
Conception and realisation of a resilient Smart
Home solution
Konzeption und Realisierung einer resilienten Smart-
Home-Lösung

Bachelorarbeit

im Rahmen des Studiengangs
Informatik
der Universität zu Lübeck

vorgelegt von
Hannes Preiß

ausgegeben und betreut von
Prof. Martin Leucker

Lübeck, den 15. Januar 2020

Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit ohne unzulässige
Hilfe Dritter und ohne die Benutzung anderer als der angegebenen Hilfsmittel selb-
ständig verfasst habe; die aus anderen Quellen direkt oder indirekt übernommenen
Daten und Konzepte sind unter Angabe des Literaturzitats gekennzeichnet.

(Hannes Preiß)
Lübeck, den 15. Januar 2020

iii

Abstract There exist a number of modern smart home solutions that provide the
user with a convenient method of remote device control and home automation.
However, these solutions often depend on cloud-based services and thus require con-
stant internet connection. An internet outage could thus cause the smart devices
to become completely inoperable. They also frequently raise privacy and security
concerns. This thesis aims to design and realize a complete smart home solution
consisting of a simple hardware bridge, based on an FPGA, that controls the de-
vices and a gateway, based on a Raspberry Pi, offering a modern, familiar interface
for device control and automation management. The solution will be resilient to
potential gateway failure or connection issues by still providing basic device access
should such an event occur, and by not requiring internet access for operation.

v

Kurzfassung Es existieren eine Reihe an modernen Smart-Home-Lösungen, die
dem Benutzer bequeme Möglichkeiten von entfernter Gerätesteuerung und Heimau-
tomation bieten. Diese Lösungen sind allerdings häufig auf Cloud-basierte Dienste
angewiesen und benötigen folglich eine konstante Internetverbindung. Ein Ausfall
dieser könnte somit die Smart-Geräte komplett inoperabel machen. Darüber hinaus
verursachen sie häufig Bedenken hinsichtlich Privatsphäre und Sicherheit. Diese Ar-
beit strebt das Konzept und die Realisierung einer Komplett-Smart-Home-Lösung
an, bestehend aus einer einfachen Hardware-Bridge, basierend auf einem FPGA, wel-
che die Geräte steuert als auch aus einem Gateway, basierend auf einem Raspberry
Pi, welches eine moderne, vertraute Schnittsttelle für Gerätekonttrolle und Auto-
mationsmanagement bietet. Die Lösung wird eventuellen Gatewayausfällen sowie
Konnektivitätsproblemen gegenüber ausfallsicher, indem sie in solchen Fällen einfa-
chen Gerätezugang ermöglicht und nicht auf einen Internetzugang angewiesen ist.

vii

Contents

1 Introduction 1
1.1 Goals of this Thesis . 1
1.2 Limitations to the Thesis Scope . 2
1.3 Outline . 3

2 Analysis of Smart Home Architecture 5
2.1 Device Hierarchy and Roles . 5

2.1.1 Appliances . 5
2.1.2 Sensors . 6
2.1.3 Bridges . 7
2.1.4 Gateways . 7
2.1.5 User Interfaces . 8

2.2 Communication and Protocols . 8
2.2.1 Wired . 9
2.2.2 Wireless . 10

2.3 Popular Services and Solutions . 12
2.3.1 Amazon Echo . 12
2.3.2 Google Home . 13
2.3.3 Apple HomeKit . 13
2.3.4 Philips Hue . 14

3 Designing a Smart Home Solution 15
3.1 Defining Solution Goals . 15

3.1.1 Provided Tools and Hardware 16
3.1.2 Starting Point: SPI Prototype 18

3.2 Solution Architecture Overview . 24
3.2.1 Ensuring Resilience . 25

3.3 Designing the Bridge Hardware Logic 26
3.3.1 Device Controller . 27
3.3.2 Output Modules and Manager 29
3.3.3 Input Modules and Manager 34
3.3.4 I2C Controller . 38

3.4 Designing the Protocol . 39
3.4.1 Choosing a Bus System . 40
3.4.2 Protocol symmetry . 41

ix

Contents

3.4.3 Commands from the Raspberry Pi 41
3.4.4 Responses from the MachXO2 41
3.4.5 Using CRC to Secure the Protocol 44

3.5 Designing the Gateway . 46
3.5.1 Setting Up a Host Environment 46
3.5.2 Choosing a Gateway Software 46
3.5.3 Designing the Bridge API . 48
3.5.4 Creating a Home Assistant Integration 52

3.6 Designing a Management UI . 56
3.6.1 Outlining the Use Cases . 56
3.6.2 Designing the User Interface 57

4 Implementation of the Design 61
4.1 Implementing the Bridge Hardware Logic 61

4.1.1 Working with Verilog . 61
4.1.2 Developing the Bridge’s Logic Modules 62
4.1.3 Working with Lattice Diamond 66
4.1.4 Verifying Functionality through Simulation 66

4.2 Developing the Bridge API using Python 68
4.2.1 Testing the API . 68
4.2.2 Creating a PyPI Package . 70

4.3 Developing the Home Assistant Integration 71
4.3.1 Setting Up a Development Environment 71
4.3.2 Integrating the API . 71
4.3.3 Setting up the Device Platforms 72

4.4 Developing the Management UI . 73
4.4.1 Using Qt as a UI Toolkit . 74
4.4.2 Defining JSON Data Structures 75
4.4.3 Generating Verilog Code through Templates 76

5 Evaluation 79
5.1 Evaluating the Goals . 79

5.1.1 Maintainability and Accessibility 79
5.1.2 Scalability . 80
5.1.3 Conformance and User Experience 80
5.1.4 Performance . 81

5.2 Evaluating the Reliability . 82
5.2.1 Response to Connection Problems 82
5.2.2 Long-Term Uptime and Stress Tests 83
5.2.3 State Update Event Redirection Bug 83

5.3 Usability of the Management UI . 84

x

Contents

6 Conclusion 87
6.1 Summary . 87
6.2 Outlook . 88

xi

1 Introduction

Undoubtedly, smart home technology has become a popular topic over the recent
years. With the general growth of the IoT – the Internet of Things – market, smart
devices can now be found in more and more homes. In 2015, around 19 percent of
all US households were equipped with smart technology, and come 2025 this rate is
expected to grow to about 53 percent. [Koz16]

In fact, the ever-increasing desire for smart home systems has led to the surfacing of
so many self-contained ecosystems that several companies including Google, Apple
and Amazon, who are actually competing with each other on the smart home market,
have recently formed a new working group that aims to provide users a unified
experience to smart home technology, creating a layer of interoperability for all
those devices which are currently still incompatible with each other. [Con19]

Current existing smart home solutions mainly focus on presenting the user with a
convenient, feature-rich experience by expanding the possibilities of the local home
network with ubiquitous cloud-based services like voice recognition and more. This
approach, however, aside from the implications for security and privacy, often also
sacrifices another critical factor due to the constant need for an available internet
connection: resilience.

While these factors might be acceptable for private use of such a solution, it is not
quite suitable for professional use, e.g. inside an office complex.

1.1 Goals of this Thesis

The primary goal of this thesis is to create a complete, modern smart home proof-
of-concept solution, including all of the necessary parts that comprise it, by using
readily available, low-cost hardware.

As the title of this work states, we’re especially looking to design a resilient solution.
Let us briefly consider the motivation behind this aspiration. Imagine a modern
smart home system that is controlled by a single, very modern, very complicated
computer-based device. Now, imagine this computer locking up due to software
problems, being compromised due to security issues or even because it is currently
automatically installing the newest vendor update, which happens to be a process

1

1 Introduction

not controllable or interruptible by the user. Since all of the system’s wireless smart
devices directly depend on this controller, the whole smart home system suddenly
becomes completely unresponsive. This would pose a problem anywhere between
inconvenient to potentially even dangerous, depending on the type of smart devices
involved.

This scenario – albeit, admittedly, somewhat exaggerated – served as the primary
motivation behind this project. Thus, we look to design a smart home solution that
mitigates this issue. We accomplish this by splitting the system’s controller into two
parts:

• a bridge running on very simple hardware logic – most importantly not being
computer-based – to reduce the risk of failure, responsible for controlling the
system’s devices, and

• a gateway based on a computer, allowing more sophisticated and modern meth-
ods of control and automation to be used.

Together, those two devices strive to present a modern smart home experience with
all of its benefits, including convenient automation capabilities and elegant user
interfaces. The gateway is still relatively prone to failure, being a modern computer-
based device with an operating system of some kind – but should it come to this,
the bridge can still work on its own, providing at least basic, “non-smart” control
over the system’s devices.

A compromise has to be made between allowing the bridge part of this system
to remain flexible enough to serve different device configurations, while still being
simple enough to not be prone to failure. We will settle on a solution that requires
manual reprogramming of the bridge’s hardware logic, accommodating for a certain
configuration of devices connected to it. However, the intended audience for this
solution consists mainly of electricians and end-users, who can not be expected to
be versed in the relatively exotic topic of hardware programming. Therefore, the
project will be supplemented by a tool that allows for easy reconfiguration of the
bridge hardware.

1.2 Limitations to the Thesis Scope

The main focus of this work is the software and hardware design of the smart home
system components, especially of the controller hardware.

In particular, it will not deal with any subjects from the fields of power engineering;
including topics regarding serving particular voltages to appliances or providing
appropriate cabling inside a building.

2

1.3 Outline

On a related note, it should be stated that the finished product will merely be a
proof-of-concept and, on its own, will not yet be ready for production. It shall serve
as a base for potential future work, which integrates it into a system ready for home
or office use.

1.3 Outline

Chapter 2 (pg. 5) will first provide a brief analysis of smart home systems and
their components to provide some context for the work done later in this thesis.

The main goal of this thesis, the concept and design of a resilient smart home
solution, will be outlined in detail within Chapter 3 (pg. 15). Details regarding
its concrete implementation will be described in Chapter 4 (pg. 61).

During evaluation in Chapter 5 (pg. 79), we will see if our completed solution
achieves the goals we set for it, and Chapter 6 (pg. 87) will provide a summary
of the work that has been accomplished.

3

2 Analysis of Smart Home Architecture

To understand in what ways a smart household differs from a non-smart one, we first
need to understand what exactly defines it. In fact, it is not trivial to pinpoint the
term smart home to a singular definition, despite – or perhaps even because of – its
increasing popularity. In [ARA12], Alam et al. gather a few attempts to define the
term that have appeared over the years, and eventually summarize a smart home as
“an application of ubiquitous computing that is able to provide user context-aware
automated or assistive services in the form of ambient intelligence, remote home
control or home automation.”

Following this definition, in this chapter we will explore the question of what is
needed to make a home smart by analyzing the different devices involved in a
usual smart home setup, including their roles and responsibilities. Since device
interoperability plays a big part in smart home networks, several different means of
communication and protocols will be outlined next. Then, we shall examine a
few different examples of existing smart home solutions, and how they compare
to each other and to our eventual goal of a resilient smart home solution.

2.1 Device Hierarchy and Roles

A smart home is comprised of several different groups of devices. Appliances define
the subject of home automation, as they are the devices one wishes to control,
while Sensors instead supply the system with input data. They are managed by
a gateway, which controls the appliances through automation rules based on the
sensor input data as well as user interaction through a user interface. Finally,
some devices cannot directly communicate with the gateway and instead need a
mediating device called a bridge in between.

Figure 2.1 on the next page gives a simple overview of the architecture.

2.1.1 Appliances

In broad terms, an appliance is some sort of electrical device with a certain purpose
for use in a household. Within the context of a smart home, however, only the

5

2 Analysis of Smart Home Architecture

Gateway

Bridge

Sensors

Appliances

Sensors

Appliances

UI

Figure 2.1: Device hierarchy and communication flow in a standard Smart Home
architecture. Devices are either connected directly to the gateway, or through a
mediating bridge.

subset of devices possessing the ability to be remotely and automatically controlled
is of particular interest.

Examples for common appliances in smart homes thus include lights, radiators, air
conditioners, window covers and shutters, among others.

Devices capable of connecting to and communicating with a network on their own
are also called smart devices. Many modern appliances, especially in the entertain-
ment area (televisions, gaming consoles, media players, etc.) but also an increasing
number of other household appliances (refrigerators, washing machines, robotic vac-
uum cleaners, etc.) provide network connectivity features, making them a viable
and easy target for home automation.

2.1.2 Sensors

Sensors are, generally speaking, devices with the purpose of collecting data from
the surrounding environment, providing it to other devices and notifying them when
significant changes or events in the environment occur.

A sensor may be as trivial as a simple switch or button that detects when it has been
flipped or pressed. These types of sensors are highly commonplace in most, if not all
modern households in the form of light switches and doorbells, among many others.
Examples for slightly more sophisticated types of sensors with common usage in
homes include hygrometers, thermometers and infrared motion detectors.

Inside a smart home, sensors play an essential part of home automation. Aside
from their typical role also found in non-smart systems (such as a standard light

6

2.1 Device Hierarchy and Roles

switch), environmental changes and events are often used to trigger certain automa-
tion rules.

Additionally, the advent of smart homes also introduced more abstract kinds of
sensors that may not even require any specialized sensor hardware. A common
example is a system being able to recognize when a member of the household ar-
rives or leaves home, accomplished through surveilling GPS data from the members’
smartphones or other personal devices with similar functionality. In these cases, the
smart home system takes advantage of already existing IoT hardware as a source of
environmental data.

2.1.3 Bridges

Certain devices intended for smart home usage may not be meant to communicate
directly with the gateway. Rather, they are to be connected to and controlled by
another device called a bridge, which in turn then serves as the interface exposing
and representing its devices towards the gateway.

For example, certain smart devices might communicate using a protocol that is not
supported by the smart home system. The bridge then serves as a means of literally
bridging the two communication systems together, so that they can be made to work
with one another.

Designing such a bridge will be a major component of the smart home solution that
will be outlined starting in Chapter 3 (pg. 15).

2.1.4 Gateways

A gateway, also sometimes called a hub, defines the centerpiece of a smart home
installation. Its task is to manage and control all devices of the smart home system
as well as to keep track of the current states of all appliances and sensors. To
that end, it maintains a connection to all devices, either directly or indirectly via
bridges.

Another responsibility of the gateway is to provide a means of home automation
– automatically controlling appliances via a set of user-definable rules, based on
triggers and conditions that take data from certain sensors as input. For example,
a user could create a rule that automatically turns off all lights at a certain time
of day, or another that regulates the air conditioning based on a room temperature
sensor.

7

2 Analysis of Smart Home Architecture

There are a number of freely available gateway software solutions, including open-
HAB1 and Home Assistant2, which will be talked about in more detail throughout
the following chapters.

Commercially sold gateway implementations often come in the form of a small device
the user installs in their home that either runs the gateway software itself or only
acts as a thin client, which instead just serves as an interface to a cloud service
running the software. A few examples of these will be mentioned in Section 2.3
(pg. 12).

Open source gateway software is freely available for the user to download and deploy
on a server of their choice; though open source cloud solutions also exist [ope19b].

2.1.5 User Interfaces

The gateway serves one or several user interfaces as part of its frontend. Inside, it
reports the state of all appliances and sensors, it allows the user to directly control,
manage or add new devices and it provides means to adjust the whole system’s
behavior, including the creation of automation rules.

Commonly, the interface is offered through a website-based or a dedicated smart-
phone application. Certain software solutions like openHAB even provide multi-
ple interfaces specifically created for different types of screen media, such as wall-
mounted touchscreen displays [ope19c].

Commercially available gateway devices usually provide a voice command and text-
to-speech interface, while also serving as a smart media playback appliance. For
this reason, they are also called smart speakers. Section 2.3 (pg. 12) will introduce
some popular devices of this kind.

2.2 Communication and Protocols

Allowing two or more devices to communicate with each other always has to involve
a certain medium for the messages to be transmitted. As the interaction between
gateway and bridge will be a central part of our smart home solution, it seems appro-
priate to discuss some standards of communication, both with potential use in our
project as well as what is commonly found among existing smart home systems.

1http://www.openhab.org
2http://www.home-assistant.io

8

http://www.openhab.org
http://www.home-assistant.io

2.2 Communication and Protocols

We can generally distinguish between two different methods of linking devices to-
gether: wired and wireless.

2.2.1 Wired

In the context of creating a smart home solution, the wired bus standards SPI
and I2C are the most significant, as both our future gateway and bridge offer na-
tive support for each, and we are eventually going to have to choose one for our
solution.

SPI

SPI – short for Serial Peripheral Interface – is a communication bus with common
use inside embedded systems. It connects two devices together through four wires:
a clock signal, a slave select signal as well as one wire for each data direction.

SPI follows the master/slave model, where one device, serving as the bus master,
controls the flow of communication as well as the clock speed. The other device(s)
cannot initiate transmissions; they can merely reply to a message coming from the
master.

The purpose of the slave select line is to allow multiple slaves to connect to the same
bus, reducing the overall amount of wires needed to connect several devices together.
In such a multi-slave setup, when the master wishes to transmit to a certain slave,
it enables the slave select signal for that particular device only, allowing it to reply
via the MISO (master in, slave out) line. All devices not addressed in this manner
must not respond.

Implementing SPI in both hard- and software is rather simple; as the protocol does
not contain any error-checking capabilities or similar nuances. This also allows for
relatively high transmission rates. However, this also marks a significant disadvan-
tage as it becomes difficult to determine faulty connections. Due to the absence
of an acknowledgment signal from a slave, the master could potentially not notice
connection failures. Reliability measures could be implemented on top of the SPI
standard, but this obviously requires more effort. [Wik19b]

I2C

I2C, or Inter-Integrated Circuit, is a bus standard very similar to SPI in that it is also
offers a serial communication interface adhering to the master/slave architecture.

9

2 Analysis of Smart Home Architecture

Master Slave

Master Slave

SCLK SCLK

MOSI MOSI

MISO MISO

SSEL SSEL

SCL SCL

SDA SDA

SPI
I2C

Figure 2.2: Comparison of SPI and I2C bus wiring.

Instead of SPI, it only uses two wires, clock and data, for transmissions between
devices.

Instead of selecting slaves via a separate wire, the I2C protocol instead uses a 7-bit
address space for all connected slave devices. At the beginning of a transmission, the
I2C master transmits the address of the particular slave onto the data line. After-
wards, a message is sent, byte per byte, with the slave sending an acknowledgment
bit after each successful reception.

I2C transmissions are either read or write only, signified by a single bit the master
sets immediately after the slave address. However, again, only the master can initiate
a conversation. To request data from a slave, the master first sends a command or
similar, then begins a read transfer during which the targeted slave takes control of
the data line to write an appropriate response.

The digital addressing mode makes I2C inherently more scalable than SPI, as the
number of wires remain constant regardless of the number of slaves connected. The
presence of the acknowledgment bit makes this I2C transmissions more reliable, but
at the same time the standard is slightly harder to implement than SPI. [NXP14]

2.2.2 Wireless

Although not quite as relevant for our solution, which will use a wired network
medium, wireless protocols are very prevalent in smart home systems because they
enable convenient setup of devices throughout large areas. We will compare a few
prominent standards in regards to some properties relevant to smart home usage,
including communication range, power requirements and maximum network size.

10

2.2 Communication and Protocols

Wi-Fi

Wi-Fi is the canonical standard for wireless local area networks among computers.
One of its primary applications is to provide internet access to devices inside a local
area. [Wik20c]

It is generally not widely used in the smart home domain, as it focuses more on
range and high transmit rates. This causes it to require too much power to be
feasible for smaller smart devices. [LSS07] However, it is nonetheless significant as
smart gateways or bridges often make use of Wi-Fi, for example to be controlled by
a user’s smart phone.

Bluetooth

Bluetooth is a wireless standard intended for replacing short-ranged cabled con-
nections. Similar to the wired protocols described above, it uses the master-slave
architecture, and a network consists of one master communicating with up to seven
slaves. [Blu19]

Its short range of up to 10 m and limited network size make Bluetooth not a partic-
ularly useful standard for use in a smart home system of a larger scale. However, it
has certain applications especially for private use, as Bluetooth support is relatively
widespread across common devices that can be used for remote control, such as
smart phones.

ZigBee

Compared to Bluetooth, ZigBee was designed primarily for use in the IoT field.
[Zig20] It supports communication ranges of up to 100 m in ideal conditions and
several different network topologies, including ad-hoc, mesh and star networks. This
allows it to theoretically support tens of thousands of devices on a single network.
[Bak05]

While its power consumption during data transmission approximately equals that
of Bluetooth [LSS07], the ZigBee hardware supports a standby mode that causes it
to draw next to no power during idle phases, whereas the Bluetooth standard does
not have such a feature. As such, ZigBee powered devices can potentially have a
battery life of several years prior to recharging. [Bak05]

11

2 Analysis of Smart Home Architecture

Z-Wave

Z-Wave is a competing standard to ZigBee, as it was also specifically developed with
IoT in mind. It supports ranges of up to 30 m, and a single Z-Wave network can
consist of up to 232 devices. Its power requirements compare to those of ZigBee.

One of its primary features is that it operates on a lower-frequency band than
Bluetooth, Wi-Fi and ZigBee devices, which all transmit on the 2.4 GHz band, thus
avoiding interference on crowded radio networks. [Wik20d]

2.3 Popular Services and Solutions

The rapid development of smart home technology and popularity has caused numer-
ous solutions to surface over the past few years, each offering different advantages
and disadvantages over another. In particular, after this section it should become
clear how the solution we are going to design differs from the concepts behind these
products, justifying the motivation behind the project.

2.3.1 Amazon Echo

Amazon Echo is a series of smart speakers that primarily serve as an interface for
Amazon’s Alexa, a personal assistant service, and can optionally be used as a smart
home gateway, connecting to smart devices via Bluetooth or Wi-Fi. The Echo Plus
also supports the ZigBee protocol. [Ama20]

Through the use of an Echo speaker, users may, among other activities, play mu-
sic, take phone calls, order products from the Amazon store, query weather and
news data, or control connected smart devices. This is done either through voice
commands or a smartphone app. In any case, because both the voice recognition
and command handling as well as most logic driving the device’s behavior reside on
Amazon cloud servers, it requires internet connectivity at all times even though the
smart devices are connected to the Echo inside the local network.

This puts certain limits on the service’s usefulness as a resilient smart home system,
as a failing internet connection causes all appliances to become unresponsive. Also,
as with all cloud-based services, but for Alexa in particular, the speaker, which is
constantly recording sound from its environment, raises several privacy and security
concerns. [JO18] [HSWW17]

12

2.3 Popular Services and Solutions

2.3.2 Google Home

In response to Amazon’s Echo product line, Google developed their own brand of
smart speakers, Google Home. The devices feature roughly the same functionality
as their Amazon counterparts, listed above. It also features the Google-brand voice-
controlled personal assistant service, Google Assistant. [Wik20a] Like the Echo, it
uses Bluetooth and Wi-Fi for connection to smart devices.

Google Home speakers also require a constant internet connection for all tasks, due
to the same reasons as the Echo speakers. However, at the time of writing, Google
is currently working on a new version of its Google Assistant service that is able to
completely run on local devices, and so perhaps this restriction might be lifted in
the near future. [Goo20]

2.3.3 Apple HomeKit

Apple’s HomeKit framework is another smart home solution designed especially for
Apple devices. It is available through an app found inside all devices running Apple’s
proprietary operating system, iOS, starting version 8. [Wik20b]

HomeKit is notable because unlike its competitors, it does not necessarily require
a cloud platform, and therefore access to the internet. The Apple device running
the Home app itself serves as the system’s gateway, directly connecting to and
controlling appliances through Bluetooth or Wi-Fi. However, certain features like
support for automation rules and voice commands through Siri, Apple’s personal
assistant service, do require internet connectivity.

To include support for HomeKit into a smart device, it needs to be officially licensed
by Apple [App20a]. As a result, the HomeKit ecosystem contains fewer supported
devices overall than the other solutions [Wik20b]. However, it is possible to inte-
grate non-HomeKit-enabled devices through certain bridges or even freely available
solutions, like homebridge3.

To allow remote management of the smart home, certain Apple products including
iPods and Apple TVs can be used as a remote gateway server. This is a convenient
solution for users who already possess such a device, not having to buy a specialized
gateway product. [App20b]

3https://github.com/nfarina/homebridge

13

https://github.com/nfarina/homebridge

2 Analysis of Smart Home Architecture

2.3.4 Philips Hue

Specifically tailored towards providing a smart lighting solution, Philips Hue is a
series of smart lights coming in several forms, including light bulbs, strip lights and
lamps. [Phi20c]

It is mentioned along the other solutions here because the Hue devices can not only
be connected to a range of other smart home solutions due to using the ZigBee
protocol [Phi20a], but also comprise their own, independent smart home solution
with the addition of a Philips-brand gateway.

More recent device versions also ship with additional Bluetooth support. Those de-
vices are then able to be controlled via a dedicated gateway smartphone app, remov-
ing the need for a hardware bridge entirely. Due to the limitations of the Bluetooth
protocol, this only supports up to ten devices per system, however. [Phi20b]

Like HomeKit, a Hue-based smart system does not require internet connectivity
because it only uses the local network. However, the solution will be limited to
smart lights only, which might limits its applications.

14

3 Designing a Smart Home Solution

After describing the components that comprise a complete smart home system, it
is now time to start working on constructing our own. First, the goals we are
attempting to achieve in building this smart home solution will be outlined, after
which we will take a look at the overall architecture, including a description of
each component’s roles and responsibilities in the bigger picture.

This chapter will then go into in-depth detail about designing the individual parts
of the smart home solution, starting with the bridge hardware logic, which will
be created completely from scratch. In the next part about the communication
protocol, we will design a means for the bridge and the gateway to communicate
with each other. Conception of said gateway follows shortly after, where we will
pick both a suitable operating system and gateway software for use in our project.
To enable easier interfacing with the bridge, we will also design an API and finally
an extension for the gateway software that makes use of it.

After concluding design work on the solution parts themselves, in the final section of
this chapter a device management UI will be created to help making the solution
more accessible for users not versed in hardware design.

3.1 Defining Solution Goals

We’re starting this chapter by defining a clear set of goals for our project. This will
provide us with sensible boundaries and expectations while working on the design
process.

Chapter 1 (pg. 1) already mentioned the motivation behind this project. From
within, we can already extrapolate a number of significant key points. In part
inspired by similar characteristics by which software quality is usually measured,
they are as follows:

Resilience. One of the solution’s key features should be to prevent the worst-case
scenario – all appliances becoming unresponsive due to controller failure –
from occurring as much as possible. This is often caused by said controller
appearing as a single point of failure, and sufficient measures have to be taken
into consideration to avoid such a design.

15

3 Designing a Smart Home Solution

Maintainability. To maximize the system’s usability, being able to reconfigure it
without much hassle should be a priority.

Accessibility. As an addendum to the last point, the steps needed for system mainte-
nance should be able to be performed even without too much in-depth knowl-
edge of the system’s inner workings, and certainly should not require profi-
ciency of a specific computer language, if at all possible.

Scalability. As the solution is also intended for use inside sizable buildings, it should
support an accordingly appropriate number of connected devices.

Conformance. To avoid creating merely another proprietary, self-contained ecosys-
tem, the solution should allow integration or at least interoperability with
other smart home products or even solutions. On the same note, it should
strive to present users with a modern presentation that feels familiar to similar
solutions.

Cost-efficiency. Though a slightly minor point, this work will show that the aspired
solution can be achieved using efficient, yet low-cost hardware, thus making
it a viable option not only for professional use, but also for hobbyists and
smart home enthusiasts. In fact, the simplicity of the provided hardware might
even be considered a benefit to the project’s goals, as will be explained when
discussing the hardware’s suitability for the task.

Improvement over prototype. This project can be viewed as being an evolution of
a prototype – to be introduced shortly – that originally had the same goals in
mind, yet showed several flaws. Improving upon this first version should be
another of this solution’s priorities.

To achieve these goals, let us first consider the hardware that has been provided
for this task and contemplate their features and resulting suitability for the solution.
Afterwards, it seems only appropriate to talk about the aforementioned prototype
that this project will be based upon. We will examine its design and capabilities
as well as its shortcomings and use the gathered information as a starting point for
creating an improved product.

3.1.1 Provided Tools and Hardware

The design of this project revolves mostly around the two hardware components
that were provided for this task. To make efficient use of them, it is important to
understand their features and capabilities, which will therefore be outlined in this
section. Afterwards, even though the hardware choice was fixed to those presented
shortly, some other alternative hardware choices that have been examined with
potential use in this project will be discussed as well.

16

3.1 Defining Solution Goals

MachXO2-7000 FPGA

The MachXO2 is an FPGA – a field-programmable gate array – developed and
manufactured by Lattice Semiconductor1.

FPGAs are integrated circuits with the capability to be configured and reconfigured
multiple times by designers and end-users [Wik19a]. This, together with the fact that
they are usually outfitted with many I/O ports, makes them especially versatile and
suited not only for quick hardware prototyping, but also for flexible reconfiguration
of already deployed hardware.

Programming an FPGA is, for the most part, accomplished by describing the hard-
ware logic in an abstract manner using a hardware description language (HDL) such
as Verilog, the process of which will be detailed more in Section 4.1 (pg. 61).

The MachXO2-7000 in particular contains up to 334 usable I/O ports and is shipped
with several embedded function blocks for common features found in integrated
hardware, like I2C and SPI as well as a configurable, integrated oscillator [Lat19].

This makes the MachXO2 an excellent target for use as a smart home bridge, as it
allows for many different electronics to be wired to and controlled by it, while also
already providing several common interfaces for communication purposes. Finally,
the ability to be reconfigured allows its behavior to be well suited to the devices you
connect to it.

Raspberry Pi 3

The Raspberry Pi is a fully-featured single-board computer, able to run a variety of
operating systems including a number of Linux distributions, Windows 10 IoT Core
[Ras19c] and Android [And19]. Due to its low cost and efficient energy usage, it is
a popular choice for many do-it-yourself projects.

Used in this design is the device’s third revision, the Raspberry Pi 3 Model B. It
possesses an 1.2 GHz Broadcom ARM CPU as well as 1 gigabyte of RAM, along
with a number of USB and general purpose I/O ports, Ethernet, Bluetooth and
Wi-Fi support [Ras19b]. The Broadcom SoC includes hardware support for SPI
and I2C, and some of the board’s I/O pins can be designated for their use [Bro12].

These qualities easily justify its use in this project as a smart home gateway. Being
able to run Linux, it can host a number of server applications including some smart
home gateway software for controlling and managing the bridge, which it can connect
to using one of its supported bus interfaces. Of course, with all the benefits of

1http://www.latticesemi.com

17

http://www.latticesemi.com

3 Designing a Smart Home Solution

running a modern operating system also come its drawbacks, as it is more prone to
security and instability issues than a dedicated environment specifically tailored to
the task. However, with sufficient work put towards ensuring security and stability,
these issues are outweighed by the hardware’s capabilities.

Alternatives

• Instead of splitting the responsibilities between the FPGA and the Raspberry
Pi, it could also be considered to only use a Raspberry Pi and to have it
manage any appliances by itself. In fact, openHAB for example even includes
native support for controlling the device’s I/O pins as smart devices [ope19a].
However, even if none of the pins are used for their designated functionality
like SPI, the Raspberry Pi 3 merely has 26 I/O pins available for use [Ras19a],
which was seen as too limiting for this solution. Moreover, if the whole system
was controlled by only a single controller, that device would serve as a single
point of failure, decreasing the system’s overall resilience and thus going against
the project’s original goal.

• Usage of amicrocontroller like an Arduino2 as a replacement for either device
has also been considered. The Arduino Mega, for example, contains 54 general-
purpose I/O ports, 128 KB of flash program memory and supports SPI and
I2C as well [Ard19a]. Yet, it has limited use as a gateway since it does not have
network support and is incapable of running anything but the simplest kinds
of server software. Using certain extension hardware like the Arduino Ethernet
Shield 2 [Ard19b], it is possible to add this functionality to the microcontroller
to some extent, but this would also occupy a fair number of I/O pins while
also still not quite comparing to what the Raspberry Pi could already do on
its own.

Replacing the MachXO2 as a smart bridge would be slightly more suitable for
a microcontroller like the Arduino, but since it is basically a CPU running a
program, there is always a risk of it getting stuck in an endless loop due to
programming errors or other problems. As integrated circuits or FPGAs only
run on (relatively) simple digital logic, their usage gives a better outlook on
long-term reliability.

3.1.2 Starting Point: SPI Prototype

Previously, a prototype project (hereafter referred to as the SPI Prototype) had been
created by a small group of students at the University of Lübeck, including myself,

2http://www.arduino.cc

18

http://www.arduino.cc

3.1 Defining Solution Goals

using the same hardware that will also be used in the final solution.

The SPI Prototype was created with the same goals in mind; creating a reliable
smart home proof-of-concept solution using low-cost hardware. Since it serves as an
important starting point of the work done in this thesis, the following few sections
will briefly describe how the prototype was designed and outline some of its problems
and limitations that the final solution strives to improve upon.

MachXO2

Bridge

Monolithic
hardware

logic

Raspberry Pi

Gateway

Relay
server

openHAB

Bridge
Binding

User
Interface

Appliances

Sensors

User

Sockets

SPI

Signals

Control

Device interaction

Figure 3.1: Overview of the architecture used in the SPI prototype, including
communication flow between each component. Appliances and sensors (also re-
ferred to as output and input devices) were directly connected to and controlled
by the MachXO2 FPGA, which acted as the smart bridge in this setup. The
Raspberry Pi served as the gateway, running management software that provided
several user interfaces for controlling and automating the appliances.

Bridge

The MachXO2 was given some basic logic for handling incoming commands sent by
the gateway and for managing the state of a few appliances – depicted through a

19

3 Designing a Smart Home Solution

few LEDs – connected to it. An exemplary sensor in the form of a contact switch
was also installed.

Internally, both input and output devices were (separately) assigned single-byte
addresses or IDs, which were hard-coded inside the FPGA hardware logic depending
on which I/O pin the devices were connected to. This effectively enforced a hard
limit of 254 (28 minus two non-assignable bytes) devices for both appliances and
sensors.

The bridge supported two output modes; one for simply turning an appliance on
or off, and another for analog control via pulse-width modulation. A device’s state
was also represented as a single byte, where 0x00 meant off, and anything between
0x01 and 0xFD was interpreted as on for binary devices and set the pulse-width
modulation frequency accordingly for analog control.

Gateway and Relay Server

The gateway consisted of the Raspberry Pi running a distribution of Linux which
in turn hosted a smart home gateway software of some kind. Arch Linux3 was
chosen as the operating system because, at its base, it offers a very lightweight
and flexible environment especially suitable for headless servers that can easily be
extended by many available software packages. It offers a rolling release system,
meaning updates to individual packages are released soon after they are available.
This helps to prevent security issues due to outdated packages.

For the gateway software, openHAB was picked because it is a popular open-source
smart home software solution, already supporting many different kinds of smart
devices while also providing documentation for developing custom extensions. Ad-
ditionally, it is written in Java, which the whole team had already been familiar
with.

Since there are no APIs for the Linux SPI or I2C drivers available for Java, a mid-
dleware was required, written in a language that has support for those drivers. For
this purpose, we developed a relay server that served as a bridge between openHAB
and the FPGA communication channels. The server was written in C, for which
both SPI and I2C interfaces exist, and relayed communication between SPI (towards
the FPGA) and TCP sockets (towards clients connecting to it.)

To allow openHAB to interface with the relay server, a Java API implementing the
communication protocol was written, which was then used by an openHAB extension
(called a binding) specifically made for the prototype.

3http://www.archlinux.org

20

http://www.archlinux.org

3.1 Defining Solution Goals

Protocol

As the name implies, the SPI Prototype makes use of the Serial Peripheral Interface
bus for inter-device communication. It was originally planned to use I2C, but this
was later changed due to diverse difficulties during development.

Messages sent via the protocol consisted of an opcode determining the type of com-
mand, some command-specific parameters and a special termination byte (see Figure
3.2.)

Command
opcode

Command
parameters 0xFF

Figure 3.2: Format of a command message from the SPI Prototype protocol.
All messages start with the command opcode and end with a termination byte
(0xFF.) Command parameters could theoretically be of any length, but are typ-
ically between 0 and 2 bytes long.

The termination byte was employed to allow for the transmission of arbitrarily sized
messages. This also meant that messages had to be sent one byte at a time, stopping
only when the termination byte had been received. Since both communication par-
ties had to await the full message before processing but still had to send something
back for each byte they received, another special filler byte (0xFE) was introduced.
This byte effectively meant nothing, it was merely sent whenever one device was
listening to the other and was to be ignored.

The protocol supported commands for querying and setting both the state and type
of devices, a handshake authentication that compares each participant’s protocol
version and a few other meta-commands like shutting down the relay server (see
Table 3.1 on the following page for a full listing.)

Despite SPI using the master/slave model, it was found that both parties needed to
be able to spontaneously notify the other at any given time about updates, such as
when the FPGA needs to tell the Raspberry Pi that a button has been pressed, or
when the Raspberry Pi sends a state update to the FPGA. To solve this problem, the
Raspberry Pi employed polling to frequently query new messages from the FPGA,
which, when necessary, it created and stored internally inside a buffer until the next
polling request happened. As such, the Raspberry Pi was decided to be the SPI
master while the FPGA acts as a SPI slave.

21

3 Designing a Smart Home Solution

Command Opcode Parameters Length
Device state update 0x00 Device ID 3
Device type update 0x01 Device ID 3
Query device state 0x10 Device ID 3
Query device type 0x11 Device ID 3
Query device state and type 0x1F Device ID 3
Set device state 0x20 Device ID, New state 4
Set device type 0x21 Device ID, New type 4
Query all devices 0x30 - 2
Handshake 0x40 Protocol version 3
Disconnect from server 0x41 - 2
Poll FPGA commands 0x42 - 2
Shutdown relay server 0x90 - 2
Response: OK 0xF0 - 2
Response: Unknown command 0xF1 Command opcode 3
Response: Version mismatch 0xF2 Own version 3
Response: No such device 0xF3 Device ID 3
Response: Not authenticated 0xF4 - 2
Response: Unknown error 0xF9 - 2

Table 3.1: SPI Prototype protocol commands with their respective opcodes,
parameters and length (including opcode and termination byte.)

22

3.1 Defining Solution Goals

Issues and Limitations

The approach used in creating the SPI prototype resulted in several problems. For
one, the contrived architecture resulting from needing to create a middleware relay
server made the entire project error-prone as well as hard to maintain and debug.
It is especially hard to engineer software written in pure C that is both stable and
maintainable, and while the relay server has worked well enough in the limited time
it was tested, it was very difficult to ensure its reliability in the long run.

The bridge’s hardware logic was nearly completely monolithic and thus very hard
to maintain. Moreover, logic for each input and output port was hard-coded, so any
potential change of device configuration required major changes in the hardware
description code.

openHAB is a very extensive software suite that ran extremely slow on the lim-
ited Raspberry Pi hardware. Starting up openHAB until it was ready to use took
anywhere between two and five minutes, and there was a noticeable delay between
using the UI to change a device’s state and seeing the actual change taking place.
Furthermore, openHAB’s internal architecture is complicated and, at the time of
development, the provided documentation was confusing at best and incomplete at
worst, causing severe problems in developing the necessary binding. As a result,
while the prototype did have preliminary support for controlling devices remotely,
it was unstable and missing several key features, such as automatically updating the
UI when a device has changed its state by itself.

The design of the communication protocol also introduced its own share of problems.
For each participant in the communication chain (FPGA, relay server and end-user
API), the protocol was implemented symmetrically, meaning that each participant
had to support handling all of the commands as defined in the protocol, even if
certain commands were never meant to be received by any specific entity. For
example, the Shutdown relay server command was only meant to be sent to the relay
server, but could theoretically be sent to any of the three participants. This resulted
in a lot of redundant programming in all three of the protocol’s implementations.

Furthermore, the protocol was not secured against bit errors as induced by noise
or faulty connections. As the SPI standard does not include any error-checking
means by itself, both the FPGA and SPI software drivers would not be able to
tell connection problems due to loose connectors4. Messages corrupted due to noise
would also be interpreted as they were.

4Being that the SPI data signal is active low, all “incoming” bytes would thus be read as 0xFF
which the protocol would in turn interpret as the end of a message.

23

3 Designing a Smart Home Solution

Several of these problems will be addressed in the design of the solution worked
towards in this thesis, and both the architecture and protocol will be reworked to
mitigate them.

3.2 Solution Architecture Overview

Before starting to work on the individual components, we shall take a look at the
complete architecture we’re going to construct in this chapter, and in what ways it
will differ from the architecture of the SPI Prototype.

MachXO2

Bridge

Hardware logic

I2C
Controller

Device
Controller

Output
Modules

Input
Modules

Raspberry Pi

Gateway

Home Assistant

Bridge
Extension

User
Interface

Appliances

Sensors

User

Signals

Control

Device interaction

I2C

Figure 3.3: Overview of the revised architecture of the smart home solution,
displaying an overall simplified architecture due to the removal of the relay server
and a slightly more sophisticated bridge hardware logic.

24

3.2 Solution Architecture Overview

As pictured in Figure 3.3 on the preceding page, the overall hierarchy will be very
similar to the prototype. The appliances and sensors will remain connected to the
MachXO2, which is forming the bridge. The Raspberry Pi will still serve as the
gateway.

The general idea of the device control flow will also remain the same. Appliances
and sensors will be connected to the MachXO2, and it will control the appliances
based on input coming from the sensors. In normal operation mode, the sensor data
will be relayed to the Raspberry Pi and processed by the gateway software. By
means of those input signals, automation rules and the user interface, the gateway
will send appliance control commands back to the MachXO2, which then changes
the outgoing control signals accordingly.

Should the gateway become unresponsive, the bridge will automatically change op-
eration and directly send the sensor input signals to the appropriate appliances,
ensuring that the whole system remains operational even in absence of the gate-
way.

In order to resolve some of the issues encountered in the previous design, significant
changes will occur to the internal structure of both bridge and gateway.

Regarding the bridge, its hardware logic will be designed in a much more structured
manner. Abolishing the monolithic design approach, the logic will be modularized
instead, allowing for easier maintenance and, eventually, streamlines the process of
changing device configurations considerably.

On the gateway side, the exchange of openHAB for a different solution, Home Assis-
tant, will remove the need for a relay server, as the software will be able to use the
Raspberry Pi’s communication interface on its own. This simplifies several aspects
of the solution, including its overall architecture and the inter-device communication
protocol.

As for the protocol itself, aside from the aforementioned change in architecture caus-
ing the number of required commands to be reduced, the underlying bus standard
will also be changed from SPI to I2C.

3.2.1 Ensuring Resilience

Several of the design choices outlined above were intentionally made to improve the
system’s overall reliability. Since this is one of the project’s primary goals, we shall
summarize these measures once more.

25

3 Designing a Smart Home Solution

Preventing a single point of failure. The “standalone mode” of the bridge is a key
feature for increasing the general resilience of the system. Being that the
gateway is a computer, its chance of software-caused failure is much higher
than it is the case with the relatively simple FPGA bridge. The particular
behavior of the bridge that allows this will be outlined during the section on
the design of its logic, in Subsection 3.3.1 on the facing page.

Stabilizing the protocol. The change to the I2C standard slightly improves the
stability of device-to-device communication due to some of the nuances of
its base protocol. In particular, the presence of the acknowledge bit already
introduces a certain amount of hardware-side error checking. The protocol will
be even further stabilized against noise-induced bit errors by appending CRC
error-checking data. This will be explained in more detail in Subsection 3.4.5
(pg. 44).

Simplifying the architecture. Compared to the SPI Prototype, the new design ap-
proach does away with the need for a relay server, a choice that will allow
for a more straightforward communication flow. At the same time, it removes
what had arguably been the weakest link in the chain in terms of stability.
The reason for this change in design will be the reconsideration of the gateway
software, explained in Subsection 3.5.2 (pg. 46).

Using a stable operating system. Even though we cannot completely prevent a
computer from becoming unresponsive, we can at least take measures to at-
tempt maximizing its stability. Creating an appropriate environment suitable
for a server that is both stable and secure is one of these measures. This will
be talked about more in Subsection 3.5.1 (pg. 46).

3.3 Designing the Bridge Hardware Logic

This section deals with the design of the smart bridge, later to be implemented on
the MachXO2 FPGA using Verilog in Section 4.1 (pg. 61).

The central idea of the design approach used here is to split the bridge’s responsibil-
ities – appliance control, sensor monitoring, I2C handling and so on – into smaller,
independent modules that communicate with each other as needed. Much like in
modular software design, this separation of concerns will allow for easier develop-
ment and testing of the individual modules.

This design includes four major components, each handling a different area of re-
sponsibility inside the bridge. Centrally important are the Device Controller,

26

3.3 Designing the Bridge Hardware Logic

which manages the state of all appliances and handles I2C messages, and the I2C
Controller, an interface for the MachXO2’s internal I2C hardware.

The modular design approach will also allow us to improve on the previously hard-
coded, specialized hardware logic of the SPI Prototype. Two modules called the
Output and Input Device Managers will be created, which in turn contain sev-
eral output and input modules each. Designed as an interface towards each type
of appliance and sensor, respectively, these can be instantiated as many times as
needed, allowing the FPGA to be easily reconfigured to any desired device configu-
ration. If using the specialized management UI that will be designed in Section 3.6
(pg. 56), this can even be accomplished without the need to manually adjust any
hardware description code.

Furthermore, both output and input modules are each connected to a bus resid-
ing along them, which is needed for internal communication with the Device Con-
troller.

A simplified, schematic overview of the modules designed for the hardware logic is
presented in Figure 3.4 on the following page.

Each of the modules will now be described in greater detail, including a schematic
of their relevant inputs and outputs. Note that these schematics are only meant to
clarify the relationships between each of the modules, and thus some I/O signals
have been omitted for the sake of clarity. For example, most modules also contain
an input for the clock signal generated by the FPGA itself, which is what drives the
module’s internal logic.

3.3.1 Device Controller

The Device Controller is the centerpiece of the FPGA hardware logic. Its primary
objective is to manage the state of all devices connected to the bridge. It also
handles and responds to I2C messages the I2C controller receives, during which it
communicates with the output modules to set or read the states of corresponding
devices accordingly. While reading and writing those messages, it also performs
checksum calculation and verification, as detailed in Subsection 3.4.5 (pg. 44).

It is also responsible to handle updates coming from both input and output modules
by monitoring the State Update and Input buses, respectively. The handling of those
events differs depending on whether the Raspberry Pi is currently communicating
with the FPGA. To that end, the Controller keeps track of the Raspberry Pi’s
perceived state by declaring it dead if no I2C messages have been received within
the last five seconds. The Controller behavior then changes in the following ways:

27

3 Designing a Smart Home Solution

Output Device Manager

State Update Bus

Output
Module

Output
Module

Output
Module

Device Controller I2C
Controller

Input Device Manager

Input Bus

Input
Module

Input
Module

Appliances

Sensors

G
at
ew

ay

Figure 3.4: Schematic overview of the FPGA hardware logic blocks and their
communication flow. The variably instantiated Input Modules send signals com-
ing from sensors to the Device Controller, which in turn controls appliances
through instantiated Output Modules. The I2C Controller handles communi-
cation with the gateway.

28

3.3 Designing the Bridge Hardware Logic

• If the Raspberry Pi is alive, the Device Controller does not handle the State
Update and Input events itself. Instead, on the next polling query it receives,
it relays those events to the Raspberry Pi for processing, then discards them.
It reports the contents of the State Update queue first and Input queue second,
and expects the Raspberry Pi to keep polling until no more events are available.

• Should the Controller consider the Raspberry Pi to be dead, it ignores all State
Update events – since those are only meant for updating the Raspberry Pi’s
device representations – and handles all Input events itself, by directly sending
the requested state to the output module that is assigned to the input module
which fired the event.

Communication with the I2C Controller will be detailed in the section about that
module, Subsection 3.3.4 (pg. 38).

Device
Controller

Device States
[24n-1:0]

Input bus
[32m-1:0]

State Update bus
[32n-1:0]

I²C Data out
[7:0]

Reset

I²C Data in
[7:0]

I²C IRQ
I²C Read Enable
I²C Clock

Figure 3.5: Device Controller schematic. n and m are the number of appliances
and sensors in the current configuration, respectively.

3.3.2 Output Modules and Manager

Functionality for each type of appliance is consolidated within output modules. They
contain certain logic that directly controls a device’s control signal(s), and for every
appliance connected to the bridge, a corresponding module is to be instantiated. As
such, they could also be seen as a kind of device driver.

The control signals emitted from a module depend on a three-byte (or 24-bit) value
called a state, which it takes as an input from the Device Controller. Compared to
the SPI Prototype, where a device’s state was represented by only a single byte, the
larger data width allows for more fine-grained control over more sophisticated ap-
pliances. A RGB lamp, containing three LEDs that are each dimmable individually,
was chosen as a measure for this value. Using the SPI Prototype, such a device had
to be split into three separate entities; one for each LED to be controlled. The new

29

3 Designing a Smart Home Solution

data width allows it to be represented as a single device with sufficient granularity
in its color control capabilities.

At initialization, the state of all output modules is zero.

Since the state of an output module is exclusively controlled by the Device Con-
troller, it follows that the module cannot control its own state. In certain cases,
however, this might be a necessity; e.g. if an output module stops a device on its
own after a short while. To make it possible for a device to spontaneously and au-
tonomously update its own state, the State Update bus is introduced, which serves
as an interface for state update events towards the Device Controller. Should an
output module require to update its own state, it can write an event, containing its
device ID and the new desired state value, onto the Bus, later to be handled by the
Controller, as described in Subsection 3.3.1 (pg. 27).

Thus, not every output module actually requires access to the bus; in fact, only one
of the modules designed for this solution makes use of the ability to update itself.

The logic of certain output modules may also be customized through configurable
parameters.

Serving merely as a container for all output modules used in the current device
configuration, the Output Device Manager barely contains any important logic by
itself. However, it does provide a bus arbiter that controls the output modules’
access to the bus to prevent two modules from writing to it at the same time; a
scenario that would usually result in undefined behavior.

As a first proof of concept, four output modules have been designed for this solution,
meant for controlling some appliances that are commonly found in smart home
installations: simple devices with an on/off switch, dimmable lights, RGB color
lights and shutters. These modules will now be described in greater detail, including
a brief description of their logic, output signals and parameters, if applicable.

Generic Binary Output

The simplest example of an output module, the Binary module manages a single
control signal which it can turn either on or off. It is most suitable for simple
appliances that possess no further fine-tuning in their operative modes.

The module activates the control signal when the input state is non-zero. Otherwise,
the signal is cut.

The Binary module does not have any configurable parameters.

30

3.3 Designing the Bridge Hardware Logic

BinaryState
[23:0]

Out

Figure 3.6: Binary output module schematic.

DimmerState
[23:0]

Out∼

Figure 3.7: Dimmer output module schematic.

RGB
DimmerState

[23:0]
R∼

G∼

B∼

Figure 3.8: RGB Dimmer output module schematic.

Shutter
State

[23:0]

State Update bus
[31:0]

Up
Down

Figure 3.9: Shutter output module schematic.

31

3 Designing a Smart Home Solution

Dimmer Output

The Dimmer module also manages only a single control signal. Compared to the
Binary module, however, that signal is controlled via PWM. As its name implies,
this module is primarily meant for dimmable LEDs or other devices supporting
PWM input.

The frequency of the PWM output is dependent on the lower eight bits of the input
state; the other bits are disregarded. As such, a state of 0x000000 turns the signal
off completely, 0x0000FF represents a constant high signal, and the frequency gets
adjusted in a linear manner for any values in between those two.

When the input state is changed, instead of assuming the new value immediately,
the Dimmer module slowly fades towards the desired target state, at a rate of one
unit every tfade milliseconds, providing a slightly more aesthetic presentation when
adjusting a light’s brightness, for example.

The value of tfade can be adjusted through the module’s DELAY parameter. For
example, at the default value of 10 ms, a change from state 0x30 = 48 to 0x60
= 96 would take approximately (96 − 48) · 10 ms = 480 ms.

RGB Dimmer Output

An output module specifically designed for color lamps, the RGB Dimmer module
works exactly like the Dimmer, except that it contains three control signals that can
each be controlled separately from each other.

The PWM frequencies of the red, green and blue components are controlled by the
first, second and third byte of the input state, respectively. In that way, the state
value closely resembles a RGB hex color triplet notation, as it is commonly used
e.g. in HTML. For example, the state 0xFF7700 produces an orange color.

Like the Dimmer module, the RGB Dimmer fades smoothly towards a newly set
state, independently for each color component; and the update frequency tfade can
be set with the DELAY parameter as well.

Shutter Output

Finally, the Shutter output module is designed for controlling retractable, electronic
shutters, window shades or the like. It controls two output signals, one for moving
the shutter down and another one for moving it up; each to be connected to the
appropriate inputs on the shutter’s motor.

32

3.3 Designing the Bridge Hardware Logic

Typical for common electronic shutters is a two-button interface, where one button
moves the shutter up and another moves it down. For convenience, holding one of
the buttons causes the shutter to move all the way in the specified direction either
until the shutter has reached the end, or when a button has been pressed again.

The logic of the Shutter module is inspired by this behavior. It internally distin-
guishes between five possible states: one idle state, two states for moving the shutter
up or down just for a short while, and two more for moving the shutter up or down
fully. The output signals directly depend on this state, as seen in Table 3.2. This also
ensures that both up and down signals cannot be sent at the same time, preventing
behavior that could potentially damage a shutter motor.

State name Value Up signal Down signal
Idle 0x00 0 0

Move up once 0x01 1 0
Move down once 0x02 0 1
Move up fully 0x03 1 0

Move down fully 0x04 0 1

Table 3.2: Shutter output signals, depending on the module’s state.

Internally, the module’s logic works similar to a state machine. When in any non-
idle state, the module requests, via the State Update bus, to be set back to the idle
state after the appropriate amount of time has passed (see Figure 3.10 on the next
page.) The Device Controller has the capability to set the module’s current state
to any of the defined states, at any time. On any state change, induced externally
or internally, the timer counting towards the state change request will be reset.

An appropriate Input Module will later be designed to complement this behavior.

The Shutter module supports two parameters: the TICK_MS parameter defines the
duration of a single movement cycle (tonce), i.e. for how long the up or down signal
will be sent to the motor. The other parameter, FULL_MOVEMENT_TICKS, defines
the amount of movement cycles for moving the shutter all the way (equivalent to
tfull/tonce). Since there is no way for the module to determine the current position
of the shutter, an appropriate value should be chosen generously to give the shutter
enough time to move from one end to the other. By default, a single cycle is 500
milliseconds long, and a full movement consists of 30 cycles, translating to a full
movement time of 500 ms · 30 = 15 seconds.

33

3 Designing a Smart Home Solution

Idlestart

Up
once

Up
fully

Down
once

Down
fully

tonce tfull

tonce tfull

Figure 3.10: State transitions as able to be induced by the Shutter module
itself, where tonce, tfull are the times spent moving the shutter once and fully,
respectively. Additionally, the Device Controller can put the module in any state
at any time (not pictured here.)

3.3.3 Input Modules and Manager

As the output modules are like device drivers for the system’s appliances, so too are
its sensors governed by certain input modules.

Their responsibility is to monitor the input signals generated by the sensors and,
on any change, fire an appropriate event onto the Input bus. Like the state update
events, the input events contain the ID of the input module that emitted it alongside
the new state value it calculated from the sensor’s signals.

When creating a device configuration, each input module is assigned to a single
output module which it is supposed to control. The Device Controller contains a
lookup table that maps every input module to an output module, which it uses
to route the input events to the correct appliance when the FPGA is working in
standalone mode.

Similar to the Output Device Manager, the Input Device Manager contains no logic
of its own, except for another bus arbiter managing the Input bus.

In many cases, the state value generated from the input modules can be configured
through their respective parameters. Should any of those modules initialize to a
non-zero state value, it fires an event onto the Input bus immediately to ensure that
the connected output module also initializes to that value.

Five input modules have been designed, mostly to complement the behavior of the
output modules.

34

3.3 Designing the Bridge Hardware Logic

Generic Button Input

The Button input module simply notifies the bus whenever the state of the con-
nected input signal has changed. Once the signal changes to low, it fires an event
with the state soff =0x000000. Should it become high, the state to send is
son =0x000001. In other words, this module simply passes through the state
of the input signal.

This module does not have any parameters.

Generic Toggle Input

Very similar to the Button input module, the Toggle module also reports either one
of two configurable states. However, this module toggles between the two on every
rising edge of the connected input signal.

Dimmer Cycle Input

The Dimmer Cycle module works similar to the Toggle module, except that it cycles
between five different output states on every rising edge of the input signal. It is
primarily meant for toggling the brightness of a dimmable lamp between five preset
states.

If the states are enumerated from s0 through s4, it initializes to state s0 and advances
to s1 on the first rising edge, to s2 on the next, and so on until s4, after which it
resets to s0 again.

The five states’ values can be modified through the BRIGHTNESS_n (for n = 1 . . . 5)
parameters, defaulting to 0x00, 0x40, 0x7F, 0xBF and finally 0xFF, correspond-
ing to approximate brightness increments of 25% each.

RGB Cycle Input

An extension of the Dimmer Cycle module, the RGB Cycle module allows to cycle
a RGB color lamp through eight different color settings. Otherwise, it works in the
exact same way.

This module is primarily meant to complement the RGB Dimmer output module,
and to exemplify the potential flexibility of input modules in general. In a production
setting, which will allow for much more fine-grained control of the color lamp through

35

3 Designing a Smart Home Solution

ButtonIn Input bus
[31:0]

Figure 3.11: Button input module schematic.

ToggleIn Input bus
[31:0]

Figure 3.12: Toggle input module schematic.

Dimmer
CycleIn Input bus

[31:0]

Figure 3.13: Dimmer Cycle input module schematic.

RGB
CycleIn Input bus

[31:0]

Figure 3.14: RGB Cycle input module schematic.

Shutter
Up

Down
Input bus

[31:0]

Figure 3.15: Shutter input module schematic.

36

3.3 Designing the Bridge Hardware Logic

appropriate controls contained in the gateway interface, it should not be seen as
much more than a novelty.

The eight states s0 through s7 are configurable via the COLOR_n (for n = 1 . . . 8) pa-
rameters and default to the values 0x000000, 0xFF0000, 0xFF7700, 0xFFFF00,
0x00FF00, 0x00FFFF, 0x0000FF and 0xFF00FF, representing the seven colors
of a rainbow with an additional off setting at initialization.

Shutter Input

This module is the counterpart to the output module of the same name, as described
in Subsection 3.3.2 (pg. 32). It is meant to provide the common two-button interface
for electronic shutters outlined before; where one button moves the shutter up, the
other moves it down, and a long press of either button makes the shutter move all
the way in the specified direction.

A state machine is used internally to realize this behavior. The idle state monitors
both Up and Down input signals and changes to the appropriate state if either one
of them becomes active. Should the signal still be active (i.e. the button is still
being pressed) after tlong time, then a long press occurred and the Shutter module
writes the sup_full or sdown_full state onto the bus, while switching onto a return
state waiting for the signal to deactivate, after which the module finally returns to
the idle state.

Should the input signal go low before the timer reaches tlong, the module recognizes
this as a short press, firing either the sup_once or sdown_once event as it returns to the
idle state.

There is no button or button combination for stopping a shutter movement, but
since the output module resets itself to the idle state after it has completed its
current operation, a full movement cycle can be cancelled through a short press in
any direction.

Figure 3.16 on the next page pictures the state machine used in the Shutter mod-
ule.

The time needed for a long press tlong can be configured through the module’s
FULL_PRESS_MS parameter, expressed in milliseconds and defaulting to 2 sec-
onds.

37

3 Designing a Smart Home Solution

Idle start

Up
pressed

Up
held

Down
pressed

Down
held

Up

Up released
Send sup_once

tlong time passes
Send sup_full

Up released

Down

Down released
Send sdown_once

tlong time passes
Send sdown_full

Down released

Figure 3.16: State machine of the Shutter input module. The dashed transitions
do not send any state update to the bus.

3.3.4 I2C Controller

The single purpose of the I2C Controller is to serve as an interface for the MachXO2’s
internal I2C function block. Making use of its functionality involves accessing certain
memory-mapped registers through the device’s Wishbone bus, which is a common
communication interface standard for embedded components. [Wik19c]

The complete process of sending and receiving I2C messages on the MachXO2 is,
comparatively, rather extensive and would certainly complicate the Device Con-
troller’s internal logic, were it to be directly implemented within. Therefore, it
seemed appropriate to create an abstraction layer the Device Controller can inter-
face with.

The I2C Controller’s logic and signals were designed according to the necessary
signals and steps to be taken for communicating with the MachXO2’s Wishbone
bus as well as the I2C function block. This information can be found in the device’s
documentation [Lat16], and as such this will not be described in further detail
here.

Instead follows a brief outline of the I2C Controller’s usage and how it communicates
with the Device Controller.

Initializing. The I2C Controller requires to be initialized from the Device Controller
by activating the Reset signal for one cycle. This performs the initialization

38

3.4 Designing the Protocol

routine of the MachXO2’s I2C module, as per its documentation. Once this
process is finished, the Device Controller is notified by pulling only the I²C
Clock signal high for one cycle, at which point both modules become ready
for use.

Relaying incoming I2C bytes. At the beginning of an incoming transmission from
the Raspberry Pi, the Device Controller is notified by activating the I²C IRQ
signal, which is kept high until the transmission is over. Whenever a byte is
received, it is latched onto the I²C Data out register and the I²C Clock
is activated for a cycle to signify this. When the transmission has concluded,
the I²C IRQ signal is deactivated, notifying the Device Controller that it can
process the message and prepare a response.

Requesting I2C response bytes. Immediately after sending a message, the Rasp-
berry Pi can restart the communication to request a response from the FPGA.
As before, the Device Controller is notified of this by activating the I²C IRQ
signal. In addition, the I²C Read Enable signal is pulled high, which causes
the Device Controller to write the next byte of the response message to the
I²C Data in register on every pulse of the I²C Clock signal. After re-
questing exactly eight bytes from the Device Controller, both I²C IRQ and
I²C Read Enable signals are deactivated, signifying the Device Controller
that the outgoing transmission is over.

I2C
Controller

I²C Data in
[7:0]

Reset

I²C Data out
[7:0]

I²C IRQ
I²C Read Enable

I²C Clock

WB Address
[7:0]

WB Data out
[7:0]

WB Reset
WB Cycle
WB Write Enable

WB Data in
[7:0]

I²C2 IRQ

Figure 3.17: I2C Controller schematic.

3.4 Designing the Protocol

Providing a stable and efficient means of communication between the bridge and
gateway is an essential part of this solution. The protocol used in the SPI Prototype
unfortunately showed several flaws, yet remains as a good foundation for a new,
improved design that will be described in this section.

39

3 Designing a Smart Home Solution

First, we will briefly revisit the choice of the underlying bus system. It has already
been mentioned several times, but the bus standard used in the SPI Prototype, will
be abandoned in favor of I2C, and the reasoning behind this decision will follow
shortly. Another big change lies in the approach to the protocol symmetry,
which had caused some issues before. Next, the protocol messages themselves,
together with how they are now divided between commands and responses, will be
explained, and finally we will briefly introduce CRC as a means of further securing
the protocol against faulty transmissions due to potential noise.

3.4.1 Choosing a Bus System

Before going into more detail about the design of the protocol itself, an appropriate
bus system standard has to be chosen first.

Both the MachXO2 and the Raspberry Pi support SPI and I2C natively in hardware,
making those two standards the best options for this solution. It could also be consid-
ered to design a proprietary bus from scratch, but, at least on the Raspberry Pi, its
implementation would have to be accomplished purely in software (“bit-banging”),
which would be several magnitudes slower than using the interfaces already present
in the hardware. Also, the use of an open and well-documented standard like SPI or
I2C makes it easier for potential future developers to pick up work on this project,
if the need ever arises.

The SPI Prototype, of course, used SPI as the communication bus between the
FPGA and the Raspberry Pi. This had worked well enough, but even back then,
I2C appeared as the more elegant solution in regards to its scalability as well as the
added error-checking capabilities that SPI doesn’t provide.

Moreover, the fact that one of the major obstacles to using I2C in the SPI Prototype
was, in hindsight, merely a limited understanding on how to correctly interface with
the MachXO2’s internal I2C hardware was not seen as a valid hindrance for this
project. Enough time has been spent on studying the device’s I2C support as well
as the design of hardware logic to complement it (as documented in Subsection 3.3.4
(pg. 38)), making this a non-issue going forward.

The Raspberry Pi remains as the I2C master in this design, and thus keeps the
responsibilities of initiating messages and setting the length of each transmission.
The MachXO2 keeps serving as an I2C slave. Polling remains as the method of
choice to allow the slave to notify the master about updates.

40

3.4 Designing the Protocol

3.4.2 Protocol symmetry

A significant change in the protocol is a different approach to its implementations
across the whole architecture. Before, each participant (bridge, relay server and
gateway) had to implement the protocol symmetrically to each other, needing to
support every single one of the protocol’s commands and handling thereof.

Since there is no need for a relay server between bridge and gateway in this design,
these two devices can now communicate directly with each other, allowing the pro-
tocol to be implemented asymmetrically. Now, while both devices obviously still
have to understand the full protocol, only the Raspberry Pi needs the capability
to send full command messages including opcodes, while the FPGA merely has to
reply to those with simple responses consisting of a status code and some data, if
applicable. This significantly simplifies the protocol and its implementations, while
also reducing the overall number of different commands.

3.4.3 Commands from the Raspberry Pi

The general format of a command message as to be sent from the Raspberry Pi can
be seen in Figure 3.18. It largely remains the design of the messages used in the
SPI Prototype, the major difference being the addition of two bytes of CRC error
correction data.

Also, the termination byte marking the end of a message has been retired, since the
ability of the MachXO2’s I2C implementation to reliably tell the end of a transmis-
sion makes it obsolete.

Opcode
1 byte

Parameters
0 - 4 bytes

CRC
2 bytes

Figure 3.18: Protocol message format.

A few of the commands from the previous protocol were deemed redundant and
removed, in part by the aforementioned change to protocol symmetry. The new
complete list of commands can be found in Table 3.3 on the following page.

3.4.4 Responses from the MachXO2

The general format of response messages is very similar to that of the command
messages, and can be seen in Figure 3.19 on the next page. In place of a command

41

3 Designing a Smart Home Solution

Command Opcode Parameters Length
Get appliance state 0x00 Appliance ID 4
Get appliance type 0x01 Appliance ID 4
Get sensor type 0x02 Sensor ID 4
Set appliance state 0x10 Appliance ID, New state 7
Get FPGA version 0x20 - 3
Reset FPGA 0x2F - 3
Poll events 0x30 - 3
Repeat last message 0x40 - 3

Table 3.3: Commands used in the new Raspberry Pi to FPGA communication
protocol, including opcodes, parameters and message length including CRC data.

opcode, responses start with a status code determining the command result. The
possible status codes are listed in Table 3.4.

Of note is that, to simplify the implementation of the protocol in hardware logic,
response messages always have a fixed length of eight bytes. This number was
chosen to accommodate for the longest possible response data, which is five bytes
in length. CRC data is always sent last, and any unused bytes in between are filled
with zeroes.

The fixed message size also eliminates the need for a termination byte here.

Status
1 byte

Response
0 - 5 bytes

Filler zeroes
0 - 5 bytes

CRC
2 bytes

Figure 3.19: Format of responses to protocol commands.

Status Code Description
OK 0xF0 The command was successful.
Error 0xF1 The command was not successful.

No data 0xF2 No data is available for a polling request.

Table 3.4: Protocol response status codes.

Following the status code is some response data that depends on the command that
was sent. No further metadata about the nature of the response data is included
in the message, and as such the Raspberry Pi needs to deduce the meaning of the
response from the current context. However, since most commands sent to the

42

3.4 Designing the Protocol

Command Expected response data
Get appliance state Appliance ID, Appliance state (3 bytes)
Get appliance type Appliance ID, Appliance type
Get sensor type Sensor ID, Sensor type
Set appliance state None
Get FPGA version FPGA version (2 bytes), Highest output ID,

Highest input ID (see notes)
Reset FPGA None
Poll events Update event (5 bytes) (see notes)
Repeat last message Varies (see notes)

Table 3.5: Protocol commands and their expected responses.

MachXO2 expect a certain, fixed response, this does not pose a problem. A full list
of expected response data to each of the commands is listed in Table 3.5.

Should a command result in an error, the response data includes the error code and
some relevant parameters. The possible error codes are listed in Table 3.6.

Error Code Parameters
Unknown command 0x10 Opcode of unknown command
Unknown device 0x20 ID of unknown device
CRC failure 0x30 Erroneous CRC data
Unknown error 0xFF -

Table 3.6: Protocol response error codes.

Following are a few notes on certain responses that require slightly more explana-
tion.

Get FPGA version

When this command is sent, the MachXO2 responds with a two-byte version con-
stant, followed by the highest device ID of all appliances and sensors each. This
information is meant to aid the Raspberry Pi during the beginning of a connection,
when it is querying the FPGA for all of its devices.

Poll events

The appropriate response to this command depends on the contents of the Device
Controller’s internal update event buffers.

43

3 Designing a Smart Home Solution

Input Events are prefixed with 0x00 and contain the ID of the input module that
emitted the event as well as its three-byte state value.

State Update Events are prefixed with 0x01 and contain the ID of the output
module that has updated itself and its new three-byte state value.

If both buffers do not contain any events, the MachXO2 responds with the No data
status code (0xF2) instead.

Repeat last message

This command is sent to the MachXO2 in case the Raspberry Pi detects a CRC
error in an incoming transmission, asking the MachXO2 to repeat the last valid
message it sent.

3.4.5 Using CRC to Secure the Protocol

To further increase the reliability of device-to-device communication across poten-
tially noisy cabling, the protocol was secured by adding 16 bits of CRC data to
each message. CRC was chosen as a means to secure the protocol because it is very
easy to implement in both hardware and software while at the same time being very
efficient and effective at detecting noise-induced errors in network transmissions.
[Cha01]

CRC consists of adding a hash value or digest, also called the check value, generated
from the message data that is being appended to the message when transmitting.
Both sender and receiver calculate this value independently from one another; this
way, the receiver can safely tell whether the incoming data has been corrupted by
noise.

In particular; when transmitting a message, the sender calculates the message data’s
CRC value by interpreting the message’s bits as a single, long polynomial, where
each bit of the message corresponds to the polynomial’s coefficients. This polynomial
is then divided by a special, fixed generator polynomial, which results in a quotient
and a remainder. The former is discarded, while the latter is converted back into bits
using the same approach as before. These bits are then appended to the message
payload and both are sent to the receiver as a single message.

On the receiving end, the CRC data for the incoming message is calculated in the
exact same way, using the same generator polynomial as well. Since the remainder
of the polynomial division has been appended by the sender to the original payload,
the resulting message polynomial is, by definition, always guaranteed to be divisible

44

3.4 Designing the Protocol

by the generator polynomial without leaving a remainder. In case one or more bits of
the message have been corrupted by noise, it is extremely unlikely that the division
still results in a remainder of zero. Therefore, the receiver can verify any message
by simply checking whether its own CRC calculation results in a remainder of zero.
If it is not zero, the receiver assumes that the message is not valid, and can take
appropriate measures from there. [PB61]

CRC calculations are characterized by two important factors: the generator polyno-
mial, and the resulting length of the CRC data.

The generator polynomial is a polynomial P of degree n, where n is the desired length
of the check value. Additionally, P belongs to the finite field GF (2), meaning each
of its coefficients can only either be a 0 or 1. This allows for a direct translation from
binary digits to the polynomial’s coefficients. Depending on the notation, either the
highest or lowest degree term has a fixed coefficient of 1.

Being the divisor in the CRC calculation, the generator polynomial determines the
number of remainders that can be generated by the division, and thus indirectly
the types of errors that can be detected. Therefore, many different polynomials for
various applications have already been analyzed and used [Koo15].

The degree of the generator polynomial directly translates to the length of the
resulting CRC data. A larger degree increases the amount of errors that can be
detected while reducing chances of possible collisions due to the greater amount of
bits available. On the other side, this leads to a slightly larger overhead for each
message and in certain cases also might increase the computational complexity.

For this protocol, where message data is up to 6 bytes = 48 bits in length, a CRC
data size of 16 bits has been chosen. Depending on the length of the data to be
transmitted, this increases the message overhead by 33 to 200 percent. However,
since transmission bandwidth and speed are not an issue in this application, this
was found to be a reasonable trade-off for practically removing the possibility of
uncaught bit errors occurring. Even though a 8-bit wide CRC would probably be
sufficient for relatively short payloads as they are used in this protocol, it could only
produce one of 28 = 256 different values for each message, resulting in a relatively
high chance of collision. With the 216 = 65 536 possible values resulting from using
a 16-bit code, this chance is much smaller.

Based on the work done in [Cha01], the polynomial x16 + x13 + x11 + x10 + x9 +
x8 + x4 + x2 + 1 (encoded as 0x2F15 when omitting MSB) is an optimal generator
polynomial of degree 16 for message payloads of up to 64 bits. As such, it was
deemed appropriate for use in this protocol.

45

3 Designing a Smart Home Solution

3.5 Designing the Gateway

Finally, we will have a look at the other significant part of the smart home system,
the gateway. Compared to the bridge, which was designed almost completely from
scratch, the gateway will make use of several third party software components, and as
such the amount of work needed to be done is comparatively smaller. Nevertheless,
it is an important part of the whole project.

The whole gateway stack contains four major components. First, an operating
system for the Raspberry Pi has to be chosen that, in turn, runs a suitable open-
source gateway software solution. Next, to allow the Raspberry Pi to interface
with the bridge, an API for the communication protocol designed in Section 3.4
(pg. 39) has to be created, which finally gets integrated into a custom-made exten-
sion for the gateway software.

3.5.1 Setting Up a Host Environment

Arch Linux remains a suitable choice for the operating system of the Raspberry Pi.
Its qualities were already discussed in Subsection 3.1.2 (pg. 20). Between the choices
of operating systems available for the Raspberry Pi’s ARM architecture, it was seen
as offering a good ratio of usability and suitability as a server environment.

It also happens to be my operating system of choice for personal use, and several
years worth of experience setting up a familiar environment significantly help in
maintaining a healthy system.

Finally, it has already worked very well as a server environment for the SPI Proto-
type.

3.5.2 Choosing a Gateway Software

In the SPI Prototype, openHAB was chosen as a gateway software because of its
popularity and its main development language, Java, already being familiar to the
team.

As noted before, however, many problems were encountered in its usage including
slow response times on the Raspberry Pi, a limited understanding of its development
resources as well as the fact that I2C support had to be added through some kind
of middleware.

Considering this, Home Assistant5 appears an attractive alternative to openHAB.
5http://www.home-assistant.io

46

http://www.home-assistant.io

3.5 Designing the Gateway

The two software projects are very similar, in that Home Assistant also provides
support for numerous devices through extensions and offers sufficient documentation
for enabling developers to write their own. The major difference between the two is
that Home Assistant and its extensions are written in Python, solving the problem
of API availability for SPI and I2C, because Python libraries exist for both6.

Weighing Python against Java

The choice of the gateway software Home Assistant also obviously infers the use
of Python as the programming language for the API (and, of course, the Home
Assistant extension that will use it) instead of Java or even other languages.

While Java is a strongly typed programming language with static type checking,
Python instead makes use of duck types and supports run-time type checking only.
From a software engineering standpoint, the type safety options arguably make
Java a better choice, especially for a system designed with reliability in mind. Using
Python, the risk of application failure due to typing errors is higher.

The absence of compile-time type-checking can be somewhat compensated for by
the use of a modern development environment capable of performing static type
checking. Even though Python uses dynamic typing, it optionally supports type
annotations, which can then be used for static analysis.

In terms of run-time performance, even though openHAB struggled to do well on
the Raspberry Pi in the SPI Prototype, it is not possible to determine beforehand
whether Home Assistant will perform better, as those analytics depend on a number
of factors other than just the choice of language, and heavily vary on a case-by-case
basis. Both Python and Java are first compiled to byte code and then executed
on a virtual machine; though Java has the capability to produce native machine
code through its just-in-time compiler, a feature that Python lacks. Thus, generally
speaking, Java code might perform better than Python code. In any case, once
the finished solution will be evaluated in Section 5.1 (pg. 79), this question will be
revisited.

As for the Bridge API, it will be lightweight enough that the choice of language will
probably not make a difference regarding its performance.

Personal experience and preference also each play a significant part in the potential
efficiency of a programming language, as it is arguably the same with any tool. While
my experience of both Java and Python amount to approximately the same at the
time of writing, between the two I personally strongly prefer Python for a number
of reasons, including its much more elegant syntax and approach to deployment.

6Packages spidev and smbus2, available from http://pypi.org.

47

http://pypi.org

3 Designing a Smart Home Solution

Overall, it is expected that developing using Python should result in an API that
is nearly as stable and efficient as if done in a language like Java, should enough
attention be given to good programming practices.

3.5.3 Designing the Bridge API

The gateway software Home Assistant needs some way to use the protocol so that it
can communicate with the bridge. Theoretically, the extension that will be created
for Home Assistant could make direct use of the low-level I2C bindings. However, this
would result in an extension with a lot of complicated, hard to maintain, low-level
hardware-specific code. This approach is also recommended against by the Home
Assistant developer documentation [Hom20b], most likely for this very reason.

Rather than directly including such functionality within the extension itself, a much
cleaner solution is to design an external API – an application programming interface
– that can later be used by the extension. In the interest of separation of concerns,
the API will serve as a layer of abstraction from the comparatively complicated
process of using the Raspberry Pi’s I2C interface by taking the responsibility of
handling the details of I2C communication, while exposing a simplified interface.

To make it accessible for developers, the API should therefore make extensive use of
information hiding and have simple and self-explanatory method and class names.
[Blo06]

Layers of Abstraction: API Overview

The API contains three layers of abstraction, each serving as an interface towards
the next. At the top level, the Home Assistant extension will be able interface
with representations of the bridge itself as well as the appliances connected to it.
The next level consists of an instance representing the I2C bus, which provides an
interface for the communication protocol described in Section 3.4 (pg. 39). It does
so by abstracting from the Python I2C bindings. Finally, the bindings and, by
extension, the protocol, can be interpreted as an abstraction layer for interfacing
with the bridge hardware itself.

An overview of this architecture is pictured in Figure 3.20 on the next page.

48

3.5 Designing the Gateway

API

Bridge
instance

Device
instances

Bus
instance

I2C
bindings Bridge

G
at
ew

ay
so
ftw

ar
e

Figure 3.20: Bridge API abstraction layers and interface access. Each layer
provides abstraction to the next. Arrows indicate interface access.

Representing the Bridge

An object of the I2CBridge class is the first to be instantiated when using the
API. On initialization, it uses the I2CBus layer to connect to the bridge hard-
ware and query it for its status and all connected devices. It creates corresponding
I2CAppliance and I2CSensor instances and provides them inside publicly ac-
cessible dictionaries, indexed by their respective device IDs, for the gateway software
to access.

This class is also responsible for the automatic polling of State Update and Input
events from the bridge, as previously explained in Subsection 3.3.1 (pg. 27). Incom-
ing events will be forwarded to the corresponding device objects, allowing them to
update their local state and to notify the gateway about the update.

Representing Appliances

Each appliance that is currently connected to the bridge is represented by an ap-
propriate object that has two main responsibilities: keeping track of the device’s
state, and exposing an interface towards the gateway software for controlling it. As
each type of appliance mostly contains a different set of controls and control states,
so contains each device class a different interface suited to the type of appliance it
represents.

Internally, most functionality related to device control that is executed via the com-
munication protocol, including setting and querying a device’s state, is universal to
all different types of devices. As such, it seems fitting to gather common function-
ality within a superclass, so that later, the implementation of specialized classes for
each type of appliance can be kept as simple as possible.

49

3 Designing a Smart Home Solution

Figure 3.21 on the next page shows a UML class diagram drafting such an approach.
The abstract super class I2CAppliance contains the method request_state()
that is responsible for sending device state updates to the bridge. Its static factory
method, create(), instantiates the correct object based on the supplied device
type, and will simplify the initialization process.

Again, it is important to consider providing an appropriate layer of abstraction.
Rather than forcing developers to work with the raw 24-bit state values of the
bridge’s output modules, each of the specialized classes represent their respective
device’s internal state through a data type that is more intuitive in comparison.
Binary switches can only be turned on or off, so their state is represented by a single
Boolean value. The states of Dimmers and RGB Dimmers are represented by one
or three floats, respectively, ranging from 0.0 to 1.0, expressing the range of possible
PWM frequencies from none to full. Finally, the five distinct states that can be
assumed by a Shutter are expressed through an enumerated value.

For translating between these abstract values and the raw 24-bit states, each subclass
requires an implementation of the virtual decode_state() and encode_state()
methods that translate from and to the raw state values, respectively; they are used
automatically by the superclass logic during communication with the bridge.

Regarding the device control interface; each class provides few methods with a
straightforward naming scheme, making it easy to see at a glance the capabilities of
each device type. The device state is publicly exposed in each class’s state field,
its data type depending on the device class as described above.

Additionally, the device objects will follow the observer pattern, receiving the ability
to be subscribed to by the gateway software. The objects will then send a notification
to the subscriber whenever its state was changed through a state update event.

Representing Sensors

Representation of the sensors used in this solution is slightly different, as they are
not meant to maintain a certain state. Instead, they only have to notify the system
whenever they have received an input. The observer pattern will also be applied here
to allow the gateway to be informed whenever an input event has been received.

Overall, the representation of sensors will be split into three distinct classes:

• The I2CPassthroughSensor, as its name states, directly passes through
incoming input events, and is meant for the Button and Toggle modules. Two
different notifications will be sent; one for the state changing to on, and another
for changing to off.

50

3.5 Designing the Gateway

I2CAppliance

- bridge: I2CBridge
+ device_id: int
+ state: Any

+ create(bridge, device_id, device_type): I2CAppliance
- decode_state(raw_state: int): Any
- encode_state(state: Any): int
+ request_state(new_state: Any)
+ update_state(new_raw_state: int)

�enum�
ShutterState

IDLE
UP_ONCE
UP_FULL
DOWN_ONCE
DOWN_FULL

I2CSwitch

+ state: bool

- decode_state(raw_state: int): bool
- encode_state(state: bool): int
+ turn_off()
+ turn_on()

I2CDimmer

+ state: float

- decode_state(raw_state: int): float
- encode_state(state: float): int
+ set_brightness(brightness: float)

I2CRGBDimmer

+ state: Tuple[float, float, float]

- decode_state(raw_state: int): Tuple[float, float, float]
- encode_state(state: Tuple[float, float, float]): int
+ set_color(color: Tuple[float, float, float])

I2CShutter

+ state: ShutterState

- decode_state(raw_state: int): ShutterState
- encode_state(state: ShutterState): int
+ stop()
+ move_up()
+ move_down()
+ move_up_full()
+ move_down_full()

Figure 3.21: UML for class representations of appliances in the Bridge API.

51

3 Designing a Smart Home Solution

• The I2CCycleButtonSensor for the two Cycle modules will provide a no-
tification without any data, merely signaling that the button has been pushed.

• The I2CShutterControlSensor will contain four different notifications,
depending on which button – up or down – was pressed and for how long –
long or short.

Representing the Bus and Protocol

The I2CBus class is responsible for abstracting from the communication protocol.
It provides methods for each of the protocol’s commands and returns appropriate
response objects.

The class internally represents those by I2CCommand and I2CResponse objects.
One exists for each possible command and response, containing the appropriate
data.

I2CCommand

- opcode: int

- parameters(): Tuple[Any]
- construct_reply(reply_data: bytes): I2CResponse
+ handle_reply(reply: bytes): I2CResponse
+ ship(): bytes

Figure 3.22: UML for class representations of protocol commands. A subclass
will be created for every command.

When a command is to be transmitted, its corresponding object first gets trans-
formed into raw bytes via its ship() method. The bytes then get supplied to one
of the raw_read() and raw_write() methods. Realization of those methods
is deliberately deferred to subclasses, allowing for different I2C implementations to
be used. The API is designed with two of those; the I2CBusReal class uses the
smbus2 package and is intended for production, while the I2CBusDummy imple-
mentation merely simulates communication with a real bridge, meant for testing
purposes.

A class diagram for the Bus layer is presented in Figure 3.23 on the facing page.

3.5.4 Creating a Home Assistant Integration

The final step towards integrating support for our bridge into Home Assistant is
to write an extension, or, as it is called here, an Integration (or sometimes also

52

3.5 Designing the Gateway

I2CBus

- cmd_read(command: I2CCommand): I2CResponse
- cmd_write(command: I2CCommand)
- raw_read(packet: bytes): bytes
- raw_write(packet: bytes)
+ get_appliance_state(device_id: int): I2CApplianceStateResponse
+ get_appliance_type(device_id: int): I2CApplianceTypeResponse
+ get_sensor_type(sensor_id: int): I2CSensorTypeResponse
+ set_appliance_state(device_id: int, new_state: int)
+ get_fpga_status(): I2CFPGAStatusResponse
+ reset_fpga()
+ poll(): List[Union[I2CApplianceStateResponse,

I2CInputEventResponse]]

I2CBusReal

- raw_read(packet: bytes): bytes
- raw_write(packet: bytes)

I2CBusDummy

- dummy_devices: Dict[int, I2CDummyDevice]

- handle_request(packet: bytes): bytes
- raw_read(packet: bytes): bytes
- raw_write(packet: bytes)

Figure 3.23: UML for class representations of the I2C bus.

Component), for it. This integration will make use of the API written in the previ-
ous section to access the bridge and its devices and provides them to the gateway
software, so that they can then be managed and controlled via its user interface.

To be able to write such an extension, it is first important to understand the internal
architecture of the Home Assistant software.

A Brief Overview of Home Assistant’s Architecture

Pictured in Figure 3.24 on the next page is an overview of the major parts that
comprise the Home Assistant internal architecture [Hom20a].

Device control is presented to the user by means of either the user interface or
automation configuration; both being frontends for the system core.

53

3 Designing a Smart Home Solution

Depending on the type of device that needs to be controlled, the core then calls
on an appropriate internal component. Home Assistant includes a component for
each general type of device it supports (i.e. lights, switches, blinds and so on), each
containing specific functionality for the appropriate device class. It provides several
objects called entities which represent each device type’s capabilities. For example,
the Light component contains all code necessary for managing a lamp from the user
interface as well as a generic Light entity with virtual methods for turning on and
off a lamp, controlling its brightness or color.

Support for the management of specific vendor devices is the responsibility of what
Home Assistant calls a platform, which hierarchically lies between it and the API
containing the vendor-specific code. It serves as another layer of abstraction towards
the more general functionality contained within the device component.

This is where our integration is going to come into play.

Home Assistant

User

UI

Automation

Core Device
Component

Vendor
Platform

Vendor
API

Vendor
Device

Figure 3.24: An overview of Home Assistant’s internal architecture and commu-
nication flow for controlling one particular device. The FPGA bridge integration
will take the part of the vendor platform, communicating with the API to provide
specific control for the bridge hardware.

Extending the Architecture

To integrate support for our bridge, we need to design an integration that includes
a platform for each type of device we wish to have support for from inside Home
Assistant. Specifically, that means we have to create platforms for lamps, dimmable
lambs, color lamps and shutters as well as buttons and switches.

54

3.5 Designing the Gateway

The main work needed in creating a platform consists mainly of extending a device
component’s generic entity classes to provide Home Assistant with an object serving
as a representation of a real device. At the time of writing, the software only provides
15 different entities, but each one is generic enough that this selection covers the
most common types of appliances [Hom20c]. For example, the Light entity can be
extended in different ways to include support for all three types of lamp modules
designed for our bridge hardware.

homeassistant.components.Light

+ supported_features(): int
+ is_on(): bool
+ hs_color(): List[float]
+ brightness(): int
+ turn_on(brightness: int, hs_color: List[float])
+ turn_off()

homeassistant.components.Cover

+ supported_features(): int
+ is_opening(): bool
+ is_closing(): bool
+ is_closed(): bool
+ open_cover()
+ close_cover()
+ stop_cover()

homeassistant.components.BinarySensor

+ is_on: bool

Figure 3.25: UML for Home Assistant’s base entities with all methods and fields
relevant for the bridge component. The capabilities of each subclass depend on
the methods that it chooses to implement as well as the bit field supplied by the
supported_features() method.

By inheriting from these base entities, we create four distinct classes, each a rep-
resentation of the types of appliances our bridge supports – the FPGABinary,
FPGADimmer and FPGARGBDimmer classes each inherit from the Light entity
and implement its methods according to their capabilities. A FPGAShutter class
based on the Cover entity will represent the Shutter module.

Sensors will not receive one entity per device, but per signal instead. A single
FPGABinarySensor based on the Binary Sensor platform will be created for
each Button, Dimmer and Cycle module, as they can each only fire one signal. A
Shutter module will be represented by four of those objects – one for each possible
notification fired by the API object, i.e. long press down, long press up, short press
down and short press up.

55

3 Designing a Smart Home Solution

3.6 Designing a Management UI

The bridge hardware has been designed in such a way that changing the device
configuration requires reprogramming of the MachXO2, a task that usually encom-
passes manually rewriting certain parts of the hardware description logic and then
uploading the resulting code onto the FPGA. The target audience for this project
primarily includes electricians and hobbyists, i.e. people who are not expected to
be able to speak a relatively esoteric computer language such as Verilog.

To increase the accessibility of this solution, the final piece of this project therefore
consists of a graphical interface intended to make device configuration easier for
engineers and end-users. This tool will be designed in such a way that new device
configurations can be created without having to write a single line of Verilog code,
as it produces all of it on its own. The user then merely has to supply the generated
code to the Verilog compiler and programmer to upload it to the MachXO2.

3.6.1 Outlining the Use Cases

Performing a use case analysis is commonly used to identify the required features
of a software project. Since this application has only a single purpose and is thus
going to be relatively simple, drafting a short list of planned features should be
appropriate enough here.

Considering this, the management tool will be designed with the following use cases
in mind:

• The user can manage a device configuration.

– The user can add new appliances and sensors to the configuration and
give them recognizable names.

– The user can manage appliances, including changing their name, device
ID, assigned pins and device parameters.

– The user can manage sensors, including changing their name, device ID,
assigned pins, assigned appliance and device parameters.

– The user can configure each pin to be active low instead of high.

• The user can generate Verilog code from the current configuration.

• The user can save the current configuration.

• The user can load a saved configuration.

56

3.6 Designing a Management UI

3.6.2 Designing the User Interface

Next, the tool’s main dialog window will be designed.

Going into all the intricate details of proper dialog design should not be the focus
of this work, and as such this topic will be kept relatively short, but it should be
stated that the work is loosely based on the seven principles of dialog design laid
out in the ISO 9421 standard [ISO06].

Based on those principles and the list of use cases, a mockup will be designed that
can be used as a point of reference for establishing the working dialog proper in
Section 4.4 (pg. 73). Such a mockup is presented in Figure 3.26. It was designed
so that most of the features are recognizable immediately instead of being hidden
behind obscure menus, and focus is placed on the most important buttons via color
highlights. To support the user in visualizing the configuration result, a preview of
the bridge’s pins is presented on the left side of the dialog that closely resembles the
hardware’s pin banks while providing clear information about which pins are still
available for assignment. Should a bridge pin not support PWM output, it will be
marked as such.

Additionally, to prevent users from creating invalid configurations, the selection
widgets for device IDs as well as pin and appliance assignments only show valid
selections at all times. To help identifying mistakes, devices with erroneous settings
are highlighted, as can be seen in Figure 3.27 on the following page.

Figure 3.26: Mockup of the Management UI’s main dialog. A clearly labeled
preview visualizes the pin assignment. The device settings are clear and simple.
Important buttons are highlighted with green and red.

57

3 Designing a Smart Home Solution

Principle Effect on design
Task suitability The main dialog will be kept simple, and all fea-

tures will be recognizable at a glance.
Self-descriptiveness All components will be labeled clearly and outfit-

ted with tool tips. Important widgets will be high-
lighted. Devices with invalid configurations will be
marked.

Controllability The application will not present the user with un-
expected prompts.

Expectation conformity Familiar widgets will be used, and a preview will
keep the user informed about the expected result.

Error tolerance The user will be asked to confirm irreversible ac-
tions and given a chance to rectify mistakes. No
invalid configuration can be produced.

Individualization suitability The user will be able to give recognizable names to
devices and adjust device IDs freely.

Learning suitability Not applicable, since the tool is simple enough that
it doesn’t require customization facilities.

Table 3.7: Effects of the seven principles of dialog design on the device manage-
ment UI.

Figure 3.27: Mockup of the Sensors tab, displaying appliance assignment op-
tions and highlighting of invalid configurations.

58

3.6 Designing a Management UI

Loading, saving and generating code is accomplished through three simple buttons,
and each of them invokes the operating system’s standard file or directory selection
dialog.

Other than the main window, the application will contain only one more dialog;
meant for configuring a device’s name and its module parameters, the latter of
which are adjusted via appropriate, self-describing widgets. Figure 3.28 shows a
mockup of this dialog.

Figure 3.28: Mockups of the device settings dialog for output and input modules
respectively, containing name and module parameter settings. Parameters are
adjusted through appropriate widgets fitting the type of value.

59

4 Implementation of the Design

Designing the smart home solution in great detail was a rather extensive process, but
it allows us to keep this chapter’s notes on the implementation of each component
– relatively – short.

We start work on the design’s realization by first implementing the bridge logic,
during which we will touch upon using Verilog as a hardware description language
and some of the nuances of hardware logic design in general.

Afterwards, it is time to work on the gateway by first creating the Bridge API
and, following shortly after, the Home Assistant integration that uses it. Topics
worth mentioning here include the setup of a suitable environment and the devel-
opment of the individual integration components.

Work on the solution concludes by creating the management UI, which will deal
with using Qt as a UI toolkit and the generation of Verilog code through a template
system.

4.1 Implementing the Bridge Hardware Logic

Designing the bridge’s logic appeared as the most comprehensive task of the previous
chapter, and its realization also takes a significant amount of effort.

We are going to briefly introduce the Verilog language used to describe and realize
the hardware’s behavior, followed by a few notes on the module development it-
self. Since the hardware brand prescribes the use of a certain development suite, it
seems appropriate to briefly talk about it as well. We close this section by discussing
simulation as a means of testing the behavior of the produced code.

4.1.1 Working with Verilog

Verilog is a HDL – a hardware description language – used for the abstract modeling
of digital logic and behavior [Ver06].

61

4 Implementation of the Design

Verilog possesses several facilities that are analogous to elements more commonly
found in programming languages in order to abstract from the concept of concrete
logic gates and circuits that define the behavior of the hardware to be designed.
Individual modules can be instantiated like objects, and can contain registers of
different sizes that are able to be loaded with data, like variables. Conditional
logic allows for branches and loops, and repeated calculations and routines can be
summarized within functions and tasks, so that cleaner code can be produced.

This allows hardware behavior to be modeled in a relatively high-level manner, as
it takes the responsibility of laying out concrete logic gates and wiring on a circuit
board away from the designer, who can instead focus on describing the abstract
behavior using a syntax that closely resembles a high-level programming language.
This arguably makes hardware design a lot more accessible, especially to designers
already experienced in software development.

Process of Design Realization

After the hardware logic has been described using the HDL, it has to be processed
for use on the FPGA, much like source code has to be compiled into machine code to
be executed as a program. This process consists of several individual steps [BV04],
the most significant ones being:

Synthesis. The Verilog code gets compiled into a netlist, which is a compilation of
circuit gates that are equivalent to the described hardware behavior. After
generation, the netlist is first optimized and then mapped to the resources
available within the FPGA.

Place and route. The logic blocks contained in the netlist get placed onto concrete
physical locations on the FPGA, and the wiring between them is determined.

Upload. The final resulting logic data is uploaded to the flash memory of the FPGA.

With the aid of appropriate tools, all of these steps are mostly automated, so we
can primarily focus on writing the Verilog code.

4.1.2 Developing the Bridge’s Logic Modules

In general, the basic workflow when translating the modules designed in Section 3.3
(pg. 26) to Verilog code consists of defining the module’s input and output ports,
any module parameters and internal registers, if applicable, and finally the module’s
logic itself.

62

4.1 Implementing the Bridge Hardware Logic

Instead of describing the whole process, we will only talk about some general aspects
of the hardware development. Aside from all the modules we previously designed,
there are a few additional ones needed to be created, most notably a top module
housing the complete design. It is also important to mention in what ways the
process of hardware programming differs to software development. Finally, the
implementation of one particular component, the CRC calculation, also deserves
some special mention.

Creating a Top Module and Auxiliary Module Instances

Much like software applications have a class or function that serves as a main entry
point, the bridge logic requires a certain module that contains all other modules we
created, alongside the wiring that connects them as well as some auxiliary compo-
nents. This module is generally called a top module.

Here, next to the components we previously designed, we are going to create an
instance of the MachXO2’s internal components that we require for this project.
One of these is the embedded I2C function block, which we previously talked about
during the design of the I2C Controller in Subsection 3.3.4 (pg. 38). It is adjoined
to an instance of the device’s Wishbone bus, which we can now connect to the I2C
Controller via the appropriate wires.

We also need to define an instance of the MachXO2’s internal oscillator, which will
serve as the device’s global clock source. Its frequency can be configured from a
range of different values, ranging between 2.08 and 133 MHz [Lat17].

The default value of 2.08 MHz is sufficient for our bridge. The only timing con-
straint we need to fulfill is that the bridge be fast enough to accommodate for I2C
transmissions, which the Raspberry Pi, by default, clocks at a frequency of 100 kHz
[Bro12]. According to the MachXO2’s documentation [Lat16], the clock driving the
Wishbone bus needs to be at least seven times as fast as the I2C clock during a
transmission, which the default frequency provides easily enough.

Differences to Software Development

A big fundamental difference to software design is that, since the hardware is not run
by a CPU, it at first has no concept of sequentialism at all. When defining a block of
code in Verilog, all of the register assignments contained within will be executed at
the same time. However, some of the hardware behavior that we designed previously
does require to be performed in a certain sequence; especially initialization routines
and I2C communication.

63

4 Implementation of the Design

To enable a module performing tasks in a certain order, it can be outfitted with
a state machine. Driven by the device’s global clock, it will define the module’s
behavior at each cycle based on the value of an internal state register, and it can
modify this value based on the operation that is to be performed next in sequence.
Conditional branches can be used to adjust the behavior further based on the current
module inputs or internal values and counters. In Verilog, this is realized through a
switch-case-like statement.

The most prominent state machine in the bridge hardware logic is featured in the
design of the I2C Controller, as it requires to repeatedly perform read and write
operations on the MachXO2’s internal Wishbone bus. This process involves sending
a certain sequence of input signals while also waiting for a response signal from the
bus intermediately. This effectively makes each of those bus operations a small state
machine in and of itself, causing the resulting outer state machine to become quite
complicated; however, through the use of Verilog pre-compiler macros, the module’s
code can fortunately be kept somewhat readable.

Calculating CRC in Hardware

The general algorithm for computing the CRC error checking data, as described
in Subsection 3.4.5 (pg. 44), basically amounts to a series of polynomial divisions.
Calculating the remainder of a polynomial division can be achieved through a series
of bit shifting and XOR operations. As a result, it is very easily implemented in
hardware. The message polynomial is fed into a n-bit shift register, one bit per
cycle. If this causes the most significant bit of the register to be set, the whole
register is then XORed against the generator polynomial, which effectively subtracts
it from the current intermediate result, just like it would be done in polynomial long
division. Once the last message bit has been shifted in, the register holds the CRC
check value, which can then be appended to the message when sending, or checked
against zero when receiving.

However, since messages are transmitted byte-per-byte instead of bit-by-bit, this
approach would require eight cycles for each byte to compute. This may not be fast
enough for the MachXO2’s embedded I2C function block, which may require the
next byte to be ready within seven clock cycles [Lat16].

The CRC calculation can be optimized by employing a lookup table, where part of
the intermediate result is used to lookup the resulting CRC check value, as described
in [Sar88]. This reduces the time required to process one byte to a single clock cycle.
A lookup table for eight bits of a CRC-16 calculation contains 256 entries of 16 bits,
or 512 bytes in total. Because of its small size, it can be easily generated by software
and then statically included in the hardware ROM.

64

4.1 Implementing the Bridge Hardware Logic

Wait
for I2C

IRQ

Clear
IRQ

Read
Transfer
Direction

Read
I2C
byte

Check for
IRQ

Check for
EOF

Clear
IRQ

Fetch
reply
byte

Send
reply
byte

Check for
IRQ

Check for
EOF

Clear
IRQ

No IRQ

IRQ

Read

No EOF No IRQ

IRQ

EOF

Write

No EOFNo IRQ

IRQ

EOF

Write
Wishbone

Addr

Read
Wishbone

Data

No ACK

ACK received

Figure 4.1: Excerpt from the I2C Controller’s internal state machine. Each
rectangle state is a Wishbone read or write operation that, in itself, consists of
sub-states. Pictured on the bottom is a generic Wishbone read operation.

65

4 Implementation of the Design

4.1.3 Working with Lattice Diamond

The FPGA that is used in this project, the MachXO2-7000, requires use of Lattice
Diamond1, a proprietary, full-fledged FPGA development suite. It requires a license
to be used, which is available for free after registration with a valid e-mail address
on the Lattice website.

Lattice Diamond features all the tools necessary for the entire development process,
as it comes with an IDE, synthesis and place and route tools as well as a programmer
for the MachXO2.

Choosing a Synthesis Tool

The Lattice Diamond IDE ships with two different synthesis tools: the default Lattice
Synthesis Engine as well as Synplify Pro2, a synthesis tool from another development
suite of the same name, created by Synplify.

During development of the bridge logic, in particular while implementing the I2C
Controller module, it came to attention that the Lattice synthesis tool appeared to
produce incomprehensible bugs, observed through strange behavior of the hardware
after synthesis that was irreproducible in the simulation of the same code, which
had produced the expected results. This phenomenon caused a significant delay in
development, as it happened without any apparent reason, but the problem was
eventually able to be narrowed down to the choice of synthesis tool, since after
switching to Synplify Pro, the developed logic started to work as expected.

Research on this problem unfortunately brought up no further information regarding
this issue. It is suspected that the problem lies with the tool’s internal translation
of state machines described within the logic, since during testing, the MachXO2
displayed several values for states that had not even been defined in the code, but
this is merely conjecture. In any case, the Synplify synthesis tool has produced
expected results more consistently.

4.1.4 Verifying Functionality through Simulation

A big hurdle in designing the hardware logic, especially when comparing the process
to software development, is caused by the MachXO2 not providing any interface

1http://www.latticesemi.com/latticediamond
2https://www.synopsys.com/implementation-and-signoff/fpga-based-
design/synplify-pro.html

66

http://www.latticesemi.com/latticediamond
https://www.synopsys.com/implementation-and-signoff/fpga-based-design/synplify-pro.html
https://www.synopsys.com/implementation-and-signoff/fpga-based-design/synplify-pro.html

4.1 Implementing the Bridge Hardware Logic

like output devices or serial consoles3 for debugging the coded hardware behavior,
so verifying that any logic behaves as expected is actually not quite trivial. The
FPGA does contain eight on-board LEDs that can be controlled from the digital
logic, which at least allows for some limited observation of its internal state. For
example, this proved to be very useful in displaying the current state of the I2C
Controller’s state machine. However, this method of verification is obviously quite
limited.

One way to test the Verilog code is through the use of a simulator, which effectively
emulates the module logic and logs its output signals for a determined number
of cycles. To provide the module with various input signals, it can be driven by
what is called a test bench, which in itself is another Verilog module containing an
environment for testing the logic.

A test bench mainly consists of an instance of the module to be tested, registers
and wires that can be linked to the module’s input connections as well as a block
containing register assignment operations, through which the module’s inputs can
be manipulated.

The resulting output can then be visualized through a logic analyzer, allowing one
to inspect the module’s simulated output signals. This information is quite helpful
to determine whether the logic works as intended.

While the functionality of individual modules can be verified through this method
well enough, it becomes increasingly difficult to test the behavior of interconnected
modules or even the whole system. This is hindered even more through the fact that
some of the designed logic depend on internal components of the MachXO2, like the
Wishbone bus or the embedded I2C function block, which cannot be simulated as
they are essentially black boxes. The only point of reference here are the components’
respective documentation, from which their predicted output signals can be inferred
to aid in the simulation.

Another point of difficulty is present in a discrepancy existing between simulated
and real hardware behavior. For example, the simulation tool that was used for this
project, Icarus Verilog4, supports initializing registers to certain pre-loaded values.
This is not the case with the FPGA synthesis tools, which ignore the corresponding
statements, so every register is initialized to zero. Some of these intricacies are
unfortunately not clearly documented anywhere, and thus overall a lot of guesswork
was involved in the development of the hardware logic.

3Of course, such an interface could be designed by oneself, but it would have to be verified as
well before being of any meaningful use.

4http://iverilog.icarus.com/

67

http://iverilog.icarus.com/

4 Implementation of the Design

Figure 4.2: Using a logic analyzer to aid in verifying the intended behavior of
I2C Controller and Device Controller, with the help of a simulated Wishbone bus.
Pictured is the Device Controller reacting to a CRC checksum failure from an
incoming I2C message by responding with F1 30 FA.

4.2 Developing the Bridge API using Python

The design for the Bridge API, created in Subsection 3.5.3 (pg. 48), was imple-
mented in a rather straightforward manner. We shall only discuss two brief topics
of importance, which is testing and deployment of the resulting code.

4.2.1 Testing the API

Ensuring that the functionality of the API works as intended was done by help of
four different tools that worked together.

Dummy I2C Implementation

As was mentioned during the creation of the API design, the class representing the
I2C Bus can make use of different bus implementations. Aside from the proper I2C

68

4.2 Developing the Bridge API using Python

bindings, a dummy implementation was created that simulates a real I2C bus and
bridge, together with some dummy appliances connected to it.

This helped the testing of many of the API’s components, especially regarding I2C
communication; as the I2C hardware bindings are only properly usable on systems
with real I2C hardware support. Since the API was mainly developed on a stan-
dard desktop computer which lacked such functionality, the dummy implementation
served as a useful substitute.

Unit Tests

Using the dummy implementation, a few test cases have been written that automati-
cally test basic functionality like successful connection to the I2C bus, reading device
types and valid states for certain device types. These could be quickly executed after
every iteration of the development to make sure the API still functioned.

Debugging Console

The API has been supplemented with a debugging console that can be run by
executing the Python API module via command-line. It can be used to send I2C
messages to the bridge by manually inputting the bytes, and the tool will show the
retrieved response. CRC data will optionally be calculated automatically from the
input bytes.

The console served as an invaluable tool during debugging of I2C connectivity and
CRC verification.

Device Monitor

An additional Python module, the device monitor, was created alongside the API.
It serves as an example implementation of a GUI tool making use of the API to list
and manage the bridge’s devices, and therefore appears as a very simplistic gateway
software.

It helped to ensure that the API functioned as intended, before including it in the
much more complex Home Assistant. Figure 4.3 on the following page shows the
Device Monitor running on the gateway.

69

4 Implementation of the Design

Figure 4.3: Device monitor used for verifying the API. It also serves as an
example for a graphical application that makes use of the API. By running the
monitor on the gateway, the bridge’s appliances can be controlled.

4.2.2 Creating a PyPI Package

PyPI 5, the Python Package Index, is a public, community-driven repository of
Python packages and serves as one of the primary distribution methods of Python
projects. It defines a standard for preparing redistributable software packages, which
can be installed into a Python environment through a package manager, which also
automatically installs all necessary dependencies. This offers a slightly more user-
friendly approach to distributing code than installing from source or a repository.

Furthermore, this is also how the Home Assistant documentation prescribes how
third-party code should be added to the software [Hom20b]. As such, the API was
packaged in a PyPI-compatible format. Even though it has not been made public
at the time of writing, the created software package can already be used for local
deployment, and installed to a Home Assistant environment via command-line.

The process of packaging involves following a certain directory structure as well as
the creation of a setup.py file containing metadata about the package, as de-

5http://pypi.org

70

http://pypi.org

4.3 Developing the Home Assistant Integration

scribed in the official documentation [Pyt20]. Based on this file, the redistributable
packages are automatically created through supplied tools.

4.3 Developing the Home Assistant Integration

After the Bridge API is finished and working, it is now time to manifest the final
part of the gateway by including support for our bridge with a Home Assistant
extension.

Work on the integration begins by setting up a development environment for
Home Assistant, after which we introduce our bridge to the system by connecting
to our Bridge API. Lastly, the different device platforms have to be realized
to allow representations of our appliances and sensors.

4.3.1 Setting Up a Development Environment

In order to start working on a Home Assistant extension, it is first necessary to
set up a proper environment which contains all of the necessary tools and libraries.
As per the documentation [Hom20d], this task merely involves cloning the Home
Assistant source repository and installing a few dependencies.

The Bridge API package that was created during the last section is also installed to
this environment, so that it can be used by the extension.

Creating an Integration

The Home Assistant development environment fortunately supplies several tools that
aid in the creation of a new integration. In particular, the scaffold script creates
a basic skeleton integration from a template with the correct format, serving as a
convenient starting point.

4.3.2 Integrating the API

In Home Assistant, when an integration is initialized, a special setup method is
called. Here, it gets the opportunity to perform initialization and to forward setup
calls to its device platforms.

71

4 Implementation of the Design

This is where we can integrate our Bridge API. Upon instantiation, it will automat-
ically connect to the bridge and scan it for its devices, which it will store for when
the platforms initialize momentarily.

Much like the bridge’s appliances will be represented by entity objects, we also
create and register an entity for our bridge itself, so that it will show up on Home
Assistant’s list of connected devices later.

Enabling Customization through Config Flow

The API can be configured to adjust the I2C connection parameters, notably slave
address and bus identifier. It can also be set to use the dummy I2C implementation
mentioned earlier, providing Home Assistant with simulated devices. However, we
first need a way for the end user to configure the API through Home Assistant.

While it is possible to manually configure an integration via a text file, this approach
is not particularly user friendly. Instead, Home Assistant provides a standardized
way to allow integrations to be configured through its graphical interface, a pro-
cess it calls Config Flow. To add support for this, the integration has to conform
to this standard by defining a configuration schema, which is an abstract descrip-
tion of all its configurable settings and their allowed values. (Home Assistant uses
voloptuous6, a data validation library, for this purpose.)

All integrations supporting Config Flow are listed in Home Assistant’s menu for
adding a new integration to the configuration. When a user selects one of them,
its configuration schema is parsed by the software, generating a standardized dialog
containing all of the options defined in the schema. Figure 4.4 on the next page
shows an example of this. After the user confirms his settings, the configuration
routine automatically verifies the input values per the rules set in the schema and,
if valid, supplies them to the aforementioned setup method of the integration, so
that it can finally pass these values to the API.

The bridge integration received support for a Config Flow setup, as it is a relatively
effortless process. A schema was created containing the API parameters, together
with a routine that performs some additional sanity checking on the user-supplied
configuration values.

4.3.3 Setting up the Device Platforms

The three supported platforms – Light, Cover and Binary Sensor – have been cre-
ated according to our designs in Subsection 3.5.4 (pg. 52). During setup of the

6https://github.com/alecthomas/voluptuous

72

https://github.com/alecthomas/voluptuous

4.4 Developing the Management UI

Figure 4.4: Configuration dialog automatically generated for the bridge integra-
tion through the use of Config Flow.

integration, each platform also gets initialized via a call to its own setup method.
Here, it looks up the list of bridge devices from the API, and creates their entity
representations accordingly.

Alongside the methods listed in our designs, each entity also got outfitted with some
meta information including a reference to the bridge entity. This is used to link the
two entities together, which is required for Home Assistant to display a list of all
devices connected to the bridge inside its management menu.

4.4 Developing the Management UI

Lastly, the device configuration management UI tool will be completed. As will be
explained shortly, by creating the mockup dialogs in Section 3.6 (pg. 56), we already
have completed a significant amount of work towards the application, since the use
of Qt as a toolkit greatly simplifies the dialog implementation step. Other than
implementing the necessary logic, we still have to devise file formats for save and
data files and device data and choose an efficient way to generate Verilog code
from a user-made device configuration.

73

4 Implementation of the Design

4.4.1 Using Qt as a UI Toolkit

There are several toolkits available that help in rapid development of cross-platform
user interfaces. Among the more popular choices with support for Python are GTK7,
TkInter8 and Qt9. The three projects are very similar to each other, as they all base
the creation of layouts around the arrangement of UI widgets and offer roughly the
same functionality. Qt was chosen for this project due to personal experience.

Creating window layouts using Qt can be done in several ways. The layout can either
be described purely via code, or a graphical design tool can be used, in a WYSIWYG
fashion, to create and save layouts into XML files that the Qt engine can then use
to generate the dialog at application runtime. This latter approach allows for rapid
and effective UI design, especially since the canonical tool Qt Designer shipped with
the toolkit itself is efficient and straightforward to use.

This also makes it an excellent tool for prototyping user interfaces – in fact, the
mockups showed in Section 3.6 (pg. 56) were designed in this way. This has an
added bonus of allowing the drafted prototypes to be translated to the final, usable
dialogs with relatively few adjustments.

After creating all necessary window layouts, the resulting XML files can be loaded
and inflated from within the Python code, which then merely has the responsibility
to fill the widgets with the appropriate data, and to update their states according
to user interaction.

Drawing the Preview Image

Using Qt has another benefit, as the toolkit also comes with image drawing func-
tionality. The management UI can make use of this to easily create the preview
image showing the current pin assignments, without the need to resort to external
drawing libraries.

Although the image is generated dynamically, the information containing the lay-
out of the pins remains hard-coded. It was considered to develop a more general
structure for pin layouts to allow for easier adjusting to different devices other than
the MachXO2, but this was ultimately decided against, seeing as this project only
serves as a proof-of-concept for the time being.

7http://www.gtk.org
8https://wiki.python.org/moin/TkInter
9http://www.qt.io

74

http://www.gtk.org
https://wiki.python.org/moin/TkInter
http://www.qt.io

4.4 Developing the Management UI

Figure 4.5: Final version of the preview image, generated by Qt from the ap-
plication’s state.

4.4.2 Defining JSON Data Structures

The management UI needs to understand two types of external data: its save files
and a device type database, so we need to devise a certain format for each.

Save Files

Since the application is going to support loading and saving of the current device
configuration, a file format has to be defined for this data. JSON has been chosen for
this purpose, as it is a format that is widely used, humanly readable and supported
by Python out-of-the-box.

The data structure contains all information about a device configuration, and the
application receives support for exporting and importing its current state into or
from this format.

75

4 Implementation of the Design

Device Type Database

The manager also needs some type of record containing all of its supported output
and input modules, including their names, descriptions and properties. Again, JSON
appears as an appropriate choice. A database format like SQLite could also be
considered, but since the amount of data rows is relatively small and there is no
need for sophisticated queries, this solution seemed to be too elaborate for this
purpose.

{
"1": {

"name": "Dimmer",
"description": "A device whose state can be regulated via

pulse-width modulation (PWM).",
"driver": "Out_PWM_Single",
"pins": {

"signal": {
"active_low": false

}
},
"parameters": {

"delay": {
"name": "Step delay",
"description": "When updating the lamp's brightness,

the delay (in ms) between each step.",
"type": "int",
"default": 10,
"min": 1

}
}

}
}

Listing 1: Example for an output device type database file containing one type.
Types are indexed by a unique ID number and require at least a name, driver
and one pin.

Following the Prototype pattern, the application reads this database into several
read-only template objects. When the user wishes to add a new appliance or sensor,
new device objects will be created from those templates accordingly.

4.4.3 Generating Verilog Code through Templates

After the user has created a device configuration and the application has checked
its validity, it will allow generation of the equivalent Verilog code for importing into

76

4.4 Developing the Management UI

the Lattice project.

It should be noted that, to keep this process simple and clean, this application is
not generating a complete Verilog project. Instead, only the files containing infor-
mation pertaining to the custom device configuration will be generated, and have
to manually be put alongside the remaining, static Verilog files. They will then be
automatically included through compiler directives at the appropriate locations.

Because the basic structure of the generated code remains the same across all con-
figurations, the application uses a template engine to generate the code. Instead
of writing an algorithm that produces each file line by line, templates are written
instead; one for each file to be generated. During processing, a template will gen-
erally be kept as-is, except for special template tags that are evaluated to produce
the final output.

Commonly, these tags include variables that can be filled in with the supplied values,
but depending on the template engine, there is also support for basic conditional
logic or even loops, making these templates very versatile. moody-templates10

is a template engine for Python with such functionality.

Having written templates for the required files, generation of Verilog code becomes
quite simple. The templates merely have to be supplied with the appropriate data,
and are then filled in with the proper values.

Unfortunately, it is very hard to write clean, readable templates that also produce
clean results at the same time. Adding to that, Lattice’s Verilog parser seems to be
particularly picky about its syntax, even failing to read certain lines if they merely
contain a single surplus whitespace at the end. This is why, in this particular case,
the focus is shifted towards producing pretty Verilog output files, while the template
code readability regrettably suffers as a result. Listing 2 on the next page shows, as
an example, one of the template files written for this process.

Aside from Verilog code, another file has to be generated specifically for Lattice
Diamond that tells it which of the source files to include when compiling the project.
This is dependent on the types of devices in the configuration. When a module does
not get instantiated inside a project, Lattice Diamond assumes that this module
belongs to the top level, which causes compilation errors. A similar problem happens
should a module be referenced that does not belong to the source files.

10https://github.com/etianen/moody-templates

77

https://github.com/etianen/moody-templates

4 Implementation of the Design

{% extends "base.tpl" %}
{% block title %}Output device modules file{% endblock %}
{% block body %}

{% for i, dev in enumerate(devices) %}
/*

Output device {{dev.dev_id}} ({{dev.name}})
Type: {{dev.type}}
Pin(s) used: {{", ".join(pin.assigned_pin.name for pin in dev.pins.values())}}

*/
// Device outputs{% for pin_name, pin in dev.pins.items() %}
wire dev_{{ dev.dev_id }}_{{ pin_name }}_o;
assign pin_signals_o[{{pin_ids[pin.assigned_pin.name]}}] = \\
{% if pin.active_low %}~{% endif %}dev_{{ dev.dev_id }}_{{ pin_name }}_o;{% endfor %}

// Device driver
{{dev.template.driver}} #(

.DEV_ADDR(8'd{{dev.dev_id}}){% for param_name, param in dev.parameters.items() %},

.{{param_name.upper()}}({{param.export()}}){% endfor %}
) output_{{dev.dev_id}} ({% if dev.uses_clk %}

.clk_i (clk_i),{% endif %}{% if dev.uses_bus %}

.bus_access_i (bus_access_i[{{i}}]),

.bus_req_o (bus_requests_o[{{i}}]),

.bus_cmd_o (bus_cmd_o),{% endif %}

.state_i (device_states_i[{{dev.dev_id * 24 + 23}}:{{dev.dev_id * 24}}])\\
{% for pin_name, pin in dev.pins.items() %},

.{{pin_name}}_o(dev_{{dev.dev_id}}_{{pin_name}}_o){% endfor %}
);
{% endfor %}
{% endblock %}

Listing 2: Verilog code template for the file containing output modules. Tags
are identified by curly braces. Some long lines had to be wrapped here; this is
denoted by a double backslash (\\).

78

5 Evaluation

By comparing the behavior of the solution to the goals we set before we started
working on it, we will see if we can consider our work to be successful. We will
especially take considerable care to evaluate the system’s reliability, including re-
silience against connectivity issues. Finally, we shall test the usability of the
management UI by performing a small-scale user evaluation.

Whenever applicable, significant improvements over the SPI Prototype shall be
noted.

5.1 Evaluating the Goals

In this section, we will revisit the goals we set at the beginning of Chapter 3 (pg. 15)
and decide, by examining our solution’s properties and behavior, whether we have
fulfilled them to an appropriate extent.

5.1.1 Maintainability and Accessibility

Although the bridge hardware still has to be reprogrammed through Lattice Di-
amond, the approach of offering the management UI made device reconfiguration
easier to perform, especially for non-developers. The comparably simple graphi-
cal tool produces ready-to-use Verilog code that, after integrating into the Lattice
project, automatically compiles to a usable result. Compared to the SPI Prototype,
which required manual reworking of the Verilog code, this is a big improvement in
terms of accessibility.

After re-initializing the bridge integration inside Home Assistant after performing
changes in a device configuration, the gateway automatically adds all new devices
without any required intervention. However, should device IDs have been changed
in the process, then old device entities sometimes point to wrong devices, and any
appliances or sensors that were removed from the configuration still appear inside
Home Assistant. Therefore, it is advised to manually remove the bridge integration
before adjusting the device configuration.

79

5 Evaluation

The accessibility still has room for improvement. For example, the reconfiguration
process could be further streamlined by having the management UI making direct
use of Lattice’s build tool chain, avoiding the need of manually copying files and
executing the build process inside Lattice Diamond. Further research has to be done
on the integrability of the Lattice toolset in this regard.

5.1.2 Scalability

The bridge logic and protocol enforce a hard limit of 256 devices for each group
of appliances and sensors. The MachXO2 only contains 110 usable I/O ports for
devices, however. Depending on the types of devices used, this should allow for
approximately 30 to 50 appliances inside a single environment, perhaps more if the
number of sensors is reduced.

For a private home environment, this number should be more than sufficient. Pro-
fessional or office use might drive the solution to its limits, however.

Although this was not tested due to lacking the necessary equipment, one could
theoretically increase the number of devices by adding more bridges onto the very
scalable I2C bus, each configured with a different slave address. Home Assistant
readily supports this, as several instances of the bridge integration can be added,
each with a different configuration. Quick testing also revealed that the bindings
used to access the Raspberry Pi’s I2C interface do not appear to require exclusive
access to a single bus, making this a potentially feasible idea; but this warrants
more research as well. At the very least, the Raspberry Pi’s second hardware I2C
bus should be usable by another FPGA bridge without any conflicts.

5.1.3 Conformance and User Experience

Through use of the Config Flow feature mentioned in Subsection 4.3.2 (pg. 71),
the bridge integration can be added and configured effortlessly to an existing Home
Assistant setup. All devices are automatically recognized and made available for
control.

Home Assistant only provides default names for each device based on its type, but
this can be changed via the device’s management menu to allow for more user-
friendly names.

Automation rules are, for the most part, easily created using Home Assistant’s man-
agement interface, allowing sensor-appliance interactions to be customized freely. All
input modules have been shown to successfully trigger automation rules.

80

5.1 Evaluating the Goals

Figure 5.1: Home Assistant device control interface, showing all connected ap-
pliances and their current state. Devices can be categorized by area and renamed
freely.

Unfortunately, the software has a few quirks that stand in the way of its usability.
For instance, automation of Cover devices like our Shutter is less straightforward
than with the other devices; as it involves manually inputting the name of the
internal entity belonging to the shutter, whereas other devices can simply be selected
from a list. This is unfortunate, but there appears no obvious way around it. Home
Assistant’s management interface is still relatively recent, and perhaps a future
version improves on this issue.

To further improve the user experience, the device management UI could be aug-
mented to also generate a configuration file for Home Assistant that automatically
sets up appropriate automation rules based on the device configuration. The soft-
ware stores this information in the human-readable YAML file format, which is
similar to JSON and thus very easy to generate. However, as devices in automation
rules are identified by their internal entity names, these would have to be generated
as well. Also, this method would require some way of automatically transferring
these files to the gateway and then restarting Home Assistant afterwards.

5.1.4 Performance

Home Assistant, surprisingly, performs magnitudes better on the Raspberry Pi than
openHAB did. The required time from startup to full availability of the UI averages
at around ten seconds; although the UI sometimes did take a few more seconds to

81

5 Evaluation

initialize. Considering this only happens when the system is starting up, however,
this becomes a moot point.

Slightly more groundbreaking is the interface’s responsiveness to user input. Whereas
with the SPI Prototype, there used to be a significant delay of up to two seconds
between toggling a lamp’s state via openHAB’s UI and seeing the result, in Home
Assistant every change takes place nearly instantly, even if toggling several lamps
at once. This is a big improvement for the overall user experience.

5.2 Evaluating the Reliability

As this thesis specifically set out to create a smart home solution that is resilient,
its reliability under various circumstances should be examined in greater detail.

5.2.1 Response to Connection Problems

A key feature of the solution is its ability to handle connection problems between the
bridge and the gateway. To evaluate this, three tests have been performed during
standard operation: removing the cabling between the two devices, a spontaneous
reboot of the Raspberry Pi and reprogramming of the bridge hardware. Both have
led to similar results, described below.

From the bridge’s perspective

After five seconds of no contact from the Raspberry Pi, the bridge automatically
switches to its standalone operation mode. The device states are kept as they were
before the connection failure, and sensor commands are automatically sent to the
assigned appliances, allowing them to be controlled manually.

To the user, this mode is currently expressed through activation of a LED onboard
the MachXO2, but this could potentially be changed to send a signal to any device.
For example, this signal could be used to activate a watchdog timer that, after a cer-
tain amount of time, automatically reboots the Raspberry Pi, removing the need for
manual intervention and thus further improving the system’s overall availability.

82

5.2 Evaluating the Reliability

From the gateway’s perspective

Failure during an I2C communication causes the API to temporarily pause auto-
matic polling, with an continuously increasing amount of timeout up to 30 seconds.
During this time, inside Home Assistant’s user interface, the device controls become
unresponsive. After the connection is restored, polling automatically resumes and
normal operation is resumed.

5.2.2 Long-Term Uptime and Stress Tests

The system has been observed to remain fully functional for at least four days of
constant operation under normal circumstances, with no connection failure between
the bridge and gateway logged.

Furthermore, the gateway has underwent a short stress test to examine its reliability
during times when the system is in high load. This should usually not be the case
during production, as the Raspberry Pi is not supposed to run any other services
besides the gateway software. However, maintenance may sometimes require system
updates, which can cause a significant impact on performance due to disk I/O.

Putting the gateway under severe CPU and memory load for three minutes does not
appear to cause any apparent problems, as the Home Assistant UI has remained re-
sponsive throughout. Only when high disk activity was introduced to the stress test,
however, the bridge eventually signaled a connection failure. This is to be expected
from a Raspberry Pi, as personal experience shows that the storage controller is by
far its biggest bottleneck.

After the stress test had finished, the connection was reestablished almost imme-
diately, showing that the solution behaves exactly as intended under this circum-
stance.

5.2.3 State Update Event Redirection Bug

Although the hardware logic has been carefully tested as much as possible, the
bridge unfortunately still contains a critical bug.

In certain cases, the events of the State Update bus, which are meant for giving an
output module the ability to update its own state, do not seem to get sent by the
Device Manager to the correct output module. This was noticed because sometimes,
a shutter gets stuck inside a movement cycle, failing to stop itself. Instead, the
update request either gets lost completely or sent to another output module, turning

83

5 Evaluation

it off instead. This bug only appears during the bridge’s standalone mode. When
connected to the gateway, the state update succeeds at all observed times.

Regrettably, this flaw significantly reduces the solution’s overall reliability when
used without the Raspberry Pi. Although much time has been spent in attempting
to track the bug down, the limited set of testing tools available as well as a lack of
personal experience in the field of hardware development caused the bug’s origin to
remain in obscurity.

5.3 Usability of the Management UI

A very brief evaluation of the management tool designed in Section 3.6 (pg. 56) was
performed to receive feedback on the dialog design and general usability.

The test group consisted of four people with varying degree of expertise in the smart
home domain, ranging from completely inexperienced to competent. They were
briefly introduced to the basic concepts of the tool and its purpose. Afterwards,
they were given a fabricated scenario of a smart home setting with some appliances
and sensors, which they were then supposed to translate to a device configuration
for this solution, using the management application. The whole process was closely
monitored and a brief interview was held afterwards, asking the subjects for feedback
on the design of the application and their experience while using it.

Each test subject successfully managed to autonomously recreate the fictional sce-
nario using the application. The somewhat less experienced users took a bit longer
than the ones more versed in the field, which was to be expected.

Following is a brief summary of the most significant points from the user feedback.

Whenever a new device is added, its settings dialog pops up before any pin assign-
ments can be done (as can be seen in Figure 3.28 (pg. 59).) This has caused some
confusion among one of the users, as they expected to be able to assign pins right
away, not finding the option for it among the device’s settings. It could be consid-
ered to omit the configuration dialog upon adding a device, only showing it when a
user presses the appropriate button, but it would have to be tested again whether
this method meets with more acceptance.

The device parameter settings were also confusing to some users, as the tool tip hints
mostly went unnoticed by them, but this can also be explained by having failed to
provide proper context beforehand.

The preview image was generally seen as helpful, but has earned some criticism in
regards to its color choice. Pins occupied by appliances display as bright red, which

84

5.3 Usability of the Management UI

was interpreted by most test subjects as a warning or sign of misconfiguration.
Admittedly, since warnings are displayed as red in other parts of the application,
this conclusion is not far-fetched at all, and as a result the color scheme will be
reconsidered in an eventual future update.

On a side note, although the application was intended to work the same across all
platforms, it has turned out during testing that highlighting certain buttons with
green and red colors did not work under certain versions of Windows. Instead of
using colors, it might be more favorable to use recognizable icons instead. This will
also aid vision-impaired users of the software.

Overall, the evaluation of the management UI showed that while it has some minor
flaws, its usability is generally acceptable. Since the resources allotted for this
project allowed for only a test group of four people, which is rather tiny, the results
are obviously not very accurate. The tests would have to be resumed with a bigger
group to yield more useful information.

85

6 Conclusion

At the end of this thesis, we will summarize the results of our work once again and
give a brief outlook on future work that can still be done on the project.

6.1 Summary

In this thesis, we have analyzed the basic concepts of a smart home system including
its features, device components and connections. We have designed and realized a
complete proof-of-concept solution comprised of individual components. It contains
a bridge that manages appliances and sensors of varying numbers and types, with
reconfigurable FPGA hardware logic built from the ground up specifically for this
project. We created a gateway using a Raspberry Pi that can communicate with
the bridge and provide a convenient user interface for controlling the appliances and
automation rules. For communication between the two, a lightweight, low-level I2C
protocol was invented that has been secured against noise-related errors. To ease the
process of reconfiguring the bridge hardware, a management UI tool was designed
allowing users to create device configurations and export the corresponding Verilog
hardware description language code.

We have discussed some details of the design’s implementation, including working
with Verilog and creating a Python API for interfacing with the bridge. A Home
Assistant integration was built that makes use of the API to allow integration of the
bridge into the gateway software.

The finished solution was evaluated based on various criteria, showing that a smart
home solution can be created using low-cost hardware that is resilient to connec-
tion failure, providing basic device control through the bridge when the gateway
is unavailable. We have seen that the solution responsive, accessible and provides
a user experience similar to commercially available smart home solutions. The so-
lution works purely in the local network and is thus independent from potentially
occurring internet connection problems.

87

6 Conclusion

6.2 Outlook

As was discussed during the evaluation in Chapter 5 (pg. 79), the solution still has
room for improvement. The user experience and accessibility can still be furthered
by, for example, integrating the management tool more tightly into the hardware
programming process and gateway software configuration. The bridge hardware
logic can also be further hardened against potentially undiscovered bugs, perhaps
by someone slightly more experienced in hardware design.

It was stated during the introduction that there will be no focus placed on the actual
integration of the system into a building’s wiring, or to make it usable with different
kinds of appliances that require certain voltages or other power requirements. In-
stead, a basis for further work on this field to be done has been provided. The same
way it itself was based on a prototype, the solution we have now created should
serve as an effective starting point for a concrete implementation of a resilient smart
home system suitable for use in both personal and professional environments.

88

List of Figures

2.1 Smart Home device hierarchy . 6
2.2 SPI and I2C bus wiring comparison. 10

3.1 SPI Prototype architecture overview. 19
3.2 SPI Prototype protocol message format. 21
3.3 Design architecture overview. 24
3.4 FPGA hardware logic overview. 28
3.5 Device Controller schematic. 29
3.6 Binary output module schematic. 31
3.7 Dimmer output module schematic. 31
3.8 RGB Dimmer output module schematic. 31
3.9 Shutter output module schematic. 31
3.10 Shutter output module state transitions. 34
3.11 Button input module schematic. 36
3.12 Toggle input module schematic. 36
3.13 Dimmer Cycle input module schematic. 36
3.14 RGB Cycle input module schematic. 36
3.15 Shutter input module schematic. 36
3.16 Shutter input module state machine. 38
3.17 I2C Controller schematic. 39
3.18 Protocol message format. 41
3.19 Protocol response format. 42
3.20 Bridge API: Abstraction layers. 49
3.21 Bridge API: UML for appliance representation. 51
3.22 Bridge API: UML for commands. 52
3.23 Bridge API: UML for I2C bus. 53
3.24 Home Assistant architecture overview. 54
3.25 Home Assistant: UML for base entities. 55
3.26 Management UI: Main dialog mockup. 57
3.27 Management UI: Sensors mockup. 58
3.28 Management UI: Device settings mockup. 59

4.1 I2C Controller state machine excerpt. 65
4.2 Using a logic analyzer for verification of modules. 68
4.3 Device monitor used for verifying the API. 70

89

List of Figures

4.4 Bridge integration configuration dialog. 73
4.5 Management UI: Preview image. 75

5.1 Home Assistant device control interface. 81

90

List of Tables

3.1 SPI Prototype commands. 22
3.2 Shutter output signal table. 33
3.3 Protocol commands. 42
3.4 Protocol response status codes. 42
3.5 Protocol commands and expected responses. 43
3.6 Protocol response error codes. 43
3.7 Management UI: Effects of dialog design principles. 58

91

Abbreviations

API Application programming interface. A software library written to
provide easier programmatic access to other software or hardware.
See Subsection 3.5.3 (pg. 48).

CRC Cyclic redundancy check. An error detecting code used primarily
in networks. See Subsection 3.4.5 (pg. 44).

FPGA Field-programmable gate array. An integrated circuit with the
ability to be configured after manufacturing. See Subsection 3.1.1
(pg. 17).

HDL Hardware description language. A computer language used for ab-
stract descriptions of hardware logic. See Subsection 3.1.1 (pg. 17)
and Section 4.1 (pg. 61).

I2C Inter-Integrated Circuit. A serial bus used especially in communi-
cation within integrated circuits. See Subsection 2.2.1 (pg. 9).

I/O Input/output.
IoT Internet of Things.
JSON JavaScript Object Notation. A human-readable data format. See

Section 4.4 (pg. 73).
PWM Pulse-width modulation. A technique used to simulate analog volt-

age control by sending pulses of digital signals at certain frequen-
cies. See Subsection 3.3.2 (pg. 29).

SPI Serial Peripheral Interface. An interface specification used for
short-distance communication. See Subsection 2.2.1 (pg. 9).

YAML YAML Ain’t Markup Language. A human-readable data format.
WB Wishbone. A standardized communication bus found in certain

integrated devices. See Subsection 3.3.4 (pg. 38).
WYSIWYG What You See Is What You Get. A design principle for editor

software, where editing is performed on a visual preview of the
final result. See Section 4.4 (pg. 73).

93

Bibliography

[Ama20] Amazon: Amazon Echo (2nd Generation). https://www.amazon.
com/-/de/gp/product/B0749WVS7J/ref=ods_ac_dp_dr_ps?
th=1. Version: 2020. – Accessed on 2020-01-12

[And19] Android Open Source Project: Raspberry Pi 3 - An-
droid Things. https://developer.android.com/things/
hardware/raspberrypi. Version: 2019. – Accessed on 2019-12-19

[App20a] Apple: HomeKit - Apple Developer. https://developer.apple.
com/homekit/. Version: 2020. – Accessed on 2020-01-13

[App20b] Apple: iOS - Home. https://www.apple.com/ios/home/.
Version: 2020. – Accessed on 2020-01-13

[ARA12] Alam, M. R. ; Reaz, M. B. I. ; Ali, M. A. M.: A Review of Smart
Homes—Past, Present, and Future. In: IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews) 42 (2012), Nov,
Nr. 6, S. 1190–1203. http://dx.doi.org/10.1109/TSMCC.2012.
2189204. – DOI 10.1109/TSMCC.2012.2189204. – ISSN 1558–2442

[Ard19a] Arduino AG: Arduino - ArduinoBoardMega. https://www.
arduino.cc/en/Main/arduinoBoardMega/. Version: 2019. – Ac-
cessed on 2019-12-19

[Ard19b] Arduino AG: Arduino Ethernet Shield 2 - Arduino Offi-
cial Store. https://store.arduino.cc/arduino-ethernet-
shield-2. Version: 2019. – Accessed on 2019-12-19

[Bak05] Baker, N.: ZigBee and Bluetooth strengths and weaknesses for in-
dustrial applications. In: Computing Control Engineering Journal 16
(2005), April, Nr. 2, S. 20–25. http://dx.doi.org/10.1049/cce:
20050204. – DOI 10.1049/cce:20050204. – ISSN 0956–3385

[Blo06] Bloch, Joshua: How to Design a Good API and Why It Matters. In:
Companion to the 21st ACM SIGPLAN Symposium on Object-Oriented
Programming Systems, Languages, and Applications. New York, NY,
USA : Association for Computing Machinery, 2006 (OOPSLA ’06). –
ISBN 159593491X, 506–507

95

https://www.amazon.com/-/de/gp/product/B0749WVS7J/ref=ods_ac_dp_dr_ps?th=1
https://www.amazon.com/-/de/gp/product/B0749WVS7J/ref=ods_ac_dp_dr_ps?th=1
https://www.amazon.com/-/de/gp/product/B0749WVS7J/ref=ods_ac_dp_dr_ps?th=1
https://developer.android.com/things/hardware/raspberrypi
https://developer.android.com/things/hardware/raspberrypi
https://developer.apple.com/homekit/
https://developer.apple.com/homekit/
https://www.apple.com/ios/home/
http://dx.doi.org/10.1109/TSMCC.2012.2189204
http://dx.doi.org/10.1109/TSMCC.2012.2189204
https://www.arduino.cc/en/Main/arduinoBoardMega/
https://www.arduino.cc/en/Main/arduinoBoardMega/
https://store.arduino.cc/arduino-ethernet-shield-2
https://store.arduino.cc/arduino-ethernet-shield-2
http://dx.doi.org/10.1049/cce:20050204
http://dx.doi.org/10.1049/cce:20050204

Bibliography

[Blu19] Bluetooth Special Interest Group (Hrsg.): Bluetooth Core Spec-
ification. 5.2. Bluetooth Special Interest Group, 12 2019

[Bro12] Broadcom Corporation (Hrsg.): BCM2835 ARM Peripherals.
Broadcom Corporation, 2012. https://www.raspberrypi.org/
documentation/hardware/raspberrypi/bcm2835/BCM2835-
ARM-Peripherals.pdf. – Accessed on 2019-12-19

[BV04] Brown, Stephen ; Vranesic, Zvonko: Fundamentals of Digital Logic
with VHDL Design. 3. USA : McGraw-Hill, Inc., 2004. – ISBN
0072499389

[Cha01] Chakravarty, Tridib: Performance of Cyclic Redundancy Codes for
Embedded Networks. Version: 2001. http://www.ece.cmu.edu/
~koopman/thesis/chakravarty.pdf Accessed on 2019-12-02

[Con19] Connected Home over IP Working Group: Project Con-
nected Home over IP. https://www.connectedhomeip.com/.
Version: 2019. – Accessed on 2019-12-20

[Goo20] Google: Bringing you the next-generation Google Assis-
tant. https://blog.google/products/assistant/next-
generation-google-assistant-io. Version: 2020. – Accessed
on 2020-01-12

[Hom20a] Home Assistant Community: Components Architecture - Home
Assistant dev docs. https://developers.home-assistant.io/
docs/en/architecture_components.html. Version: 2020. – Ac-
cessed on 2020-01-08

[Hom20b] Home Assistant Community: Development Checklist - Home As-
sistant dev docs. https://developers.home-assistant.io/
docs/en/development_checklist.html. Version: 2020. – Ac-
cessed on 2020-01-07

[Hom20c] Home Assistant Community: Entity - Home Assistant dev
docs. https://developers.home-assistant.io/docs/en/
entity_index.html. Version: 2020. – Accessed on 2020-01-08

[Hom20d] Home Assistant Community: Set up Development Environ-
ment - Home Assistant dev docs. https://developers.home-
assistant.io/docs/en/development_environment.html.
Version: 2020. – Accessed on 2020-01-10

[HSWW17] Haack, William ; Severance, Madeleine ; Wallace, Michael ;
Wohlwend, Jeremy: Security Analysis of the Amazon Echo. 5 2017

96

https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
http://www.ece.cmu.edu/~koopman/thesis/chakravarty.pdf
http://www.ece.cmu.edu/~koopman/thesis/chakravarty.pdf
https://www.connectedhomeip.com/
https://blog.google/products/assistant/next-generation-google-assistant-io
https://blog.google/products/assistant/next-generation-google-assistant-io
https://developers.home-assistant.io/docs/en/architecture_components.html
https://developers.home-assistant.io/docs/en/architecture_components.html
https://developers.home-assistant.io/docs/en/development_checklist.html
https://developers.home-assistant.io/docs/en/development_checklist.html
https://developers.home-assistant.io/docs/en/entity_index.html
https://developers.home-assistant.io/docs/en/entity_index.html
https://developers.home-assistant.io/docs/en/development_environment.html
https://developers.home-assistant.io/docs/en/development_environment.html

Bibliography

[ISO06] ISO Central Secretary: Ergonomic requirements for office work
with visual display terminals, part 110: Dialogue principles / Inter-
national Organization for Standardization. Version: 2006. https://
www.iso.org/standard/38009.html. 2006 (ISO 9241-1110:2006).
– Forschungsbericht

[JO18] Jackson, Catherine ; Orebaugh, Angela: A study of security and
privacy issues associated with the Amazon Echo. In: Int. J. Internet of
Things and Cyber-Assurance 1 (2018), Nr. 1, S. 91 – 100

[Koo15] Koopman, Philip: Best CRC Polynomials. http://users.ece.
cmu.edu/~koopman/crc/index.html. Version: 2015. – Accessed
on 2019-12-06

[Koz16] Kozak, Blake: Household Penetration of Smart Home Subscribers and
Devices. https://technology.ihs.com/584229/household-
penetration-of-smart-home-subscribers-and-devices.
Version: 2016. – Accessed on 2019-12-25

[Lat16] Lattice Semiconductor (Hrsg.): Using User Flash Memory and
Hardened Control Functions in MachXO2 Devices Reference Guide. 2.4.
Oregon, US: Lattice Semiconductor, 11 2016

[Lat17] Lattice Semiconductor (Hrsg.): MachXO2 sysCLOCK PLL Design
and Usage Guide. 2.7. Oregon, US: Lattice Semiconductor, 03 2017

[Lat19] Lattice Semiconductor: MachXO2. https://www.
latticesemi.com/Products/FPGAandCPLD/MachXO2.
Version: 2019. – Accessed on 2019-12-17

[LSS07] Lee, J. ; Su, Y. ; Shen, C.: A Comparative Study of Wireless Protocols:
Bluetooth, UWB, ZigBee, and Wi-Fi. In: IECON 2007 - 33rd Annual
Conference of the IEEE Industrial Electronics Society, 2007. – ISSN
1553–572X, S. 46–51

[NXP14] NXP Semiconductors (Hrsg.): I2C bus specification and user manual.
6. NXP Semiconductors, 4 2014

[ope19a] openHAB Foundation e.V.: GPIO - Bindings. https://www.
openhab.org/addons/bindings/gpio1/. Version: 2019. – Ac-
cessed on 2019-12-19

[ope19b] openHAB Foundation e.V.: myopenHAB Website. https://www.
myopenhab.org/. Version: 2019. – Accessed on 2019-11-25

97

https://www.iso.org/standard/38009.html
https://www.iso.org/standard/38009.html
http://users.ece.cmu.edu/~koopman/crc/index.html
http://users.ece.cmu.edu/~koopman/crc/index.html
https://technology.ihs.com/584229/household-penetration-of-smart-home-subscribers-and-devices
https://technology.ihs.com/584229/household-penetration-of-smart-home-subscribers-and-devices
https://www.latticesemi.com/Products/FPGAandCPLD/MachXO2
https://www.latticesemi.com/Products/FPGAandCPLD/MachXO2
https://www.openhab.org/addons/bindings/gpio1/
https://www.openhab.org/addons/bindings/gpio1/
https://www.myopenhab.org/
https://www.myopenhab.org/

Bibliography

[ope19c] openHAB Foundation e.V.: openHAB Documentation -
HABPanel. https://www.openhab.org/docs/configuration/
habpanel.html. Version: 2019. – Accessed on 2019-11-25

[PB61] Peterson, W. W. ; Brown, D. T.: Cyclic Codes for Error Detec-
tion. In: Proceedings of the IRE 49 (1961), Jan, Nr. 1, S. 228–235.
http://dx.doi.org/10.1109/JRPROC.1961.287814. – DOI
10.1109/JRPROC.1961.287814. – ISSN 2162–6634

[Phi20a] Philips: Friends of Hue. https://www2.meethue.com/en-us/
works-with. Version: 2020. – Accessed on 2020-01-13

[Phi20b] Philips: New to Hue: Bluetooth smart LED lights. https:
//www2.meethue.com/en-us/blog/bluetooth-led-lights.
Version: 2020. – Accessed on 2020-01-13

[Phi20c] Philips: The official site of Philips Hue. https://www2.meethue.
com/en-us/. Version: 2020. – Accessed on 2020-01-13

[Pyt20] Python Software Foundation, The: Packaging Python Projects.
https://packaging.python.org/tutorials/packaging-
projects/. Version: 2020. – Accessed on 2020-01-10

[Ras19a] Raspberry Pi Foundation: GPIO - Raspberry Pi Docu-
mentation. https://www.raspberrypi.org/documentation/
usage/gpio/. Version: 2019. – Accessed on 2019-12-19

[Ras19b] Raspberry Pi Foundation: Raspberry Pi 3 Model B.
https://www.raspberrypi.org/products/raspberry-
pi-3-model-b/. Version: 2019. – Accessed on 2019-12-17

[Ras19c] Raspberry Pi Foundation: Raspberry Pi Downloads - Software for
the Raspberry Pi. https://www.raspberrypi.org/downloads/.
Version: 2019. – Accessed on 2019-12-19

[Sar88] Sarwate, D. V.: Computation of cyclic redundancy checks via ta-
ble look-up. In: Communications of the ACM 31 (1988), aug, Nr. 8,
1008–1013. http://dx.doi.org/10.1145/63030.63037. – DOI
10.1145/63030.63037

[Ver06] IEEE Standard for Verilog Hardware Description Language. In:
IEEE Std 1364-2005 (Revision of IEEE Std 1364-2001) (2006), April.
http://dx.doi.org/10.1109/IEEESTD.2006.99495. – DOI
10.1109/IEEESTD.2006.99495

98

https://www.openhab.org/docs/configuration/habpanel.html
https://www.openhab.org/docs/configuration/habpanel.html
http://dx.doi.org/10.1109/JRPROC.1961.287814
https://www2.meethue.com/en-us/works-with
https://www2.meethue.com/en-us/works-with
https://www2.meethue.com/en-us/blog/bluetooth-led-lights
https://www2.meethue.com/en-us/blog/bluetooth-led-lights
https://www2.meethue.com/en-us/
https://www2.meethue.com/en-us/
https://packaging.python.org/tutorials/packaging-projects/
https://packaging.python.org/tutorials/packaging-projects/
https://www.raspberrypi.org/documentation/usage/gpio/
https://www.raspberrypi.org/documentation/usage/gpio/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/downloads/
http://dx.doi.org/10.1145/63030.63037
http://dx.doi.org/10.1109/IEEESTD.2006.99495

Bibliography

[Wik19a] Wikipedia: Field-programmable gate array. https://en.
wikipedia.org/wiki/Field-programmable_gate_array.
Version: 2019. – Accessed on 2019-11-14

[Wik19b] Wikipedia: Serial Peripheral Interface. https://en.wikipedia.
org/wiki/Serial_peripheral_interface. Version: 2019. – Ac-
cessed on 2019-11-14

[Wik19c] Wikipedia: Wishbone (computer bus). https://en.wikipedia.
org/wiki/Wishbone_(computer_bus). Version: 2019. – Accessed
on 2019-11-14

[Wik20a] Wikipedia: Google Home. https://en.wikipedia.org/wiki/
Google_Home. Version: 2020. – Accessed on 2020-01-12

[Wik20b] Wikipedia: HomeKit. https://en.wikipedia.org/wiki/
HomeKit. Version: 2020. – Accessed on 2020-01-13

[Wik20c] Wikipedia: Wi-Fi. https://en.wikipedia.org/wiki/Wi-Fi.
Version: 2020. – Accessed on 2020-01-04

[Wik20d] Wikipedia: Z-Wave. https://en.wikipedia.org/wiki/Z-
Wave. Version: 2020. – Accessed on 2020-01-04

[Zig20] Zigbee Alliance: Home - Zigbee Alliance. https://
zigbeealliance.org/. Version: 2020. – Accessed on 2020-01-05

99

https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Serial_peripheral_interface
https://en.wikipedia.org/wiki/Serial_peripheral_interface
https://en.wikipedia.org/wiki/Wishbone_(computer_bus)
https://en.wikipedia.org/wiki/Wishbone_(computer_bus)
https://en.wikipedia.org/wiki/Google_Home
https://en.wikipedia.org/wiki/Google_Home
https://en.wikipedia.org/wiki/HomeKit
https://en.wikipedia.org/wiki/HomeKit
https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/Z-Wave
https://en.wikipedia.org/wiki/Z-Wave
https://zigbeealliance.org/
https://zigbeealliance.org/

	Abstract
	Kurzfassung
	Table of contents
	Introduction
	Goals of this Thesis
	Limitations to the Thesis Scope
	Outline

	Analysis of Smart Home Architecture
	Device Hierarchy and Roles
	Appliances
	Sensors
	Bridges
	Gateways
	User Interfaces

	Communication and Protocols
	Wired
	Wireless

	Popular Services and Solutions
	Amazon Echo
	Google Home
	Apple HomeKit
	Philips Hue

	Designing a Smart Home Solution
	Defining Solution Goals
	Provided Tools and Hardware
	Starting Point: SPI Prototype

	Solution Architecture Overview
	Ensuring Resilience

	Designing the Bridge Hardware Logic
	Device Controller
	Output Modules and Manager
	Input Modules and Manager
	I²C Controller

	Designing the Protocol
	Choosing a Bus System
	Protocol symmetry
	Commands from the Raspberry Pi
	Responses from the MachXO2
	Using CRC to Secure the Protocol

	Designing the Gateway
	Setting Up a Host Environment
	Choosing a Gateway Software
	Designing the Bridge API
	Creating a Home Assistant Integration

	Designing a Management UI
	Outlining the Use Cases
	Designing the User Interface

	Implementation of the Design
	Implementing the Bridge Hardware Logic
	Working with Verilog
	Developing the Bridge's Logic Modules
	Working with Lattice Diamond
	Verifying Functionality through Simulation

	Developing the Bridge API using Python
	Testing the API
	Creating a PyPI Package

	Developing the Home Assistant Integration
	Setting Up a Development Environment
	Integrating the API
	Setting up the Device Platforms

	Developing the Management UI
	Using Qt as a UI Toolkit
	Defining JSON Data Structures
	Generating Verilog Code through Templates

	Evaluation
	Evaluating the Goals
	Maintainability and Accessibility
	Scalability
	Conformance and User Experience
	Performance

	Evaluating the Reliability
	Response to Connection Problems
	Long-Term Uptime and Stress Tests
	State Update Event Redirection Bug

	Usability of the Management UI

	Conclusion
	Summary
	Outlook

	List of figures
	List of tables
	Abbreviations
	Bibliography

