapter of the specification module, and the

88

5.7. Testing

output generated by the module stored in a binary file. This resulting binary file
can then be decoded in a similar manner:
java -jar tessla-synthesis.jar encode

--config config.yaml
--bin out.bin
--map ports.map
out.txt

storing a human readable formatting of the result in out.txt:
0: total = 0
0: sum = 0
1: total = 1
2: total = 2
2: sum = 1
4: total = 3
5: total = 4
5: sum = 2

5.7. Testing

In the following, the different tested aspects of the implementation are described.
The test framework for the hardware is mainly split into two parts: Unit tests,
which test for correct functionality of each atomic module in different use cases,
and integration tests, which test the functionality of the compiler pipeline and its
consistency to the software solution.

Chisel provides the class PeekPokeTester, allowing to stimulate modules and
simulate their behaviour step by step, thus allowing to test their functionality di-
rectly in Scala. This allows to define unit and integration tests, to simulate the be-
haviour of atomic modules as well as entire specifications directly within the project
itself, resulting in a very intuitive test framework.

The PeekPokeTester is attached to an instance of a module and provides (amongst
others) functionality to

• Set the values of input pins with poke

• Read the output pins with poke

• Assert properties to an output and failing with some message if the assertion
failed, with expect

89

5. Implementation

• Progress the computation by n clock cycles through step(n).

Other components like the encoder, decoder and the parser for configuration files
are tested using unit tests as well.

The unit tests stimulate the atomic modules directly, to specifically test their be-
haviour in certain use cases. Here, the PeekPokeTester writes and reads values
directly on the channels used by that module.

The integration tests use the entire compilation pipeline. Specifically, each test case
is given a specification, a configuration and an input trace file, which are then used
to generate the Chisel module, encode the input and simulate the module given the
input using a PeekPokeTester driving the adapters. The resulting output is then
decoded and compared against the result of the software TeSSLa backend, which
provides an interpreter for TeSSLa specifications. The decoded trace can then be
compared to the trace generated by the interpreter, which also ensures consistency
between both tools.

This separation of testing components locally as units and performing integration
tests allows for easier debugging and localisation of errors. Especially in early phases
of the implementation, the unit tests are useful to cover the basic expected function-
ality of that component, and can then potentially be extended by test cases which
were initially missing if a failing integration test revealed an uncovered case.

A structural overview of the integration tests is given in the following figure:

90

5.7. Testing

Spec

Cfg

Trace

TeSSLa
↓

Chisel

Stimulator

Encoder

Decoder

Compare

Interpreter

port-map

binary

outputmo
du
le

portmap

binary
input

out
put

output

91

6. Evaluation

The purpose of this chapter is the evaluation of the implementation introduced in
the previous chapter. As the different optimisation phases are a major aspect in
this thesis, the evaluation of those is the main focus of this chapter. In the following
sections, the performance and resource usage of different specifications is measured
and evaluated.

6.1. Performance: Setup

In this section, the hardware setup used for the performance measurements is in-
troduced. The FPGA used is the XC7A200T-FBG676 of the Artix-7 series and
operated at a clock frequency of 125 MHz, on the Artix-7 AC701 evaluation board.
The generated Verilog code is synthesised onto the hardware by using Xilinx Vivado
2018.2. Furthermore, there are multiple possible use cases for such a hardware,
which naturally would also result in different benchmarks and measurements. The
use case selected here is the one of a logfile analysis, which has the advantage that
the previously introduced adapters, formats and encoders already provide all the
tools required to set this up. The specifications of the system are as follows:

OS Ubuntu 18.04
Motherboard Gigabyte B85M-D3H
Disk SanDisk SD8SBAT1
Memory 2x Hynix HMT351U6CFR8C-PB
Processor Intel Celeron G1840

The data transfer from host to FPGA and vice-versa is performed over PCIe and
handled by use of Xillybus1, acting as interface between for example a FIFO and
a PCIe hardware block, thus allowing the use of simple constructs like FIFOs to
define communication of the application logic. The communication over PCIe to
the generated module is visualised here:

1http://www.xillybus.com/

93

http://www.xillybus.com/

6. Evaluation

PC

Xillybus

FIFO
In

FIFO
Out

Specification

FPGA

PCIe

However, the here presented use case comes with a certain amount of overhead for
their IO operations, skewing the benchmarks. This is a significant drawback when
it comes to accurately measure the effect of the here described optimisation phases.
Therefore, to evaluate the performance of optimisations, another, more artificial
setup is used: Instead of transferring data to and from the FPGA, the input events
are generated and consumed directly on the hardware itself. Assuming that both
of those end points finish their computation within one clock cycle, this does not
generate any additional overhead, thus the resulting calculation time is then exactly
the processing time of the specification on the hardware.

Additionally, to have the performance measurement as accurate as possible, a bench-
marking module is used. The following describes that module, as well as the required
modules to generate and consume events on the hardware directly.

Benchmark

The benchmarking module here is used as a wrapper around the specification, pro-
viding the same in- and out-going ports, simply forwarding the values going into and
coming from the specification. Any further generated metrics by the benchmarking

94

6.1. Performance: Setup

module can then be emitted through an additional output port. This is visualized
in Figure 6.1.

Benchmarka
b

o1
o2

a
b

o1
o2
c

Specification

Benchmark

Figure 6.1.: A specification module with two inputs and outputs, wrapped by
a benchmarking module

The benchmark should only count the clock cycles between input of the first event,
and output of the last event. As information when all events are processed, the
highest possible timestamp for the provided bit width is used. Additionally, the
benchmarking results should only be emitted at the very end of the run to reduce the
amount of overhead the benchmark poses to the output channel. This means that,
after occurrence of the maximum timestamp at all output ports of the specification,
it can be assumed that no further events will arrive. This assumption only holds
if the actual timestamp does not naturally increase up to the flushing value, which
would indicate an overflow of the timestamp for the next input. This is most likely
an unwanted behaviour for timestamps and would thus only occur when choosing
an unfitting bit width for that use case. Therefore, excluding the just noted case,
the benchmark results can be emitted after the maximum timestamp occurred. A
simplified pseudo-code for this module can be seen in Listing A.4.

Event Generator

The main requirement of the event generator is to be able to generate new data for
every input within one clock cycle, such that there is always a valid data present
whenever the specification module is ready to process the next input. The gen-
erated data of course has to be a valid sequence of timestamps and data values.
Additionally, as the behaviour of specifications may also heavily vary depending
on the values inserted, using a simple counter or even a constant value to emit as
event value is unfavourable. Instead, the value should preferably be randomised in
a simple enough way such that it still computes within a single clock cycle.

For the randomisation, the generator uses a pseudo-random number generator. The
here chosen algorithm is a 32-bit XORshift random number generator described in

95

6. Evaluation

[Mar03]. While only providing a rather small period of 232 − 1, it can easily be
implemented in hardware and only requires one clock cycle to calculate. This is
considered sufficient as true randomness is not required for this use. Furthermore,
the event generator takes a seed as input which is used as initial seed for the random
number generator, allowing to reproduce a specific run if needed.

The event generator can then be defined as a module parametrised by n, denoting
the amount of output ports. For each of those ports it then contains registers to
store the timestamp and value to emit for this output. Note that in this case,
the input is not synchronised on their timestamps as it would be when using an
input adapter, hence the requirement that each output has their own timestamp
register. To ensure proper alternation of timestamps and values, each output also
requires a toggle to decide if a timestamp or a value should be currently sent. The
event generator is being initialised by two values, one being the amount of events
to generate, the second one being the seed for the random number generator. The
pseudo code for this module can be seen in Listing A.5.

Output Sink

The final component to define is the output sink, whose role is to reduce the amount
of output generated. It is important to note here that simply discarding all outgoing
events would most likely be detected by optimisation phases of Vivado during the
synthesis. Thus it is required that the computation still has an effect on the output,
but without emitting any events during the actual computation. The approach
here is very similar to the idea used on the benchmarking module, which emits its
measurements after all events were processed. Similarly, the output sink contains a
single register, aggregating all incoming data values in this register, and finally emit
a single aggregate value after the run completed.

IO-Decoupled Setup

Using the previously defined modules then allows the construction of a benchmark-
ing environment which is completely decoupled from any IO overhead during the
calculation process: The only IO performed is the configuration for the event gen-
erator which takes place before the calculation process begins, and the output of
the aggregated result and benchmarking values which comes after the calculation.
The full setup of the modules can be seen in Figure 6.2. This setup can then in the
following measurements be used to exactly measure how many clock cycles a certain
specification required, and compare those results against those of their optimised
counterpart.

96

6.1. Performance: Setup

Benchmark

in

a b

a b

x
y

a b

c
x
y

x
y

out

c r

outlimit
seed

Event
Generator

Speci-
fication

Out-
Sink

Out-
Adapter Out

Benchmark

Figure 6.2.: IO decoupled benchmarking setup.

6.1.1. Metrics

The measurement of clock cycles needed for the computation can be used to cal-
culate the throughput. Additionally, using the slack of a layout, a maximum clock
frequency can be calculated as well. The operating frequency for which the layouts
are generated is 125 MHz, and the data bit width used is 32 bit.

For the measurements where the data is read from and written to a disk, the through-
put is a useful metric to take into account. If the specification only has a single input
stream, the incoming data is an alternating sequence of timestamps and values, thus
consisting of 64 bits per event. In that case, the throughput can be calculated as:

TP = 64 · n bit · 125 MHz
c

where c is the amount of clock cycles the computation needed.

The slack of different paths in a circuit has an effect on the frequency a specification
can be run at, which also has a direct effect on their throughput. A specification may
require relatively few clock cycles to compute, but not allow for much higher clock
frequencies, while another specification may be the exact opposite in those aspects.
Therefore, additionally to the measured throughput on the operating frequency, it
may also be useful to compare the maximum throughput of a specification. Having
a positive slack s effectively means that this specific path could be slowed down by
at most s without compromising the functionality. Hence, the minimum over all
slacks within the circuit gives us the amount of time the period can be shortened.

97

6. Evaluation

The minimum over all slacks is shown by Vivado as worst negative slack WNS. The
maximum clock frequency2 is then

fmax = 1/(T −WNS)

where T denotes the period used for the elaboration of the circuit with T = 1
f
. So

in this case, T = 1
125 MHz = 8 ns.

This maximum frequency can then also be used with the previously calculated
throughput TP to extrapolate the maximal throughput:

TPmax = TP · fmax

125 MHz

6.2. Performance: Measurements

After introducing the setup and metrics used for the different performance bench-
marks, this section now shows each benchmarked scenario and specification followed
by an evaluation of its result. The benchmarks are split into three different cate-
gories with different focuses:

Effect of IO uses a logfile analysis setup as previously described and aims to mea-
sure the impact of IO in this setup on the total calculation time.

Adapters evaluates the effect of adapters in such a logfile analysis setup, and how
this effect is affected depending on different traces.

Optimisation uses the second described setup, which generates and consumes events
directly on the FPGA, to measure the speedup reached by the optimisations.

6.2.1. Effect of IO

To be able to compare the effect of IO, the selected specifications are run in multiple
different configurations, using the both the logfile analysis setup as well as the setup
using a generator and sink. Additionally, hybrids of both setups are considered as
well to get more fine-grained results.

2https://www.xilinx.com/support/answers/57304.html

98

https://www.xilinx.com/support/answers/57304.html

6.2. Performance: Measurements

Passthrough

The first specification considered here simply forwards a single input to its output,
thus maximising the effect of the IO on the total calculation time. The TeSSLa
specification looks as follows:
in x: Events[Int]
out x

Events EvG&S S EvG None
10 000 20 000 22 480 23 750 24 805
100 000 200 000 225 052 488 565 439 708

1 000 000 2 000 000 2 308 843 3 852 961 3 672 851
10 000 000 20 000 000 25 496 958 40 181 087 45 149 915
100 000 000 200 000 000 269 894 934 409 096 101 474 899 314

Figure 6.3.: Benchmarking of Passthrough in # clock cycles

The measurement results of this specification can be seen in Figure 6.3, where the
first column states the amount of events used, while the other columns denote all
different combinations for the IO configurations by stating which modules were used
(EvG for Event Generator, S for Output Sink). As you can see, all different scenarios
scale proportional to the amount of events used.

To get a proper comparison of those results, we can make use of the fact that
each event requires at least two clock cycles to be processed, which means that
the minimal processing time for n input events is 2n clock cycles. This optimal
processing time can then be used to calculate the ratio of the measured processing
times to it. This is shown in Figure 6.4, where the results for different event counts
are aggregated by averaging them.

EvG&S S EvG None
0% 20.5% 92.2% 98.1%

Figure 6.4.: Slow down of Passthrough caused by IO.

The configuration using both the sink and generator has the optimal processing time.
This is to be expected as the specification itself is only passing the events through,
which should not require any additional clock cycles. Furthermore, observing the two
next results shows that transferring the result onto the disk has a significantly higher
impact on the performance than reading the input from the disk. Considering the
result of the last configuration and the fact that this TeSSLa specification performed
no calculations, it can be assumed that the effect of the IO will not be higher

99

6. Evaluation

than double the optimal processing time for this setup, under the assumption that
the adapters do not act as a bottleneck. This case will be further analysed in a
later section. Another aspect to note especially for lower input sizes is that, when
transferring data from the system to the hardware, it is buffered. On lower input
sizes the size of the buffer is sufficiently high, such that only one block of data needs
to be transferred.

Malloc

This specification is used to provide a more realistic evaluation of how the IO affects
the overall calculation time, as the first specification only required one clock cycle
to compute. The specification is as follows:
in mallocAddress: Events[Int]
in freeAddress: Events[Int]

def t = merge(mallocAddress, freeAddress)

def lookup(key: Events[Int], f: Events[Bool],
size: Int): Events[Int] = {

def l: Events[Option[Int]] = last(reg, key)

def add = f && isNone(l)
def remove = !f && isSome(l) && getSome(l) == key

def reg = merge(if add then Some(key) else
if remove then None[Int] else l, None[Int])

static if size == 0 then 0 else
lookup(key,

f && !(add || remove), size - 1) +
if isSome(reg) then 1 else 0

}

def allocated = lookup(t, time(mallocAddress) == time(t), 3)

out allocated

Here, two inputs are taken which describe a memory address which should be al-
located or freed. The specification then returns how many memory addresses are
allocated. This is implemented by modelling a lookup table using a chain of recursive
definitions, which each represent one entry in the lookup table. The measurements

100

6.2. Performance: Measurements

for this specification can then be seen in Figure 6.5. As this specification uses two
input streams, the inputs used for this measurement had one event per timestamp,
alternately.

Events EvG&S S EvG None
10 000 130 034 130 034 130 034 130 030

100 000 1 300 034 1 300 034 1 452 057 1 414 866
1 000 000 13 000 034 13 011 304 14 876 864 15 034 011
10 000 000 130 000 034 144 601 915 153 647 952 155 025 566
100 000 000 1 300 000 034 1 484 627 024 1 560 098 617 1 575 619 414

Figure 6.5.: Benchmarking of Malloc in # clock cycles

It can easily be seen that when increasing the input size, the effect of the IO increases
significantly less compared to the previous example. Furthermore, the difference
between using both the event generator and the output sink to using none averages
here only 13% as shown in Figure 6.6, while the previous example averaged at around
98%. In conclusion, it can be assumed that for more complex specifications, the IO
has a rather small affect on the total performance.

EvG&S S EvG None
0% 5.1% 12.9% 13%

Figure 6.6.: Benchmarking of Malloc

6.2.2. Adapters

Considering that adapters take or produce an aggregated, synchronised stream of
inputs, they can be a severe bottleneck to the specification. Processing n events
at a specific timestamp will require at least n + 1 clock cycles. This means that if
there is more than one event occurring at a single timestamp, the adapters might
act as a bottleneck. In particular, this also means that if there are more output
events generated than there are input inserted, the output adapter may slow down
the process even further. How strong of a bottleneck they effectively are is not only
dependent of the specification, but also highly dependent on the nature of the input
trace.

To demonstrate this, the following specification is used and has its processing time
measured with different traces as inputs:

101

6. Evaluation

in x: Events[Int]
in y: Events[Int]
in z: Events[Int]

out x
out x + 5
out x + y + z

For the following deductions, it is assumed that all streams have already been ini-
tialised. The occurrence of a new event on x would cause a new event on four output
streams, while a new event on y or z would generate a new event on only one of
them. Additionally, each of the paths can compute within a single clock cycle, which
simplifies deductions about the bottleneck of IO adapters. Therefore, it would be
expected to see the following effects depending on the input:

• If at one timestamp only x has an event, the input adapter does not act as a
bottleneck and only requires 2 clock cycles. However, the output adapter has
to emit three events, thus needing 4 clock cycles.

• If both y and z have an event, the output adapter will only require two clock
cycles, while the input adapter requires three.

There are four different input traces used for measurement, where each of them
initialises all streams at timestamp 0:

• The first input trace then has one million timestamps with events only on x.

• The second one has one million timestamps with events only on y.

• The third has one million timestamps with events on both y and z.

• And the final input has one million timestamps with events on all three input
streams.

The results of those measurements can be seen in Figure 6.7. For the first input
trace, it was expected to be the least performant as the occurrence of only events
on x causes a difference of 2 clock cycles between input and output adapters per
timestamp. For the second and the fourth input, both adapters require the same
amount of clock cycles, thus being the most performant. The third specification
causes the input adapter to require 1 clock cycle more per timestamp than the
output adapter, therefore ranging in between the other results. This shows that the
effect of adapters on the performance of a specification only indirectly depends on
how many input and output streams are used, but rather how the streams relate to
each other and how often they share events on the same timestamp.

102

6.2. Performance: Measurements

x y y, z x, y, z
Clk. 8 379 172 4 496 139 5 306 051 8 763 913
Data 2 000 004 2 000 004 3 000 004 4 000 004
TP 954.8 Mbit/s 1779 Mbit/s 2262 Mbit/s 1826 Mbit/s

Figure 6.7.: Measurement results for adapter usage

6.2.3. Optimisation

This section focuses on comparing the performance of specifications optimised through
the procedures introduced in Chapter 4 with their non-optimised counterparts. As
the goal here is to evaluate the impact of the optimisation, the setup with an event
generator and output sink is used.

Factorial

This example serves to demonstrate the potential advantage the optimisation phases
can provide. The following specification calculates n!

n−k for a fixed k and an input
stream providing n:
in x: Events[Int]

def factorial(n: Events[Int], k: Int):Events[Int] = {
static if (k == 0) then 1 else n * factorial(n-1, k - 1)

}

out factorial(x, 10)

Listing 6.1: TeSSLa code for the factorial example

This specification leaves a lot of room for optimisation, mainly because of two rea-
sons:

• There are a lot of operations performed on inputs with the same logical timing,
which can then be merged.

• The terms are aggregated in a chain instead of a balanced manner, thus re-
sulting in long paths with stalls after each calculation step.

The stream merging phase introduced earlier should be able to merge all those terms
into a chain of unary expressions, which can then be fully pipelined and should thus
result in the minimal amount of clock cycles required (apart from an initial latency
to fill the pipeline).

103

6. Evaluation

No Opt. Opt.# Events # Clk. Throughput # Clk. Throughput
Speedup

10 000 200 020 400 20 020 3 996 10
100 000 2 000 020 400 200 020 4 000 10

1 000 000 20 000 020 400 2 000 020 4 000 10
10 000 000 200 000 020 400 20 000 020 4 000 10
100 000 000 2 000 000 020 400 200 000 020 4 000 10

Figure 6.8.: Results of the factorial example, with throughput given in Mbit/s

The measurements are shown in Figure 6.8. Note that the throughput here only
denotes the amount of data the hardware would be able to process per second,
while ignoring all costs of IO operations, thus diverging from the throughput in a
real scenario. Both variants have a latency of 19 clock cycles, meaning that passing
a timestamp followed by a value through will require 20 clock cycles. However, the
unoptimised specification has a dependency from the very first to the last module,
thus stalling throughout the entire chain. The optimised version on the other hand
is fully pipelined and can thus emit a new result every clock cycle, which effectively
leads to a speedup of factor 10 in this case.

No Opt. Opt.
WNS 0.192 ns 0.136 ns
fmax 128.1 MHz 127.2 MHz

TPmax 410 Mbit/s 4069 Mbit/s

Figure 6.9.: Maximum clock frequency and throughput of the factorial example.

As shown in Figure 6.9, the optimised version resulted in a slightly worse slack,
hence the lower maximum frequency.

Malloc

Here, the memory allocation example, which was already used in evaluating the
IO, is reused. However, this time we measure the effect of the optimisation instead
of focusing on the IO aspect. As a chain of recursive definitions, this specification
cannot be fully pipelined as the previous example was, but nonetheless some streams
can be merged here as well, and some of the stalls can be alleviated by according
placement and depth of queues. The specification used is the same as previously
used in Subsection 6.2.1, and similar to the previous example, the specification is
benchmarked with and without optimisation, with the results shown in Figure 6.10
and Figure 6.11.

104

6.3. Area

No Opt. Opt.# Events # Clk. Throughput # Clk. Throughput
Speedup

10 000 130 034 615,2 80 021 999,7 1.625
100 000 1 300 034 615,4 800 021 1 000 1.625

1 000 000 13 000 034 615,4 8 000 021 1 000 1.625
10 000 000 130 000 034 615,4 80 000 021 1 000 1.625
100 000 000 1 300 000 034 615,4 800 000 021 1 000 1.625

Figure 6.10.: Results of the malloc example, with throughput given in Mbit/s

No Opt. Opt.
WNS 1.022 ns 0.107 ns
fmax 143.3 MHz 126.7 MHz

TPmax 705.5 Mbit/s 1013 Mbit/s

Figure 6.11.: Maximum clock frequency and throughput of the malloc example.

As you can see here, the optimisation provides a speedup of 62.5% and requires on
average 8 clock cycles per event. The main issue here is that the specification used
is a chain of three recursive definitions. A recursive definition always consists of at
least one last and one queue, therefore requiring a minimum of two clock cycles
each. Additionally, the value key used in the specification is used as input for each
recursion, thus requiring to be passed to multiple different paths with very differing
lengths. This was attempted to alleviate with choosing a fitting queue depth in
Subsection 3.2.1. However, it was not possible to synthesise the specification with
a queue of sufficient size due the layout resulting in a negative slack. Therefore, the
majority of this specification could not be pipelined.

A possibility to use further improve this result is by replacing the recursions with fold
operations, or to try and reduce the amount of queues needed inside the recursion
by merging outgoing paths into one, both of which are discussed in Chapter 7.

6.3. Area

This section examines the amount of resources the resulting specifications take up
on the FPGA as shown by Xilinx Vivado. While the bit width inference introduced
in Chapter 4 attempts to reduce the required resources, the placement of queues, de-
pending on their spacing and depth, can have a severe impact on the space usage of
an optimised specification compared to their non-optimised counterpart. Therefore,
this evaluation compares the used resources for each specification, evaluating the op-

105

6. Evaluation

timised against the non-optimised variant. The used area is measured by considering
the amount of lookup tables and registers needed by the implementation.

6.3.1. Bit Width Inference

The first test aims to isolate the effect of the bit width inference from the other op-
timisations. Furthermore, remember the bit width inference also permits including
knowledge about integer value ranges for streams using the newly added annotations
@width, which allows for further reductions. Therefore, the here used specification
is compared using three optimised variants, where one uses all optimisations but the
bit width inference, the second one using all optimisations, and the third one using
all optimisations with additional width information.

The specification used here is the following:
in value: Events[Int]
in dispatch: Events[Int]

in x: Events[Int]

def tupled[T, U](ev: Events[T], u: U) :=
lift1(ev, (a: Option[T]) => Some((getSome(a), u)))

def distribute(n: Int) ={
def v := filter(value, dispatch == n)
tupled(default(maximum(((v >> 11) * 100) & 511), 0), n)

}

def getMin(from: Int, to: Int) = {
def rec(from: Int, to: Int): Events[(Int, Int)] = {

def diff := to - from + 1
static if diff > 1 then {

def lhs := rec(from, from + diff/2 - 1)
def rhs := rec(from + diff/2, to)
slift(lhs, rhs, (a: (Int, Int), b: (Int, Int)) =>

if a._1 <= b._1 then a else b)
} else distribute(from)

}
lift1(rec(from, to),

(a: Option[(Int, Int)]) => Some(getSome(a)._2))
}

106

6.3. Area

out x * getMin(0, 31)

Listing 6.2: Example: Dispatcher maximum

Here, the input of stream value is segragated onto 32 different paths dependent on
the value of dispatch. Then, the values are manipulated and the maximum for each
of those partitions is taken which then are aggregated with getMin, returning the
index of the partition which currently holds the global minimum of all the local
maxima. Then, another stream x is multiplied by that index.

Additionally, the bit widths were chosen as follows:
widths:

in: 32
out: 32
integer: 25
timestamp: 27

The first result is still using all optimisations except the bit width inference, so that
all differences between both results solely are due to this phase. Assuming that the
value of dispatch is only within the range used here, it can be limited to a 5 bit
unsigned integer. Furthermore, it is assumed that value is a 10 bit unsigned integer.
The results shown in Figure 6.12 show the amount of registers and the amount

LUTs Registers
% # %

Fixed 7071 5.28 5472 2.04
BWI 6592 4.93 4979 1.86

BWI+Meta 4173 3.12 4233 1.58

Figure 6.12.: Results of the dispatcher specification in different configurations.

of look-up-tables (LUTs) is used by each variant. The here used FPGA provides
133800 LUTs and 267600 registers in total, which results in the percentual usage
seen in the table. For the example using additional metadata, it was assumed that
the stream dispatch only contains values in the range the values are filtered, which
makes a 5 bit unsigned integer sufficient for it. Additionally, it was assumed that
the value only contains 16 bit unsigned integers.

The difference between fixed bit widths and the bit width inference is rather small,
with around 7% less LUTs and 9% less registers used. This is to be expected as
synthesis tools like Vivado are highly optimised and thus are most likely able to
detect bit widths which exceed their needed range quite often. The main advantage
of the bit width inference can then be seen in the third test, where it was used in
combination with additional metadata, which permitted to reduce the used LUTs

107

6. Evaluation

by around 40% and the used registers by around 23%. Therefore, use cases where
such information about the input is known prove optimal for this phase.

6.3.2. General

After specifically evaluating the effect of the bit width inference on the area used,
we are now reusing the memory allocation example once again to analyse how the
entirety of optimisation phases affects the area. The difference in size between the
unoptimised and the optimised version is shown in Figure 6.13. As the optimisations

LUTs Registers
% # %

No Opt. 6140 4.58 5697 2.13
Opt. 4517 3.38 6176 2.31

Figure 6.13.: Results of the malloc specification with and without optimisation.

have positive and also negative effects to the area used, a generalisation of this is
hardly possible. However, a more detailed analysis allows to analyse where the
majority of those resources are actually used, which was done for the unoptimised
version and represented in Figure 6.14. As you can see here, the vast majority of

LUTs Registers
#

Queues 5999 5220
Other 141 477

Figure 6.14.: Area used by queues in the malloc specification without optimi-
sation.

resources is actually being used by queues. The specification was compiled with a
queue depth of 4. This shows that when it comes to optimisation of the used area,
a good placement as well as the selection of a useful depth for queues is crucial.

In this chapter, we used the implementation of Chapter 5 to evaluate the con-
cept defined in this thesis. More specifically, the area usage and the difference in
performance have been measured in different scenarios, to evaluate how adapters,
optimisation phases and different input traces affect this. The results have shown
that the optimisation phases are able to improve the initial specification drastically
in some scenarios, but still leave a lot of room for improvement in others.

108

7. Conclusion and outlook

We examined the specification language TeSSLa and how specifications in TeSSLa
can be translated into a hardware definition for FPGAs. In a first step, the overall
concept was discussed, where the main idea was to represent each stream opera-
tor by an individual module representing the semantics of its respective TeSSLa
operator, and define a communication between them by using an adapted variant
of the ready-valid protocol. This concept also permitted to synthesise recursively
defined streams and computing their fixed point without it resulting in a combi-
national loop. Additionally, queues were introduced to handle buffering of values,
meet timing constraints and distribute events to multiple target modules.

Multiple different options for optimisations for TeSSLa code are discussed, with the
goal of improving the synthesised result in the aspects of performance and area used.
Overall, the three following optimisation phases were introduced:

1. The stream merging focused on inferring knowledge about how timestamps of
different streams relate to each other, which subsequently can be used to merge
streams with same or similar timestamps into one tupled stream. This reduces
the required amount of synchronisation and may also reduce the amount or
size of queues required as events need to be dispatched to less targets than
before.

2. The bit stream inference then attempts to infer – potentially with additional
metadata provided – required and sufficient bit widths for the different opera-
tors. This allows for a reduction in area used, however highly dependent of the
nature of the given metadata. Additionally, this also allows to properly catch
overflows as well by choosing bit widths such that no overflow occurs.

3. Finally, the queue placement aims to deduce where queues should optimally be
placed by weighting of the call graph, giving an estimation of the path length
in the resulting graph. Additionally, as queues are significantly big in size, the
second goal is to choose useful depths for each queue, depending on the context
where it is used.

An implementation of this concept, using the programming language Scala with the
library Chisel, is described and evaluated. The evaluation mostly focuses on the
effect of the described optimisation phases as their efficiency is a major aspect of
this thesis. For this purpose, two separate setups to measure realistic scenarios with

109

7. Conclusion and outlook

IO as well as purely measuring the processing time to evaluate optimisations have
been chosen.

The concept described in this thesis provides therefore a functioning translation
from arbitrary TeSSLa specifications into efficient hardware definitions. However,
there surely is a lot of room for improvement and further optimisations. Some ideas
for future features or optimisations are listed in the now following section.

7.1. Outlook

TeSSLa with Delay

In this thesis, we considered the language TeSSLa without the delay operator. As us-
ing delay also provides a higher expressiveness, it would be favourable support delay
as well, by extending the here described concept and optimisations accordingly.

Communication Interface with Timestamp and Value simultaneously

The here described concept does not allow timestamps and values to be transmitted
and processed in parallel, thus always requiring at least two clock cycles per event.
Modifying this such that both timestamps and values can be processed at the same
clock cycle would drastically improve the performance.

Small Recursions as Fold

Currently, even simple definitions like a counter are still kept as recursive definitions,
requiring multiple clock cycles to process. However, if their modification of the
data solely bases on the trigger and the previous value of the stream, and the
modification can be expressed as a one clock cycle operation while still meeting
all timing constraints, that definition could also be represented by using the fold
module described in Section 5.3. This would only need a single clock cycle to
process, and also require less resources than a recursive definition does. Therefore,
an optimisation which would recognize recursive definitions fitting this pattern and
automatically translate them to a equivalent expression using fold would pose a
significant improvement for recursions.

110

7.1. Outlook

Reduction of Latency in Cycles

As seen in the previous evaluation, recursive definitions also come with another
issue: As the event needs to pass through the whole recursion before the next event
can be processed, the latency of the path within the recursion has a direct effect on
the throughput of the overall specification. Thus, while the importance of latency
for other parts of the specification is rather low, it would prove highly beneficial
to keep the latency within a recursion at a minimum. One way to accomplish this
would of course be the previously described optimisation, allowing to replace some
recursions with fold. Another option would be a similar approach to the one used in
stream merging: If there is an intermediate result of the recursion which needs to be
distributed to multiple targets, a queue has to be placed which increases the latency
by one clock cycle. Depending on the path length however, one could merge this
value to a tuple with other values, and propagate it further until the next placed
queue, such that only one queue is required instead of two.

This concept is shown in Figure 7.1, where the first figure 7.1a represents the initial
recursion. In this example, there are three outgoing edges from the recursion, at the
respective modules B,C and D, and thus requiring three queues. Assuming that
timing processing all operations from A to D in the same clock cycle does still meet
the timing constraints, the events can be passed through as tuples as shown in 7.1b,
where only one queue is needed.

Improving Placement and Depth Inference of Queues

The concept introduced here to decide the queue placement does not very accurately
estimate the actual synthesised design. The first improvement would be to define a
more fine-grained weighting to more accurately infer how many LUTs are required
on a path. Furthermore, a heuristic to deduce signal travel distance would prove
very useful, as currently, all modules with more than one input get always queued.
However, this is an inherently difficult task as it is usually not transparent how
the synthesis tool generates the layout. However, analysing the call graph and how
modules interact with each other, as well as determining where a certain value is
being propagated to, may allow for estimates on how they will be laid out on the
hardware.

The depth of a queue has a significant effect on the overall size of the specification.
This means that it may not be possible to generate queues with the required size at
every location in the specification. Therefore, it may prove useful to prioritise some
queues over others, such that the biggest queues are placed on the most beneficial
positions.

111

7. Conclusion and outlook

x

A

B

C

D

(a) Initial data flow diagram.

x

A

B

(C, B)

(D, C, B)

(b) Modified data flow diagram.

Figure 7.1.: Visualisation of passing through values to reduce the amount of
queues.

Finally, for a specification with multiple inputs, those inputs may be driven at differ-
ent frequencies or delays. This also allows conclusions on required queue depths.

Further Reduction of Synchronisation

When motivating the stream merging in Example 4.3, the final result still contained
a binary lift with two synchronous (after initialisation) inputs. However, with the
so far described methods, it is not possible to define a merging for such a case, as all
merges so far were based on the inputs being either all lift or all last. One option
here would be to define a mixed module which takes a tupled input and performs
different operations on each side of the input. This would be optimal as it would

112

7.1. Outlook

allow to freely merge inputs independent of their operation, however this probably
is rather complex in its implementation. Another approach would be to define a
synchronous lift module, which is similar to the normal lift but without performing
a comparison on the timestamps. This is easier to implement and allows to remove
that synchronisation step as well, however as there is no actual merge performed,
this can not be propagated through the rest of the data-flow diagram as a merged
node could.

113

A. Appendix

This chapter contains more detailed information about some aspects of this thesis.

A.1. Pseudo-Codes

In this section you will find the full pseudo code of modules introduced in Chapter
3 and Chapter 6.
register timeReg = 0

wire time = if in.valid && in.isTimestamp
then in.timestamp else timeReg

timeReg := time

port in {
ready := out.ready

}

port out {
valid := in.valid
isTimestamp := in.isTimestamp
value := time
timestamp := time

}

Listing A.1: Pseudo code for the time module.

wire hasInput = a.valid && b.valid

wire progress = a.isTimestamp && b.isTimestamp
wire progressA = a.timestamp <= b.timestamp
wire progressB = b.timestamp <= a.timestamp

wire processA = !a.isTimestamp
wire processB = !b.isTimestamp

115

A. Appendix

port a {
ready := hasInput && (progress && progressA && out.ready

|| processA && (!op.outValid || out.ready))
}

port b {
ready := hasInput && (progress && progressB && out.ready

|| processB && (!op.outValid || out.ready))
}

port op {
aValid := processA
a := a.value
bValid := processB
b := b.value

}

port out {
valid := hasInput && (progress || op.outValid)
isTimestamp := progress
value := op.out
timestamp := if progressA then a.timestamp else b.timestamp

}

Listing A.2: Pseudo code for the lift module.

port a {
ready := out.ready || !a.isTimestamp && !op.outValid

}

port op {
a := a.value

}

port out {
valid := a.valid && (a.isTimestamp || op.outValid)
isTimestamp := a.isTimestamp
value := op.out
timestamp := a.timestamp

}

Listing A.3: Pseudo code for the unary lift module.

116

A.1. Pseudo-Codes

register active = false
register flush = false
register written = false
register count = 0

port x1, . . . , xn
port y1, . . . , ym
port c

wire anyInValid = x1.valid || . . . || xn.valid
active := active || anyInValid

count := if !flush && active then count + 1 else count

wire done :=
y1.valid && y1.isTimestamp && y1.timestamp == tmax

&& . . .
&& ym.valid && ym.isTimestamp && ym.timestamp == tmax

flush := flush || done

written := writing || (flush && c.ready)

c.value := clock
c.valid := !written || !flush
c.timestamp := tmax
c.isTimestamp := !flush

Listing A.4: Pseudo code for the benchmarking module.

port in
port out[n]

register timelimit = 0
timelimit := if in.valid && inits == 0

then in.value else 0

wire initialised = inits == n
inits := if in.valid && !initialised

then inits + 1 else inits
in.ready := !initialised

117

A. Appendix

foreach (1 ≤ i ≤ n){
register timestamp = 0
register sendTS = false
xorshift rng

wire initialising = in.valid && inits == i

rng.seed := if initialising then in.value else 0

wire ready = out[i].ready && initialised
wire done = timestamp > timestamplimit
wire proceed = ready && !done

wire send = if proceed then sendTS ^ out[i].ready
else sendTS && !done

wire incTS = !sendTS && send
sendTS := send

wire nextTS = if incTS then timestamp + 1 else timestamp
timestamp := nextTS

wire flushing = sendTS && done
rng.next := proceed && !sendTS

out[i].isTimestamp := sendTS
out[i].timestamp := if flushing then tmax else nextTS
out[i].valid := (flushing || !done) && ready
out[i].value := rng.rand

}

Listing A.5: Pseudo code of event generator

port in[n]
port out

foreach (i){
in[i].ready := true

}

out.isTimestamp = false
out.timestamp := tmax
out.valid := in[1].isTimestamp && in[1].valid

&& in[1].timestamp == tmax

118

A.1. Pseudo-Codes

&& ...
&& in[n].isTimestamp && in[n].valid
&& in[n].timestamp == tmax

out.value := in[1].value ^ ... ^ in[n].value

Listing A.6: Pseudo code of output sink

119

List of Figures

2.1. Example evaluation for counter. 13

3.1. Ready-Valid Interface . 18
3.2. Ready-Valid Protocol with a timestamp wire 19
3.3. A combinatorial loop using r and v. 20
3.4. Example for Q4,2. 31
3.5. Data flow diagram and module graph of Listing 3.1 36
3.6. A specification module with 3 inputs a, b, c and 2 outputs o1, o2, with

adapter usage . 37
3.7. Format of values/timestamps for a 16-bit channel with 3-bit address

range. 39
3.8. Visualization of Input-Adapter . 40

4.1. Data-flow diagram for Example 4.1. 46
4.2. Data-flow diagram for Example 4.1 after the first optimisation step. . 47
4.3. Final data-flow diagram for Example 4.1. 48
4.4. Data flow diagrams of Example 4.2. 49
4.5. Data flow diagram for Example 4.3. 50
4.6. Data-flow diagram for Example 4.4. 52
4.7. Data-flow diagram of Example 4.5. 53
4.8. Example for a graph G with SG. 61
4.9. Example for a lifted identity . 62
4.10. Example for a lifted accessor . 63
4.11. Example for a merge of two lifts . 64
4.12. Example for a merge of 5 lifts . 67
4.13. Example for a merge of two lasts . 68

5.1. Compiler Pipeline . 80
5.2. Architecture of encoder and decoder 81

6.1. A specification module with two inputs and outputs, wrapped by a
benchmarking module . 95

6.2. IO decoupled benchmarking setup. 97
6.3. Benchmarking of Passthrough in # clock cycles 99
6.4. Slow down of Passthrough caused by IO. 99
6.5. Benchmarking of Malloc in # clock cycles 101

121

List of Figures

6.6. Benchmarking of Malloc . 101
6.7. Measurement results for adapter usage 103
6.8. Results of the factorial example, with throughput given in Mbit/s . . 104
6.9. Maximum clock frequency and throughput of the factorial example. . 104
6.10. Results of the malloc example, with throughput given in Mbit/s . . . 105
6.11. Maximum clock frequency and throughput of the malloc example. . . 105
6.12. Results of the dispatcher specification in different configurations. . . . 107
6.13. Results of the malloc specification with and without optimisation. . . 108
6.14. Area used by queues in the malloc specification without optimisation. 108

7.1. Visualisation of passing through values to reduce the amount of queues.112

122

List of Definitions

2.1. Definition (Time Domain [CHL+18]) 8
2.2. Definition (Event stream [CHL+18]) 8
2.3. Definition (TeSSLa semantics [CHL+18]) 8

3.1. Definition (Queue) . 30

4.6. Definition (Time projection) . 55
4.7. Definition (Equivalence) . 58
4.8. Definition (Timing Classification) . 59
4.9. Definition (Subsumption) . 59
4.10. Definition (Dependence) . 60
4.11. Definition (Strongly Connected Components [Tar72]) 60
4.13. Definition (Value range) . 71
4.14. Definition (Value range generation) 71
4.15. Definition (Value range update) . 73

123

List of Listings

3.1. Example specification . 35

6.1. TeSSLa code for the factorial example 103
6.2. Example: Dispatcher maximum . 106

A.1. Pseudo code for the time module. 115
A.2. Pseudo code for the lift module. 115
A.3. Pseudo code for the unary lift module. 116
A.4. Pseudo code for the benchmarking module. 117
A.5. Pseudo code of event generator . 117
A.6. Pseudo code of output sink . 118

125

Bibliography

[axi17] AXI Reference Guide. https://www.xilinx.com/support/
documentation/ip_documentation/axi_ref_guide/
latest/ug1037-vivado-axi-reference-guide.pdf, 2017

[BVR+12] Bachrach, J. ; Vo, H. ; Richards, B. ; Lee, Y. ; Waterman, A. ;
Avižienis, R. ; Wawrzynek, J. ; Asanović, K.: Chisel: Constructing
hardware in a Scala embedded language. In: DAC Design Automation
Conference 2012, 2012, S. 1212–1221

[CHL+18] Convent, Lukas ; Hungerecker, Sebastian ; Leucker, Martin ;
Scheffel, Torben ; Schmitz, Malte ; Thoma, Daniel: TeSSLa: Tem-
poral Stream-based Specification Language. In: CoRR abs/1808.10717
(2018)

[DDG+18] Decker, N. ; Dreyer, B. ; Gottschling, P. ; Hochberger, C. ;
Lange, A. ; Leucker, M. ; Scheffel, T. ; Wegener, S. ; Weiss,
A.: Online analysis of debug trace data for embedded systems. In:
2018 Design, Automation Test in Europe Conference Exhibition (DATE),
2018, S. 851–856

[DGH+17] Decker, Normann ; Gottschling, Philip ; Hochberger, Christian
; Leucker, Martin ; Scheffel, Torben ; Schmitz, Malte ; Weiss,
Alexander: Rapidly Adjustable Non-intrusive Online Monitoring for
Multi-core Systems. In: Cavalheiro, Simone (Hrsg.) ; Fiadeiro,
José (Hrsg.): Formal Methods: Foundations and Applications. Cham
: Springer International Publishing, 2017, S. 179–196

[htt] https://electronics.stackexchange.com/users/71487,
Francesco C.: SystemC vs HDLs. https://electronics.
stackexchange.com/a/163208, . – [Online; Accessed the
26.01.2020]

[JBG+15] Jakšić, S. ; Bartocci, E. ; Grosu, R. ; Kloibhofer, R. ; Nguyen,
T. ; Ničkovié, D.: From signal temporal logic to FPGA monitors.
In: 2015 ACM/IEEE International Conference on Formal Methods and
Models for Codesign (MEMOCODE), 2015, S. 218–227

127

https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://electronics.stackexchange.com/a/163208
https://electronics.stackexchange.com/a/163208

Bibliography

[LSS+18] Leucker, Martin ; Sánchez, César ; Scheffel, Torben ; Schmitz,
Malte ; Schramm, Alexander: TeSSLa: Runtime Verification of Non-
Synchronized Real-Time Streams. In: Proceedings of the 33rd Annual
ACM Symposium on Applied Computing. New York, NY, USA : Associ-
ation for Computing Machinery, 2018 (SAC ’18), S. 1925–1933

[LSS+19a] Leucker, Martin ; Sánchez, César ; Scheffel, Torben ; Schmitz,
Malte ; Thoma, Daniel: Runtime Verification for Timed Event Streams
with Partial Information. In: Finkbeiner, Bernd (Hrsg.) ; Mariani,
Leonardo (Hrsg.): Runtime Verification. Cham : Springer International
Publishing, 2019, S. 273–291

[LSS+19b] Leucker, Martin ; Sánchez, Cesar ; Scheffel, Torben ; Schmitz,
Malte ; Schramm, Alexander: Runtime Verification of Real-Time Event
Streams under Non-synchronized Arrival. 2019

[Mar03] Marsaglia, George: Xorshift RNGs. In: Journal of Statistical Software
08 (2003), 01

[MN04] Maler, Oded ; Nickovic, Dejan: Monitoring Temporal Properties of
Continuous Signals. In: Lakhnech, Yassine (Hrsg.) ; Yovine, Sergio
(Hrsg.): Formal Techniques, Modelling and Analysis of Timed and Fault-
Tolerant Systems. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004,
S. 152–166

[OSV08] Odersky, Martin ; Spoon, Lex ; Venners, Bill: Programming in
Scala: A Comprehensive Step-by-step Guide. 1. Auflage. Artima Incor-
poration, 2008

[SJN+17] Selyunin, Konstantin ; Jaksic, Stefan ; Nguyen, Thang ; Reidl,
Christian ; Hafner, Udo ; Bartocci, Ezio ; Nickovic, Dejan ;
Grosu, Radu: Runtime Monitoring with Recovery of the SENT Com-
munication Protocol. In: Majumdar, Rupak (Hrsg.) ; Kunčak, Viktor
(Hrsg.): Computer Aided Verification. Cham : Springer International
Publishing, 2017, S. 336–355

[ST20] Schmitz, Malte ; Thoma, Daniel: Internal technical description of
TeSSLa synthesis. 2020

[Tar72] Tarjan, Robert.: Depth-First Search and Linear Graph Algorithms.
In: SIAM Journal on Computing 1 (1972), Nr. 2, S. 146–160

128

	Abstract
	Kurzfassung
	Inhaltsverzeichnis
	Introduction
	Related Work
	Outline

	Basics
	TeSSLa
	Syntax
	Semantics
	Recursive Definitions

	Synthesis
	Logic Synthesis and HDLs
	High-Level Synthesis
	Chisel

	General structure
	Communication
	Ready-Valid Interface

	Atomic Modules
	Queues

	Translation
	IO Adapters
	Trace and Message Format
	Input-Adapter
	Output-Adapter

	Optimization
	Stream Merging: Motivation and Definitions
	Motivation
	Classification

	Stream Merging: Application
	Identity and Accessors
	Lift

	Bit Width Inference
	Algorithm

	Queue Placement
	Placement
	Depth

	Implementation
	Used Tools
	Architecture
	Chisel Modules
	Data Types
	Configurations
	Example
	Testing

	Evaluation
	Performance: Setup
	Metrics

	Performance: Measurements
	Effect of IO
	Adapters
	Optimisation

	Area
	Bit Width Inference
	General

	Conclusion and outlook
	Outlook

	Appendix
	Pseudo-Codes

	List of Figures
	List of Definitions
	List of Listings
	Bibliography

