
Test-case generation for Stream-based specification
languages
Testfallgenerierung für strombasierte Spezifikationssprachen

Masterarbeit

im Rahmen des Studiengangs
Informatik
der Universität zu Lübeck

vorgelegt von
Gunnar Bergmann

ausgegeben und betreut von
Prof. Dr. Martin Leucker

mit Unterstützung von
Malte Schmitz

Lübeck, den 15. June 2019

Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit ohne unzulässige Hilfe
Dritter und ohne die Benutzung anderer als der angegebenen Hilfsmittel selbständig
verfasst habe; die aus anderen Quellen direkt oder indirekt übernommenen Daten und
Konzepte sind unter Angabe des Literaturzitats gekennzeichnet.

(Gunnar Bergmann)
Lübeck, den 15. June 2019

iii

Abstract TeSSLa is an asynchronous stream-based specification language. Events ar-
rive on multiple input streams and TeSSLa derives output streams out of these.

Software verification is a discipline that checks if software behaves according to a spec-
ification, but even software that has been fully verified potentially may not satisfy all
expectations if the specification is insufficient or erroneous.

In order to find such mistakes this thesis explores ways of automatically generating test
cases for TeSSLa specifications, that act as examples to the human developers. In this
thesis we design a full test case generator for TeSSLa. We define a coverage criterion
suitable for stream-based languages and additional use case specific constraints, that
can be written by the user.

In this thesis we will see how TeSSLa specification are translated into SMT formulas,
so that test cases can be found with the help of already existing SMT solvers.

The test case generator is implemented and evaluated.

v

Kurzfassung TeSSLa ist eine asynchrone strombasierte Spezifikationssprache. Ereignisse
treffen an mehreren Eingabeströmen ein und TeSSLa leitet aus diesen die Ausgabe-
ströme ab. Software Verifikation ist eine Disziplin, in der überprüft wird, ob Software
sich gemäß einer Spezifikation verhält, aber selbst Software, die vollständig verifiziert
wurde, kann möglicherweise nicht alle Erwartungen erfüllen, wenn die Spezifikation
nicht ausreichend oder fehlerhaft war.

Um solche Fehler zu finden erforscht diese Arbeit Wege um automatisch Testfälle, die
als Beispiele für die menschlichen Entwickler dienen, für TeSSLa-Spezifikationen zu
generieren. In dieser Arbeit entwickeln wir einen vollständigen Testfallgenerator für
TeSSLa. Wir definieren ein Abdeckungskriterium für strombasierte sprachen, sowie
zusätzliche nach Anwendungsfall spezifische Bedingungen, die vom Nutzer geschrieben
werden können.

In dieser Arbeit werden wir sehen, wie TeSSLa-Spezifikationen in SMT Formeln über-
setzt werden, sodass Testfälle mit Hilfe bereits existierender SMT-Solver gefunden wer-
den können.

Der Testfallgenerator wird implementiert und ausgewertet.

vii

Contents

1. Introduction 1
1.1. Prior Work . 2
1.2. Outline . 3

2. Background 5
2.1. Testing . 5
2.2. Runtime verification . 5

2.2.1. Offline and online RV . 6
2.2.2. LTL . 7
2.2.3. Stream-based programming . 7
2.2.4. Lola . 9
2.2.5. TeSSLa . 9

2.3. Test coverage criteria . 16
2.3.1. Statement coverage . 16
2.3.2. Path coverage . 17
2.3.3. Decision coverage . 17
2.3.4. Condition coverage . 17
2.3.5. Decision/Condition coverage . 17
2.3.6. Modified decision/condition coverage (MC/DC) 17
2.3.7. Data-Flow-based Coverage . 18

2.4. Test case generation . 18
2.5. SMT solver . 18

2.5.1. SAT Solver . 19
2.5.2. SMT solver . 19
2.5.3. Z3 . 19

3. Test case generation for TeSSLa 21
3.1. Test criteria . 21

3.1.1. Automated coverage . 22
3.1.2. Custom constraints . 25
3.1.3. Extensions for Boolean streams 29
3.1.4. Alternatives . 30
3.1.5. Coverage strategies . 30

3.2. Representation as SMT formula . 32
3.2.1. Stream and event representation 32
3.2.2. Operator representation . 34
3.2.3. Types . 37
3.2.4. Lifted functions . 38

ix

Contents

3.2.5. Custom assertions . 38
3.2.6. Coverage criteria . 38

4. Implementation 41
4.1. Technology . 41
4.2. Custom assertions . 41
4.3. Architecture . 42

5. Evaluation 49
5.1. Evaluation time . 49

5.1.1. Example 1 (Linear arithmetic) 49
5.1.2. Example 2 (Quadratic arithmetic) 55

5.2. Decidability and Complexity . 56
5.3. Summary . 57

6. Conclusion and Outlook 59
6.1. Outlook . 59

A. Appendix 61
A.1. Example 1 (Linear arithmetic) (5.1.1) 61

x

1. Introduction

Software verification is a process which checks whether a program meets a given specifi-
cation. Testing is a verification technique, that checks conformance to the specification
on certain inputs. Runtime verification (RV) is a testing method, that verifies proper-
ties on traces of programs [Leu11]. Commonly the specifications are written as logical
formulas, typically in LTL or a related logic. A monitor, that checks the formula on the
trace and outputs a verdict, is synthesized from the specification.

Stream runtime verification (SRV) offers an alternative to logic-based specifications. A
specification relates a set of input streams to a set of output streams. Stream runtime
verification is not just restricted to correctness properties, but can also gather statistical
information, e.g. it can count the number of certain values.

The Temporal Stream-based Specification Language (TeSSLa)[CHL+18] is such a speci-
fication language for SRV in reactive and interactive systems where timing is a critical
issue [CHL+18]. Whereas most SRV languages like Lola are synchronous, i.e. assume
that all streams have simultaneous events, TeSSLa is asynchronous. Streams in TeSSLa
are sequences of events, where each event consists of a value and a timestamp.

A web IDE allows experimentation with TeSSLa. It can be found at
http://tessla.isp.uni-luebeck.de.

At each stream events may arrive at different timestamps. These events do not neces-
sarily happen at the same time and are not synchronized by a logical clock.

Instead synchronization has to be done explicitly, for example by accessing the value
that was last on a stream relative to the event on other stream: last(x,y) allows
access to the last value on x whenever y has an event.

One of TeSSLa’s design goals is the support of efficient online monitoring. That means
that traces can be processed while they are generated by a simultaneously running
process. For a subset of TeSSLa efficient monitors can be implemented in hardware, e.g.
on an FPGA.

All verification techniques can only check if a given program behaves well according
to the specification, but errors in the specification are only discovered by humans. If
verification fails on a trace, that is actually not wrong, it does not cause much harm in
most cases. The error is reported and the trace serves as an example that can be used
for tracking down and correcting the mistake.

On the other hand if verification succeeds on an erroneous trace, this error may remain
undetected and certain classes of bugs may end up in the product. In order to find such

1

http://tessla.isp.uni-luebeck.de

1. Introduction

behavior one may want certain example inputs which highlight what acceptable behavior
according to the specification is. Just like in program testing manually assembling such
a suite of examples can be tedious and one may accidentally skip certain inputs which
one considers unnecessary.

A simple test case can be generated by setting all input streams to the empty stream, but
such a case probably does not show interesting properties of the specification. Instead
test cases can be derived from the the structure of the code. The goal of this work is the
development of automated test case generation for TeSSLa. We will define a suitable
criterion for deciding which cases tests should cover. Additional constraints allow users
to further restrict the tests and search for error conditions.

For this test case generation a given TeSSLa specification is translated into an equiva-
lent formula that consists of propositional logic and arithmetic constraints. Additional
constraints, that define for which interesting cases we search, are added to the formula.
We use the SMT solver Z3 for finding a solution to the formula. SMT solvers are specific
algorithms, that solve the satisfiability problem for certain logical formulas.

After a theoretical description of criteria, constraints and such a translation from TeSSLa
into logical constraints a test case generator tessla-testgen is implemented. This
test case generator is evaluated on a specific scenario.

1.1. Prior Work

This chapter surveys previous work on test case generation and stream-based lan-
guages.

The synchronous stream-based language Lustre has been studied for testing and model
checking [HCRP91], [Hal98].

[MHM+95] apply manual black-box testing to synchronous programming languages.
The authors describe different models that are used for developing testing criteria, al-
though many test strategies can not be applied to automatic test cases. Tests on a
(potentially abstracted) finite state machine verify that transitions, states and certain
paths work as intended. Test on predicates verify application specific behavior, like
the mapping of certain inputs to actions. Tests on data types test the boundaries of
data types, like the highest and lowest value. Tests on concurrent inputs check for cor-
rect behavior if inputs are simultaneous and of varying order. Such variations happen
especially for manual input from user interfaces.

[TFMC94] apply a mixed strategy of random value and extremal value testing on the
synchronous language Lustre. The chosen random distribution and the choice of the
extremal values are based on the structure of the automaton.

[RNHW98] propose a technique for automated black-box testing, that they implement
in the tool Lurette. A supplied observer in the language Lustre compares the input
of a reactive system with the output and decides if the property is interesting. This

2

1.2. Outline

observer is used for gradually generating a test case. For each cycle of the global clock
a formula is created, that relates current state and input to output. This formula is
solved with a procedure, that could be called a primitive SMT solver.

Compared to the approach in this work, the formula is not generated at once, but step-
wise. The stepwise approach leads to smaller formulas and therefore faster solution, but
may not reach certain conditions. Additionally a stepwise approach may be unsuitable
for asynchronous language because there is no obvious choice of stepwidth.

1.2. Outline

Chapter 2 on page 5 explains the background knowledge for understanding the following
chapters. This chapter explains runtime verification and different languages for writing
specification, especially the language TeSSLa which is used throughout the thesis. The
chapter also explores different test coverage criteria for traditional programming models,
different test case generation concepts and gives an introduction to SMT solvers.

Chapter 3 on page 21 presents coverage criteria for TeSSLa and a language extension
for specifying custom criteria. Afterwards it shows, how TeSSLa specifications, custom
constraints and coverage criteria can be translated into constrains for an SMT solver.

Chapter 4 on page 41 explains the implementation and its architecture. A core com-
ponent are different strategies, which determine, how different test cases are assembled
into a test-suite with high coverage.

Chapter 5 on page 49 evaluates the implementation by comparing and measuring the
different approaches to coverage maximization on two examples.

3

2. Background

This chapter provides the necessary background knowledge for later chapters and in-
troduces the basic concepts. The basics of testing are explained in section 2.1. Sec-
tion 2.2 introduces the concept of runtime verification and explains common specifica-
tion concepts. A focus is on stream-based programming languages, with the examples
of Lustre, Lola. Section 2.2 also introduces the language TeSSLa. Section 2.3 ex-
plains different coverage criteria, that are used to evaluate test cases on imperative
programming languages. Section 2.5 explains SMT solvers in general and the Solver Z3
specifically.

2.1. Testing

Testing is a common partial verification technique. Verification means that a program
is compared to a specification. Testing is partial because it only examines a subset of
the behaviors. Dijkstra has famously said that “Program testing can show the presence
of bugs, but never to show their absence” [BR70, 2].

Nonetheless program testing has shown to detect many common error cases, especially
because writing tests for a system is often easier than developing a static verification
tool for specific tasks. Tests only run a program on input and check if the behavior is
correct.

2.2. Runtime verification

Modern computers often run as interactive or reactive systems[Ber98]. Both of these
system types run and react to inputs continuously. In contrast many classical computa-
tion models assume programs that produce a result in finite time. Verification on these
programs commonly checks if the result is correct.

Runtime verification (RV) and model checking (MC) checks the properties on the run of
a system. A run is a sequence of system states, or status information derived from the
system states. One might imagine it as an (infinite) log file of the running program.

A run may be infinite.

5

2. Background

Definition 2.1 (Run). Given a finite alphabet Σ, a run r is a possibly infinite word or
trace over Σ:

r ∈ Σ∞

Note 2.2:: Σ∞ = Σω ∪ Σ∗ is a possible infinite word, the union of infinite words Σω

and finite words Σ∗.

For many use cases runs can be assumed to be infinite, by extending them with an
infinite repetition of exit-states.

Definition 2.3 (Execution). An execution e of a system is a finite prefix of a run over
the alphabet Σ,

e ∈ Σ∗

RV and MC allow infinitely running, reactive systems. The system may have an infinite
input sequence.

Model checking (MC) is the art of verifying, that a property holds on all possible and
infinite runs. Model checking requires a program, that can be analyzed and turned into
a checkable automaton. In the general case model checking is not decidable, because
the reachability of an exit-state is equivalent to the halting problem.

Runtime verification is a much simpler task. The property is only checked on a single
execution. The execution can be gained by instrumenting the program, so that it outputs
the current state and then running the program. Both instrumentation and evaluation
can be done automatically.

Formally runtime verification is a word problem:

Definition 2.4 (runtime verification). e ∈ L(ϕ) where e ∈ Σ∞ is an execution and
L(ϕ) is the language derived from the specification ϕ.

Definition 2.5 (Monitor). A monitor is a device that reads a finite trace and yields a
certain verdict[Leu11].

A verdict is a value from a truth domain. This includes at least the elements true and
false, but often more values for expressing varying degrees of uncertainty are added.

2.2.1. Offline and online RV

Runtime verification can be distinguished into online and offline monitoring.

In offline monitoring the execution is recorded first and verified in a second step. Con-
versely in online monitoring monitor and observed system are running alongside. The

6

2.2. Runtime verification

execution is produced incrementally by the system and immediately consumed by the
monitor.

Constructing an online monitor may be more complex and for some calculi, especially
ones that depend on future states, online monitoring may be impossible.

On the other hand online monitoring has the advantage, that potentially very large
executions can be analyzed piecewise without having to store it in between. Some
common monitors like the ones presented in [Leu11] can operate within constant memory
space.

The related technique runtime reflection (RR) uses an online monitor and other RV
concepts for detecting and migitating failures in running systems.

2.2.2. LTL

Linear-time temporal logic (LTL) and variations and extension of it are a commonly
used logic for writing specifications.

LTL was introduced by Amir Pnueli in 1977 [Pnu77]. It is a logic that extends propo-
sitional logic with temporal operators. The input is a potentially infinite word over the
alphabet 2AP where AP is the set of the atomic propositions. Examples for temporal
operators are X(next), F(finally) and U(until). X states, that a property holds in the
next step whereas, Fp states that the property p must be eventually true. pUq describes
that p must hold until q holds at least once.

There are many variations of LTL with different set of operators.

Limitations

LTL can only express correctness and failure assertions, but can not gather and verify
statistical measures. Additionally users may want a monitor, that regularly outputs
more detailed information instead of a binary true/false choice.

Writing LTL specifications requires specially trained software engineers.

2.2.3. Stream-based programming

Lustre [HCRP91]

Lustre is an example for a synchronous stream-based programming language. In
Lustre every stream is called flow and consists of a sequence of values and a sequence
of timestamps, the clock.

7

2. Background

The clock is not necessarily bound to the outer ”real time”, but signifies the lowest
granularity at which the system can react to inputs. If the normal time is required, the
user may use a flow for representing the time.

n = 0 -> pre(n) + 1

Listing 2.1: Counter in Lustre

The flow n is a counter, that is initialized with 0 and increases the value on each cycle.

pre(n) acts as a memory cell, that stores the last value on n, in this case the last
counter. pre(n) + 1 is the last value on n increased by 1. Therefore n counts the
cycles. Additionally x -> y (”followed by”) replaces the first value of the flow y with
the first value from x. In Listing 2.1 0 -> ... initializes the counter with 0.

Most operations in Lustre are only defined on flows with the same clock.

The operator X when Y allows the creation of different clocks, by sampling the flow X
only when the Boolean flow Y is true. The example in Listing 2.1 counts the number
of clock cycles of the basic clock. Counting the events of a logical clock B is possible
with

n = (0 -> pre(n) + 1) when B

Listing 2.2: Counter on custom clock

The operator current E allows the usage of flow E with a clock, that is faster than
the one of E. current E yields the last value, that E has seen.

[HCRP91] note that Lustre is very similar to the temporal logic. This allows users
to write reactive and interactive systems in Lustre and also specify properties in the
same language.

The authors include an assertion mechanism in the language.

assert not (x and y)

specifies that the streams x and y are never true at the same time.

Definition 2.6 (assert). assert ϕ describes that an expression ϕ is true in every
cycle.

During normal program creation assertions are meant for improved optimization. For
program verification the assertions are checked with model checking algorithms. Com-
mon temporal operators can be expressed in Lustre.

8

2.2. Runtime verification

2.2.4. Lola

Definition

The specification language Lola[dSS+05] is a functional stream computation language
for runtime verification.

Just like Lustre Lola is a synchronous stream-based language, but whereas Lustre
is designed for the construction of reactive systems, Lola is designed for monitor spec-
ification. Lola is not restricted to access to previous events, but may use any value
except 0.

A specification relates a set of input streams to a set of output streams. These streams
can also contain numeric values, so that some properties like ”the number of a’s must
always be no less than the number of b’s” can be expressed in Lola, but not in
LTL[dSS+05].

counter = counter[-1,0] + 1

increments the stream counter in every step by one. s[i,c] is an operator, that
accesses a stream at an offset i from the current position. The value c is the default
value for out-of-bounds. In this example the index of -1 accesses the last value. The
counter starts with 0.

Compared to other specification formalisms like LTL, Lola follows a more conventional
programming style.

2.2.5. TeSSLa

Like Lola the Temporal Stream-based Specification Language (TeSSLa)[CHL+18] is a
stream-based specification language for runtime verification.

The main difference between Lola and TeSSLa is that TeSSLa uses asynchronous
streams. In synchronous languages all the streams have events simultaneously or are
at least synchronized by some global clock. Conversely asynchronous ones lift these re-
strictions. This allows runtime verification to mix sparse and high-frequency streams.

Since asynchronous languages lack a clock for accessing timing information, values arrive
at different times, as a discrete sequence of events. Every event consists of a value and
a timestamp. Whereas events in Lola are implicitly ordered, TeSSLa supports time as
a first-class citizen [CHL+18]. The operator time creates a stream of timestamps. The
numeric operators like ≤ and = can be used to get the order of events. Additionally
constants may be added. For example a stream may monitor if a response time happens
within a certain interval:

error := time(response) > time(request)+5

9

2. Background

The example of an event counter can be implemented as

def counter: Events[Int] := merge(last(counter, x) + 1, 0)

In asynchronous languages there are no definite steps and therefore no operator like pre
counter or counter[-1,0]. Instead access to the last element has to be relative to
another stream. This is done in the example, where the strictly last value of counter
is accessed, whenever x receives an event.

in a: Events[Unit]
in b: Events[Unit]
in errorMargin: Events[Int]

def realErrorMargin = merge(errorMargin, 0)
def diff: Events[Int] := slift(-)(count(a), count(b))
def error: Events[Bool] := slift(>)(diff, realErrorMargin)
out diff
out error

Listing 2.3: TeSSLa example code

The code in Listing 2.3 has two input streams a and b of unit type. This is a type
which has only a single instance and streams of type unit only contain events without
a payload. An additional stream of integers sets the margin of error.

A new stream diff contains the difference between the numbers of events on these
streams and another stream error signals an error if the difference surpasses the error
margin. Both the difference and the error signals are outputs.

Efficiency One of TeSSLa’s design goals is the usage in FPGAs, which only accepts
specifications, that can be checked without requiring additional memory at evaluation
time. Each of the built-in operators works with a memory cell large enough for holding
one element. Nonetheless certain implementations in interpreters may support addi-
tional types like lists and maps.

Definition

In TeSSLa a stream denotes a sequence of values, where timestamps and event values
alternate:

Definition 2.7 (stream definition from [CHL+18]). An event stream over a time domain
T and a data domain D is a finite or infinite sequence s = a0a1... ∈ (S)D = (T · D)ω ∪
(T · D)+ ∪ (T · D)∗ · (T∞ ∪ T · {⊥}) where a2i < a2(i+1) for all i with 0 < 2(i + 1) < |s|
[..].

10

2.2. Runtime verification

The set T∞ = T ∪ {∞} extends the time domain with an infinity value. We define that
∀t∈T : t <∞

A stream is defined up to a certain timestamp that indicates the progress. Events after
this progress are not yet recorded by the online monitor.

A stream s ∈ SD can be interpreted as a function s : T → D ∪ {⊥, ?}. If the stream s
has an event d ∈ D at a timestamp t, then s(t) = d. For all t ∈ T after the progress
we don’t know whether the stream will have an event and set s(t) = ?. For all other
timestamps, where s has no event s(t) = ⊥.

The TeSSLa core language is defined by a set of 6 operators.

Definition 2.8 (TeSSLa operators from [CHL+18]). A TeSSLa specification ϕ consists
of a set of possibly mutually recursive stream definitions defined over a finite set of
variables V where an equation has the form x := 〈e〉 with x ∈ V.

〈e〉 ::= nil| unit| x | lift(f)(e, ..., e) | time(e) | last(e,e) | delay(e,e)

operator semantics Let U = {�} be the unit type, B = {true, false} be the Boolean
type.

• nil =∞ ∈ S∅ is the nil-stream. This is a stream, that never has any events.

• unit = 0 � ∞ ∈ SU is the unit stream. This stream has a single event at
timestamp 0 of type unit and no other events.

• time : S → ST, s := time(e) maps the events to their timestamps.

∀t ∈ T : s(t) =
{

t if e(t) 6= ⊥
⊥ if e(t) = ⊥

• lift : ((D1 ∪ {⊥}) × ... × (Dn ∪ {⊥}) → (DR ∪ {⊥})) → (SD1 × ... × SDn → SDR
),

s := lift(f)(e1, ..., en) lifts a function f , that is defined on values to a function on
streams. The lifted function accepts ⊥ as inputs if no event happens on a stream,
but at least one stream must have an event whenever the output has an event.
This prevents lift from creating new events.

∀t ∈ T : s(t) =

f(e1(t), ...en(t)) if ∃i : ei(t) 6= ⊥ ∧ ∀i : ei(t) 6= ?
⊥ if ∀i : ei(t) = ⊥
? if ∀i : ei(t) = ?

11

2. Background

• last : SDa × SDb
→ SD, s := last(a, b) looks up the last value on a whenever b has

an event.

∀t ∈ T : s(t) =

d if b(t) ∈ Db ∧ ∃t′<t : (a(t′) = d ∧ ∀t′′|t′<t′′<t : a(t′) = ⊥)
⊥ if b(t) = ⊥ and defined(s, t), or ∀t′<t : a(t′) = ⊥
? otherwise

where defined(s, t) := ∀t′<t : s(t′) 6= ?.

Note that the last does not return the current event if a and b have simultaneous
events. This means, that last(x, x) looks up the previous value on x, whenever x
has an event. The behavior is similar to pre from Lustre or the x[-1, ...]
from Lola.

• delay : ST\{0}×SD → SU, s := delay(d, r) emits a unit event delayed by the time
in d. The value in d is read whenever the reset stream r has an event or when s
has just emitted an event. If r has an event at t, but d(t) = ⊥, then the delay
resets, but won’t emit an event.

delay can be imagined as having a timer, that is set to d(t), whenever it is reset,
and disabled when d(t) = ⊥.

∀t ∈ T : s(t) =

� if ∃t′<t : d(t′) = t− t′ ∧ setable(s, r, t′) ∧ noreset(r, t′, t)
⊥ if defined(s, t) ∧ ∀t′<t : d(t′) 6= t− t′ ∧ d(t′) 6= ?
⊥ if ∀t′<t : unsetable(s, r, t′) ∨ reset(r, t′, t)
? otherwise

where

setable(s, r, t′) := s(t′) = � ∨ r(t′) ∈ D
reset(r, t, t′) := ∃t′′|t<t′′<t′ : r(t′′) ∈ D

unsetable(s, r, t′) := s(t′) = ⊥ ∧ r(t′) = ⊥
noreset(r, t, t′) := ∀t′′|t<t′′<t′ : r(t′′) = ⊥

Helper functions Common helper functions in TeSSLa are const and merge.

• const(c)(a) := lift(f)(a) where f(x) := c is the constant function.

• merge(x, y) := lift(f)(x, y) where

f(a, b) :=
{

a if a 6= ⊥
b if a = ⊥

merge merges events from two streams into one. In the case of simultaneous
events, the first one is preferred.

12

2.2. Runtime verification

Signals A signal in a reactive system is a function f : T→ D, that assigns a value to
each point in time [EH97].

A continuously changing function like f(x) = sin(x) or f(x) = x can not be implemented
in TeSSLa, because TeSSLa only allows streams with discrete events.

Nonetheless TeSSLa can adequately model computations with signals, that either only
change at discrete timestamps or can be sampled at these. A signal can be modeled by
reporting every change in value as an event. One can access the value of the signal by
reading the current or last value on the stream.

The signal lift or slift is a function like lift, but it interprets the input and output
streams as signals. It applies the function on the current or last value on the input
streams.

For types Dx,Dy,Dr, streams x : SDx , y : SDy , and function f : Dx × Dy → Dr:

slift(f)(x, y) := lift(f ′)(x′, y′)

where

f ′(a, b) :=
{

f(a, b) if a 6= ⊥ ∧ b 6= ⊥
⊥ otherwise

x′ := merge(x, last(x, y))
y′ := merge(y, last(y, x))

In a lot of examples infix operators are implicitly signal lifted. For example a+b is
written in place of slift(+)(a,b).

Lifted functions

There is no specification of the lifted functions or the set of data types D in [CHL+18].
The listed operators require the existence of a time domain T and a unit type �.
Additionally lifted functions may be partial and input values to functions may be ⊥
if there is no event on the respective stream. Implementations probably support ⊥-
values by providing an Option type.

The following paragraphs describe the lifted functions in the implementation mentioned
by [CHL+18].

Types The available basic data types are integers (Z), floating point numbers, Boolean’s
(B). Another data types like strings and arrays exist in the TeSSLa interpreter, but we
restrict the specifications to the simpler types within this thesis.

An Option[T] type exists with the variants Some(t) and None for a t ∈ T. Within
lift Option is used for input parameters and return value, where None represents ⊥.

13

2. Background

0 2 4 6 8 100

5

10

15
in a: Events[Int]
in b: Events[Int]
s := slift(+)(a,b)

Figure 2.1.: An output signal s is computed from signals a and b. Events that report
the change in value are visualized as dots. The signals are shown as functions on the
time domain. Note that signals streams are only true signals with a defined value once
a first event has been seen. Therefore it is often advised to initialize signals using
merge and unit.

An object type exists that allows the creation of more complex structures. Just like
objects in other languages, they allow access to members by name. Tuples are a special
kinds of objects with the names _1, _2,... . The Unit type () is the empty object.

Additional types like Maps, Sets and Lists exists. These do not workout with constant
memory, and therefore the implementation for FPGAs will not support them.

The language supports generic types in type definitions, functions and macros. These
are written in a Scala-like syntax. The generic parameter is put in brackets after the type
name: SomeType[T]. TeSSLa supports some type inference. Macros are expanded in
early stages of the interpreter.

A built-in type was already presented with Option[T]. Another built-in type is the
type of streams Events[T]. Unlike other types, Events can not be used within
streams, because there is no stream of streams.

Additionally function types (a: A, b:B) => C with arbitrary arity exist. These
are used in lift.

Lifted functions No explicit syntax for lifted functions is given in [CHL+18] or this the-
sis. Instead we tread lifted functions as composition of functions, values and variables.
An expression e is defined as
e ::= c | v | f (e,...,e)

where c is a constant, v is a variable symbol and f is a mathematical function. These
functions may be partial, for example the division function is not defined for a divisor of

14

2.2. Runtime verification

0. We assume that no undefined values are returned from a lifted function. Functions
and variables may also be ⊥. This value indicates the absence of an event.

A safe division

f(x, y) =

⊥ if x = ⊥ ∨ y = 0
⊥ if y = 0
x
y otherwise

may be written as the expression

ite(isNone(x) ∨ isNone(y), None,

ite(getSome(y) = 0, None, getSome(x)/getSome(y))).

In the syntax used by the TeSSLa implementation from [CHL+18] this function would
be implemented as

def f(x: Option[Int], y: Option[Int]): Option[Int] :=
if isNone(x) || isNone(y) then None[Int]
else if getSome(y)==0 then None[Int]
else getSome(x)/getSome(y)

For convenience the examples allow custom functions and closures, but in tessla-0.7.2 of
the TeSSLa interpreter these are never recursive. This means that all of the functions
can be eliminated by inlining them.

Built-in operators are the logical operators &&, ||, ! with their common C-like
definition, the numerical operators +,-,*,/,>=,>,<=,<,==,!=, an inline-if ite :
(c : B, l : T, r : T) → T , the operators IsNone : (Option[T]) → B and GetSome :
(Option[T]) → T , as well as the constructors for options Some : T → Option[T] and
None : Option[T].

The functions division with / and GetSome are partial. Over the course of this work it
is assumed, that no undefined value is returned from the lift-operator. Practically this
means, that this work only considers specifications, that never emit undefined behavior
because they

a) explicitly check for invariants with ite
b) the input to the lift-operator is restricted by another operator. For example filter

removes zeros from the stream, so that a lift never has divide-by-zero errors.
c) application specific knowledge restricts input streams to certain values. For example

if the user knows that a certain input stream only contains integers above zero, then
a divide-by-zero will never happen. This property needs to be passed to the test case
generator through the use of custom constraints.

Otherwise the function is undefined in the same way, undefined behavior works in C.
Practically this means that specifications, that contain undefined behavior differ in
different implementations. Most importantly the test case generator’s implementation

15

2. Background

(chapter 4) sets resulting events to arbitrary values, whereas the interpreter in [CHL+18]
raises an exception.

In examples ite is often written as a ternary if•then•else.

This definition of lifted functions is similar, but not equal to the current implementation
in the TeSSLa interpreter.

def filter[T](events: Events[T], condition: Events[Bool]): Events[T] := {
def c := merge(condition, last(condition, events))
def f(e: Option[T], c: Option[Bool]): Option[T] :=
if isNone(c) then None[T]
else if getSome(c)
then e else None[T]

lift(events, c, f)
}

Listing 2.4: filter on streams in TeSSLa

Figure 3.2 shows how a typical filter function is implemented in TeSSLa with a macro.
A local stream c and a local function f are defined within the body of the macro. It is
expanded by the TeSSLa interpreter or compiler.

The lifted function f accepts two parameters of type Option and returns another
Option. It uses nested if•then•else operators to return no event (None[T]) which
represents ⊥ if there is no condition or if the condition evaluates to false.

2.3. Test coverage criteria

In White-Box testing, that is testing where the code is available, test coverage describes
which degree of a program’s source code is executed by a test suite. Coverage criteria
determine which metric is used for measuring the coverage. For imperative programs
the typical coverage criteria are defined on the control-flow-graph of the program.

For realistic scenarios a full coverage often is impossible. Therefore a common task in
testing is the maximization of the coverage.

2.3.1. Statement coverage

A statement coverage means that every statement of the program must be executed at
least once. Of course testing can only show a bug if the erroneous statement is executed.
Therefore statement coverage can be assumed as the minimal coverage criterion.

16

2.3. Test coverage criteria

2.3.2. Path coverage

A test-suite has path coverage if every path in the control-flow graph is executed. The
values of the variables are ignored. Path coverage subsumes statement coverage, but a
full path coverage is often impossible, since loops introduce infinitely many paths.

2.3.3. Decision coverage

For decision coverage the conditions in all the if-statements have to be true and false
at least once.

This means, that every edge in the control-flow-graph is tested at least once.

2.3.4. Condition coverage

For condition coverage every condition every atom of each guard has to be set to both
true and false at least once [AOH03].

Note that condition coverage does not subsume decision coverage. This means, that test
suite with a certain degree of coverage with condition coverage does not automatically
also have decision coverage with the same degree. For example for the code

if a && b then
...

a = true, b = false and a = false, b = true has full condition coverage, but not decision
coverage.

2.3.5. Decision/Condition coverage

Decision/Condition coverage combines the condition with the decision coverage. Every
atom is set to true and false and the condition evaluates to true and false.

2.3.6. Modified decision/condition coverage (MC/DC)

Modified decision/condition coverage extends Decision/Condition coverage by requiring,
that every atom must contribute to the decision [AOH03].

We say, that an atom ci determines the predicate p if all remaining atoms cj have
values, so that changing the truth value of ci changes the truth value of p. Conversely
if a variable ci has no influence on the decision it is called masked.

For every atom ci the rest of the test case is chosen, so that ci determines p. Then ci is
set to true and false respectively.

17

2. Background

2.3.7. Data-Flow-based Coverage

Data-flow-based coverage analyzes the data dependencies in imperative programs. It
creates a data-flow-graph with nodes

def(x) when defining or writing the variable x

p-use(x) when using x in a condition

c-use(x) when using x in a computation

Different criteria can be defined on the data-flow graph. These test cases test for de-
pendencies between writes and later usage of variables [CPRZ89].

2.4. Test case generation

Test case generation on imperative programs uses techniques like weakest precondition
and symbolic execution for test case generation.

Symbolic execution is a common method for program verification. It can be used for
total verification, but also for generating test cases.

In symbolic execution, a program is run, but instead of concrete values, one uses symbols
[Kin76]. These symbols may be formulas describing the set of possible states. For test-
cases, these formulas only describe a subset of possible states. Moreover for test-case
generation one can select a specific path and the formula describes an input, which leads
to the execution of that path.

A test case is generated by finding a solution to that formula.

2.5. SMT solver

Many common problems can be formulated as satisfiability checking. In a first step the
problem is formulated as a set of conjunctive constraints. The solver then checks if there
is a solution to those constraints.

SMT solvers can be used for generating test cases. There are good implementations that
can quickly find solutions for large SMT formulas. By translating TeSSLa specifications
and additional constraints for coverage into SMT formulas we can use existing SMT
solver implementations.

SMT solvers are used for test case generation. Symbolic execution or a similar technique
is used to turn a path into a formula. The SMT solver is used to find a solution to that
formula.

18

2.5. SMT solver

2.5.1. SAT Solver

The Boolean Satisfiability Problem (SAT) is a satisfiability problem over propositional
logic. A SAT solver searches for an assignment that satisfies a given formula in propo-
sitional logic.

Common SAT solvers are based on the DPLL algorithm family [DLL62].

Recent developments in the research of SAT solvers lead to the creation of techniques
like clause learning and non-chronological backtracking, and improved heuristics for
deciding, which variables are chosen for backtracking [BT18]. These improvements
made SAT solvers usable for larger formulas.

2.5.2. SMT solver

SMT solvers extend SAT with additional theories, like integer arithmetic, quantifiers,
arrays and functions. The exact set of supported theories depends on the used SMT
solver.

Older SMT solvers translated the SMT formulas into SAT instances by replacing every
integer with a bitvector. Modern solvers on the other hand support arbitrary integers.
They use algorithms like DPLL(T) which allow integration of theory-specific constraints
into a logical formula. Theory-specific constraints are replaced by Boolean variables and
a SAT solver determines the assignment of the variables. The theory specific solvers
then set the values (e.g. integers) according to the variable assignment.

2.5.3. Z3

Z3 is a contemporary state of the art SMT solver by Microsoft research [DMB08] and
used by many projects.

Z3 supports uninterpreted functions, linear and nonlinear arithmetic on integers and
reals, where both are not restricted to a fixed bitsize. Z3 also supports bitvectors, arrays,
quantifiers and custom data types. Some of these theory solvers are not complete. This
means, that the solver does not always find a solution if one exists, although the given
theories often contain classes of problems, for which the problem is still solvable.

Like many other solvers Z3 uses a DPLL-based SAT solver and integrates the other
theory-specific solvers into it.

Besides the SMT solver Z3 also contains an optimizer, which solves the max-SMT prob-
lem. A max-SMT problem contains a set of constraints in the given theories and an
objective function which should be minimized or maximized.

The optimizer supports soft-constraints. Like constraints a given solution should fulfill
these soft-constraints but does not have to, if no solution is possible.

19

2. Background

These soft-constraints can be used for desired, but not necessary requirements. For
example the soft-constraints might be used to define coverage criteria whereas ordinary
constraints define the validity of solutions.

20

3. Test case generation for TeSSLa

In this chapter we will develop all the concepts behind test case generation for TeSSLa
and describe a representation as SMT constraints for all of TeSSLa and for all additional
techniques we develop in this chapter.

A first section defines a test criterion, that describes properties that a test suite should
have. This criterion can be used for automatically choosing tests. Then we introduce a
way of defining custom constraints, that restrict the set of possible cases even further.
And finally we describe different strategies for generating multiple test cases from a
formula, that describes the specification, and a set of constraints that describe the test
criteria.

Streams in TeSSLa are infinite sequences of events and the specification defines a re-
lationship between these streams. The formulas for some operators refer to previous
timestamps of events. For test cases we can only use streams with a finite number of
events. We call these finite sequences up to a certain timestamp tmax the prefix or
observed prefix of a trace. We can assume, that the progress has advanced far enough,
so that up to tmax the stream is completely known, i.e. for all t < tmax and all streams
s we have s(t) 6= ?.

3.1. Test criteria

The generated test cases should show interesting and surprising properties of the given
formula. Many TeSSLa specifications have a trivial test case that consists of empty
streams only.

Example 3.1: merge: The merge function in Listing 3.1 merges events from two
streams into one. If a and b have simultaneous events, a gets preferred.

merge has three different cases:

1. x is Some and y is None
2. Both are Some
3. x is None and y is Some

The function never inspects the content of the streams and therefore the detail does
not matter, although it is advantageous if the test case generates different values for
different streams.

21

3. Test case generation for TeSSLa

def merge[T](a: Events[T], b: Events[T]): Events[T] := {
def f(x: Option[T], y: Option[Bool]): Option[T] :=
if isNone(x) then y else x

return lift(a, b, f)
}

in a: Events[Int]
in b: Events[Int]
def z := merge(a, b)
out z

Listing 3.1: The merge function in TeSSLa merges events from two streams into one.

Example 3.2: Traffic light: The state of a traffic light is represented by a stream of
integers, where the value 0 symbolizes red, 1 is yellow and 2 is green.

The first set of test cases should contain test inputs, that reach each of these states.
Other tests may want to test certain sequences and patterns of the states.

Now the user gets curious and wants to see if there is a sequence, that never reaches
yellow.

In this example the values model specific states of an automaton and are used like enum
types in many programming languages or nominal scales in statistics. This means, that
2 is not just a larger value than 1, but models a different state of a automaton.

As such the values contain an external meaning that is important to the tests. Au-
tomated coverage criteria alone are insufficient and therefore one may need to pass
additional constraints to the test case generator.

In order to fulfill both use cases the test case generator contains two sets of criteria. The
first set is based on code coverage criteria and is checked automatically. The second set
contains custom constraints and must be provided by the user.

3.1.1. Automated coverage

The test case generator should automatically generate interesting test cases. These test
cases should not just use different values, but differ in interesting ways. For example
the test suite for the filter(x, cond)-function (Figure 3.2) from [CHL+18] should
cover three different cases: cond is ⊥, false or true. The values on x don’t matter,
because they are only forwarded or filtered out, but never inspected or modified. Yet
in each of the three cases there should be an event on x to show the effect.

22

3.1. Test criteria

1 def filter[T](events: Events[T], condition: Events[Bool])
2 : Events[T] := {
3 def c := merge(condition, last(condition, events))
4 def f(e: Option[T], c: Option[Bool]): Option[T] :=
5 if isNone(c) then None[T]
6 else if getSome(c)
7 then e else None[T]
8 lift(events, c, f)
9 }
10

11 in x: Events[Int]
12 in cond: Events[Bool]
13 def z := filter(x, cond)
14 out z

Listing 3.2: The filter function in TeSSLa. This definition reuses a previously defined
merge function.

Therefore a test case may look like

x

cond

z

0

true

0

0

false

0

In the case of the filter function, the lifted function explicitly handles three distinct
cases. Line 5 checks if condition is ⊥ or not. If not line 6 checks for the value of
condition.

The test suite for the TeSSLa formula therefore also acts as a test on the filter
function. This observation can be generalized: An adequate coverage for a TeSSLa
specification is achieved by maximizing the coverage on the lifted functions.

The coverage on the lifted functions may be generated with different criteria and by
using various techniques.

The lifted functions in the current TeSSLa implementation consist of compositions of
function calls. We assume that there are no loops or recursive function calls. Otherwise
recursive functions may be turned into nonrecursive ones by limiting the chosen paths
to ones with a maximum call depth. Unrolling the recursively defined function up to the
chosen depth transforms the recursively defined calculations into nonrecursive ones.

23

3. Test case generation for TeSSLa

The examples with merge and filter in Listing 3.1 and Figure 3.2 show that the desired
test suite approximately matches the cases within the lifted functions. Therefore we
choose to maximize the decision coverage on the lifted functions.

The common decision coverage is defined on the control-flow graph of programs in im-
perative languages, where branches are gated by Boolean expressions. TeSSLa functions
use nested expressions only, but these are not just restricted to Boolean values.

A simple coverage criterion requires that the condition in each ite expression is at least
once true and once false. For the filter example a first case may set isNone(c) in line 5
to false and getSome(c) in line 6 to false, but for the second event isNone(c) is
true whereas getSome(c) is undefined. We have not specified how we handle undefined
values, but often SMT solvers are allowed to fill in any value that fits and consequently
satisfy the constraint meant to force a coverage.

For other many specifications this criterion means that a full test suite consists of only
a single test case with two events. In the first event every condition for every ite is set
to false and in the second event it is set to true, even when we can’t see the results of
intermediate computations, because another ite chooses to return the value from the
other branch of the expression tree.

As we have seen, the simple criterion is insufficient as a coverage criterion. We need a
coverage criterion which does never depend on undefined behavior.

We say that a subexpression is masked out if it does not contribute to the value of the
expression. More formally for an expression ite(cond, a, b) if cond evaluates to true
then b is masked out, otherwise a is masked out. For e := f(e1, ..., em) all subexpressions
e1, ..., em are masked out if e is masked out.

We may define masking slightly differently. For example we may also include the effect
of Boolean operators and say that for a∧ b the subexpression b is masked out when a is
false and so forth.

We now define decision coverage on the data-flow graph of the expression. Decision
coverage demands that each subexpression is once false and not masked out and once
true and not masked out.

For the filter example we get:

1. The first ite at line 5 is set to true:
ite

isNone(c) None[T] ite

getSome(c) e None[T]

24

3.1. Test criteria

2. The first ite at line 5 is set to false and the second at line 6 to true:
ite

isNone(c) None[T] ite

getSome(c) e None[T]

3. The first ite at line 5 is set to false and the second at line 6 to false:
ite

isNone(c) None[T] ite

getSome(c) e None[T]

These three test cases are the ones that we have chosen at the beginning of the section.

We called the coverage criterion decision coverage, because it is equivalent to decision
coverage on an equivalent imperative program, if we translate an expression of the
form

e := ite(cond, a, b)

into an imperative program

def cond′ := cond // evaluate condition first
if cond′ then

e := a
else
e := b

In the example with the simpler criterion we have seen, that the coverage may depend
on undefined values. Decision coverage does not suffer from this problem. In subsec-
tion 2.2.5 we have allowed partial functions in expressions only if a lifted function never
returns an undefined value. The computations that would lead to undefined behavior are
masked out by other functions. For example in the definition of filter getSome(c)
is masked out if isNone(c) evaluates to true. It does only considered for test coverage
if c is not None and therefore getSome is defined.

3.1.2. Custom constraints

In some cases like Example 3.2 on page 22 the automatic coverage we defined in 3.1.1
we may want to search for test cases

25

3. Test case generation for TeSSLa

• in which the system will eventually reach state red (0)
• that contain a sequence red → yellow → green:

Yet decision coverage only tests for these requirements if a decision within the specifi-
cation contains it as a goal.

Additionally we may want to restrict test cases to the valid states 0,1 and 2. This
restriction can not be expressed with the coverage criteria.

This other example is an event counter.

in x: Events[Unit]
def counter: Events[Int] := merge(lift1(last(counter, x), inc), 0)
out counter

def inc(a: Option[Int]) := Some(getSome(a) + 1)

def merge[T](x: Events[T], y: Events[T]): Events[T] := {
def f(a: Option[T], b: Option[T]) :=

if isNone(a) then b else a
lift(x,y,f)

}

def lift1[T, V](x: Events[T], f: (Option[T]) => Option[V]) := {
def ff(a: Option[T], b: Option[Unit]) := f(a)
lift(x, nil[Unit], ff)

}

merge is used to initialize the counter to 0.

There is only a single ite in the counter, that in the merge. It is used to initialize the
counter to zero.

The test case
0 1 2 3 4

x

0

counter

0

0

�

1
reaches full decision coverage. For timestamp 0 isNone(a) evaluates to true. Con-
versely on timestamp 1 isNone(a) evaluates to false.

We would like to show, that the counter can count to higher numbers than 1.

26

3.1. Test criteria

As we have seen, decision coverage is insufficient for these cases. Yet more complex
coverage criteria won’t help here, because these specifications have use case specific
constraints.

Instead we develop a mechanism, that allows users to pass custom constraints to the
test case generator.

These custom constraints restrict the set of possible test cases. No generated test
case will break them. This means, that passing contradicting constraints may lead to
formulas that are unsatisfiable.

Inverting a constraint allows us to search for counter examples or proof that a formula
has no solution, at least for the finite case. For example we may ask if there is an input,
that does never initialize the counter to 0. Such an input does not exist and therefore
the test case generator fails to find one.

These constraints must be written in some sufficiently expressive calculus.

Most of the time one wants to express that a certain property will eventually hold or
that it will never hold.

We introduce the operator some. some expresses that a given stream has an event.

Definition 3.3 (some). Let s ∈ SD be a TeSSLa stream. Let t ∈ T∞ be a timestamp so
that s is known until t: ∀t′ < t : s(t) 6= ?

Then some can be defined as

Jsome sK ≡ ∃t′ < t : s(t) 6= ⊥

Now that there is the some operator, that acts as an existential quantifier, one might
want to define the dual universal quantifier. A hypothetical full quantifier has no
useful meaning, because there is no sense in specifying that a stream has always events.
Instead the empty operator asserts that a stream has no events.

Definition 3.4 (empty).

Jempty sK ≡ ¬Jsome sK

Despite the name, a stream may eventually have events after the observed prefix. This
happens if additional inputs occur, but may also appear if there is still a pending
delay. Unfortunately this property makes it possible to generate event-free test cases
for TeSSLa-specifications that are not empty when extended to an infinite trace.

For example the code

in d: Events[Int]
def z := delay(d, d)

27

3. Test case generation for TeSSLa

with constraints empty z and some d can be fulfilled by an event on d at tn on
every prefix trace, but there is no solution for the infinite case, because z will fire at
tn + d(tn).

These two operators can be combined with TeSSLa formulas to produce arbitrarily
complex criteria.
Theorem 3.5 (Disjunction of exists operators). Let a ∈ SDA

, b ∈ SDB
be streams. Then

the logical disjunction of exists a and exists b is
Jsome aK ∨ Jsome bK ≡ Jsome merge(const(�,a), const(�,b))K

merge combines the streams into a single stream. If an event occurs on either a or
b then there is also an event on the merged stream. The calls to const replace the
values of the streams with the unit value �, effectively ignoring the values and making
the merge work on differently typed streams.
Theorem 3.6 (Conjunction of exists operators). Let a ∈ SDA

, b ∈ SDB
be streams.

Then the logical conjunction of some a and some b is
Jsome aK ∧ Jsome bK ≡ Jsome slift(f)(a, b)K

where f(x, y) = �.

The signal lift implements signal semantics in TeSSLa, by applying a function to the last
seen values on the streams. slift does not emit events until both argument streams
had an event. Therefore the constant function f only emits an event if and only if there
has been at least on event on each stream.
Note 3.7: Conjunction as separate assertions:
Jsome aK ∧ Jsome bK

can be replaced with two separate assertions some a and some b for test case gener-
ation, because all generated test sequences need to fulfill all of the listed constraints.

Assertions in TeSSLa specifications

For simplicity we would like to write the constraints as annotations into the TeSSLa
specifications. This allows us to keep specification and additional constraints in a single
place.

assert some z
assert empty merge(a, b)

These assertions are treated as comments by the TeSSLa compiler. This allows us to add
annotations, that are specific for test case generation, without breaking the specifications
for evaluation with the TeSSLa interpreter.

28

3.1. Test criteria

3.1.3. Extensions for Boolean streams

Now that the logic can specify existence and non-existence of events, it would be bene-
ficial to constrain possible values as well.

We will see that TeSSLa streams and the existential quantifiers are enough to specify
properties of values.

Another built-in operator is exists. exists z specifies, that a Boolean stream z
contains at least one event with value true. exists can be expressed as combination
of some and a filter function. Instead of the binary filter we use a unary one,
that takes a Boolean stream as input and removes all false events.

For a p ∈ SB the constraint

assert exists p

can be expanded into

def exists(z:Events[Bool]) := lift1(f)(z) where {
def f(x:Option(Bool)) := ite(getSome(x), x, None[Bool])

}
assert some exists(p)

These operator allows the specification of arbitrary conditions. If we return to the
example with the event counter in Listing 3.1.2 an additional constraint

assert exists counter==3

enforces a test case, that has some event with value 3, for example:
0 1 2 3 4

x

0

counter

0

0

� � �

1 2 3

A counter itself can be used to specify even more properties. If a stream z should have
at least two events, it may be combined into:

assert exists count(z)>=2

For convenience the dual operator all

assert all p

is provided and defined as

29

3. Test case generation for TeSSLa

Jall pK ≡ J¬exists¬pK ≡ Jempty exists(¬p)K.

all enforces that a condition holds for every event on the stream, but does not imply
the existence of events. This means, that a given all constraint can be trivially fulfilled
with an empty stream. It can be used to further constrain the domain of allowed values
on streams.

For example

in x: Events[Int]
assert all x>=0

restricts the domain of inputs to unsigned integers.

3.1.4. Alternatives

The language for custom constraints uses some, empty operators and TeSSLa formulas.
Alternative approaches may be considered. linear time logic (LTL) would support a
broad set of operators. F (finally) is very similar to approximately to some. LTL would
directly allow mixing of operators from propositional logic with temporal operators in
any order, whereas the formulation in subsection 3.1.2 requires the existential operators
on the left and needs to perform all other operations in TeSSLa on streams.

LTL and other approaches like regular expressions would directly support specifying
sequences whereas implementing automata in TeSSLa is somewhat cumbersome.

Yet the current approach greatly benefits from its simplicity. With only two additional
operators the expressivity of TeSSLa can be used for describing constraints. Additionally
TeSSLa streams are very different from the word-based definitions of LTL and regular
expressions. Extending these with operators that distinguish between existence of events
and operators over the values within these events complicates the alternatives even
more.

Finally the current mechanism only describes minimal requirements. Additional features
can be built in TeSSLa and provided as a library or implemented as syntactic sugar in
the test case generator.

3.1.5. Coverage strategies

SMT solvers get a formula as input and determine a single possible assignment for it.
We don’t want a single solution, but a set of solutions, that reaches the highest possible
degree of coverage. Even a degree of 100% is not possible for many specifications. Ideally
few test cases can reach the maximal coverage.

We can translate the coverage criteria into a set of SMT constraints. Adding this whole
set to the constraints to the formula that the specification translates to forces the solver

30

3.1. Test criteria

to find a single solution, that fulfills all of the constraints, i.e. reaches 100% coverage.
100% coverage is not always possible much less in a single example. Many of the formulas
become unsatisfiable, so that the solver can no longer find a valid test case at all.

There are four strategies for generating a test suite.

Simple strategy The simple strategy just ignores the coverage criteria and searches for
a single test case.

Hard strategy As an alternative to the simple strategy one may just set all the con-
straints and either find a full coverage or no solution at all. We call this the hard
strategy.

These strategies are not particularly helpful for most specifications. Instead we want to
get multiple different test cases.

If we treat the problem no longer as a satisfiability problem, but as an optimization
problem, we can formulate an objective function, that grows with the number of satisfied
coverage constraints.

Soft strategy Fortunately Z3 supports optimization problems and also simplifies this
kind of problem by providing soft assertions. These can be used like ordinary con-
straints, but they use the optimizer to fulfill many, but not necessarily all of the con-
straints.

Soft constraints are suitable for iterative generation of more test cases. In each run only
the coverage constraints from the set of unresolved constraints are used as soft asserts.
The soft strategy maximizes the number of fulfilled constraints per run.

Using soft asserts forces the implementation to switch to an optimizer for the whole
formula, not just for some constraints. This makes the constraint-solving slower and
sometimes impossible.

Iterative strategy For the iterative strategy we take the idea from the soft strategy and
iteratively search for more tests, but we return to the classical, more efficient solver.

The iterative strategy sets a single of the coverage constraints in each run, and generates
a test case for that constraint. Afterwards that coverage constraint is removed from the
set and test case generation continues with the next unfulfilled constraint.

Otherwise if no solution was found for that particular constraint, we know that no
possible test case can fulfill that constraint and remove it from the set.

This approach generates a maximal coverage, but may need to generate two test cases
for each ite-operator. In practice a lot fewer are necessary, because some constraints
are satisfied by previous cases, even when they were not set as constraints.

31

3. Test case generation for TeSSLa

Comparison

The simple strategy ignores the coverage constraints. It can be used if only user-defined
constraints are required.

Soft and iterative strategy both support iterative generation of multiple test cases. The
soft strategy shows many interesting properties of the specifications in few examples,
yet the need for an optimizer probably reduces performance. The iterative strategy
supports iterative generation with the ordinary solver. It is probably the most versatile
and most promising strategy.

The hard strategy only works if a complete coverage can be reached within a single
test case. This is rarely the case and becomes impossible even with simple TeSSLa
specifications, for example those that contain merge(x,x). Merge is defined by

1 def merge[T](x: Events[T], y: Events[T]): Events[T] := {
2 def f(a: Option[T], b: Option[T]) :=
3 if isNone(a) then b else a
4 lift(x,y,f)
5 }

The lifted function f is only evaluated if at least one of the streams x and y has an
event. isNone(a) in line 3 only evaluates to true if only the second stream has an
event. Since both input streams of the merge are the same stream, they always have
simultaneous events. This means, that the isNone(a) in line 3 never evaluates to
true and therefore a full decision coverage becomes impossible. The iterative and soft
strategy can skip a coverage constraint without generating a test case for it, but the
hard strategy fails.

3.2. Representation as SMT formula

3.2.1. Stream and event representation

The test case generation only generates finite prefixes up to a finite n ∈ N. Therefore
we can assume, that s(ti) 6= ? for all ti ≤ tn where tn ∈ T is the last timestamp in the
generated prefix.

In TeSSLa a stream s consist of a discrete sequence of events. In [CHL+18] this sequence
is defined as a sequence of ti · di pairs, where ti ∈ T is the timestamp and di ∈ Ds is the
datum.

For the test case generation a different representation is more suitable. Every stream
might be imagined as a sequence of n values. All streams are synchronized by a global
set of timestamps and streams without an event at a timestamp contain ⊥.

32

3.2. Representation as SMT formula

The test case might be imagined as a grid.
t1 t2 t3 t4 t5 t6 ... tn

�

42

true

0 -13

Each of the streams has n slots, where each slot may contain an event, but does not have
to. The slots determine the order, that events have, but the timestamps t1, ..., tn are
not fixed at start of generation. Instead they can be freely chosen by the SMT solver.
Outside of these slots no events are allowed to happen.

Now a finite and quantifier-free formula is derived from the TeSSLa specification by
unrolling the recursive formulas, that define the streams, n times.

Definition 3.8. Let T = {t1, t1, ..., tn} with T ⊂ T and t1 < t2 < ... < tn be the global
set of timestamps.

For all streams s and all t′ ∈ T : (t′ ≤ tn ∧ s(t′) 6= ⊥)⇒ t′ ∈ T

Since T contains all the timestamps where events may happen up to tn and only times-
tamps with events are of interest, T and T are often used synonymously within this
thesis.

The chosen representation keeps SMT formula generation simple, because the order of
events in different streams is implicit. Other representations require explicit constraints
which restrict the order of events between streams.

SMT solvers don’t necessarily support Option-types or ⊥-values. In order to circumvent
this limitation every stream s is represented by a sequence of n pairs (sv,i, sd,i) ∈ B×Ds.
B = {true, false} is the Boolean type with the usual interpretation. The first value sv,i

is a Boolean flag that determines if the event is valid. The second value sd,i contains
the datum of the event and is undefined if sv,i is false.

Definition 3.9. The prefix of a stream s is defined as the tuples sv ∈ Bn and sd ∈ Dn
s ,

where

s(ti) =
{

sd,i iff sv,i = true
⊥ iff sv,i = false

sv,i describes if an event happens on stream s at timestamp ti. When thought of as the
Option-type, sv,i is the type tag, that distinguishes between Some and None.

33

3. Test case generation for TeSSLa

sd,i contains the datum if sv,i is set or is left undefined.

sd,i =
{

s(ti) iff s(ti) 6= ⊥
undefined iff s(ti) = ⊥

undefined does not describe a specific bottom value, but is similar to undefined behavior
in C. A stream may still set sd,i to a specific value but operators must not depend on any
specific values of streams that are used as inputs. In most cases the undefined values
are left unrestricted, so that the SMT solver can freely a suitable value.

3.2.2. Operator representation

The operators relate input to output streams. Each of the operators is defined by a
set of constraints. The constraints, that relate types are not translated into an SMT
formula but used by the formula generator for choosing the right variable types.

For reasons of efficiency and sometimes decidability it is advised to keep the constraints
small and use formulas from a sufficiently simple theory, even when the SMT solver
supports more complex ones with direct translation.

The following operators use the ∀-Quantor in the constraints, but only with rank 1
and only when the bound variable has a finite and sufficiently small domain. An im-
plementation should use a for-loop to unroll the quantified constraint into a set of
quantifier-free constraints.

Definition 3.10: s = nil:
nil creates an empty stream without any events.

∀i : sv,i = false

Definition 3.11: s = unit:
unit creates a stream, that has a single event at t1 = 0 and is empty otherwise.

Ds = {�}
t1 = 0

sv,1 = true
sd,1 = �

∀i > 1 : sv,i = false

Ds contains a single element which may be represented by any value, such as 0 or the
empty record.

34

3.2. Representation as SMT formula

Definition 3.12: s = time(e):
time(e) creates a stream, that maps every event on stream e to the timestamp of that
event.

Ds = T
∀i : sv,i = ev,i

∀i : sd,i = ti

Definition 3.13: s = last(a, b):
last(a, b) creates a stream, that yields the last value of stream a, whenever b has an
event.

Let m ∈ Bn be a helper variable. It memorizes if an event has previously occurred on a.

Ds = Da

m1 = false
∀i > 1 : mi = m(i−1) ∨ av,(i−1)

∀i > 1 : sd,i =
{

ad,i−1 for av,i−1 = true
sd,i−1 else

∀i : sv,i = bv,i ∧mi

last memorizes the value last seen on a in sd,i, even when s has no event. This is valid,
because the sd,i is undefined in the stream definition given previously and therefore may
be set to an arbitrary value. m memorizes if an event has already occurred on a. sv,i is
set to true, if there is an event on b and there was already one on a.

Without helper variables m, the last line in the formula could be written in the form

∀i : sv,i = bv,i ∧ (
∨
j<i

av,j).

These constraints grow with the size of n. Large clauses are hard to solve for SMT
solvers. By introducing the helper variable and iteratively memorizing the result of the
last step in it, we get a maximal constraint size, that is independent from the used n.
Of course the number of constraints still grows linearly with n.

Definition 3.14: s = lift1(f)(e):
lift1 is the unary lift.

∀i : sv,i = ev,i ∧ (f(ed,i) 6= ⊥)
∀i : (ev,i ∧ f(ed,i) 6= ⊥)⇒ (sd,i = f(ed,i))

Definition 3.15: s = lift2(f)(a, b):

35

3. Test case generation for TeSSLa

lift2 is the binary lift.

∀i :sv,i = (av,i ∨ bv,i) ∧ (f(a(ti), b(ti)) 6= ⊥)
∀i :sv,i ∧ f(ad,i, bd,i) 6= ⊥ ⇒ sd,i = f(ad,i, bd,i)

Both lift-functions are currently not particularly interesting. The exact implementation
depends on the definition of the lifted functions.

Definition 3.16: s = delay(d, r):
The delay operator waits for a specified amount of time, before raising an event. It has
two operands: d contains the delay time, that needs to pass before delay triggers an
event. r is the reset event, for setting and resetting the timer to the value in d.

Ds = {�}
Dw = T \ {0}

We introduce helper variables isReset ∈ Bn and fireAt ∈ (T ∪ {⊥})n. fireAt can be
seen as a timer, that memorizes at which timestamp the delay should ”fire”, i.e. at
which time there should be an event on s.

isReset determines if the timer fireAt is reset.

∀i : isReseti = rv,i ∨ (fireAti = ti)

Use fireAt to memorize, at which timestamp the delay will emit an event on s. Set it
to ⊥ if no event is expected.

fireAt1 = ⊥

∀i > 1 : fireAti =

ti−1 + dd,i−1 for isReseti−1 ∧ dv,i−1

⊥ for isReseti−1 ∧ ¬dv,i−1

fireAti−1 else

Just like we did for last we use the helper variable to avoid large constraints.

Stream s fires whenever the timestamp has come:

∀i : sv,i = (fireAti = ti)

Additionally s is not allowed to skip the timestamp without firing:

∀i : (fireAti = ⊥) ∨ (ti ≤ fireAti)

Since t ≥ 0 for all t ∈ T, one can use a negative value like −1 for representing ⊥ in the
SMT formula.

36

3.2. Representation as SMT formula

The TeSSLa-specification requires that all inputs are larger than 0. In order to avoid
undefined behavior all values on d need to be constrained to values larger than zero:

∀i : (dv,i ⇒ (dd,i > 0))

The given constraints allow for pending delays after the input. This has the confusing
consequence, that a test case for a specification with assertion assert empty z might
still lead to an event on z at some timestamp tn+1 > tn.

For avoiding this an additional constraint might force a hypothetical fireAtn+1 to ⊥.

⊥ = fireAtn+1

=

tn+1−1 + dd,n+1−1 for isResetn+1−1 ∧ dv,n+1−1

⊥ for isResetn+1−1 ∧ ¬dv,n+1−1

fireAtn+1−1 else
= (fireAtn = ⊥ ∨ isResetn ∧ ¬dv,n)

Using this additional constraint on every delay means that a empty assertion really
means, that no event will occur on that stream. It also means, that no event will ever
happen after tn for any stream, and force test case generator and interpreter to have
equivalent output for any prefix.

Constraining delays also reduces the set of viable test cases and even the set of testable
programs. Programs with infinite output traces become impossible to test.

3.2.3. Types

Integers and Booleans are directly represented by SMT solvers. This may later include
additional types.

Tuples and objects are unpacked into a sequence of variables. For example a tuple of
type a (Int, (Bool, (), Int) gets unpacked into three variables a0 ∈ Z, a1 ∈ B,
a2 ∈ Z. Equality constraints between data types are translated into a conjunction of
equality constraints over the members. This means, that the unit type is not represented
in the resulting formula at all. A stream of type unit consists only in valid flags, but has
no actual datum, and also the equality constraints on the datum sd,i are only presented
as a true constant to the SMT solver.

The Option[T] type is represented like a tuple B× T. This representation is equal to
those of events.

37

3. Test case generation for TeSSLa

3.2.4. Lifted functions

The lifted functions are translated into adequate Z3 constraints. Most of these operators
for integer arithmetic and Boolean logic have a direct counterpart in Z3. The only
exceptions are operations that access or set parts of composed types.

3.2.5. Custom assertions

For supporting custom assertions, it suffices to express some s and empty s for a
stream s ∈ SD in a flattened specification.

Let e ∈ Bn be a set of helper variables. ei memorizes if an event has occurred on the
stream s at some point at or before ti.

e1 = sv,1

∀i > 1 : ei = ei−1 ∨ sv,i

For some an event must have occurred at or before tn:

en.

For empty an event must not have occurred

¬en.

All other operators are reduced to some and empty, using the unary filter function
from subsection 3.1.2.

3.2.6. Coverage criteria

Automated coverage is achieved by maximizing decision coverage on lifted functions.
For each expression e := ite(cond, l, r) new variables eleft ∈ Bn and eright ∈ Bn are
introduced. These variables describe, that the respective branch had an influence on
the result, and are constrained by

∀i : eleft,i = parenti ∧ condi

∀i : eright,i = parenti ∧ ¬condi

where parent ∈ Bn indicates, that the ite-expression has an influence on the result or
in other words is not masked out by another ite.

If e is in the left or right branch of another ite-expression b, then parent = bleft

and parent = bright accordingly. Otherwise if there is no such b, then there is a
s := lift(..)(..), that controls if the expression is evaluated. In this case ∀i : parenti = sv,i.

38

3.2. Representation as SMT formula

The decision coverage requires, that each decision has been taken once. Therefore
additional variables eonceLeft, eonceRight ∈ Bn are introduced with constraints

eonceLeft,0 = eleft,0

∀i > 1 : eonceLeft,i = eonceLeft,i−1 ∧ eleft,i

eonceRight,0 = eright,0.

∀i > 1 : eonceRight,i = eonceRight,i−1 ∧ eright,i.

39

4. Implementation

The previous chapter explains the concepts behind test case generation for TeSSLa and
gives a translation from TeSSLa specifications into logical formulas, that can be solved
by a common SMT solver like Z3.

The test case generator tessla-testgen has been implemented on the defined concepts.

There is an existing implementation of a TeSSLa interpreter [CHL+18]. tessla-testgen
reuses this interpreter for parsing the code and transforming the high level data structure
into a core language TesslaCore, that allows simpler transformation of code.

The implementation of tessla-testgen closely resembles the concepts from chapter 3. It
generates a test suite with decision coverage by using the strategies and supports custom
constraints as annotations on the code.

4.1. Technology

tessla-testgen is implemented in the programming language Scala. This allows the in-
clusion of the TeSSLa interpreter from [CHL+18] as a library for parsing the TeSSLa
code and simplifying into the code representation TesslaCore. TesslaCore is a reduced
set of TeSSLa code, which is similar to operations in [CHL+18]. Additional instructions
are present from older versions of TeSSLa or provided for convenience. TesslaCore pro-
vides TeSSLa specifications in normal form, i.e. specifications that don’t have nested
expressions. Additional TeSSLa features like macros are fully expanded in TesslaCore.

4.2. Custom assertions

The TeSSLa compiler can not directly parse the custom assertions from subsection 3.1.2.
Nonetheless the TeSSLa interpreter can parse the specification, because these assertions
are written as comments.

At first tessla-testcase reads the specification into memory. It parses the assertions
with a regular expression. Like many regular expression engines the one used by scala
supports the extraction of capture groups. The regex for parsing

\s*#\s*assert\s+(\S+)\s+(.*)

41

4. Implementation

uses one group for extracting the quantor and another for the stream definition. The
later reads until the end of the line and allows reading of complex stream definitions
like

assert exists count(x)>=5

tessla-testgen expands the assertions on Boolean streams into TeSSLa streams and the
core quantors some and empty. tessla-testgen expands the assertions on Booleans into
TeSSLa streams according to the rules in subsection 3.1.2. The previous example gets
expanded into

def zzz0 = lift(count(x)>=5, nil[()],
(c:Option[Bool], _:Option[()]) =>

if getSome(c) then c else None[Bool])

out zzz0

and a constraint some zzz0. zzz0 is a fresh identifier. The stream is set as an output
so that it can be mapped to a stream in TesslaCore, even after name mangling within
the TeSSLa interpreter has changed the name of the stream.

The simplified quantor and stream, in this case some zzz0 are memorized and passed
to the SMT formula generator. The expanded specification is parsed by the TeSSLa
interpreter and transformed into TesslaCore.

4.3. Architecture

The generator consists of 4 major components.

PlainTessla is an intermediate representation of TeSSLa code, that is more suitable
for test-case generation. PlainTessla shares many similarities with TesslaCore with the
primary difference, that all function calls are inlined. This mechanism does not allow
recursively defined functions, but we have assumed that these will never occur in the
specifications.

PlainTessla represents the code in a total of 8 type constructors:

Nil, Time, Last, Delay, Merge, Lift, Unit

Most operators, that TesslaCore support, with the exception of merge are rewritten in
terms of lifted functions and other operators.

Additionally lifted functions are represented by:

Constant, Input, Alias, Application

42

4.3. Architecture

Input is reading values from a stream by copying the content.

Alias is copying a value. This type constructor is not necessary and can be replaced
in an optimizer pass, but having Alias simplifies the passing of arguments into inlined
functions.

Constant represents a constant.

Application represents the application of a builtin operator. Most of these operators
like + or == simply state a relation between input and output. ite is a builtin operator
with some special treatment for code coverage.

Another type Specification contains all the simplified TeSSLa code in flat repre-
sentation with the PlainTessla operators.

PlainTessla.Specification

+ streams: Map[StreamId, Expression]
+ inStreams: Seq[(StreamId, Expression)]
+ valueExpr: Map[(ValueId, ValueExpression)]
+ streamTypeMap: Map[(StreamId, Core.StreamType)]

Figure 4.1.: PlainTessla.Specification is a datastructure which contains a
simplfied representation of the TeSSLa code. StreamId and ValueId are typesafe
indices to expressions

TypeInference is used to infer the types on all the expressions and streams. While
TesslaCore already assigns types to the streams, it does not determine types for the
lifted expressions. Expansion of operators, that are represented in TesslaCore, but not
in PlainTessla does not add types to the streams. Some of these operators like slift
and default are present in nearly every practical TeSSLa specification.

This module defines types and type variables and provides the functionality for unifying
them.

For now the type inference is far from optimal. A future implementation will probably
remove the type inference from tessla-testgen and rely on type information from the
TeSSLa compiler.

GenZ3 is the module, which does all of the constraint generation. The most important
methods of the interface are run and isSat. isSat checks if a given formula with the
assertions is satisfiable. This allows an early check, for distinguishing unsatisfiable inputs
from those with unsatisfiable coverage criteria.

The constructor GenZ3 translates the specification into an SMT formula using the
constraints from section 3.2.

43

4. Implementation

The method build constructs the SMT formula. build primarily pattern matches on all
the built-in operators and generates the constraints. The implementation matches the
description in section 3.2 on page 32. Most operators of lifted expressions contain direct
counterparts in Z3. Constraints are created with the Java Z3 api. The code is very
similar to the one in section 3.2. For example the constraints in section 3.2 for operator
time(e) are

Ds = T
∀i : sv,i = ev,i

∀i : sd,i = ti

The code is

1 case Time(ref) => {
2 assert(out.ty.innerType == TypeInference.Int)
3

4 val tyRef = streams(ref)
5 for (i <- eventIdx) {
6 constrain(
7 ctx.mkEq(out.valid(i), tyRef.valid(i)),
8 ctx.mkEq(out.data(i)(0), times(i))
9)

10 }
11 }

Line 2 checks if the type has been correctly determined by the type inference. The
∀ quantor is replaced with a for-loop over all the 1 ≤ i ≤ n (line 4). The method
constrain adds some constraints, here two equality constraints.

Additionally the dependency tree in each lifted expression is traversed for each lift to
generate the conditionals, that detect if an if statement has been masked out, as well as
the conditionals that describe that the if has evaluated to true and false.

run is the method, that generates a test-case. It sets the coverage constraints, runs
the solver, converts Z3’s model into a test-case for tessla, and updates the set of yet
unresolved constraints.

44

4.3. Architecture

TeSSLa
with assertions TeSSLa TesslaCore

PlainTessla
PlainTessla

with types
GenZ3

with Z3-AST

expand assertions TeSSLa Compiler

expand operators
inline closures/functions

type inference

extract assertions

run

Figure 4.2.: Operation chart for turning TeSSLa code into a datastructure for Z3.

GenZ3

+ GenZ3(solverType: Strategy,
core: PlainTessla.Specification,
numEvents: Int,
asserts: Seq[Assertion]))

+ run(): Solution[TestCase]
+ isSat(): Boolean
– build()
– constrain()
– ctx

Main module performs the expansion of custom assertions and the directs the expan-
sion into PlainTessla. It also directs the iterative generation of multiple test cases, by
repeatedly calling run.

Figure 4.2 shows how the input files are transformed into SMT formulas. Assertions
are parsed from the file and expanded to TeSSLa code. The interpreter from [CHL+18]
is used to turn this code into the TesslaCore representation. Inlining and expansion
transforms TesslaCore to the simpler representation PlainTessla and type inference is
used to determine the types. GenZ3 translates PlainTessla and the assertions into a
SMT formula. Repeated calls to run set different coverage constraints and generate the
test suite.

Strategies The classes, that inherit from Strategy implement different strategies for
coverage maximization.

45

4. Implementation

Strategy

+ Strategy(ctx: Z3.Context)
+ ctx: Z3.Context
+ getModel(): Z3.Model
+ check(): Z3.Status
+ push()
+ pop()
+ setCoverage(

unresolved: [Unresolved],
ifDecisions: [IfDecision])

SimpleStrategy

– solver: Z3.Solver

SoftStrategy

– optimizer: Z3.Optimize

HardStrategy IterativeStrategy

The class Strategy and its derivates support different strategies for coverage gener-
ation. A detailed description of the different strategies is in section 3.1.5 on page 30.
The class Strategy acts primarily as an abstraction over the SMT solver Solver and
the SMT optimizer Optimize from Z3. Most of the methods are set accordingly.

The only exception is the method setCoverage, which sets the constraints for the
coverage.

The tessla-testgen implementation provides a total of 4 different strategies for test cov-
erage maximization.

The coverage strategy is chosen with the command-line flag --strategy. Some of the
coverage strategies support interactive generation of multiple test cases.

The interactive mode can be enabled with the command line flag --interactive. It
outputs one test-case for each line on the standard input (stdin). If used from the com-
mand line this mode allows to produce a new input at key-press. Additionally, primarily
for measuring the time, a full set can be produced with the flag --generateAll.

For interactive mode, testgen maintains a set of all constraints, that have not been
fulfilled at least once. After each test case it removes all the fulfilled from this set.

Output tessla-testgen outputs the input streams in the same format that is used by
TeSSLa interpreter. Additional debug output can show the streams in a grid-based
layout, like the one used in section 3.2. For the example with the filter function the
output of all streams contains lines, that look like

46

4.3. Architecture

#times: 0 1 2 3 4
c: false true
x: 14 9
$11: false
c$10: false true
z$1: 9
fresh@0: false false

The normal input look like this:

0: x = 14
2: c = false
4: c = true
4: x = 9

The output was generated with the hard strategy for n = 5.

The first line #times shows all the timestamps for t1, ...tn. The lines c and x show
the input of the stream, z$1 is the output stream. The output contains additional lines
for many other internal streams and values in lifted functions, that is only relevant for
debugging. The full output contains even more lines, but these were removed from this
excerpt.

Indeed this output is similar to the one we defined in subsection 3.1.1. All three cases
are covered, although x does not always have an input that shows whether the event
has been removed or left on the stream.

47

5. Evaluation

5.1. Evaluation time

Since solving SMT formulas is NP-hard, there may be an exponential increase in run
time and formulas may become infeasible at a certain size.

Two examples are prepared to measure the time it takes to generate the test cases for
different n and different strategies.

The first example specifies signal decoder and is probably representative of many com-
mon use cases for specification, especially when monitoring is used on hardware specific
cases. This example is evaluated for two time domains, one where T = N and one where
T = R, because linear constraints on reals belong to the class of convex problems, which
are much easier to solve.

The second example introduces nonlinear computations which are much harder to solve,
especially for the optimizer. This example is designed to push the optimizer of Z3 to its
limit and probably show a difference between the strategies.

5.1.1. Example 1 (Linear arithmetic)

The first example is a signal decoder. A digital signal is transmitted as a sequence of
events and encoded by frequency. The monitor reads the signals and translates them
into a binary sequence. A signal is measured within an interval. The example uses an
interval length of 10, which in an implementation with T = N allows for maximal 10
events.

The input is a stream of unit events. The frequency of events encodes binary numbers. If
there are at least 8 events within a fixed interval, the transmitted number is 1. Between
3 and 5 spikes the number is 0. If the transmitter is off, no events will be received.
Faulty input sequences, e.g. caused by a noisy channel are indicated by an event on the
stream decodeErr.

An excerpt of the code can be seen in Listing 5.1 on the next page. The full code is
shown in section A.1. Input it received on the stream wire. An interval begins with
an event. A timer is started to reset the counter and trigger the output at the end of
the interval. This output is either a valid binary number on decoded (if freq is in
the mentioned ranges) or an error event is raised on decodeErr otherwise.

49

5. Evaluation

in wire: Events[Unit]
def isInterval: Events[Bool] = ...
def firstInInterval:Events[()] := filter(wire, cond) where {

def cond := merge(true, last(!isInterval, wire))
}

def timer := delay(const(interval, firstInInterval),
firstInInterval)

def freqCounter := resetCount(wire, timer)
def freq := last(freqCounter, timer)

def decoded := lift1(freq, ...)
def decodeErr := lift1(freq, ...)
out decoded
out decodeErr

Listing 5.1: Excerpt from the example code

This example is evaluated by measuring the run-time of the test case generation.

The four different generation strategies simple, soft, soft-all and iterative-all are com-
pared. Simple and soft generate a single test case, whereas soft-all and iterative-all
generate test cases, until the coverage is maximal. The hard strategy is impossible, be-
cause requiring full coverage leads to a contradiction. The matching iterative strategy,
that does only generate a single case is excluded because it only differs from the simple
strategy by a single constraint.

For the test case generation only the time for generating the constraints and running
Z3 is measured. This excludes the overhead, that parsing, code expansion and type
inference introduces. Especially the last one uses a suboptimal algorithm.

The measured data is plotted in Figure 5.1 on the facing page. The data is the mean
of 10 runs.

For n = 10 the generated formula contains 1850 variables, primarily Booleans, and 1742
constraints. Yet the actual difficulty of the problem can not easily determined from
these numbers. A single constraint can be quite large and translation into normal form
may increase the number of constraints. On the other hand manual inspection of the
formula shows that many constraints are eliminated by the reprocessing steps of Z3 or
in the first steps of the DPLL-Solver. In general most of the formulas, that TeSSLa
specification translate to seem to be rather simple to solve.

While the simple case without coverage criteria quickly produces results even for large
event sizes, the other techniques do grow in run-time, but do not become infeasible for
sizes up to 100 events. The resulting formulas are very large, yet Z3 quickly finds a
solution to them.

This grows the confidence that test case generation works for realistic cases.

50

5.1. Evaluation time

20 40 60 80 100
101

102

103

104

n (number of events)

tim
e
(in

m
s)

simple
soft
soft-all
iterative-all

Figure 5.1.: Time in ms of test case generation with T = N

An example for a full test-suite is shown in Table 5.1 on the next page. In contains five
different test cases. The first test case (case 0) contains no event. Some of these tests
are redundant. For example case 0 is included in the prefix of case 1 up to ti = 15 and
case 1 is included in case 2. In comparison the soft strategy can generate a test-suite
with only two cases. It is shown in Table 5.2 on page 53. Despite requiring fewer runs
of the SMT solver, the soft strategy was not faster than the iterative strategy.

51

5. Evaluation

Case 0 Case 1 Case 2
Input Output Input Output Input Output

16: wire 26: timer 13: wire 23: timer
24: wire 26: freq = 3 17: wire 23: freq = 3
25: wire 26: decoded = 0 21: wire 23: decoded = 0

26: wire 36: timer
34: wire 36: freq = 3
35: wire 36: decoded = 0
36: wire

Case 3 Case 4
Input Output Input Output
0: wire 10: timer 0: wire 10: timer
10: wire 10: freq = 0 1: wire 10: freq = 6
15: wire 10: decodeErr 2: wire 10: decodeErr
17: wire 4: wire 21: timer
30: wire 5: wire 21: freq = 8
31: wire 6: wire 21: decoded = 1

7: wire
11: wire
12: wire
13: wire
14: wire
15: wire
16: wire
17: wire
20: wire
21: wire

Table 5.1.: This test-suite was generated with the iterative strategy for n = 20. It
shows the timestamp, the stream and the value for each event. Values of type unit are
omitted.

52

5.1. Evaluation time

Case 0 Case 1
Input Output Input Output
0: wire 10: timer 1: wire 11: timer
11: wire 10: freq = 0 2: wire 11: freq = 5
19: wire 10: decodeErr 4: wire 11: decoded = 0
20: wire 21: timer 5: wire 22: timer
22: wire 21: freq = 3 6: wire 22: freq = 9
23: wire 21: decoded = 0 12: wire 22: decoded = 1
24: wire 32: timer 13: wire
25: wire 32: freq = 6 14: wire
26: wire 32: decodeErr 15: wire
31: wire 16: wire
32: wire 17: wire
33: wire 18: wire
34: wire 19: wire
36: wire 20: wire
38: wire 22: wire

Table 5.2.: In comparison to Table 5.1 on the facing page the soft strategy can find
a full coverage in only 2 cases.

53

5. Evaluation

Real time domain Linear programming is computationally simpler on reals than on
integers. Linear programming in reals has algorithms that can find a solution in poly-
nomial time, whereas linear integer programming is NP-complete. Therefore constraint
generation on real numbers may find a solution quicker. The implementation in chap-
ter 4 does not yet support reals and the time domain T is defined as integer. Yet it
would be beneficial to see if constraints with linear real programming solves the problems
quicker. Therefore all integers from the code are replaced with reals. The computation
time is measured over 5 runs.

20 40 60 80 100

101

102

103

104

n (number of events)

tim
e
(in

m
s)

simple
soft
soft-all
iterative-all

Figure 5.2.: Time in ms of test case generation with T = R

Switching to real numbers did not improve test case generation times. In fact the times
are larger for the strategies using the optimizer. Timing with the iterative strategy is
slightly better than without, although these may be influenced by external factors, since
the measurements were not taken on the same day.

The inclination of the curves in Figure 5.1 and Figure 5.2 does not allow a conclusively
answer whether the computation time grows exponentially or subexpontentially. The
data indicates that growth is low enough that test case generation becomes feasible
for large n. Larger specifications may probably reach a critical point earlier, but test
case generation with the approach from this thesis probably remains feasible for these
specifications.

54

5.1. Evaluation time

5.1.2. Example 2 (Quadratic arithmetic)

A second examples shows the limits for more complex formulas.

in x: Events[Int]

def y = (x-4)*(x+9)
out y

The specification just calculates a quadratic polynomial with the roots 4 and 9.

The constraint all y==0 forces the solver to search for roots of the polynomial. Ad-
ditional constraints enforce, that two roots are found and that these two differ.

def y0 := last(y,y)

assert all y==0
assert some y
assert some y0
assert all x!=last(x,x)

The result of shows the time it took to find a solution. The soft strategy with the
optimizer is much slower than the simple strategy with the solver. Due to the high
calculation time only three cases n ∈ {5, 10, 15} are evaluated with the optimizer and
these values are averaged over only two runs. For larger values no time is determined.
Yet the high difference in computation time shows that the optimizer become infeasible
for specifications with nonlinear calculations. The time for n = 15 is much lower than
the time for n = 10. Solving but especially optimizing SMT constraints depends heavily
on backtracking. Sometimes the optimizer quickly finds a good solution while other
times it has to try many different values. This makes timing occasionally unpredictable,
especially for the optimizer.

55

5. Evaluation

5 10 15 20 25 30 35

101

102

103

104

105

106

107

n (number of events)

tim
e
(in

m
s)

simple
soft

Figure 5.3.: Time in ms of test case generation with T = N. The soft strategy is
much slower than the simple one.

5.2. Decidability and Complexity

The decidability and complexity of test case generation greatly depends on the com-
plexity of the lifted functions. Nonetheless it makes sense to study the complexity of
the test case generation with sufficiently restricted lifted functions.

SMT formula generation in section 3.2 only outputs constraints of constant size and each
operator gets translated into a constant number of constraints per timestamp. For a
specification of size m and n timestamp the resulting formula has a size of O(n·m+l ·n))
where l is the factor of the lifted formulas.

In order to evaluate the complexity of the TeSSLa formula itself, we formulate the
decision problem as the satisfiability problem on TeSSLa specifications with custom
assertions [subsection 3.1.2].

For the TeSSLa fragments TeSSLabool and TeSSLabool+c and all TeSSLa formulas with
lifted functions, that are restricted to propositional logic and linear arithmetic, the re-

56

5.3. Summary

sulting formula only contains constraints with Boolean arithmetic and linear arithmetic
(for T = R) or linear integer arithmetic (for T = N).

The satisfiability problem on linear integer programming and propositional logic is de-
cidable and NP-complete. This means that for most TeSSLa formulas, that do not
introduce more complex constraints through lifted functions, a test case can be found.
While NP-hard is still a complexity class, that makes sufficiently large problems infea-
sible it is still relatively easy compared to other techniques that requre EXPTIME or
a larger complexity class. Advancements in SMT solver technology made it possible to
find solutions for many formulas.

5.3. Summary

The data indicates that test case generation remains feasible for larger specifications
with linear arithmetic and Boolean constraints. The strategies that are based on the
solver still works for the quadratic example.

In all examples the iterative strategy is at least as fast and often much faster than the
alternative strategies, except for the simple strategy. The hard strategies can not be
used at all.

This means that the iterative strategy is probably the most useful strategy. It can
efficiently find a test suite with maximal coverage. It is based on the solver, which
means that it can still be used to find solutions for constraints from theories, that are
harder to solve e.g. quadratic programming and it is also open for extended possible
extensions. For example Z3’s solver supports theories for certain data types like arrays
and sets. By implementing support in tessla-testgen these theories could be used with
the iterative strategy without much change.

Besides the iterative strategy the simple one can be used if code coverage is not required.
This strategy has all the advantages of the iterative strategy, but is even faster. It can be
used to efficiently proof certain properties on specifications or otherwise find a counter
example.

57

6. Conclusion and Outlook

In this thesis we have developed an algorithm for test-case generation for TeSSLa spec-
ification. For that we have seen a translation of TeSSLa into an SMT constraints. We
have shown, that it is possible to translate all TeSSLa operators, including delay, into
SMT constraints, that only consist of propositional logic and linear arithmetic. We have
developed criteria for choosing interesting test cases for TeSSLa specifications.

The tool tessla-testgen has been implemented according to the theoretical concepts and
experiments with this tool have shown that automatic test case generation is possible
and feasible for a presumably certain specification.

While the evaluated example allows for quick generation, it is questionable, to which
degree the example is representative of common use cases. One of TeSSLa’s design goals
is the usage on hardware, which restricts the specifications to those that that can be
evaluated in constant memory. Additionally the application in runtime verification may
indicate that specifications are primarily concerned with testing certain sequences of
events rather than performing complex computations. Therefore it may be assumed,
that comparable use cases primarily make use of propositional logic and linear arithmetic
and that more advanced theories occur rarely.

6.1. Outlook

Future work may extend this thesis into three major directions. The first is an empirical
evaluation of test case generation for different specification languages. TeSSLa is a very
young and rarely used specification language. In general asynchronous stream-based
languages are rare. Consequently only few specifications and programs in such languages
exist. Without such empirical work most development is restricted to conjecture about
the applicability and plausibility of new concepts.

The second direction defines new coverage criteria and compares different criteria. This
thesis assumes, that decision coverage on the lifted functions is a sufficient coverage
criterion on streams. One may use more detailed coverage criteria like MC/DC on
the lifted functions or define entirely different criteria, that add specific constraints for
certain operators. Additionally one may want to define global constraints, that add
constraints to groups of operators or even the whole specification.

The third direction of potential future work refines strategies. These may be different
strategies like incremental generation, similar to the ones [RNHW98] did for Lustre.
These generate inputs for by iteratively choosing the next step from the current state.

59

6. Conclusion and Outlook

Such an approach would speed up the generation process by a huge margin. The second
example in subsection 5.1.2 the formula contains quadratic computations, that are much
slower to find a solution for, at least with the soft strategy. With the incremental gen-
eration it suffices to find a solution for the polynomial twice. Afterwards the remaining
constraints are fulfilled by empty streams.

Another advantage of the incremental approach is a new strategy for maximizing cov-
erage with few test cases. Like with the iterative strategy only a single constraint is set
every time, but it can be fulfilled for a small n. By extending this test case up to nmax

a single example can satisfy multiple coverage constraints. Similar to the soft strategy
this approach fits multiple cases in a single example, but it can use the ordinary SMT
solver.

The current approach encodes the whole specification as an SMT formula. In impera-
tive languages the computation path is often predefined and a technique like symbolic
execution is used to generate a formula, that describes the input. This idea may be
transferred to TeSSLa specifications. Instead of encoding the whole formula and then
setting the coverage constraint one may choose all the decisions and prune all the masked
expressions from the formula. This approach keeps the formulas simpler then they are
currently. It may be combined with other improvements, for example with the incre-
mental strategy.

60

A. Appendix

A.1. Example 1 (Linear arithmetic) (5.1.1)

1: Hi-frequency: >=8 in interval
0: Lo-frequency: 3<=x<=5 in interval
in wire: Events[Unit]
def interval: Int = 10

def isInterval: Events[Bool] = default(merge(const(true, wire),
const(false, timer)), false)

def firstInInterval:Events[()] := filter(wire, cond) where {
def cond := merge(true, last(!isInterval, wire))

}

def timer := delay(const(interval, firstInInterval), firstInInterval)
def freqCounter := resetCount(wire, timer)
def freq := last(freqCounter, timer)

out wire
out timer
out freq

def decoded := lift1(freq, f) where {
def f(x: Int) :=

if x>=8 then
Some(1)

else if x>=3 && x<=5 then
Some(0)

else
None[Int]

}

def decodeErr := lift1(freq, f) where {
def f(x: Int) :=

if x<8 && x>5 then
Some(())

else if x<3 then
Some(())

61

A. Appendix

else
None[()]

}

out decoded
out decodeErr

Could be in a standard library

def resetCount[T, B](x:Events[T], reset: Events[B]) := c where {
def f(a: Option[Int], r: Option[()]) :=

Some(if isNone(r) then
getSome(a) + 1

else if isNone(a) then
0

else
1)

def c: Events[Int] = merge(lift(last(c,x), const((), reset), f), 0)
}

def lift1[T, V](x: Events[T], f: (T) => Option[V]) := {
def ff(a: Option[T], b: Option[Unit]) := f(getSome(a))
lift(x, nil[Unit], ff)

}

def prev[T](x: Events[T]) : Events[T] = last(x,x)

def filter[T](events: Events[T], condition: Events[Bool]): Events[T] :=
lift(events, c, f) where {

def c := merge(condition, last(condition, events))
def f(e: Option[T], c: Option[Bool]): Option[T] :=
if isNone(c) then None[T]
else if getSome(c)
then e else None[T]

}

62

Bibliography

[AOH03] Ammann, Paul ; Offutt, Jeff ; Huang, Hong: Coverage criteria for log-
ical expressions. In: 14th International Symposium on Software Reliability
Engineering, 2003. ISSRE 2003. IEEE, 2003, S. 99–107

[Ber98] Berry, G erard: The foundations of Esterel. 1998

[BR70] Buxton, John N. ; Randell, Brian: Software engineering techniques:
report on a conference sponsored by the NATO Science Committee, Rome,
Italy, 27th to 31st October 1969. NATO Science Committee, 1970. – 65–68
S.

[BT18] Barrett, Clark ; Tinelli, Cesare: Satisfiability Modulo Theories.
Version: 2018. http://dx.doi.org/10.1007/978-3-319-10575-
8_11. In: Clarke, Edmund M. (Hrsg.) ; Henzinger, Thomas A.
(Hrsg.) ; Veith, Helmut (Hrsg.) ; Bloem, Roderick (Hrsg.): Handbook
of Model Checking. Cham : Springer International Publishing, 2018. – DOI
10.1007/978–3–319–10575–8_11. – ISBN 978–3–319–10575–8, 305–343

[CHL+18] Convent, Lukas ; Hungerecker, Sebastian ; Leucker, Martin ; Schef-
fel, Torben ; Schmitz, Malte ; Thoma, Daniel: TeSSLa: Temporal
Stream-based Specification Language. In: CoRR abs/1808.10717 (2018).
http://arxiv.org/abs/1808.10717

[CPRZ89] Clarke, Lori A. ; Podgurski, Andy ; Richardson, Debra J. ; Zeil,
Steven J.: A formal evaluation of data flow path selection criteria. In:
IEEE Transactions on Software Engineering 15 (1989), Nr. 11, S. 1318–
1332

[DLL62] Davis, Martin ; Logemann, George ; Loveland, Donald: A machine
program for theorem-proving. In: Communications of the ACM 5 (1962),
Nr. 7, S. 394–397

[DMB08] De Moura, Leonardo ; Bjørner, Nikolaj: Z3: An efficient SMT solver.
In: International conference on Tools and Algorithms for the Construction
and Analysis of Systems Springer, 2008, S. 337–340

[dSS+05] d’Angelo, Ben ; Sankaranarayanan, Sriram ; Sánchez, César ;
Robinson, Will ; Finkbeiner, Bernd ; Sipma, Henny B. ; Mehrotra,
Sandeep ; Manna, Zohar: LOLA: Runtime monitoring of synchronous sys-
tems. In: 12th International Symposium on Temporal Representation and
Reasoning (TIME’05) IEEE, 2005, S. 166–174

63

http://dx.doi.org/10.1007/978-3-319-10575-8_11
http://dx.doi.org/10.1007/978-3-319-10575-8_11
http://arxiv.org/abs/1808.10717

Bibliography

[EH97] Elliott, Conal ; Hudak, Paul: Functional Reactive Animation. In: In-
ternational Conference on Functional Programming, 1997

[Hal98] Halbwachs, Nicolas: Synchronous programming of reactive systems. In:
International Conference on Computer Aided Verification Springer, 1998,
S. 1–16

[HCRP91] Halbwachs, Nicholas ; Caspi, Paul ; Raymond, Pascal ; Pilaud, Daniel:
The synchronous data flow programming language LUSTRE. In: Proceed-
ings of the IEEE 79 (1991), Nr. 9, S. 1305–1320

[Kin76] King, James C.: Symbolic execution and program testing. In: Communi-
cations of the ACM 19 (1976), Nr. 7, S. 385–394

[Leu11] Leucker, Martin: Teaching runtime verification. In: International Con-
ference on Runtime Verification Springer, 2011, S. 34–48

[MHM+95] Müllerburg, Monika ; Holenderski, Leszek ; Maffeis, Olivier ; Mer-
ceron, Agathe ; Morley, Matthew: Systematic testing and formal verifi-
cation to validate reactive programs. In: Software Quality Journal 4 (1995),
Nr. 4, S. 287–307

[Pnu77] Pnueli, Amir: The temporal logic of programs. In: 18th Annual Sym-
posium on Foundations of Computer Science (sfcs 1977) IEEE, 1977, S.
46–57

[RNHW98] Raymond, Pascal ; Nicollin, Xavier ; Halbwachs, Nicolas ; Weber,
Daniel: Automatic testing of reactive systems. In: Proceedings 19th IEEE
Real-Time Systems Symposium (Cat. No. 98CB36279) IEEE, 1998, S. 200–
209

[TFMC94] Thévenod-Fosse, Pascale ; Mazuet, Christine ; Crouzet, Yves: On sta-
tistical structural testing of synchronous data flow programs. In: European
Dependable Computing Conference Springer, 1994, S. 250–267

64

	Abstract
	Kurzfassung
	Table of content
	Introduction
	Prior Work
	Outline

	Background
	Testing
	Runtime verification
	Offline and online RV
	LTL
	Stream-based programming
	Lola
	TeSSLa

	Test coverage criteria
	Statement coverage
	Path coverage
	Decision coverage
	Condition coverage
	Decision/Condition coverage
	Modified decision/condition coverage (MC/DC)
	Data-Flow-based Coverage

	Test case generation
	SMT solver
	SAT Solver
	SMT solver
	Z3

	Test case generation for TeSSLa
	Test criteria
	Automated coverage
	Custom constraints
	Extensions for Boolean streams
	Alternatives
	Coverage strategies

	Representation as SMT formula
	Stream and event representation
	Operator representation
	Types
	Lifted functions
	Custom assertions
	Coverage criteria

	Implementation
	Technology
	Custom assertions
	Architecture

	Evaluation
	Evaluation time
	Example 1 (Linear arithmetic)
	Example 2 (Quadratic arithmetic)

	Decidability and Complexity
	Summary

	Conclusion and Outlook
	Outlook

	Appendix
	Example 1 (Linear arithmetic) (5.1.1)

	Bibliography

