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Zusammenfassung

Stromdatenbanken sind Systeme zur Anfragebeantwortung auf Datenströ-
men. Einige davon basieren auf Ähnlichkeiten zu klassischen Datenbanken
undsinddaher alsErweiterung solcherumgesetzt.Wie inderEinleitungnoch
genauer erörtert, nennen wir diese Systeme, als die eine Seite des Vergleichs,
„strombasierte Datenbanken “. TeSSLa (Temporal Stream-based Specificati-
on Language) auf der anderen Seite ist nicht direkt eine Stromdatenbank,
sondernmehr, wie der Name schon andeutet, eine Sprache zur Formulierung
von Datenströmen, für die es jedoch Implementierungen gibt, die anhand
einer TeSSLa Spezifikation konkrete Datenströme verarbeiten können. Der
Vergleich findet also zwischen strombasiertenDatenbankenmit ihren Anfra-
gesprachen und TeSSLa mit ihrer Anwendung statt.

Da die strombasierten Datenbanken, die wir betrachten, für einen allge-
meinen Einsatz auf Datenströmenmit hohem Zieldurchsatz konzipiert sind,
werden wir annehmen, dass sie prinzipiell auch für Datenstromverarbeitung
in typischen Anwendungsbereichen von TeSSLa eingesetzt werden können.
Um dieses Konzept zu veranschaulichen, werden wir eine einfache Imple-
mentierung vorstellen, die eine Erweiterung von PostgreSQL namens Pipe-
lineDB verwendet, um typische Beispiele für TeSSLa Anwendungen umzuset-
zen. Einen Vergleich zur Performanz für typische StreamRuntime Verificati-
on Anwendungen werden wir jedoch nicht führen.

Anschließend stellen wir eine Implementierung des Linear Road Bench-
marks, der als typisches Anwendungsbeispiel für Stromdatenbanken entwor-
fen wurde, mit TeSSLa vor. Damit werden wir demonstrieren, dass sich ent-
sprechende Anwendungsfälle in TeSSLa formulieren lassen, die derzeitige
Implementierung des TeSSLa Interpreters bei umfangreichemGebrauch von
unbegrenzten Datenstrukturen anderen Stromdatenbanken in der Perform-
anz nachsteht. Mit dem Transcompiler von TeSSLa zu Scala erhalten wir je-
doch eine effiziente Lösung, mit der wir eine Simulation der Skalierung von
10 Expressways erfolgreich bearbeiten.

Vor den konkreten Implementierungen werden wir TeSSLa mit Anfrage-
sprachen für strombasierte Datenbanken vergleichen, umweitere Einsichten
zuVor- undNachteilen der jeweiligen Systeme bei verschiedenenAnwendun-
gen darzulegen.
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Abstract

Data Stream Management Systems (DSMS) are built to manage queries on
data streams. Some of these attempts are based on similarities to classical
databases and therefore enhance relational databases. Aswewill see in the in-
troduction, this iswhatwewill consider a stream-based database (SBD) in our
comparison. TeSSLa (Temporal Stream-based Specification Language) itself
on the other hand is not a DSMS, rather it is a specification language which
comes with tool chains for using a TeSSLa specification to actually evaluate
data streams. Therefore we will compare SBD with their query language and
performance to TeSSLa specifications and their application.

Since the SBDs we consider are designed for a general use and aiming for
high throughput, wewill assume, that theymight be used for the same tasks as
TeSSLa is. To demonstrate this concept we will use a simple implementation
which utilizes PipelineDB, an extension to PostgreSQL, to perform on small
standardexamples forTeSSLa’s applications. Theperformance comparison to
TeSSLaon typical StreamRuntimeVerification applicationswill remainopen.

The next step will be to implement the Linear Road Benchmark, which
was originally designed as a typical use-case for DSMS, with TeSSLa. By that
we will show that the language can be used to formulate such problems in-
deed, but the performance evaluation will suggest, that the current TeSSLa-
assembly implementation can, by massively using unbounded data struc-
tures, only handle a comparatively small workload while meeting the latency
requirements set by the benchmark. However the TeSSLa-to-Scala compiler
yields an efficient solution, capable of handling full 10 expressways.

Before the practical implementations however, we will compare specifi-
cation features of TeSSLa and SBD query languages to give further hints on
advantages and disadvantages of these systems for different tasks.
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1
Introduction

Processing data streams, whichwewill assume in thiswork to be discrete, is still an open
topic meaning there is no standard in specifying data streams and formulating queries
on them yet. The CQL Continuous Query language [1] is an attempt to enhance a rela-
tional query language like SQL by operators producing relations out of data streams and
vice versa. With various relation-to-relation operators of the underlying query language
this yields a dual approach in which a query starting from a stream and outputting a
streammight take the detour over a relation like somewindow function and turning this
(shifting) relation back into a stream. In chapter 10 of [1] they compare their language
to other attempts and, in particular, show their rich expressiveness in comparison to
stream-only attempts. They state that “the concept of a relation is useful even in appli-
cations whose inputs and outputs are all streams.” Later on, we will use CQL for some
reference specifications for SBD in comparison to TeSSLa since they use the relational
approachandmakea cleardistinctionbetweenstreamsandrelations. TheStanfordData
StreamManagement System [3] is an implementation of a general purpose DSMS using
CQL, however we will not use it for our implementation since it is just a prototype and
does not fully support the language. Instead we will use PipelineDB, which is an exten-
sion to PostgreSQL, treating data streams as append-only tables.

On the other hand there are approaches to stream processing focusing on less gen-
eral purposes opening up room for performance improvements: TeSSLa is designed in
the context of StreamRuntimeVerification [6]. SRV is a techniqueusing aprogram trace
as an input data stream and incrementally deriving output streams allowing to check,
whether the observed system is running correctly. In this program trace, the events are,
in particular, ordered by their timestamp. This implies a close relation to Time Series
Databases (TSDB) which are built to store and work on such series, for example to dis-
covermotifs as described in [12]. While sometimes time series are defined as a sequence
of explicit length n that is completely known to the system [12], which would define a
TSDB as a specialized DBMS with time as a key field, other authors also emphasize the
challenges on time series as input streams [22, 17, 23], which therefore describes TSDBs
as specialized DSMSs with time as special key field. In this sense one can say, that the
comparison between TeSSLa and SBDs is a comparison between a particular TSDB and
general DSMSs with a relational approach.

The approach taken for representing the data in TeSSLa is stream-only and, using
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1 Introduction

basic data types, each of the basic operators can be evaluated with constant time and
memory requirements. Thus there are some easy to check criteria, implying that a spec-
ification can be run with constant time and memory bounds assuring that critical real
time constraints can be met even on massive data streams. In particular they proved
in [6] that TeSSLabool+c, the fragment of TeSSLa restricted to checking event ordering
and comparing timestamps to constants, isPSPACE-complete. Further, if a specification
happens to feature constant resource requirements, the specified behavior can even be
implemented in hardware like FPGAs [5]. Despite the focus of SRV, TeSSLa is still de-
signed for general purpose stream specifications, therefore the question arises how this
approach performs on different streaming data use-cases in comparison to approaches
introducing relations – in terms of specifying the behavior on input streams as well as
the actual performance running on them.

1.1 Contributions of this Thesis

In this work we will compare TeSSLa specifications of exemplary use cases with imple-
mentations in SQL for PipelineDB andCQL. Since TeSSLa on the one hand treats time as
a “First-ClassCitizen” [6] and our SBDs on the other handhave a close relation to conven-
tional DBMSs, the comparison will focus on special timing criteria as well as challenges
of storing and working on a mass of stored data. Further we will utilize PipelineDB for
simple SRV tasks and implement the Linear Road Benchmark [2] using TeSSLa to com-
pare TeSSLa’s compiler and interpreter’s performance as a general purposeData Stream
Management System to other available systems.

1.2 RelatedWork

There have been other DSMS taking the challenge of the linear road benchmark: First
of all, in the original paper of the benchmark [2], they describe implementations using
a commercially available Relational Database and the DSMS Aurora. Later on, other im-
plementations like in theMaxStreamproject [4] or using Apache Flink [8] or Streamonas
[11] were able to achieve decent performance. Also, besides Linear Road, there are other
benchmarks for streaming applications like [25]. In [1] CQL is compared to other lan-
guages including its expressiveness in comparison to stream-only languages. Limita-
tions of relational algebra and SQL as well as enrichments regarding streams have been
studied in [10]. In particular, they talk about the loss of expressiveness one will face by
banning blocking operators. As an approach to counter this issue, they name User De-
fined Aggregates (UDAs) which, in their examples, are defined in a procedural way en-
abling to precess the tuples in the order they appear and thus, in a way, taking a step
back from purely relational languages and moving more in the direction of languages
directly designed for data streams. TeSSLa has briefly been compared to other stream-
only specification languages [6] but not yet to query languages of relational DSMS and
further there has not been an implementation of a general purpose Data Stream Man-
agement System benchmark with TeSSLa before.
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1 Introduction

1.3 Structure of this Thesis

In the following chapters we will first provide a brief overview on the specification lan-
guageswewill consider, namely TeSSLa, CQL and SQL for PipelineDB. Thenwewill out-
line two use cases, the setting of Linear Road and the Burst Pattern on example streams,
to further pick some of these properties for demonstrating and comparing implementa-
tions in the different languages. After that, we will show how PipelineDB could be uti-
lized for SRV in a similar manner one can use the TeSSLa compiler and interpreter on
data in TeSSLa’s input stream format. In the end, we will introduce the Linear Road
Benchmark implementation with TeSSLa and discuss the results.
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2
Specification andQuery Languages

Sincewe aim for a comparison between the following three languages, wewill present all
of them following the same concept: First wewill sketch fundamental ideas then present
basic operators and finally give some examples. We will only present a brief overview,
hence one might read the original papers and documentations for more detailed infor-
mation.

2.1 TeSSLa

In theTemporal Stream-basedSpecification language [6] streamsconsist of timedevents
of certain domains i.e. a stream features a time and a data domain whereas every event
in this stream consists of a unique time from the time domain and some value from the
data domain. Definition 1 of [6] limits the time domain to a totally ordered semi-ring
(𝕋, 0, 1, +, ⋅, ≤) with ∀t ∈ 𝕋 ∶ 0 ≤ t. A TeSSLa specification can use multiple input
streams andproducemultiple output streams, where the arrival of the input eventsmust
be globally ordered by their time stamps.

Basic Operators and Constants

Let S𝔻 be the set of streams over some data domain 𝔻. Let further 𝕌 = {�} be the
unit domain, used whenever the domain only contains one element and 𝕋 be the time
domain.

Nil The constant nil denotes the stream in S𝔻 containing not a single event.
Unit The constant unit denotes the stream in S𝕌 over the unit domain 𝕌 with just a

single event at time 0.
Time The time operator is of type S𝔻 → S𝕋. Given a stream s it produces the stream of

timestamps, replacing every event’s value in swith the corresponding timestamp.
Unary lift The lift1 operator of the type (𝔻 → 𝔻′) → (S𝔻 → S𝔻′) with a function f of

the type 𝔻 → 𝔻′ operates on a stream s of the type S𝔻 by applying f on the value of
each event in s, producing the corresponding stream s′ ∈ S𝔻′.

Binary lift The lift2 operator of the type (𝔻1 × 𝔻2 → 𝔻′) → (S𝔻1
× S𝔻2

→ S𝔻′) with a
function f of the type 𝔻1 × 𝔻2 → 𝔻′ operates on a pair of stream s1, s2 of the types
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2 Specification andQuery Languages

S𝔻1
, S𝔻2

by applying f on the values of the events in s1 and s2, producing the corre-
sponding stream s′ ∈ S𝔻′. Note that the binary lift can be used to define an n-ary
lift.

Last The last operator of the type S𝔻 × S𝔻′ operates on a pair of stream s1, s2 of the types
S𝔻, S𝔻′ by producing the stream s′ ∈ S𝔻 having an event at timestamp t of each
event in s2 with the value of the latest event in s1 at timestamp t′ < t. In other words,
whenever there is an event e in s2 the operator produces an eventwith the latest value
of s1 known before e appeared.

Delay The delay operator of the type S𝕋\{0} ×S𝔻 → S𝕌 takes two streams s1 ∈ S𝕋\{0} and
s2 ∈ S𝔻 as input. s1 can be seen as the signal setting a timer, and s2 as the reset signal
cancelling a running timer. Whenever s2 has an event or the operator produced an
output event, an event in s1 will set a timer. When t was the timestamp when the
timer was set and t′ the value of s1 at t, then the operator will produce an event at
timestamp t + t′ iff there is no reset event on s2 at time rwith t < r < t + t′.

Examples

Like forCQLandSQL for PipelineDBwewill take the examples fromappropriate sources
to assure they reflect common use cases the language was intended for. As we will see,
the use cases of TeSSLa distance themselves from the ones we will find for the other lan-
guages, which is why we will take an example of each area for the comparison in the fol-
lowing chapters. Here, for TeSSLa, we will take runtime verification examples from the
TeSSLa web IDE [21]. The first example observes some program using “add” and “sub”
functions where “add” should not be used more frequently than “sub”. An error should
be indicated if the number of “add” calls exceeds the number of “sub” calls by 2 or more:

@InstFunctionCall ( ”add” )
in add : Events [Unit ]

@InstFunctionCall ( ”sub” )
in sub : Events [Unit ]

def add_count := count (add)
def sub_count := count (sub)
def diff := add_count − sub_count

def error := dif f >= 2

out add_count # s igna l
out sub_count # s igna l
out diff # s igna l
out pure ( error ) as error # s igna l

The second example is about detecting race conditions in an application using multiple
threads to read and write on a single memory section. If one of the threads reads, it will
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2 Specification andQuery Languages

also write afterwards, thus there is a race condition whenever there are two consecutive
read accesses without a write in between:

@InstFunctionCall ( ” readValue ” )
in read : Events [Unit ]

@InstFunctionCall ( ”writeValue ” )
in write : Events [Unit ]

def timeRead := time( read )
def timeWrite := default ( time(write ) ,0)

def error := unitIf ( prev (timeRead) > timeWrite )

out write # unit event s
out read # unit event s
out error # unit event s

These examples used inbuilt functions likecount, counting the events of a stream, pure,
filtering out events with the same value as the previous event, default, defining a de-
fault value for a stream before there is the first event, unitIf, producing a unit stream
with events whenever the defined expression takes the value TRUE and prev, keeping
the second last event of a stream. They are built in functions which can be used with the
TeSSLa interpreter, but they could as well be defined using basic operators. Further ex-
pressions like add_count − sub_count or diff >= 2 use the concept lift on a signal:
The events of a stream are interpreted as changes to the signal’s value which is lifted for
example by the binary function “>=” to a boolean value. When we interpret a stream as
a signal or just a plain event stream in further examples, we might represent them as in
Figure 2.1 showing example input and output streams for the add/sub example. There

add × × × × ×
sub × × × ×

add_count 0 1 2 3 4 5

sub_count 0 1 2 3 4

diff 0 1 0 -1 0 1 2 1 0 1

error f f f f f f t f f f

Figure 2.1: Streams for add/sub Example showing Representations of Signal and Events
Interpretation of Streams
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2 Specification andQuery Languages

aremanymore language features supported by TeSSLa’s interpretor and compilerwhich
we cannot cover here butwhichwemight use for the example implementations later. See
the original TeSSLa documentation [20] for more information.

2.2 CQL

The Continuous query language [1] takes a relational query language and adds the con-
cept of streams. Both, streams and relations, feature a schema as well as they are depen-
dent on a time domain 𝕋.

Basic Concepts andOperators

Before we start to introduce the basic operators, we need to outline our terminology a
bit further:

Schema When a tuple s follows a certain schema 𝕊, i.e. s ∈ 𝕊, the schema tells for each
element of the tuple, to which domain it belongs. More precisely a schema can be
described as 𝕊 = {s = (a1, a2, ..., an)|a1 ∈ 𝔻1, a2 ∈ 𝔻2, ...an ∈ 𝔻n} where ai is a
named attribute with domain 𝔻i.

Stream A stream S is a collection of events where each event consists of a value s and a
timestamp 𝜏. A stream in the context of CQL cannot only contain multiple events
with the same value, moreover multiple events can feature the same timestamp.
Thus, with a certain schema𝕊 and a timedomain𝕋, a stream S is amultiset of tuples
⟨s, 𝜏⟩ where s ∈ 𝕊 and 𝜏 ∈ 𝕋.

Relation The simplest view on a relation is probably a table where each row is an entry
and each column has a certain type, i.e. the columns define a schema. Since these
tables are not fixedbut canbeupdated by adding, removing or changing rows, a rela-
tion in a systemmight containdifferent entries at different points in time. Therefore
we define a relation R as amapping from a time domain𝕋 to amultiset of elements
from a schema 𝕊.

SinceCQLoperates on streamsand relations, it defines operators toproduce oneof these
typesout of theother. Figure2.2 showsanoverviewof the available operator classes. CQL
does not introduce operators solely working on one of these types since operators taking

Stream Relation

Stream-to-Relation

Relation-to-Stream

Relation-to-Relation

Figure 2.2: CQL Operator Classes
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2 Specification andQuery Languages

a relation and yielding a relation are already defined in the underlying relational lan-
guage; operators taking a stream and directly producing a stream are not needed since
they can be composed byfirst turning a stream into a relation, changing this relation and
finally producing a new stream out of the obtained relation. Wewill see examples of this
later.

Stream-to-Relation A Stream-to-Relation operator takes a stream as defined above, ap-
plies some sort of window and takes a snapshots at different 𝜏 ∈ 𝕋 as the output
relation R(𝜏).
• Time-based slidingwindows The idea is to define the window by some time inter-

val Twhich, at a certain time 𝜏, includes all events that have appeared notmore
than T time units in the past. So given a stream S and a time interval T, it pro-
duces R(𝜏), 𝜏 ∈ T with s ∈ R(𝜏) iff ⟨s, 𝜏′⟩ ∈ S and 𝜏 − T ≤ 𝜏′ ≤ 𝜏. With
T being the Range of the window, it can be extended by a second time interval
parameter, Slide, defining the step size in which the window slides.

• Tuple-based slidingwindows As the name implies, rather than looking in the past
for a fixed interval in the time domain, it looks in the past for a certain number
of events: Given a stream S and a positive integerN, the operator produces a re-
lation Rwhere R(𝜏) consists of the N tuples from Swhich appear in Swith the
latest timestamps up to 𝜏. Note that since there might be multiple events with
the same timestamp, the outputmight be ambiguous andmight further, deter-
mined by the implementation, depend on the order of the incoming events.

• Partitionedwindows Again, we use the tuple-based approach but nowwe addition-
ally take a look at certain values of the events: Given S, a positive integerN and
a list of attributes from the schema, it produces a relation one would receive by
first splitting the stream S into a sub stream for every unique value for each of
the given attributes then separately applying a tuple-based sliding window and
finally performing aunionover all resultingwindows. Again, just as in the plain
tuple-based sliding window, the output might be ambiguous.

Relation-to-Stream The Relation-to-Stream operators produce their output based on
when the tuples are in the relation and when they are not, or in other words, when
they are inserted or removed. The following descriptions will assume the time do-
main to be integer.

• Istream (“insert stream”) A tuple will appear in the output stream S at the first time
it appeared in the input relation R: ⟨s, 𝜏⟩ ∈ S iff s ∈ R(𝜏) and s ∉ R(𝜏 − 1).

•Dstream (“delete stream”) A tuple will appear in the output stream S when it was
removed, meaning at the first time it is not part of the input relation R: ⟨s, 𝜏⟩ ∈
S iff s ∈ R(𝜏 − 1) and s ∉ R(𝜏).

•Rstream (“relation stream”) A tuple will appear in the output stream S whenever it
is in the input relation R: ⟨s, 𝜏⟩ ∈ S iff s ∈ R(𝜏).

Examples

In our exampleswewill assume theunderlying relational language to beSQL. The follow-
ing use cases and queries have been taken from the Stream Query Repository [19]. The
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2 Specification andQuery Languages

repository is subdivided into different application domains including Road TrafficMon-
itoring with the Linear Road Benchmark which we will look into in later chapters; here
we will just take small examples out of two other application domains to give a short ex-
pression: One of the queries presented for online auctions is the “Hot Item Query” asking
for the most popular items determined by the number of bids over the last hour, which
should be updated every minute:

HotItemStream:
Select Rstream(itemID)
From (Select B1.itemID as itemID, Count(*) as num

From Bid [Range 60 Minute
Slide 1 Minute] B1

Group By B1.itemID)
Where num >= All (Select Count(*)

From Bid [Range 60 Minute
Slide 1 Minute] B2

Group By B2.itemID)

Select *
From HotItemStream [Range 1 Minute]

For Network Traffic Management one of the queries they suggest is the “Protocol Analysis
Query” summing up the total length and number of packages of HTTP requests, which
are assumed to use port 80, per source IP in non-overlapping 5 minute intervals:

Select Rstream(srcIP, Sum(len), Count(*))
From Packets [Range 5 Minute

Slide 5 Minute]
Where destPort = '80'
Group By srcIP

2.3 SQL for PipelineDB

PipelineDB [13] is an open source extension for PostgreSQL [16] designed to run SQL
queries continuously on data streams. As discussed in [10], plain SQL is not complete
for streaming applications, an issue which can be solved using UDAs, and PipelineDB is
an extension to PostgreSQL which itself features UDAs. On top of that, PipelineDB in-
troduces some special continuous aggregates as well as a time-based window function.
Since basic SQL is expected to be common, the following explanation will only present
a short impression of the original PipelineDB documentation [14]; furthermore code ex-
amples within the description are also taken from there.

Basic Concepts

The model of data streams used for PipelineDB might be seen as append only bags of
tuples, i.e. an append only table, which is exactly what one would retrieve by setting up a
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2 Specification andQuery Languages

view selecting every single event from a stream as it is. If all defined structures listening
to a stream have processed a stream event, the event itself is discarded. This allows the
system to only store data needed by the views and operators and save resources.

Streams To access a data stream, it needs to be defined first:

CREATE FOREIGN TABLE stream_name ( [
{ column_name data_type [ COLLATE collation ] } [, ... ]

] )
SERVER pipelinedb;

Similarly to a usual table, this defines the stream “stream_name” with its schema
on the server “pipelinedb”. Feeding events to a stream can be done the same way as
filling a table: simply use INSERT statements, COPY from a source or use any client
compatible with PostgreSQL.

Continuous Views Continuous views can be specified as usual views with action set to
materializedwhich, since it is default, can be omitted.

CREATE VIEW name [WITH (action=materialize [, ...])] AS query

From the documentation, query is a SELECT statement limited to

SELECT [ DISTINCT [ ON ( expression [, ...] ) ] ]
expression [ [ AS ] output_name ] [, ...]
[ FROM from_item [, ...] ]
[ WHERE condition ]
[ GROUP BY expression [, ...] ]

-- where from_item can be one of:
stream_name [ [ AS ] alias [ ( column_alias [, ...] ) ] ]
table_name [ [ AS ] alias [ ( column_alias [, ...] ) ] ]
from_item [ NATURAL ] join_type from_item [ ON join_condition ]

Windows Apart from using Time-to-Live Expiration on views for their entries, one can
also use the built-in time-based sliding window like in the following example:

CREATE VIEW recent_users WITH (sw = '1␣minute') AS
SELECT user_id::integer FROM stream;

Which internally will be rewritten to

CREATE VIEW recent_users AS
SELECT user_id::integer FROM stream

WHERE (arrival_timestamp > clock_timestamp() - interval '1␣minute');

– 10 –



2 Specification andQuery Languages

The documentation does notmention any tuple-based slidingwindows known from
CQL;Although lookingat the last examplemightbringup the idea to createoneusing
a descending ORDER on the “arrival_timestamp” and a LIMIT of N, they cannot be
implemented this easily, since, as the above description suggests, continuous views
do not support these operators.

Continuous Transforms Continuous transforms can be used for stream-to-stream trans-
formswithout necessarily storing the events. They are defined similar to continuous
views:

CREATE VIEW name (WITH action=transform [, outputfunc=function_name(
arguments ) ]) AS query

Again, query is a SELECT statement with the same limitations as for continuous
views. Additionally, aggregates cannot be used in any of the used expressions. “out-
putfunc” is a so called trigger function, applied to every single event outputted by the
transform. Currently, PipelineDB only provides one of these as a built-in, namely
pipelinedb.insert_into_stream which takes a stream label and does exactly
what thename suggests. Custom trigger functions can also be defined, the following
example writes the output to a table instead of another stream:

CREATE TABLE t (user text, value int);

CREATE OR REPLACE FUNCTION insert_into_t()
RETURNS trigger AS
$$
BEGIN
INSERT INTO t (user, value) VALUES (NEW.user, NEW.value);
RETURN NEW;

END;
$$
LANGUAGE plpgsql;

CREATE VIEW ct WITH (action=transform, outputfunc=insert_into_t) AS
SELECT user::text, value::int FROM stream WHERE value > 100;

Additionally PipelineDBsupports continuous joins andnumerous built in aggregates for
continuous views such as almost all of those defined in standard PostgreSQL, whereas
someof thembehave a little different to operate non-blockingly, aswell as some extra ag-
gregates specifically designed for streaming data like for bloom filters, frequency track-
ing or top-k functionality, just to name a few.

Examples

The following queries are taken from [15]. As common use cases they name realtime re-
porting dashboardswith examples like
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-- Calculate the number of unique users seen per url referrer each day
using only a constant amount of space per day

CREATE VIEW uniques AS
SELECT

day(arrival_timestamp),
referrer::text,
COUNT(DISTINCT user_id::integer)

FROM users_stream GROUP BY day, referrer;

-- How many ad impressions have we served in the last five minutes?
CREATE VIEW imps WITH (sw = '5␣minutes') AS

SELECT COUNT(*) FROM imps_stream

and realtime monitoring systems to react on certain events such as if the server latency is
too high or some users generate too much traffic:

-- What are the 90th, 95th, and 99th percentiles of my server's request
latency?

CREATE VIEW latency AS
SELECT

percentile_cont(array[90, 95, 99])
WITHIN GROUP (ORDER BY latency::integer)

FROM latency_stream;

-- Heavy hitters: how much traffic are each of the top-10 IP addresses
making requests to my server generating?

CREATE VIEW heavy_hitters AS
SELECT

day(arrival_timestamp),
topk_agg(ip, 10, response_size)

FROM requests_stream GROUP BY day;

percentile_cont andtopk_agg are twoof PipelinDB’s inbuilt continuous aggregates.
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Example Use Cases

To compare the languages, we will use two use cases: One of them is the Linear Road
Benchmark where we will find queries involving saved data which can be implemented
naturally in SBDs and on the other handwewill introduce a burst pattern examplewhich
has a focus on timing.

3.1 Linear Road Benchmark

This section is based on the original paper [2]. They designed the benchmark to compare
performance characteristics of DSMSs in running continuous queries as well as queries
addressing historical data. Since, as described earlier, there is no standard in streaming
applications, there were several challenges to face. First of all, to ensure that the bench-
mark examines practically relevant demands, they should provide semantically valid input
for the systems and not just random values. Therefore they picked the use case of a vari-
able tolling system which should calculate the tolls to be charged for each vehicle based
on position reports generated using the MIcroscopic Traffic SIMulator (MITSIM) [24].
In the following subsection we will describe the setting in more detail.

Now that the setting and input is set, the question arises, how to specify the desired
output of the system in the absence of an appropriate standardized language. The seman-
tics should get clear, however choosing an existing query language like CQL implies the
risk of influencing the specification through features of that language. Instead they nat-
urally outlined the requirements with supportive descriptions in predicate calculus.

Moreover, the queries they defined have ambiguous correct answers in general, which
might depend on the arrival order of events and the implementation. To still be able to
check the system’s answer for correctness, they built a validator tool.

Another open question was, how to define continuous query performance metrics. One
could take the response time into account, i.e. how long itwill take the system to produce
output from a trigger event in average or at maximum. Another metric is the supported
query loadwhichaskshowmuch input the systemcanhandlewhile still returning correct
results and meeting response time constraints. They decided to introduce the L-Rating
which reflects the supported query load by indicating themaximumnumber of express-
ways the system could handle without violating response constraints.
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Linear Road Setting

Linear City has a number of expressways which, for simplicity, all run between east and
west. Each of them consists of three travel lanes per direction. Their full length of 100
miles is subdivided in one-mile segments where each of these segments feature an en-
trance and exit lane for both directions. Figure 3.1 (a) shows an overview of the city’s
expressways and Figure 3.1 (b) illustrates a single segment. The idea is, that a toll should

(a) Linear City Overview, source [2] (b) Single Segment Overview, source [2]

Figure 3.1: Linear City’s Expressways.

be charged for every vehicle on the expressways where the amount depends on factors
such as thenumber of vehicles or average velocitywithin the corresponding segment and
whether there is an accident nearby. A car should be notified whenever there is a toll to
be charged if it proceeds to the next segment and it should be warned if it approaches an
accident area. Additionally every vehicle might issue information requests for already
charged tolls or travel estimations at any time.

System Input

The input is partitioned in historical data, whichmight be stored in the system before the
actual benchmark starts, and stream data used for continuous queries as well as for query
requests accessing historical data. All entries, historical and stream data, are composed
of positive integer values, and −1 denotes NULL.

Historical Data consists of two parts:

– The Toll History’s entries feature the following schema:

(VID, Day, XWay, Tolls)

For each vehicle in the simulation, addressed by its vehicle ID (VID), and every
expressway (XWay), it contains an entry for the charged tolls for each day in the
past ten weeks. Since MITSIM generates roughly 150000 vehicles in a simula-
tion, the toll history comprises about 150000 ⋅ 10 ⋅ 7 ≈ 10million entries for one
expressway.
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– The Segment History’s entries can be described as follows:

(Day, Min, XWay, Dir, Seg, Lav, Cnt, Toll)

Analogous to the toll history, this covers the past tenweeks and for eachMinute
it contains an entry for every Segment for each Direction on every expressway,
giving information of the number of vehicles (Cnt), the average velocity (Lav)
and the Toll to charge. Since an expressways consists of two directions, each
separated in 100 segments, the segment history contains about 200⋅10⋅7⋅24⋅60
entries, which is about 20 million – again, just for a single expressway.

StreamData also features different types of events, namely Position Reports, Account Bal-
ance Request, Daily Expenditure Request and Travel Time Request, which all follow the
same schema. Table 3.2 sums up, which of the fields are used for the different event
types or which are unused and in the simulation thereforemight be labeled with−1.
To distinguish between the different types and to know which values of the event
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Position Report 0 t v spd x l d s p -1 -1 -1 -1 -1 -1

Acc. Bal. Req. 2 t v -1 -1 -1 -1 -1 -1 q -1 -1 -1 -1 -1

Daily Exp. Req. 3 t v -1 x -1 -1 -1 -1 q -1 -1 -1 -1 n

Trav. Time Req. 4 t v -1 x -1 -1 -1 -1 q org dst wd dt -1

Table 3.2: Input Stream Event Types of Linear Road

should actually be kept, all events start with a number indicating their type. The next
two values always tell from which vehicle the event was issued, addressing it by its
unique Vehicle ID, and the time of the event in seconds from the start of the simula-
tion. Position reportswill be sent fromevery vehicle on the expressways exactly every
30 seconds. Since all expressways run between east and west, the position in north-
south direction is given by the expressway, lane and the side of the road, indicated
by the direction in which the vehicle is traveling. The east-west direction is covered
by the exact position in feet (see Figure 3.1(a)) as well as redundantly by the current
segment, since it is used in many of the benchmark’s computations. On top of that,
a position report features the speed at which the vehicle is moving. These values are
assumed to be valid for the whole time from the previous 30 seconds, including the
second t of the report. The other events are query requests featuring a unique Query
ID. How they should be handled will be outlined in the following subsection.
The stream data for a simulation covers a three hour period and contains about

12 million events of which only a small part is query requests: Every time a position
report is generated, with a chance of 1% there will also be generated a query request
which will be an account balance request with a chance of 0.5, a daily expenditure
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request with 0.1 and with a probability of 0.4 it will be a travel time estimation re-
quest. Accidents, which are not explicitly indicated by the simulation input, can be
observed with the position reports. For each expressway in the simulation MITSIM
generates an accident every 20 minutes at a random position, which will be cleared
after 10 to 20 minutes.

SystemOutput

Apart from query answers which are triggered by the corresponding request, the system
should also send notifications triggered by position reports if certain preconditions are
fulfilled. As mentioned earlier, in the original paper they introduced notations based on
predicate calculus to provide a precise specificationwhichwewill borrowhere (see Table
3.3) to keep this section detailed, yet brief. Let P denote the set of all position reports and

cars(m, x, s, d) = {p.VID | p ∈ P, m = M(p.Time),
p.(XWay; Seg;Dir) = (x; s; d)}

Avgsv(v,m, x, s, d) = AVG({|p.Spd | p ∈ P, p.VID = v, m = M(p.Time),
p.(XWay; Seg;Dir) = (x; s; d)|})

Avgs(m, x, s, d) = AVG({|Avgsv(v,m, x, s, d) | v ∈ cars(m, x, s, d)|})
Lav(m, x, s, d) = ⌊AVG({|Avgs(m − 1, x, s, d), ..., Avgs(m − 5, x, s, d)|})⌋

Toll(m, x, s, d) =

⎧{{{
⎨{{{⎩

2 ⋅ (|cars(m, x, s, d)| − 50)2
if Lav(m, x, s, d) < 40 and

|cars(m, x, s, d)| > 50 and
∀0≤i≤4(¬(Acc_in_Seg(m − 1, x,Dn(s, d, i))))

0, otherwise

Stop(v, t, x, l, p, d) ⇔ ∀1≤i≤4(Lasti(v, t).(XWay; Lane; Pos;Dir) = (x, l, p, d))
Acc(t, x, p, d) ⇔ ∃v1,v2,l(l = TRAVEL ∧ v1 ≠ v2 ∧ Stop(v1, t, x, l, p, d)∧

Stop(v1, t, x, l, p, d))

Acc_in_Seg(m, x, s, d) ⇔ ∃p,t (t ∈ m ∧ Acc(t, x, p, d) ∧ ⌊
p

5280
⌋ = s)

Table 3.3: Notations for Linear Road’s Toll and Accident Definitions

p be a tuple, for example a position report, i.e. p ∈ P. Along p.Time = t they use the the
shorthand notation

p.(XWay; Seg;Dir) = (x; s; d) ⇔ p.XWay = x ∧ p.Seg = s ∧ p.Dir = d.

For each p ∈ P they define p⃖ as the last position report emitted by the same vehiclewithin
the same trip before p:

p⃖ = q ∈ P s.t. (q.VID = p.VID ∧ p.Time − q.Time = 30)

and similarly p⃗ = q ∈ P s.t. q⃖ = p. Further

M(t) = ⌊
t

60
⌋ + 1
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is the number of theminute containing t, for which they also use t ∈ m ifM(t) = m. For
a non-negative integer i,

Dn(s, d, i) = { MIN(s + i, 99) if d = 0
MAX(s − i, 0) otherwise

is the i-th segment after segment s in direction d ∈ {0 = eastbound, 1 = westbound}.
For a time t, a positive integer i and a vehicle identified by v,

Lasti(v, t) = p ∈ Ps.t.(p.VID = v ∧ 30(i − 1) ≤ t − p.Time < 30i)

denotes the i-th last position report emitted by vehicle v until second t. Finally, {|...|} is
the content of a set and l = TRAVEL means that l is a travel lane i.e. l ∈ {1, 2, 3} as well
as l = EXIT ⇔ l = 4, according to Figure 3.1 (b).

The system’s output is divided into the following event types:

Toll Notifications When a vehicle uses a certain segment of an expressway it will cost a
certain toll. Since it might be variable, it should be informed about the toll’s amount
whenever a vehicle enters a new segment so it can leave the expressway before it
is actually charged. A trigger for this type of event is therefore a position report q
indicating a change of segment q.Seg ≠ q⃖.Seg and which is not showing the vehicle
leaving the expressway: q.Lane ≠ EXIT.

(Type: 0, VID: v, Time: t, Emit: t′, Spd: Lav(M(t), x, s, d), Toll: Toll(M(t), x, s, d))

While some of the answer’s values are directly taken from the triggering position
report, (v, t) = q.(QID; Time), the Speed and Toll values are determined using the
values (t, x, s, d) = q.(Time;XWay; Seg;Dir). Speed is calculated as the “Latest Av-
erage Velocity” (Lav), which is the average velocity at segment s over the past five
minutes over all cars which have sent a corresponding position report. The amount
of the Toll is zero if the Lav is at least 40, the current number of cars at the segment
does not exceed 50 or there is an accident ahead within the following four segments
or in segment s.

Accident Alerts Accidents are defined to happen when at least two vehicles are stopped
on one of the travel lanes at the exact same position. A vehicle in turn is said to be
stopped whenever, determined by the (x, l, p, d)-position, it has not moved in the
time of its last four reports. Whenever there is an accident, every vehicle approach-
ing the accident area should be informed. Thus the precondition for a position re-
port to trigger an accident alert is first of all the sameas for toll notifications, q.Seg ≠
q⃖.Seg∧ q.Lane ≠ EXIT, but additionally theremust be anaccident segment s′ ahead:
∃s′,0≤i≤4(s′ = Dn(q.Seg, d, i) ∧ Acc_in_Seg(M(t) − 1, x, s′, d)).

(Type: 1, Time: t, Emit: t′, Seg:s′)

In Section 4.2 we will examine accident alerts in greater detail and also present Fig-
ure 4.1 of an example accident’s timing properties taken from position reports of a
simulation created with MITSIM. Note that in general there might be multiple ac-
cident segments for which a single position report should trigger alerts for. Since
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MITSIM only generates an accident every 20minutes at a random position over the
total number of 200 segments per expressway (100 in each direction), which will be
cleared at the latest after 20 minutes, this is a very unlikely, if even possible scenario
in the simulations. Still we will consider this for our implementation later, because
it cannot be solved trivially with TeSSLa.

Account Balances The account balance is defined as the sum of all charged tolls of the
current day until now, which is from the start of the simulation. “Until now” in this
case means that the value must have been valid for a time 𝜏 which is not too far in
the past, or more precisely 𝜏 ≥ t − 60 where t = r.Time with r being the triggering
request event.

(Type: 2, Time: t, Emit: t′, ResultTime: 𝜏, QID: q, Bal: tollsum(v, 𝜏))

As pointed out earlier, tolls for a segment are only charged when a vehicles proceeds
through the segment’s bounds to the next segment, thus the balance value tollsum
can be defined as follows:

tollsum(v, t) = ∑
p ∈ tollset(v)|
p.Time ≤ 𝜏 ∧
p.Seg ≠ Last1(v, t).Seg

Toll(p)

with Toll(p) = Toll(M(p.Time), p.XWay, p.Seg, p.Dir)) and tollset(v) being the set of
all position reports of vwhere the vehicle left a segment without leaving the express-
way:

tollset(v) = {p ∈ P|p.VID = v, p.Seg ≠ p⃗.Seg, p.(XWay;Dir) = (x; d)}

Daily Expenditures The daily expenditure is defined similar to the account balances but
instead of asking for the total sum of the current day, it is the sum of all tolls on a
certain expressway on a day in the past ten weeks:

(Type: 3, Time: t, Emit: t′, QID: q, Bal: tollsum(v,n,x))

with

tollsum(v, n, x) = ∑
p ∈ tollset(v)|
Day(p.Time) = n∧
p.XWay = x

Toll(p).

Travel Time Estimations Given the statistics over the previous ten weeks, a travel time es-
timation request is to be answered by

(Type: 4, QID: q, TravelTime: r1, Toll: r2)

where r1 and r2 are the estimated time and tolls it will cost to travel from the initial
segment org to the end segment dst starting at time dt of a day of week wd. With

yorg = dt
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and

yi+1 = yi + tav(x, i, n, yi) ∀org < i ≤ dst

where tav(x, i, d, y) estimates the travel time through the segment i on expressway x
based on the historical average velocities at time y on a day of week d, the estimated
travel time as the arrival time at destination segment is given by r1 = ydst and the
expected total toll can be defined as

r2 =
dst−1

∑
i=org

cav(x, j, d, yi)

where cav(x, j, d, yi) estimates the toll based on the historical data according to Toll
in Table 3.3.

The response timeof the system is thedifferencebetween the timeof the triggering event
(Time: t) and the time the answer is emitted (Emit: t′). Table 3.4 shows the maximum
response time constraints for the different output events defined for the benchmark.

Toll Notif. Accident Al. Account Bal. Daily Exp. Travel Time Est.

t′ − t ≤ 5 Seconds 5 Seconds 5 Seconds 10 Seconds 30 Seconds

Table 3.4: Response Time Constraints for Linear Road’s output Event Types

3.2 Burst Pattern

Since the Linear Road Benchmarkwas designed for general DSMSs, our second use case
will target timing patterns forwhich TeSSLawas specifically designed. As TeSSLa allows
to write libraries and they included a standard library into the interpreter which covers
different timing patterns including burst patterns, with TeSSLa we will be able to solve
this example using inbuilt functions. However, to aim for a fair comparison of the spec-
ifications in the different languages, we will also break the used TeSSLa inbuilts down
to basic operators. Since the burst pattern is only a pattern and therefore less concrete as
our linear road use case, we will outline this pattern based on the AUTOSAR Timing Ex-
tension according to a COEMS timing tutorial [7] and concretize it as a simple example
from TeSSLa web IDE [21].

Timing Pattern

For the Burst Pattern a certain event should, as the name suggests, only appear in bursts:
The first event will start a new burst frame which has the size defined by burst length, 3
seconds for example. Whenever there is another event in the frame, i.e. within the next 3
seconds, it belongs to the same burst. When a new event appears outside a burst frame it
starts a newburst. This simple pattern does apply as long as the number of events of each
burst does not exceed the burst amount e.g. 4, see Figure 3.5, and it is said to be violated if
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3 s 3 s

× × × × × × ×

Figure 3.5: Simple Burst Pattern, example from [7]

the burst amount is exceeded. We extend this pattern by a waiting period e.g. 2 seconds
directly following a burst frame in which there must be no events. A stream following
this pattern is illustrated in Figure 3.6. Finally, for our example, we introduce a silencing

3 s 2 s 3 s

× × × × × × ×

Figure 3.6: Burst Pattern withWaiting Period, example from [7]

condition which starts and ends checking the stream for the burst pattern by taking the
value FALSE and TRUE respectively. It is called silencing condition, since if its value is
TRUE the input stream should be silenced, i.e. instead of checking if it fulfills the burst
pattern, we check whether there is not a single event. Figure 3.7 shows this property.

f t f

3 s 2 s

× × × × × × ×

Figure 3.7: Burst PatternwithWaiting Period and Silencing Condition. As implied by the
Braces, Bursts and Waiting Periods are cancelled by a Change in the Silencing Condi-
tion’s Value.

Burst Pattern Example

As mentioned above, we will describe the TeSSLa Example “Burst Pattern” from [21].

Input As Input we have two streams, a and b respectively, with events of integer values
and a stream we will evaluate the burst pattern on: e. Since only the time of the
events is relevant for checking on the timing property burst pattern, e’s events could
have any value. Therefore the domain chosen for e events in TeSSLa is 𝕌, the unit
domain.

Evaluation The task is to compute the timing property p as the burst pattern with burst
length of 2 seconds, waiting period of 1 second, burst amount of 3 and a silencing condi-
tionwhich is defined using a and b: Whenever the last known event of a has a value
greater than the the last known event’s value from stream b, the silencing condition
is TRUE, i.e. there should be no events on stream e. In the case that the last known
value of a is less than or equal the last known of b the silencing condition is FALSE,
then we will check for the burst pattern on e. From the beginning as long as there
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has not yet been an event on each of the streams a and b, the value of the silenc-
ing condition is UNKNOWN and events on e are ignored. The value of p shall be
UNKNOWN if the value of the the silencing condition is UNKNOWN and TRUE if
the burst pattern with known value of the silencing condition is met. If the silenc-
ing condition’s value is known and the burst pattern described above is violated, i.e.
there was an event on ewhile it should be silenced, a single burst features too many
events or there is an event in the waiting period after a burst, then the value of the
property p is FALSE.

Output All input events of the streams a, b and e should be outputted as well as the value
of pwhenever it changes.

The example input and output streams given at [21] is illustrated in Figure 3.8 where c is
the silencing condition.

0 5 10 15 time (s)

a 5 2

b 3 1 4

e ×××× × × × × × ×
c t f t f

p t f t f t f t

Figure 3.8: Burst Pattern on Example Trace from [21]
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We will start implementing the examples from Chapter 3 with Linear Road’s Daily Ex-
penditure requirements as it shows how the languages might be used to access histor-
ical data. Next we will proceed to the Accident Alerts since they combine accessing po-
tentially unlimited datasets with simple ordering and timing patterns. Finally we will
implement the Burst Pattern example as a classical timing pattern for TeSSLa. The im-
plementationswill be quite detailed and, to some extend, consider edge cases. Therefore
we will summarize them in the end of the chapter.

4.1 Linear Road: Daily Expenditures

Daily Expenditure requests address a set of historical data and, as wewill see, this can be
implemented naturally with our SDB query languages. The historical data should cover
the past 10 weeks, thus the set should theoretically be updated, when the time of the
simulation exceeds one day, but this will not happen by running the benchmark since
its simulations start on second 0 of a new day and only cover 3 hours.

CQL

Asmentioned earlier, the StreamQuery Repository [19] contains a section about the Lin-
earRoadBenchmarkwithquery implementations inCQL, however by the time theywere
written, the specifications were not yet complete, so the presented queries are also in-
complete. For this and the following querieswewill therefore take the suggested queries
and change or extend them if needed. First of all, we will start by defining input streams
and adapt them to the schemas they used as far as possible. As the stream events are
given in one schemausing “NULL” values for unused fields, wewill take the input stream
of events issued by the cars and extract the substream of Daily Expenditure Requests:

CarEventStr(type, /* 0,2,3,4 */
time, /* 0..10799 for 3h simulations */
carid, /* unique Vehicle IDentifier */
speed, /* speed of the car */
xway, /* expressway: 0..L-1 */
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lane, /* lane: 0..4 */
dir, /* direction: 0(east), 1(west) */
seg, /* segment: 0...99 */
pos, /* coordinate in express way:

* 0..527999 */
qid, /* id used to associate

* responses with queries */
m_init, /* initial segment */
m_end, /* final segment */
dow, /* day of week */
tod, /* time of day */
day); /* day from yesterday to 10

* weeks ago: 1..69 */
ExpQueryStr:

SELECT RSTREAM(time,carid,xway,qid,day)
FROM CarEventStr [NOW]
WHERE type = 3;

Next we define the historical data tables to address with the queries.

TollHistStr(carid, day, xway, tolls);
TollHistory:

SELECT *
FROM TollHistStr [UNBOUNDED];

Note that we do not consider updating the toll history which would require us for the
TollHistStr to unite the toll history inputwith newhistorical toll entrieswhenever an-
other day ends. Then, to omit old data and only store relevant entries we would replace
the UNBOUNDED window with for example RANGE 10 WEEKS SLIDE 1 DAY. On top
of that, we would need to update each entry’s day value when today becomes yesterday,
yesterday becomes the day before yesterday and so on –whichwould be toomuchunnec-
essary work. Instead, onemight think of just counting the days and using the number of
the present day as offset to calculate the daywhich is “day” days in the past. The fact that
applying ongoingdaynumbers for newhistory entrieswould require us to gobelowzero,
doesnotmake this approach seem tobe intended. And since running the benchmarkwill
never cover the end of the day, wewill not implement the history updates, insteadwewill
just leave a note on how it could be done like we did above. The actual output stream for
Daily Expenditure Answers can now be specified as follows:

ExpOutStr:
SELECT RSTREAM(3 as type, Q.time, CURRENT_TIME as emit, Q.qid, H.tolls)

FROM TollHistory as H, ExpQueryStr [NOW] as Q
WHERE H.carid = Q.carid AND H.day = Q.day AND H.xway = Q.xway;

While this query is easy to understand andmight feel natural to write, it is questionable
what will happen, when the system cannot keep up with too many input events: Since
with the [NOW] we are joining the toll history with current timestep’s queries, like with
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all queries of the current second, the emit time will always equal the query time or, if
the system is busy with queries like this for following seconds, it might skip queries of
another second completely. As an attempt to face this issue, by considering the response
time constraint, one could replace the NOW by RANGE 5 SECONDS and, since this way
the requests will stay in the window for longer but should still be answered just once, the
RSTREAMmust be replaced by an ISTREAM.

SQL for PipelineDB

With PipelineDB there are different ways to implement the specification. For this part
wewill use continuous views as theymake theDaily Expenditures as handy as with CQL.
Againwe start with defining the car event input stream and selecting required values for
the Daily Expenditure Request substream:

CREATE FOREIGN TABLE car_event_stream (
type INT, time INT, carid INT, speed INT, xway INT,
lane INT, dir INT, seg INT, pos INT, qid INT,
m_init INT, m_end INT, dow INT, tod INT, day INT

)
SERVER pipelinedb;

CREATE VIEW dexp_req WITH (action=transform) AS
SELECT time, carid, xway, qid, day
FROM car_event_stream
WHERE type = 3;

For the historical tolls stream and tables, in PipelineDB we could just insert new history
entries into the same stream we use for loading the history before starting the simu-
lation, but we would still need to take the same steps as for CQL to omit old data and
correctly address days by their numbers.

CREATE FOREIGN TABLE hist_tolls_stream (
carid INT, day INT, xway INT, tolls INT

)
SERVER pipelinedb;

CREATE VIEW toll_history WITH (action=materialize) AS
SELECT carid, day, xway, tolls

FROM hist_tolls_stream;

Now, to obtain the desired query answers, we can simply join the streamof requestswith
a table, or in this case with the continuous view:

CREATE VIEW dexp_answers WITH (action=transform) AS
SELECT 3 as type, q.time, CURRENT_TIME as emit, q.qid, h.tolls
FROM output_of('dexp_req') q, toll_history h

WHERE h.carid = q.carid AND h.day = q.day AND h.xway = q.xway;
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The direct join between the stream and the table within the continuous transform can
handle the stream’s events one after another and does not require an explicit window as
in CQL, so even if the system is busy processing all input events, there is no timewindow
dependent on the current time which might drop events appearing with too old times-
tamp; with this implementation, the system will process all requests one after another
regardless of the response time. Also, instead of using a continuous transform to output
the answers as a stream, we could change it into a continuous view to collect them in a
table, by changing the action from transform to materialize.

TeSSLa

For implementing this with TeSSLa, wewill first have to take a closer look on time: Since
TeSSLa requires the events within its streams to have unique timestamps, but the sim-
ulation produces many events for each timestep i.e. every second, we need to introduce
a new time domain of finer granularity, for example the time an event is passed to the
implementation in nanoseconds from starting the simulation. Further, while timing be-
tween events is a key property for TeSSLa, it does not provide a global “current time”
function independent of the event’s timestamps; thus, as described in Chapter 6, the
emit time value will be added to answers in a post-processing step. The input stream’s
events in TeSSLa will be defined as tuples of integers. To extract the values needed for
a substream, the stream is first filtered to only contain Expenditure Requests and then
lifted to a stream with another type:

in carEventStr : Events [CarEvent ]

def dExpReqStr : Events [DExpReq] =
liftToDExpReq ( f i l t e r ( carEventStr , isDExpReq( carEventStr ) ) )

To store the history for later use in answering queries, we need to make use of TeSSLa’s
unbounded data structures, since there is theoretically no upper bound on the number
of cars in a simulation and therefore no bound on entries to store. Essentially we define
a stream of maps containing the historical data. Whenever there is a new historical en-
try, we update the last state of the history known before the new entry appeared, which
should be initialized with an empty map.

in tol lHistStr : Events [ TollHistEntry ]

def tol lHistory : Events [ TollHist ]=
s l i f t (

tol lHistStr ,
default ( las t ( tollHistory , tol lHistStr ) ,

Map.empty[ Int ,Map[ ( Int , Int ) , Int ] ] ) ,
updTollHistory )
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The toll history map is structured as follows: An outer map uses the day as a key to get
the day’s historymap. Within thismap, the tuple (carid,xway) can be used to obtain the
corresponding tolls.

def dailyExpAnswer=
s l i f t (

las t ( tollHistory , dExpReqStr) , dExpReqStr ,
writeDExpAnswer)

This implementation of nested maps also allows to easily replace all entries for a sin-
gle day by just adding a new map of daily expenditures to the outdated day key. These
specifications obviously use non built-in data types and functions, which also need to be
defined. The presented implementation of writeDExpAnswer assumes all toll history
entries to be present.

type CarEvent={
type : Int , time : Int , carid : Int , speed : Int , xway : Int ,
lane : Int , dir : Int , seg : Int , pos : Int , qid : Int ,
m_init : Int , m_end: Int , dow: Int , tod : Int , day : Int }

type DExpReq={
time : Int , carid : Int , xway : Int , qid : Int , day : Int }

type TollHistEntry={
carid : Int , day : Int , xway : Int , t o l l s : Int }

# Map( day −> Map( ( carid , xway) −> t o l l s ) )
type TollHist = Map[ Int ,Map[ ( Int , Int ) , Int ] ]

def isDExpReq(stream : Events [CarEvent ] ) : Events [Bool ] =
s l i f t 1 ( stream , (e : CarEvent ) => e . type == 3)

def liftToDExpReq (stream : Events [CarEvent ] ) : Events [DExpReq] =
s l i f t 1 ( stream ,

(e : CarEvent ) => {
time = e . time , carid = e . carid , xway = e .xway,
qid = e . qid , day = e . day } )

def updTollHistory (d : TollHistEntry , tH: TollHist ) =
i f Map. contains (tH,d . day) then

Map.add(
tH, d . day ,
Map.add(Map. get (tH,d . day) ,

(d . carid ,d .xway) , d . t o l l s ) )
else
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Map.add(tH, d . day ,
Map.add(Map.empty[ ( Int , Int ) , Int ] ,

(d . carid ,d .xway) ,d . t o l l s ) )
def writeDExpAnswer(

hist : TollHist ,
req : DExpReq) =(

3 , req . time , req . carid , req . qid ,
Map. get (Map. get ( hist , req . day) ,

( req . carid , req .xway) ) )

4.2 Linear Road: Accident Alerts

While Daily Expenditure requests basically require the system to look up a certain value
out of an arbitrarily large dataset, apart from producing the output within the latency
time frame, it did not require the system to check events’ timing or order. In this re-
gard the Accident Alert requirements are more complex. They can be implemented in
three steps: finding stopped cars, computing accident segments and producing the ac-
tual alerts. To find out whether a car is stopped, its position from the last four reports
must be analyzed. If at least twoof the stopped cars share the sameposition, the segment
this position falls in is considered an accident segment. If one of the accident cars first
sends a report from another position such that there are not two stopped cars anymore,
the accident is said to be cleared. The accident segment however remains valid for the
minute the accident was cleared and an alert must be produced for a position report p, if
there was an accident segment nearby, which was valid in the last minute before p was
issued.

Figure 4.1 shows this timing on an exemplary accident from a simulation produced
by MITSIM: The two cars involved in the accident send reports with IDs 72 and 21 re-
spectively. Both start their trip with a single report from a position before the accident
area in segment 44 (car 72 at second 6300 and car 21 on second 6328). The accident starts,
when both cars have sent their fourth report from the accident area and ends when the
first of themmoves again. In this example, the reports showing themmoving away from
the accident,leaving the expressway and therefore ending the trip are issued 2 seconds
after their last position report from the accident’s position.

We will see from this example, that even though TeSSLa is designed with a focus
on timing properties, when it comes to patterns requiring arbitrarily sized datasets, the
presented SBD languages might still be a better fit.

CQL

As mentioned above, we will start with determining which cars have been stopped.

CarLocStr:
SELECT RSTREAM(time,carid,speed,xway,lane,dir,seg,pos)

FROM CarEventStr[NOW]
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p72 × × × × × × × × × × × × × ××

p21 × × × × × × × × × × × × × ××

s72 f t t f

s21 f t t f

acc f t t f

min 106 107 108 109 110 119 120 121 122 123

seg −1 44 44 −1

6300 6360 6420 6480 6540 7200 7260 7320 7380 7440

Figure4.1: ExemplaryAccident fromSimulationproducedbyMITSIM.p72 andp21 show
position reports of vehicles 72 and 21. The time they are considered stopped is indicated
by s72 and s21 and the time of the accident by acc. min shows theminute numbers and
seg is the accident segment used for producing alerts with −1 denoting NULL.

WHERE type = 0;

StoppedCars:
SELECT carid, AVG(xway) AS xway, AVG(lane) AS lane,

AVG(pos) AS pos, AVG(dir) AS dir, AVG(seg) AS seg
FROM CarLocStr [PARTITION BY carid ROWS 4]
GROUP BY carid
HAVING COUNT DISTINCT (xway,lane,pos,dir) == 1;

With the partitioned window we can easily divide the stream of position reports in sub-
streams, take the last four position reports of each car and aggregate them. Instead of
the AVG of the position we could as well take other aggregates like MIN or MAX since we
only consider groups featuring just one distinct position in all of the last four reports.
This table however might also contain cars just starting their trip and having therefore
just issued a single position report, which naturally only features a single distinct posi-
tion. To eliminate these cars, the HAVING clause can be extended by AND COUNT (pos)
== 4. For an accident there must be at least two cars being stopped at the exact same
position:

AccSegNow:
SELECT xway, dir, AVG(seg) AS seg

FROM StoppedCars
GROUP BY (xway,lane,pos,dir)
HAVING COUNT DISTINCT (carid) >= 2;
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Now we have the current segments with accidents, but we should only output alerts if
there was an accident segment valid at the last minute. Getting the timing right is prob-
ably the most tricky part here. A straight forward but not quite correct attempt would
be to union the current accident segments with the segments removed during the last
minute. The problem is, that this would include accidents which just occurred in the
current minute so they have not been valid for the last minute. In the example in Figure
4.1 this would lead to alerts from second 6448 where the accident is detected. To ensure
they were inserted last minute, we could use the time the entries have been inserted.

NewAccStr:
SELECT RSTREAM(A.xway, A.dir, A.seg, C.time)

FROM (ISTREAM(AccSegNow)) [NOW] as A, CarLocStr [ROWS 1] as C;
AccSegTime:

SELECT xway, dir, seg, -1 AS time
FROM AccSegNow

UNION
SELECT xway, dir, seg, -1 AS time

FROM (DSTREAM(AccSegNow)) [RANGE 1 MINUTE SLIDE 1 MINUTE]
UNION
SELECT xway, dir, seg, time

FROM NewAccStr [RANGE 1 MINUTE];

AccSegTime now contains accidents twice if they have been inserted within the last
minute and taking themaximumover the time for each accidentwill either yield the time
the accidentwas detected or−1 if it was detectedmore than oneminute in the past. Thus
we can implement the accident segments causing alerts right now as follows:

AccSeg:
SELECT AVG(A.xway), AVG(A.dir), AVG(A.seg)

FROM AccSegTime AS A, CarLocStr [ROWS 1] as C
GROUP BY (xway,dir,seg)
HAVING FLOOR(MAX(A.time)/60) < FLOOR(AVG(C.time)/60);

Finding out which cars recently proceeded to another segment and might approach an
area it should be warned for can easily be done with a partitioned window again. Note
that a car on the exit lane will end its trip so if themaximum lane number within the last
two position reports equals 4, either the last report was from the EXIT lane, or only the
second last was from lane 4, which then must have been from a previous trip. In both
cases, the vehicle is leaving the expressway or has just started a new trip, it should not
receive accident alerts. With the constants EAST = 0 and WEST = 1we can write

NewSegCars:
SELECT carid

FROM CarLocStr [PARTITION BY carid ROWS 2]
GROUP BY carid
HAVING COUNT DISTINCT (seg) == 2 AND MAX (lane) < 4;

AccNoteTriggger:
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SELECT carid, time, xway dir, seg
FROM CarLocStr [NOW]
WHERE carid IN (SELECT carid FROM NewSegCars);

AccNotifyStr:
SELECT RSTREAM (1 AS type, T.time, T.carid, A.seg)

FROM AccSeg AS A, AccNoteTriggger as T
WHERE (A.xway = T.xway and A.dir = EAST and T.dir = EAST and

T.seg <= A.seg and T.seg > A.seg - 5)
OR (A.xway = T.xway and A.dir = WEST and T.dir = WEST and
T.seg >= A.seg and T.seg < A.seg + 5);

For the window function in AccNoteTrigger and the relation-to-stream operator in
AccNotifyStr the same thing applies as for the NOW window and RSTREAM operator in
ExpOutStr of the previous example implementation.

SQL for PipelineDB

For this example we will be using continuous transforms with output functions which
allow us to select certain fields of a stream’s events and run a function on each new in-
coming event. Similarly to the daily expenditure requestsweuse a continuous transform
to take the position reports out of the car_events_stream. But this time, the trans-
form will not just output what it selected, it will directly output the accident alerts we
will compute using the function acc_alerts.

CREATE OR REPLACE FUNCTION acc_alerts()
RETURNS trigger AS
$$
BEGIN
CALL upd_reports(NEW);
CALL upd_stops_accs(NEW);
RETURN write_alert(NEW);

END;
$$
LANGUAGE plpgsql;

CREATE VIEW acc_alert_stream WITH (action=transform, outputfunc=acc_alerts)
AS
SELECT time, carid, xway, lane, dir, seg, pos
FROM car_event_stream
WHERE type = 0;

In the output function we first add the new report to the most recent reports, a table
containing the last four reports of each vehicle

CREATE TYPE pos_report AS (
time INT, carid INT, speed INT, xway INT,
lane INT, dir INT, seg INT, pos INT

);
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CREATE TABLE last_reports (
time INT, carid INT, speed INT, xway INT,
lane INT, dir INT, seg INT, pos INT

);
CREATE TABLE stops (

carid INT, xway INT, lane INT,
pos INT, dir INT, seg INT

);
CREATE TABLE accs (

time INT, xway INT, dir INT, seg INT, remove BOOLEAN
);
CREATE OR REPLACE PROCEDURE upd_reports(NEW pos_report)
AS $$
BEGIN

INSERT INTO last_reports (
time, carid, speed, xway,
lane, dir, seg, pos

) VALUES (
NEW.time, NEW.carid, NEW.speed, NEW.xway,
NEW.lane, NEW.dir, NEW.seg, NEW.pos);

IF (SELECT COUNT(*)
FROM last_reports
WHERE carid = NEW.carid) > 4

THEN
DELETE FROM last_reports

WHERE (time,carid) =
(SELECT time,carid

FROM last_reports
WHERE carid = NEW.carid
ORDER BY time DESC
LIMIT 1);

END IF;
END;
$$
LANGUAGE plpgsql;

and after that we update the tables for stops and accidents. This can be done by first
checkingwhether the car is stopped or whether it ismoving to take certain action and in
the end removing accidents which have been cleared before the last minute.

CREATE OR REPLACE PROCEDURE upd_stops_accs(NEW pos_report)
AS $$
BEGIN
IF (SELECT COUNT(*)

FROM last_reports
WHERE carid = NEW.carid) > 3

AND (SELECT COUNT(DISTINCT (xway,lane,pos,dir))
FROM last_reports
WHERE carid = NEW.carid) = 1
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THEN
CALL stopped(NEW);

ELSE
CALL moving(NEW);

END IF;
DELETE FROM accs

WHERE remove
AND FLOOR(time/60) < FLOOR(NEW.time/60) - 1;

END;
$$
LANGUAGE plpgsql;

If the last four reports feature the sameposition, the car is stopped andweneed to check,
whether it is already registered as a stopped car. Only if the car was not registered, i.e.
theNEWposition report is the fourth from the sameposition, it needs to be registered and
checked, if there are other cars stopped at the very same position, to save a new accident
segment if it is not present already. If the car was already registered before, these steps
have already been done with the position report the car was stopped.

CREATE OR REPLACE PROCEDURE stopped(NEW pos_report)
AS $$
BEGIN
IF NOT EXISTS (SELECT * FROM stops

WHERE carid = NEW.carid
LIMIT 1)

THEN
INSERT INTO stops (

carid, xway, lane,
pos, dir, seg

) VALUES (
NEW.carid, NEW.xway, NEW.lane,
NEW.pos, NEW.dir, NEW.seg);

IF (SELECT COUT(DISTINCT carid)
FROM stops WHERE (xway, lane, pos, dir)=

(NEW.xway, NEW.lane, NEW.pos, NEW.dir)
) = 2 AND
NOT EXISTS (SELECT *

FROM accs
WHERE seg = NEW.seg

AND NOT remove)
THEN

INSERT INTO accs (
time, xway, dir, seg, remove

) VALUES (
NEW.time, NEW.xway, NEW.dir, NEW.seg, FALSE);

END IF;
END IF;

END;
$$
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LANGUAGE plpgsql;

If the last four position reports of this car feature more than just a single position, the
car is considered moving and therefore, similarly as before, we need to check whether
it is registered as stopped car i.e. the car started moving again with the NEW position
report. Only if this is the case, the car needs to be unregistered from the stopped cars
and it needs to be checked, if this clears an accident at the segment it was stopped and if
so, whether it was the only accident at that segment so that the accident segment can be
marked for remove.

CREATE OR REPLACE PROCEDURE moving(NEW pos_report)
AS $$
DECLARE

stop_seg INT := -1;
BEGIN
IF EXISTS (SELECT * FROM stops

WHERE carid = NEW.carid
LIMIT 1)

THEN
stop_seg = (SELECT seg FROM stops

WHERE carid = NEW.carid);
DELETE FROM stops

WHERE carid = NEW.carid;
IF EXISTS (SELECT * FROM accs

WHERE seg = stop_seg
AND NOT remove

LIMIT 1)
AND (SELECT COUNT(*) FROM stops

WHERE seg = stop_seg) =
(SELECT COUNT(DISTINCT (xway,lane,pos,dir))

FROM stops)
THEN

UPDATE accs
SET remove = TRUE,

time = NEW.time
WHERE seg = stop_seg;

END IF;
END IF;

END;
$$
LANGUAGE plpgsql;

Not removing them instantly but just marking them for later removal allows to use the
accs tabledirectly for producingalertswith the last position reports, after checking lane,
segments and existing accidents in a similar manner as with CQL.

CREATE TYPE acc_alert AS (
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type INT, time INT, emit INT, carid INT,seg INT);

CREATE OR REPLACE FUNCTION write_alert(NEW pos_report)
RETURNS acc_alert AS
$$
DECLARE
EAST INT := 0;

WEST INT := 1;
BEGIN
IF NEW.lane < 4

AND (SELECT seg FROM last_reports
WHERE carid = NEW.carid

AND time = NEW.time-30) != NEW.seg
AND EXISTS (

SELECT * FROM accs
WHERE (xway = NEW.xway AND dir = EAST

AND NEW.dir = EAST AND NEW.seg <= seg
AND NEW.seg > seg - 5)

OR (xway = NEW.xway AND dir = WEST
AND NEW.dir = WEST AND NEW.seg >= seg
AND NEW.seg < seg + 5)

LIMIT 1)
THEN

RETURN (SELECT 1 AS type, NEW.time, CURRENT_TIME AS emit,
NEW.carid, seg

FROM accs
WHERE (xway = NEW.xway AND dir = EAST

AND NEW.dir = EAST AND NEW.seg <= seg
AND NEW.seg > seg - 5)

OR (xway = NEW.xway AND dir = WEST
AND NEW.dir = WEST AND NEW.seg >= seg
AND NEW.seg < seg + 5));

ELSE
RETURN NULL;

END IF;
END;
$$
LANGUAGE plpgsql;

This is just one of multiple possible approaches these properties can be implemented.
Instead, one could have used continuous views, more than just one continuous trans-
form, eachwith less complex output functions, or use user defined aggregates with state
values, transition and final function. Many possible approaches also bring a lot of space
for optimization: Even though the presented functions try to optimize using techniques
like limiting a subquery to just one entrywhen only the existence of any is of importance,
there is still much room for improvement for example by keeping the number of distinct
accidents for each segment to avoid the possibly expensive subquery for finding other
accidents by the stopped cars if one accident had been removed.

This approachmoves from the declarative one with CQL into a procedural direction
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while still keeping similarities in tables an queries on them. The CQL approachmight be
shorter and more elegant in some sense, but a procedural one might be easier to under-
stand by a finer scope on single events instead of windows, especially when it comes to
edge cases.

TeSSLa

TeSSLa as a declarative language is used to define streams, but also provides fine control
about every single event to, for example, lift some stream’s values from one domain into
another. Because of this, the approach taken with TeSSLa will show some parallels with
the previous for PipelineDB.

First we extract position reports from the input stream omitting unused fields.

def latestCarPos = s l i f t 1 (
f i l t e r ( carEventStr , s l i f t 1 ( carEventStr ,

( e : CarEvent ) => e . type == 0) ) ,
( e : CarEvent ) => { time =e . time , carid=e . carid ,

speed=e . speed , xway =e .xway,
lane =e . lane , dir =e . dir ,
seg =e . seg , pos =e . pos } )

From this we store the latest position of every car.

type Position={
time : Int , carid : Int , speed : Int , xway : Int ,
lane : Int , dir : Int , seg : Int , pos : Int }

def carPos : Events [Map[ Int , Position ] ] =
default (

s l i f t (
latestCarPos , las t ( carPos , latestCarPos ) ,
(p : Position , m: Map[ Int , Position ] ) => Map.add(m,p . carid ,p) ) ,

Map.empty[ Int , Position ] )

To find out whether a car is stopping, we need consecutive position reports of it so we
augment the position reports in the latestCarPos stream with the previous report of
the same car.

def reportingCar = s l i f t 1 ( latestCarPos , ( p : Position )=>p . carid )

def prevCarPos : Events [ Position ] =
s l i f t ( reportingCar , las t ( carPos , latestCarPos ) , lPos )

def lPos ( id : Int , pos : Map[ Int , Position ] ) =
i f Map. contains (pos , id ) && Map. get (pos , id ) . lane != 4
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then Map. get (pos , id )
else { time=−1,carid=id , speed=−1,xway=−1,

lane=−1, dir=−1, seg=−1, pos=−1}

def posUpdate =
s l i f t (prevCarPos , latestCarPos ,

( prev : Position ,now: Position ) => {p = prev , n = now} )

lPos assumes the last position report to belong to the last trip, if it was sent from an exit
lane and therefore also returns UNKNOWN for the last report of the current trip. Now,
to check whether a car is stopping, we could store the full previous four position reports
as we did in the previous implementation, but in an attempt to keep the amount of data
stored in the sets low, we will stick at only considering the last two position reports and
count the number of successive records the position remained unchanged.

def carStopping : Events [Map[ Int , Int ] ] =
default (

s l i f t ( l as t ( carStopping , posUpdate) , posUpdate , isStopping ) ,
Map.empty[ Int , Int ] )

type PUpdate= {p : Position , n: Position }

def isStopping (cS : Map[ Int , Int ] , pUD: PUpdate) =
i f samePos(pUD.p ,pUD.n)
then # hal t ing

i f Map. contains (cS ,pUD.n. carid )
then # already r eg i s t e r ed , increment numReports

Map.add(cS , pUD.n. carid , Map. get (cS ,pUD.n. carid ) +1)
else # add to map

Map.add(cS ,pUD.n. carid ,2 )
else # not hal t ing

i f Map. contains (cS ,pUD.n. carid )
then Map. remove(cS ,pUD.n. carid )
else cS

def samePos(a : Position , b : Position ) = a .xway == b .xway
&& a . lane == b . lane && a . pos == b . pos && a . dir == b . dir

The two conditions of interest now are when a car was stopped i.e. it was “stopping” for
the fourth position report and when a car continues moving after being stopped which
is when it moves after “stopping” for at least four position reports.

type XLPD = {xway : Int , lane : Int , pos : Int , dir : Int }
def stoppedChange : Events [ (XLPD, Bool ) ] =

s l i f t 3 ( las t ( carStopping , posUpdate) , carStopping , posUpdate ,
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isChanged)

def isChanged( lcS : Map[ Int , Int ] , cS : Map[ Int , Int ] , pUD: PUpdate) =
i f Map. contains (cS ,pUD.n. carid ) &&

Map. get (cS ,pUD.n. carid ) == 4
then # 4 th pos r epor t at same po s i t i on

( {xway = pUD.n.xway, lane = pUD.n. lane ,
pos = pUD.n. pos , dir = pUD.n. dir } , true )

else
i f Map. contains ( lcS ,pUD.n. carid ) &&

Map. get ( lcS ,pUD.n. carid ) >= 4 &&
!Map. contains (cS ,pUD.n. carid )

then # stopped car has moved with l a s t po s i t i on r epor t
( {xway = pUD.p .xway, lane = pUD.p . lane ,

pos = pUD.p . pos , dir = pUD.p . dir } , false )
else # no change

( {xway = −1, lane = −1,
pos = −1, dir = −1} , false )

def pureStopChanges =
f i l t e r (stoppedChange ,

s l i f t 1 (stoppedChange , ( e : (XLPD, Bool ) ) => e . _1 . lane > 0 &&
e . _1 . lane < 4) )

The stop changes events do not feature the carid anymore since we do not need to
know which cars stopped to detect an accident, we only need to know the number of
cars stopped at the very same position, which we can just count now.

def stops : Events [Map[XLPD, Int ] ] =
default (

s l i f t ( l as t ( stops , pureStopChanges) ,
pureStopChanges , updateStops ) ,

Map.empty[XLPD, Int ] )

def updateStops ( stps : Map[XLPD, Int ] ,sC : (XLPD, Bool ) ) =
i f sC . _2
then # new car stopped

i f Map. contains ( stps , sC . _1 )
then Map.add( stps , sC . _1 , Map. get ( stps , sC . _1 ) +1)
else Map.add( stps , sC . _1 , 1 )

else # stopped car moved
i f Map. get ( stps , sC . _1 ) > 1
then Map.add( stps , sC . _1 , Map. get ( stps , sC . _1 )−1)
else Map. remove( stps , sC . _1 )
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With this, we explicitly counted the number of stopped cars at a certain position which
we achieved with SQL for PipelineDB by grouping over the position and aggregated via
COUNT although we could have done it the same way as we did here. After that we pro-
ceeded in a similar manner to find accidents, where we already saw that we could have
also counted the accidents, in order to omit subqueries when an accident was removed.
Here, counting the accidents to know whether there is one left in the same segment, if
an accident is removed, follows the idea we used to detect the accidents. Note however,
that unlike with SQL, we cannot recheck for accidents that easily because we use maps
instead of relations, making us less flexible as we can only add, get or remove entries with
certain keys; we will deal with this issue later.

Similar to the event stream for stop changes we proceed now by defining a stream
for new or removed accidents, which should contain an event whenever a new stopping
car raised the number of cars at that position to 2 or a continuing car reduced it from 2
to 1.

def accChangeTrigger =
f i l t e r (pureStopChanges ,

s l i f t (pureStopChanges ,
latestUnti l (pureStopChanges , stops ) ,
isAccChanged) )

def isAccChanged( lPSC : (XLPD, Bool ) , s : Map[XLPD, Int ] ) =
i f Map. contains ( s , lPSC . _1 )
then lPSC . _2 && Map. get ( s , lPSC . _1 ) == 2 ||

! lPSC . _2 && Map. get ( s , lPSC . _1 ) == 1
else false

type XSD = {xway : Int , seg : Int , dir : Int }
def accUpdate : Events [ (XSD, Bool ) ] =

s l i f t ( latestUnti l ( accChangeTrigger , posUpdate) , accChangeTrigger ,
buildUpdate )

def buildUpdate (pUD: PUpdate , lPSC : (XLPD, Bool ) ) =
i f lPSC . _2
then ( {xway = pUD.n.xway, seg = pUD.n. seg ,

dir = pUD.n. dir } , true )
else ( {xway = pUD.p .xway, seg = pUD.p . seg ,

dir = pUD.p . dir } , false )

Now we could use these updates to build up the set of all accidents at a certain moment,
either adding or directly removing them as they are detected or get cleared, but accident
alerts should be generated even if the accident was cleared within the last minute. Thus
we are not only required to update the accidents if there are new ones or some have been
cleared, we also need to remove old entries, when a new minute starts. Therefore we
merge the accUpdate with purge triggers which will basically be created when a new
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minute starts and there is somethingwhich should probably be removed. The exact con-
ditions will be defined with removeTrigger after the accident map.

def updANTrigger =
merge(accUpdate ,

const ( ( { xway = −1, seg = −1, dir = −1} ,true ) ,
f i l t e r ( removeTrigger , removeTrigger ) ) )

To be able to check for accidents within a certain region, they should be accessible using
the segment on a certain expressway in a given direction. As with the implementation
in SQL, a value we need is the time the accident has started and further we need the total
number of accidents in the segment.

def secNow = s l i f t 1 ( latestCarPos , (p : Position ) => p . time)

type accEntry = { time : Int , num: Int }

def accsNow: Events [Map[XSD, accEntry ] ] =
default (

s l i f t 4 (
las t (accsNow,updANTrigger) ,
default ( at (updANTrigger ,removeNow) , List . empty[XSD] ) ,
at (updANTrigger ,secNow) ,
updANTrigger ,
updAccsNow) ,

Map.empty[XSD, accEntry ] )

The actual updates are performed in the 4-ary function updAccsNow. Updating themap
by adding a new accident or marking an existing accident as cleared for later removal is
quite simple and could be done using the last state of the map, an accUpdate and the
current second. The difficulty however is to remove old entries: When a new minute
begins, all entries for segments should be removed, where the last accident has been
clearedmore than oneminute ago. For a relation in SQLwe could just use DELETE FROM
accsNow WHERE num = 0 AND time < segNow-60 but since we are dealing with a
map and, evenwithout considering efficiency, TeSSLa currently does not allow to iterate
over a map’s entry set apart from exploring its key domain, we need to know the exact
keys to look at. Theywill be provided as a list whichmight only contain entries at the first
update of a newminute.

When a new accident is detected, it can just be added to themap as a new entry with
the current time or it increments the number of accidents if the segment was already
registered, keeping the time it was registered first. When an accident was removed and
it was the only accident it needs to be checked, whether a newminute has just started or
if the accident was detected at the same second whichmight happen due to event order-
ing. In both cases the accident was not valid for a single second of the current minute
and should not produce alerts, thus it should be removed directly. If it was not the only
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accident, the number can just be decremented. All these actions are done on the purged
map where all old entries have been already deleted. If the update trigger did not con-
tain a segment on a valid expressway, the accidentmap is just purged. Purging is done by
recursively traversing the listed entries and removing them if there is no active accident.

def updAccsNow( las t : Map[XSD, accEntry ] , remove : List [XSD] ,
tm: Int ,aUD: (XSD, Bool ) ) : Map[XSD, accEntry ] =
i f aUD. _1 .xway >= 0
then # not j u s t a purge t r i g g e r

i f aUD. _2
then # new acc iden t to add

i f Map. contains (purged ,aUD. _1 )
then # increment acc number

Map.add(purged , aUD. _1 ,
{ time = entry . time ,num = entry .num+1} )

else # add new acc iden t
Map.add(purged ,aUD. _1 ,

{ time = tm, num = 1 } )
else # acc iden t removed

i f entry .num == 1 &&
( entry . time == tm || isNewMinute)

then
Map. remove(purged ,aUD. _1 )

else
Map.add(purged , aUD. _1 ,

{ time = entry . time ,num = entry .num−1})
else purged where{ # remove acc iden t

def entry =
i f Map. contains (purged ,aUD. _1 )
then Map. get (purged ,aUD. _1 )
else { time = −1, num = 0}

def isNewMinute = tm%60 == 0
def purged = purge( last , remove,0)

}
def purge(map: Map[XSD, accEntry ] , remove : List [XSD] ,

pos : Int ) : Map[XSD, accEntry ] =
stat ic i f pos < List . size (remove)
then

i f Map. contains (map, List . get (remove , pos ) ) &&
Map. get (map, List . get (remove , pos ) ) .num == 0

then
purge(Map. remove(map, List . get (remove , pos ) ) ,

remove , pos+1)
else

purge(map, remove , pos+1)
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else map

To build the list for removal, we start with an empty list every newminute andwhenever
a last accident in a segment is cleared, it is appended.

def markRemove: Events [ List [XSD] ] =
default ( s l i f t 4 (

las t (markRemove,updANTrigger) ,
default ( at (updANTrigger , removeTrigger ) , false ) ,
l as t (accsNow,updANTrigger) , updANTrigger ,
updRemoveMarks) ,

List . empty[XSD] )

def updRemoveMarks( las t : List [XSD] , newList : Bool ,
lastAccs : Map[XSD, accEntry ] ,upd: (XSD, Bool ) ) : List [XSD] =
i f !upd. _2 && Map. contains ( lastAccs ,upd. _1 ) &&

Map. get ( lastAccs ,upd. _1 ) .num == 1
then List . append( l i s t ,upd. _1 )
else l i s t where{

def l i s t = i f newList then List . empty[XSD] else l as t
}

Before the list is replaced by an empty one, it needs to be applied. This can be done by
taking a snapshot of the last known state every new minute and we only need to fire a
remove trigger, when the list is not empty.

def removeNow: Events [ List [XSD] ] =
s l i f t ( l as t (markRemove,newMin) , removeTrigger , pickList )

def pickList ( las t : List [XSD] , remove : Bool ) =
i f remove then l as t else List . empty[XSD]

def removeTrigger : Events [Bool ] =
s l i f t 1 ( las t (markRemove,newMin) ,

(mr: List [XSD] ) => List . size (mr) > 0)

accsNow are defined to contain all accidents valid for the current minute thus, for acci-
dent alerts we should take the state after the last minute’s last second.

def accs : Events [Map[XSD, accEntry ] ] =
default (

las t (accsNow,
f i l t e r (minNow,

s l i f t ( l as t (minNow,minNow) ,minNow,
( lastM : Int , nowM: Int ) => lastM != nowM) ) ) ,

Map.empty[XSD, accEntry ] )
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With this, one can check, whether a position report should trigger an accident alert.

def alertTriggers = f i l t e r (posUpdate ,
s l i f t (posUpdate , latestUnti l (posUpdate , accs ) , isTriggered ) )

def isTriggered (pUD: PUpdate , ac : Map[XSD, accEntry ] ) =
pUD.p . seg != pUD.n. seg && pUD.n. lane < 4 &&
nearAcc (ac , {min=m(pUD.n. time) ,xway=pUD.n.xway,

seg=pUD.n. seg , dir=pUD.n. dir } )

type MXSD = {min: Int , xway : Int , seg : Int , dir : Int }

def nearAcc ( accs : Map[XSD, accEntry ] ,mxsd: MXSD) : Bool =
Map. contains ( accs ,

{xway=mxsd.xway, seg=mxsd. seg , dir=mxsd. dir } ) ||
Map. contains ( accs ,

{xway=mxsd.xway, seg=mxsd. seg+ds , dir=mxsd. dir } ) ||
Map. contains ( accs ,

{xway=mxsd.xway, seg=mxsd. seg+ds*2,dir=mxsd. dir } ) ||
Map. contains ( accs ,

{xway=mxsd.xway, seg=mxsd. seg+ds*3 , dir=mxsd. dir } ) ||
Map. contains ( accs ,

{xway=mxsd.xway, seg=mxsd. seg+ds*4 ,dir=mxsd. dir } ) where{
def ds = dirSign (mxsd. dir ) }

def dirSign ( dir : Int ) : Int = i f dir == 0 then 1 else −1

To finally write the accident alerts, we recall that there might bemore than one accident
segment such that one position report triggersmore than one accident alert. In compar-
ison to the other languages, for TeSSLa this is an issue since it does not allow multiple
events of the same timestamp within one stream. One way to face it would be to slightly
delay further accident alerts to serialize them in a similar way as we do for input stream
events by applying a finer granulated time domain and use the time they are inputted
into the interpreter as TeSSLa timestamp. However, this combination will only work, if
the steps between input timestamps are always big enough to fit up to 5 accident alerts
after each other without overlapping possible alerts for a subsequent report. To output
them all at the same timestamp of the triggering position report instead, we can aggre-
gate them for example in a set and disassemble them in the post processing stepwe need
anyway to add the emit time.

def accidentAlert : Events [ ( Int , Int , Int , Set [ Int ] ) ] =
s l i f t ( alertTriggers , latestUnti l ( alertTriggers , accs ) ,

writeAccAlert )
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def writeAccAlert (pUD: PUpdate , ac : Map[XSD, accEntry ] ) =
( 1 , pUD.n. time , pUD.n. carid , accSegs (

ac , {min=m(pUD.n. time) ,xway=pUD.n.xway,
seg=pUD.n. seg , dir=pUD.n. dir } ) )

def accSegs ( ac : Map[XSD, accEntry ] ,mxsd: MXSD) : Set [ Int ] =
addAccSeg(ac ,mxsd,4 , addAccSeg(

ac ,mxsd, 3 , addAccSeg(
ac ,mxsd,2 ,addAccSeg(

ac ,mxsd, 1 , addAccSeg(
ac ,mxsd,0 , Set . empty[ Int ] ) ) ) ) )

def addAccSeg( ac : Map[XSD, accEntry ] ,mxsd: MXSD,
off : Int , accSegs : Set [ Int ] ) : Set [ Int ] =

i f Map. contains (ac , { xway=mxsd.xway, seg=checkSeg , dir=mxsd. dir } )
then Set . add(accSegs , checkSeg)
else accSegs where {

def checkSeg = mxsd. seg+dirSign (mxsd. dir )*off }

4.3 Burst Pattern Example

This property can be implemented straight forward with TeSSLa, not only because of
handy inbuilts, but also because of its view on time and timing: An event’s time is di-
rectly taken from the input and all events are assumed to be globally ordered by these
timestamps for all operations. For other languages in practical use, we cannot count
on such properties. First of all PipelineDB’s streams indeed always contain a column
arrival_time, but rather than the time it is read by the system, it shows the transaction
time. Thus e.g. if the stream events are read froma pipe in a long transaction theywill all
get the same timestamp value, which is obviously useless for comparing time of events.
To counter this, one could apply a continuous transform and use one of the inbuilt time
functions to give the events an appropriate stamp. Since TeSSLa reads the timestamps
along the values if the trace is input from a file as we will use for this example, we will
take this time value as an extra column in SQL or CQL, ignoring system time values as
the arrival_time column.

Further, for the relational languages, there is no guarantee that operators work syn-
chronized on the input tuple’s times. For CQL, since we are not considering a concrete
implementation, we will simply assume that the system can catch up and work synchro-
nized with the input, meaning for example, that if we join the NOW windows of two dif-
ferent streams, we will always receive a tuple iff the two input stream’s events featured
the same timestamp. For SQL however, we will examine different attempts to ensure
PipelineDB operates as expected.
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CQL

We begin by checking the silencing condition for which we just need to compare the last
known values of the a and b streams.

SilenceCond:
SELECT la.a > lb.b AS c, MAX(la.time,lb.time) AS time

FROM aStream [ROWS 1] AS la, bStream [ROWS 1] AS lb;

The silencing condition demands the eStream to be silent if its value is TRUE, thus the
properties of the silencing conditions are met if either its value equals FALSE or it has
been changed after the last e event appeared.

SilenceChange:
SELECT nowC.c, nowC.time AS change

FROM DSTREAM(SilenceCond) [ROWS 1] AS lastC, SilenceCond AS nowC
WHERE lastC.c != nowC.c;

SilenceOK:
SELECT !c OR lc.time > le.time AS sil

FROM SilenceChange, eStream [ROWS 1];

Since we do not consider events for bursts if the stream should be silenced, for checking
the actual bursts we can remove all events issued for the eStreamwhile the silence con-
dition is TRUE. This also ensures events to be ignored if the silencing condition is not yet
known.

BurstEventStr:
SELECT RSTREAM(e)

FROM eStream [NOW], IsSilenced
WHERE !c;

Now we have to somehow detect burst starts. An event in eStream starts a new burst
if it is the first event after the silencing condition was changed to FALSE or if the last
burst is over. Therefore, additionally to the BurstEventStr and the changes to the si-
lencing condition, the start of the previous burst is requiredwhichmight be solved using
recursion.

RecBurstStart:
SELECT CASE WHEN MAX(start) + BURST_LENGTH + WAITING_PERIOD > MAX(time)

OR MAX(change) <= MAX(start)
THEN MAX(start) ELSE MAX(time) END AS start

FROM RecBurstStart, BurstEventStr [ROWS 1], SilenceChange
UNION
SELECT -1 AS start;

BurstStart:
SELECT MAX(start)

FROM RecBurstStart;
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With this we can check the burst properties by just counting the events since the last
start and checking whether all events belonging to bursts appear within the time frame
of BURST_LENGTH after the the burst start.

AmountOK:
SELECT COUNT(time) <= BURST_AMOUNT AS num

FROM eStream [RANGE BURST_LENGTH], BurstStart
WHERE time >= start;

WaitingOK:
SELECT time <= start + BURST_LENGTH AS wait

FROM eStream [ROWS 1], BurstStart;

The silencing part and the two burst parts must all apply for the burst pattern example
property which has to be outputted whenever its value changes.

PropertyOK:
SELECT sil AND num AND wait AS p

FROM SilenceOK, AmountOK, WaitingOK

PropertyStr:
SELECT RSTREAM(nowVal.p)

FROM DSTREAM(PropertyOK) [ROWS 1] AS lastVal, PropertyOK AS nowVal
WHERE lastVal.p != nowVal.p

SQL for PipelineDB

As mentioned above, there are multiple ways to implement properties like these with
PipelineDB showing different behavior: Some might yield incomplete or wrong results
if the operators do not work synchronously, others will eventually get the output right
and finally it can give correct output right away. Incomplete or wrong results might be
produced if the input is processed in different substreams independently like evaluating
the silencing condition and writing it to some table so it can be accessed by other con-
tinuous transforms. In this example, whenever there is an e event, we could use such a
table containing the last value of the silencing condition to check whether it belongs to
someburst or if it appeared during a silenced phase. If however the value of the silencing
condition will change at the same time and is not yet up to date e.g. due to input event
ordering, PipelineDBwill falsely output an error or incorrectly classify as burst event and
therefore falsely not output an error. Furthermore, examples like this might be imple-
mented using continuous views and defining hierarchical views on them. Dependent on
how final views are used to generate streaming output, it might be wrong or incomplete
as well, but if the continuous views do not drop events, the final views for output will
contain the right answers when all continuous views have been, up to a certain timestep,
populated completely.

To ensure that all correct results are generated when the events of a single timestep
are processed, they might be computed over a single streamwhere an event contains all
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values of relevant stream’s events for that timestamp. A stream like that could be im-
plemented by collecting all input stream’s events until a new timestamp appears. Then
an event containing all aggregated values with NULL values for streams with no event at
that timestep is outputted. Using this approach, the burst pattern example can be imple-
mented relatively simplebyusing functions andprocedures similarly aswe implemented
Linear Road’s accident alerts. Instead of repeating this attempt, we will show how it can
be done with hierarchical views despite the disadvantages we will later examine a little
further, in order to give a brief impression on how limited SQL without UDAs or trigger
functions is on timing and ordering properties like this.

First of all, we define the input as a single stream containing the values of all events
for a single timestamp. Although it could be generated from individual streams as de-
scribed above, we will skip this step here for simplicity.

CREATE FOREIGN TABLE in_stream (
time bigint, a bigint, b bigint, e_u text)

SERVER pipelinedb;

The e events could just be of any type to be distinguished from NULL, here and for the
implementation we will use strings. Now we will use a single continuous view, as an
append only table on which we will check for the burst pattern.

CREATE VIEW burst_trace WITH (action=materialize) AS
SELECT time, a, b, e_u AS e
FROM in_stream;

To compute the value of the silencing condition with CQL we just used the last values
of “a” and “b” respectively by applying a tuple based window. But since we work on the
stream as on a constantly growing table, we need to define all properties as if the ta-
ble was completely filled with all events but in a non-blocking way to enable generating
output up to the last known event while incrementally processing the input. For the si-
lencing condition, this means that we need to combine each of the “a” values with the
corresponding last “b” value and vice versa since every new value in “a” as in “b” sets the
silencing condition’s new value.

CREATE VIEW a_vals AS
SELECT time, a
FROM burst_trace
WHERE a IS NOT NULL;

CREATE VIEW b_vals AS
SELECT time, b
FROM burst_trace
WHERE b IS NOT NULL;

CREATE VIEW a_latest_b AS
SELECT avs.time, a, b
FROM a_vals AS avs, b_vals AS bvs
WHERE avs.time >= bvs.time
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AND NOT EXISTS (SELECT time
FROM b_vals
WHERE avs.time >= time
AND time > bvs.time);

CREATE VIEW b_latest_a AS
SELECT bvs.time, a, b
FROM a_vals AS avs, b_vals AS bvs
WHERE bvs.time >= avs.time
AND NOT EXISTS (SELECT time

FROM a_vals
WHERE bvs.time >= time
AND time > avs.time);

The NOT EXISTS can be used here in a non-blockingway since no later eventwill feature
a timestamp less or equal the timestamp of an earlier event. The same way ORDER BY
time DESC LIMIT 1 could be used here but this could not be applied to a continuous
view directly. Using this, the silencing condition can be defined in a straightforward
way.

CREATE VIEW c AS
SELECT time, CASE WHEN a > b THEN 'true' ELSE 'false' END AS val
FROM (SELECT * FROM a_latest_b
UNION SELECT * FROM b_latest_a) AS ab_vals;

Next we take all e events and only preserve events where the most recent value of the
silencing condition is FALSE i.e. the value is known and not silencing.

CREATE VIEW raw_burst_events AS
SELECT time, e
FROM burst_trace
WHERE e IS NOT NULL;

CREATE VIEW c_false AS
SELECT time AS cf_time
FROM c
WHERE val = 'false';

CREATE VIEW c_true AS
SELECT time AS ct_time
FROM c
WHERE val = 'true';

CREATE VIEW burst_events AS
SELECT time, e
FROM raw_burst_events
WHERE EXISTS(SELECT cf_time

FROM c_false
WHERE cf_time <= time

AND NOT EXISTS(
SELECT ct_time
FROM c_true
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WHERE cf_time <= ct_time
AND ct_time <= time));

With this, violations of the silencing property are the raw_burst_events not included
in burst_events.

CREATE VIEW no_event_violations AS
SELECT time
FROM raw_burst_events
WHERE time NOT IN (SELECT time

FROM burst_events);

For inspecting the actual bursts, we proceed finding the times when the silencing condi-
tion falls from TRUE to FALSE indicating the start of a new burst interval.

CREATE VIEW c_falls AS
SELECT cf_time AS fall
FROM c_false
WHERE (SELECT val FROM c

WHERE time < cf_time
ORDER BY time DESC LIMIT 1);

By matching each burst event with the corresponding last fall time, we divide them
into the burst intervals, of which the first burst event always starts a new burst.

CREATE VIEW burst_intervals AS
SELECT be.time, cf.fall
FROM burst_events be, c_falls cf
WHERE cf.fall = (SELECT fall FROM c_falls

WHERE fall <= be.time
ORDER BY fall DESC LIMIT 1);

CREATE VIEW first_starts AS
SELECT MIN(time)
FROM burst_intervals
GROUP BY fall;

Now, as with CQL, we recursively find the next burst starts. To simplify the recursion,
we first find the preceding burst events for each burst within the same burst interval.

CREATE VIEW time_last AS
SELECT t.time AS ttime, l.time AS ltime
FROM burst_intervals t, burst_intervals l
WHERE l.fall = t.fall

AND l.time = (SELECT time
FROM burst_interval
WHERE time < t.time
ORDER BY time DESC
LIMIT 1);
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With this we can not only find the next burst starts recursively, we can also match each
burst event with a certain burst and find the number of each burst event within its burst.

CREATE VIEW burst_starts AS
WITH RECURSIVE starts AS (

SELECT time AS stime, time AS start, 1 AS event_count
FROM first_starts

UNION
SELECT time AS stime,

CASE WHEN time - start < 3000
THEN start ELSE time END AS start,
CASE WHEN time - start < 3000
THEN event_count + 1 ELSE 1 END AS event_count

FROM starts,burst_events,time_last
WHERE time = ttime AND stime = ltime

)
SELECT stime AS time, start, event_count
FROM starts;

Thismakes finding burst property violations very easy sincewe only need to check, if the
number of a certain event within its burst exceeds the burst amount of 3 or whether the
start of its burst lies more than the burst length of 2 seconds in the past.

CREATE VIEW burst_violations AS
SELECT time
FROM burst_starts
WHERE event_count > 3
OR time - start >= 2000;

Together with the violations of the silencing condition, they make up the set of all burst
events for which the burst property we want to check is FALSE.

CREATE VIEW p AS
SELECT time, CASE WHEN time IN (SELECT time FROM violations)
THEN 'false' ELSE 'true' END AS val
FROM burst_trace;

As this property should only to appear in the output when its value changes, the output
can be implemented with the following view.

CREATE VIEW pure_p AS
SELECT time, val
FROM p p1
WHERE val IS DISTINCT FROM

(SELECT val FROM p p2
WHERE p2.time < p1.time
ORDER BY time DESC LIMIT 1);
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This implementation uses many expensive joins and subqueries such as to match some
events with preceding events which especially shows an advantage of processing input
rows one after another over viewing them as a list of all. Apart from that there are many
ways to optimize these views, this whole approach of hierarchical views on append only
continuous views is poorly suited for long running continuous systems as the over time
increasing sizes of input tables will constantly decrease performance. Note also, that
our output view is no continuous view since it does not select from a stream. Therefore
it is not associated with an output stream making continuous output as a stream more
complicated.

Theremight be applications, where this approach is particularly handy, for the prop-
erties can be specified easily using an SQL query and the input appears in a few bulks
rather than a long continuous stream. On top of this, it should be possible to safely drop
old input tuples for keeping performance at a reasonable level. For this burst pattern
example however, the approach of handling input events one after another is much bet-
ter suited as it allows to reduce the growing memory requirements for longer runs to a
constant amount of saved values and is more convenient to implement.

TeSSLa

As advertised earlier, the implementation in TeSSLa taken from [21] is very short. Defin-
ing input, intermediate streams and output only takes a few lines:

in a : Events [ Int ]
in b : Events [ Int ]
in e : Events [Unit ]

# Spec i fy s i l e n c ing condi t i on
def c := a > b

# Spec i fy c o r r e c t n e s s proper ty
def p := i f c

then noEvent(e , since = rising ( c ) )
else burstsSince (e , burstLength = 2s ,

waitingPeriod = 1s ,
burstAmount = 3 ,
since = fa l l ing ( c ) )

# Output
out a # s igna l
out b # s igna l
out e # unit event s
out pure (p) as p # s igna l

It makes use of standard library functions supported by TeSSLa’s interpreter and com-
piler. rising and falling take streams of boolean values and describe unit streams
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with events whenever the input stream’s signal value changes from false to true or
vice versa respectively. In the standard library they are defined from basic operators as
follows:

def unitIf (cond : Events [Bool ] ) : Events [Unit ] = constIf ( ( ) , cond)

def prev [A] ( a : Events [A] ) : Events [A] = las t (a , a )

def rising ( condition : Events [Bool ] ) : Events [Unit ] =
unitIf ( condition && !prev ( condition ) )

def fa l l ing ( condition : Events [Bool ] ) : Events [Unit ] =
unitIf ( ! condition && prev ( condition ) )

noEvent is a boolean signal taking the value true if there was no event in the first input
stream since the last reset given by an event in the second input stream. Again from the
standard library:

def resetCount [A,B] ( events : Events [A] , reset : Events [B] ) : Events [ Int ] =
count where {

def count : Events [ Int ] = default (
# ‘ r e s e t ‘ contains the l a t e s t event
i f default ( time( reset ) > time( events ) , false )
then 0
# ‘ r e s e t ‘ and ‘ events ‘ l a t e s t event happen simultaneously
else i f default ( time( reset ) == time( events ) , false )
then 1
# ‘ events ‘ contains the l a t e s t event > increment counter
else l as t ( count , events ) + 1 ,
0)

}

def noEvent[A,B] (on : Events [A] , since : Events [B] ) : Events [Bool ] =
resetCount (on, reset = since ) == 0

The actual bursts are checked by using the function burstsSince which counts the
events from the input stream, if the counter, which is reset whenever a new burst starts,
reaches the burst amount or there is an event later than burst length from the last burst
start it will take the value false. Else and by default the pattern’s conditions are met
and the value is true. The standard library suggests the following definition:

def on[A,B] ( trigger : Events [A] , stream : Events [B] ) : Events [B] =
f i l t e r ( f i r s t ( stream , trigger ) , time( trigger ) >= time(stream) )

def f i r s t [T, U] ( stream1 : Events [T] , stream2 : Events [U] ) : Events [T] =
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s l i f t ( stream1 , stream2 , (x : T, _ : U) => x)

def burstsSince [A,B] ( e : Events [A] , burstLength : Int , waitingPeriod :
Int , burstAmount : Int , since : Events [B] ) : Events [Bool ] = {

def burstStarts : Events [A] =
defaultFrom(

f i l t e r (e , las t ( time( burstStarts ) , e ) < on(e , time( since ) ) ||
time(e ) − l as t ( time( burstStarts ) , e ) >= burstLength +

waitingPeriod ) ,
e )

resetCount (e , reset = burstStarts ) <= burstAmount &&
default ( time(e ) < time( burstStarts ) + burstLength , true )

}

Finally to only output the property’s value if it changes, the standard function pure() is
used.

def pure [T] ( x : Events [T] ) : Events [T] =
f i l t e r (x , merge( las t (x , x ) != x , true ) )

Without using standard library functions with TeSSLa, a tuple-wise incremental imple-
mentation for PipelineDB is not much more intricate and might even feel more conve-
nient to someone used to classical databases. However, as long as the number of values
to store is assessable, concepts like signals and signal lift in TeSSLa are relatively easy to
use and might, in comparison to SQL, save numerous INSERT and SELECT statements.
Building functions, methods or custom aggregates for reuse is possible for PipelineDB
however libraries in TeSSLa integrate more naturally into the set of basic operators, al-
lowing to even replace them completely making TeSSLa exceptionally easy to use in ap-
plication domains with a comprehensive specific library.

4.4 Property Implementation Summary

Linear Road: Daily Expenditures

The challenge in daily expenditures was to store a historical dataset and access it for
query answers which has simple implementations especially for the SBD languages. In
CQL we could just apply an unbounded window to the stream of historical data and join
the resulting table with the queries. For PipelineDB a continuous view does essentially
the same thing as CQL’s unbounded window and the join with the queries can be imple-
mented using a continuous transform. For TeSSLa we used maps to save the historical
data. Then we lifted the stream of queries to the query answers by addressing the de-
sired data from the latest state of the historical dataset, using the request information as
key. Building up the history here by successively updating the latest state was a bit more
complicated than for the SBD languages where we could just use inbuilt functionality.
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Linear Road: Accident Alerts

For the accident alerts, the partitioned window in CQL was a handy tool. To determine,
whether the preconditions of a position report to trigger an accident alert are met, we
could use the partitionedwindow for the last two reports per carid. To find the stopped
cars, we could just partition the reports by carid and if the last four reports of a car
only contain a single distinct position, it is stopped. By grouping the relation of stopped
cars by position, groups with at least two different stopped cars are the accidents. The
difficulty of getting the timing right for alerts to be generated, was handled by adding
the detection time to new accidents and union themwith the current minutes DSTREAM
of the accidents. This table could then be used by joining with the position reports for
which the accident alert preconditions aremet, and considering position as well as start
time of the accidents.

In SQL for PipelineDB this was implemented using a single continuous transform
with all complexity in the output function. It allowed to procedurally handle incoming
stream events one after another. A new row was first used to update the last position
reports of each cars, essentially the same table as we obtained in CQL using the parti-
tionedwindow on caridwith four rows. Then the lists of stopped cars and accidents re-
spectively are updated if needed and finally used to write alerts. Specifying the system’s
behavior in a procedural way using INSERT, SELECT and DELETE statements endows,
but also imposes performance control on the user. Furthermore, handling events one
after another as they arrive rather than keeping the view on windows, might be easier
for timing patterns, especially considering edge cases.

Using TeSSLa, we started the implementation by saving the last known position for
each car in amap and used it to lift new position reports to position updates, containing
the last report’s information besides the recent. Then, if both shared the same position,
we used anothermap to count the number of reports a car sent without changing its po-
sition. If this number is raised to 4, the car is considered stopped and was added using
its position as key to a map of stopped cars. Similarly, if the number of stopped cars at
a certain position reaches 2, the segment is added to the map of the current minute’s
accidents. Just before a new minute starts, we take a snapshot of this map to write ac-
cident alerts for the following minute. The difficulty here was, to keep all accidents of a
minute until the moment we can take this snapshot and remove old entries afterwards.
In contrast to SQL with PipelineDB we cannot simply remove old entries similarly to a
“DELETE...WHERE” since we use a map and can only add, get and remove entries for
certain keys. Therefore we built up a list containing all entries which should be removed
and applied it at newminute’s starts.

Burst Pattern Example

To implement the burst pattern example inCQL,we started by comparing the last known
“a” and “b” values by joining windows of single rows to evaluate the silencing condition.
Since new bursts not only start whenever the silencing condition has just changed to
false, but also after the last burst is over, which depends on the previous burst start, we
used a recursive self-join to determine them. Together with the silencing condition and
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the “e” events, the burst starts could then be used to decide whether the burst property
is met or violated.

For SQLwe first considered different approaches how the burst pattern could be im-
plemented, anddecided topresent an implementationbasedona single continuous view
as it shows, how to implement such continuous properties using SQL with a view on the
whole table of stream events – in contrast to CQL where we used windows to only focus
on the last burst. We also noted, that this approach is hardly practical and one should
use UDAs and/or continuous transforms instead. We did not present these approaches
since their key ideas have already been covered with the accident alert implementation.
Working with the said continuous view, we saw how inconvenient it is for evaluating
ordering properties by matching events with the corresponding latest previous events.
Again, to find the burst starts we used a recursive view.

For TeSSLa we presented the short specification using standard library functions
and further showed how they can be implemented using basic operators only. We ar-
gued, that an implementation for PipelineDB could compete in terms of simplicity as it
might bemore convenient to use considering relational algebra andSQL to be commonly
known, assuming the standard or a specific library for TeSSLa not to be given.
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Stream Runtime Verification, as continuously deriving output streams from the incom-
ing events to check a program trace for certain criteria is, as onemight state, just regular
data stream processing, a task which PipelineDBwas specifically designed for. Thus the
first question to answer here is, what this implementation should accomplish in partic-
ular. Therefore we take a look at what is supported by the TeSSLa interpreter and how it
can be used: It can, as described in the tutorial [18], directly listen to events of a program
from instrumented C source code, running in parallel. Also it supports a special trace
syntax for input events. As with the program events, the trace can be read from regu-
lar files as offline monitoring or through a named fifo as online monitoring. A TeSSLa
specification file defines the output streams to be derived from the input.

The implementationwill focus on theTeSSLa trace syntax,whichmight beprocessed
in an online or offline manner. A single specification file in SQL should be sufficient to
define in- and output stream behavior and the output should be observable in real time
for online scenarios. The complete behavior might indeed be implemented in a single
file in SQL for PipelineDB, but this would always require a lot of extra work e.g. for pars-
ing the input, possibly outshining the actual stream property specification. On top of
that, the probably most straightforward way of reading continuous input as a long run-
ning COPY stream_name FROM 'named_fifo' has the disadvantage of being a single
transaction, giving all read tuples the same arrival_timestamp, therefore bypassing
any use of the inbuilt time-based windows and significantly limiting specification po-
tential with continuous views. Therefore the implementation should insert events one
after another at the time they arrive.

5.1 Implemented Program Structure

Similar to the TeSSLa interpreter, the implementation reads the input trace from a file,
whichmight be a namedfifo for onlinemonitoring. The implementation is split into two
parts, an input parser and a PipelineDB communicator. The input parser reads the in-
put trace, translates it into events which can directly be inserted into the SBD and passes
them to the communicator through a named fifo. For examining the effect of system’s
latency on the output like output event ordering, the parser also allows to delay input
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events read for offline monitoring to simulate the delays of events as if the monitoring
was performed online. The PipelineDB communicator will initialize the stream evalu-
ation by passing the specification file to the SBD. Then, whenever it reads a new event
from the input parser, it will directly pass it to the database. The output stream can be
observed using the srv_out fifo which will be opened by the communicator. It might
be written by the communicator itself as well as by calls from PipelineDB for example
in trigger functions. The output of the communicator must be prepared by predefining
queries in the SQL specification and listing the names of them in the end of the specifi-
cation file to be parsed by the communicator. Each of these queries corresponds to one
output streamand takes a time value as the last knownevent’s timewithin this stream, to
simulate an insert stream behavior by successively polling events with later timestamps.
If the output should be done by the SBD exclusively, the list of queries can be left empty
and the communicator will not perform any polling. An overview of the structure can
be examined in Figure 5.1. The whole implementation can be run in a docker container
including the PipelineDB server.

Log File/FIFO with Trace

Input Parser

Communicator SBD

PipelineDB

out

[timestamp_1], A
[timestamp_1], B
[timestamp_1], C
[timestamp_2], A
[timestamp_2], B

...

[timestamp_1], A, B, C
[timestamp_2], A, B, C
[timestamp_3], A, B, C
[timestamp_4], A, B, C
[timestamp_5], A, B, C

...

read next line

write to SBD

output query

=NULL?
NO

YES

Figure 5.1: Implemented Program Structure for SRV with PipelineDB

5.2 SQL Specification File

Since, as outlined earlier, for timing and ordering patterns it might be necessary to han-
dle all events of the different streams for a single timestamp as one composed event, for
simplicity we will only define a single PipelineDB input stream. The read input events
will, as described in 4.3, be collected by the input parser until a new timestamp is read or
the end of the input is detected. Then they are used to compose an event to be inserted
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into the PipelineDB input stream. This stream can be defined in the SQL specification
file as follows:

CREATE FOREIGN TABLE in_stream (
time bigint, e_1 type1, e_2 type_2, ..., e_n type_n)

SERVER pipelinedb;

PREPARE insert (bigint,type1,type_2,...,type_n) AS
INSERT INTO in_stream VALUES($1, $2, $3, ..., $n+1);

where e_1 to e_n are the different streams found in the trace log with the correspond-
ing event types type_1 to type_n. Since unit events do not carry a specific value but
should be distinct from NULL if it is present, the parser assumes unit fields in the input
stream specification to be of text type. Since the type text however can also be used for
TeSSLa streamswith String events, another hint for the input parser, which is also read-
ing the specification file to know which events to look for, is needed to tell which events
are of type unit. Therefore the streamname is just extended as name_u so that whenever
there is an event at some timestamp for stream name in the trace, the parser will write
'unit' instead of NULL for the SBD. An example of this can be seen in the burst pattern
example implementation for PipelineDB,Chapter 4.3, where the input streame is of type
unit. Actual String typed event values are written as "string" in TeSSLa’s trace syntax
and since PipelineDB needs a text to be written as 'text' for insertions, the parser will
replace leading and ending double quotation marks of input event’s values by the single
quotationmarks. All other event values are passed as they are for the correspondingfield
in an input row, which works well for numeric and boolean values.

On the in_stream, all of PipelineDB’s features can be utilized, to implement the
desired behavior where the output can either be directly written using calls like COPY
(query) TO '/tmp/srv_out'; or selected from tables or viewswith prepared queries
like

PREPARE stream_out (bigint) AS
SELECT time, ':␣stream_out␣=␣' || val
FROM stream_out_vals
WHERE time > $1;

/* LIST OF OUTPUT QUERIES marked by --> !list! */
-- stream_out

The list of output queries should end the specification file.

Example Specification File

To keep it short, but still provide a full specification, we use the example of the burst
pattern and add the additional parts of the specification to the already presented imple-
mentation in 4.3 to complete a working specification:
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/* CLEAN TABLES */
DROP FOREIGN TABLE IF EXISTS in_stream CASCADE;

/*
* Implementation as already presented
*/

/* PREPARE FOR INPUT */
PREPARE insert (bigint,bigint,bigint,text) AS

INSERT INTO in_stream VALUES($1, $2, $3, $4);

/* PREPARE FOR OUTPUT (as Istream) */
PREPARE a_out (bigint) AS

SELECT time, ':␣a␣=␣' || a
FROM a_vals
WHERE time > $1;

PREPARE b_out (bigint) AS
SELECT time, ':␣b␣=␣' || b
FROM b_vals
WHERE time > $1;

PREPARE e_out (bigint) AS
SELECT time, ':␣e␣=␣()'
FROM burst_events_nofilter
WHERE time > $1;

PREPARE p_out (bigint) AS
SELECT time, ':␣p␣=␣' || val
FROM pure_p
WHERE time > $1;

/* LIST OF OUTPUT QUERIES marked by --> !list! */
-- a_out
-- b_out
-- p_out
-- e_out

The cleaning by dropping all tables and views can be omitted for the docker implemen-
tation but should be considered if ran on a PipelineDB server which is not restarted be-
tween runs.

5.3 SRV PipelineDB Summary

The described implementation allows to perform StreamRuntime Verification in a sim-
ilar way as with the TeSSLa interpreter on traces in TeSSLa’s trace syntax with primitive
input event types. The specification is defined in an SQL specification file analogous to
the TeSSLa specification file for the TeSSLa interpreter. We have seen, that for example
approaches like hierarchical views might lead to poorly efficient implementations, but
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other attempts such as handling events one after another might show competitive effi-
ciency, which in particular has not been evaluated. Further, the implementations must
pay attention to the order of processing input events and outputting events, otherwise
expensively evaluated events might appear in the output long after more simple events
of later timestamps or the output might even not be complete or contain wrong results.
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Other than for the SRV implementation with PipelineDB, for this implementation in-
put and output is strictly defined by the benchmark. Although the Benchmark describes
travel time estimation queries in detail, for the implementations from the benchmark’s
original paper [2] they left them out, the validator does not check them, MITSIM does
not provide segment histories and the requests it generates always carry zeros for Sinit,
Send, DOW and TOD. Thus we will also leave out the travel time estimations and ignore
all such requests.

6.1 Program Structure

As system input,MITSIMgenerates twoCSVfiles, one containing the toll history andone
for the stream events. The implementation will start the TeSSLa interpreter in parallel
and first of all initialize the benchmark by reading the toll history and feeding it into the
interpreter. The communication between the benchmark driver implementation and
the TeSSLa interpreter is implemented using TeSSLa’s trace syntax via named fifos.

After the historical data is passed, the simulation starts at second 0 by reading the
lines from the stream data input file, which are ordered by the time field, checking the
timeof the event and if it is not later than the current time from the beginning of the sim-
ulation, it iswritten to theTeSSLa inputfifo. If aneventwitha later timevalue is read, the
thread will sleep until it can pass it to TeSSLa. Another thread running in parallel is per-
manently listening for TeSSLa output events. If it reads anewevent fromTeSSLa, it adds
the timewhich has passed since the beginning of the simulation as emit time andwrites
the values to the corresponding output files. If an accident alert event from TeSSLa con-
tains a set of multiple accident segments, it will separately write a line for each segment
to the accident alert output file. The output files are then taken by the validator together
with the input files to check the system output for correctness. The program structure
is illustrated in Figure 6.1. In parallel to communicating with the TeSSLa interpreter,
the benchmark driver collects system statistics about used memory, used memory by
the java virtual machine the interpreter runs in and the CPU utilization of the JVM. The
implementation can be run in a docker container including plotting system and latency
statistics and validating the system output after the benchmark is finished.
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MITSIM toll
history

stream
data

initialize

inout

TeSSLa

toll
notifi-
cations

accident
alerts

account
balance

daily
expen-
diture

Validator

Figure 6.1: Program Structure for the Linear Road Benchmark Implementation with
TeSSLa

6.2 Notes on Correctness

Since there is the validator, checking the system’s output should be fairly easy and for
all simulations presented in the following the validator approved the answers except for
the 10 expressway simulation. A closer look into the discrepancies allowed to extract
minimal problematic subsets of the input and to identify the following errors.

The simulation contained two different accidents at the very same expressway, seg-
ment, lane and position. While the TeSSLa implementation correctly identified their
starts and ends, the validator treated them as a single accident with the start of the first
and the end of the second accident resulting in wrong accident alerts between the two
accidents. Furtermore the simulation contained two accidentswhichwere cleared in the
beginning of a new minute, more precisely on 2nd and 6th second of that minute. Fol-
lowing the specification (See Table 3.3) the accident still holds for that minute so there
should be alerts in the following minute too which the TeSSLa implementation issued
correctly yet the validator did not. A very short accident which was already cleared one
minute after it started was not found by the validator at all. Since different handling of
accidents leads to different results for the tolls, these errors also affected some toll alerts
and account balance answers.

Another error with toll alerts appeared in two situations where the lane average ve-
locity calculated by the TeSSLa implementation was one mile per hour above the valida-
tor’s result: Indeed the correct average value before rounding down was very close to
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the next higher whole number, but the error of the TeSSLa version was not due to pre-
cision issues. The implementation simply assumes there cannot be more than two posi-
tion reports for a single car in one minute which is reasonable since the specification of
the benchmark states that each car sends its reports exatly every 30 seconds; if the time
between two reports with different positions is smaller, the No Position Interpolation as-
sumption also defined in the specification cannot hold. Nevertheless when it comes to
accidents, the simulations generated by MITSIM often contain two subsequent reports
within less than 30 seconds which, in these edge cases, caused the wrong Lav.

Therefore, since all negative results of the validator for the 10 expressway simulation
are either causedbyerrors of the validator itself or by improper timingofposition reports
in the simulation, one can say that the TeSSLa implementation’s output is reasonable.

6.3 SimulationData

MITSIM can generate datasets for a different number of expressways starting with a
minimum of 0.5 expressway which can be increased in steps of 0.5. Other parameters as
length of simulation, number of generated cars etc. can also be changed, but we leave
them at default. A 3 hours simulation starts with a low event frequency which increases
until the end. See Figure 6.2 for the frequencies of a default simulation at scale 1.0.
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Figure 6.2: Event Frequency over Time for a Default 1 Expressway Simulation

Instead of directly generating a dataset for 0.5 expressways, we use a dataset for a
whole expressway anddevide it into two0.5 expresswaydatasets by splitting the position
reports by the direction, dir= 0 for the first and dir= 1 for the second dataset. Addition-
allywe include all query requests fromcarswhich sendposition reports in the simulation
with the corresponding direction. The toll history is taken as it is and is not scaled down
which, as we will see, barely affects the performance since it can be loaded before the
actual benchmark starts.
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For smaller scaled datasets, we will take a 0.5 scaled set and only take cars where the
carid can be devided by some number, for example 5 to generate a 0.1 scaled dataset.
Then we can divide all carids by that number, to reduce themaximum carid, allowing
us to also scale down the toll history. Thismeans that, by applying a scale factor of0.1 this
way, will yield a 0.1 scaled stream data set and a 0.2 scaled history, since the first scale
to 0.5 is not applied to the historical data. One thing to notice here, is that each accident
produced by MITSIM usually involves two vehicles, therefore scaling down the dataset
this way will most likely remove at least one of the accident cars and therefore remove
the whole accident. To still keep all accidents as they are, we first detect all accidents in
the corresponding direction, and afterwards add reports and query requests of accident
cars to the scaled down set again, which have been removed by the scaling.

6.4 Performance Examination

For TeSSLa we will consider two different approaches. First we will focus on the TeSSLa
interpereter as it is the most stable implementation offering support for numerous lan-
guage features. By splitting the specification into two parts to run interpreter instances
in a pipeline we still only achieve a comparatively low L-Rating of 0.1. Finally we use the
transcompiler [9] to translate the TeSSLa specification to an efficient Scala program.

TeSSLa Interpreter

By running a simulation at the scale of 0.5 expressways on a 2.6 GHz Intel i5, dual-core
with 4 threads and 16 GB RAM, the TeSSLa implementation already fails to meet the re-
sponse time constraints within the first 2minutes. After that, the response time grows
continuously and the whole simulation with three hours of input takes about 28 hours
in total to be processed, resulting in a maximal response time of about 25 hours. Figure
6.3 (a) shows the stystem statistics of such a run. Other than the answer latency plots
which start with the first second of the simulation, the memory and CPU usage plots
start with loading the toll history. The dashed vertical linemarks the timewhere the his-
torical data is completely passed and the simulation starts. The CPU usage plot of the
JVM suggests, that the JVM uses background tasks for example for memory organiza-
tion, while the TeSSLa interpreter fully utilizes a single thread which is not sufficient to
keep up with the input stream as the toll alert latency plot indicates, showing the first
events with more than 5 seconds latency having been outputted after second 100 from
the beginning of the simulation. The memory plot shows the highest increase of used
memory at the start and while loading the toll history, whereas the used memory only
increases slightly during the simulation. The slight but persistent increase during the
simulation could be reduced by deleting the last known position of cars on the exit lane
which is not implemented, since the number of distinct cars is limited in a default 3 hour
simulation and entries of all carsmust persistently be kept for account balances anyway.

For a 0.1 scaled simulation, the systemmanages to process almost 2.5 hours of input
before it falls behind. See Figure 6.3 (b) for the system statistics.

With Figure 6.4 (a), the system statistics for a simulation of 1/12 expressway can be
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(a) 0.5 Expressway
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Figure 6.3: SystemStatistics of Simulationswhere the Response Constraints could not be
met. From the top to the bottom they show the latency of outputted toll alerts, the CPU
utilization of the JVM and the used memory.
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examined where the maximum response time of the systems answer was about 4 sec-
onds, thus the systemmet all response time constraints. Note that for this run, the heap
size of the JVM was limited to 4 GB. The same simulation can also be run with a 1 GB
limit but, as can be seen in Figure 6.4 (b), this will leave the JVM busy withmemoryman-
agement, using all of the four available Threads. While the system’s answers for such a
run where still correct, the three hour simulation of scale 1/12 took the system almost 20
hours.
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Figure6.4: JVMCPUUtilization andMemoryPlots for Simulationswith 1/12Expressway.

Performance of Different Specification Parts

The used TeSSLa implementation might not be optimal, therefore we try to identify the
most expensive parts of the implementation by running the simulation and only con-
sidering one of the four output event types: Focusing the system’s capacities on daily
expenditure answers only can be implemented themost straightforwardway, as it is the
least related to the other output events. The implementation still needs to listen to the
toll history for initialization, but in the simulation it can ignore position reports and un-
related query requests which makes up more than 99 percent of the stream events. For
the accident alerts, with an implementation like presented in Chapter 4, the toll history
and all query requests can be ignored. Toll alerts and account balance answers however
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can hardly be separated as the main part in both is to compute the tolls. To compute the
tolls, the current accidents are required, but since the set of accidents is empty most of
the time or does only contain a single entry for low scaled simulations, we will assume
that there are no accidents, accepting some toll values falsely to be non-zero. For the
current toll values, the segment history over the last five minutes as well as the current
minute must be maintained including the number of cars, the average velocity and toll
values. It can be implemented using a map with the minute number modulo 6 as key
for that minute’s segment history, always replacing old entries if a key is repeated. The
segment history for a single minute might be implemented by using a (XWay; Seg; Dir)
tuple as key for that segment’s car statistics. Using this, the toll alerts can be generated;
for the account balance we also need to sum up all tolls for each car which have actually
been charged, for example by using amap carrying an entry for each carwith the charged
toll sumand a time value of the last update for query answers. Therefore account balance
answers are less frequent than toll alerts, but calculating them requires huge parts of toll
alerts plus maintaining the current day’s history.

Running the benchmark while solely focusing on single parts shows, that the sys-
tem is able to handle 0.1 expressways with a maximum response time of 4 seconds in
toll alerts and 1 second for all other ouput events. The system statistics are shown in
Figure 6.5. These results suggest to implement the benchmark using two TeSSLa inter-
preter processes, one for accident detection and daily expenditure answers and one for
toll alerts and account balances. Since the accidents are needed for correct tolls, the pro-
cess handling them could directly read the input stream, and pass the position reports
combinedwith accident information to the toll process. Thisway, theTeSSLa implemen-
tation can completely handle the 0.1 scaled simulations whilemeeting the response time
constraints.

Furthermore, the JVM’sCPUusage for only handling daily expenditures showed that
the system could actually handle a much higher request frequency and indeed, it suc-
ceeded to perform on an a scale of 2 expressways with amaximum response time of less
than one second. This shows, that the TeSSLa interpreter can handle big sets of stored
data and even access itwith reasonable frequency as long as the dataset it rarely updated.
The system statistics in Figure 6.6 show that there is still room for further CPU utiliza-
tion. The toll history for this simulation contained 19 million lines, as noticed earlier,
about twice as many as for a 0.5 expressway simulation (Figure 6.3 (a)).

TeSSLa-To-Scala Transcompiler

The transcompiler [9] translates the TeSSLa sepcification for Linear Road to a Scala pro-
gram which operates on the input streams as the interperter run with the specification.
It was able to handle a simulation of full 10 expressways. The system statistics plots in
Figure 6.7 and Figure 6.8 reveal that the most expensive events are those triggering up-
dates to large datasets: During the initialization the toll history is passed to the system
which has to be stored completely. Therefore the implementation will add an entry to
its continuously growing datasets for each input event. This would not be a problem for
simple inserts on mutable data structures, i.e. structures which are not persistent and
can be changed. But since variables in TeSSLa have an immutable semantics in gen-
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Figure 6.5: JVM CPU and Memory Utilization for 0.1 Expressway Simulation, only han-
dling a single output Event Type. From the Top to the Bottom the Focus was on Daily
Expenditures, Accident Alerts, Toll Alerts and Account Balances.
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Figure 6.6: JVM Statistics for Daily Expenditures on 2 Expressway Simulation.
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Figure 6.7: JVM Statistics for a 10 Expressway run with the Scala version.
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Figure 6.8: Memory Statistics for loading the Toll History of a 10 Expressway simulation
with the Scala version.
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eral, as described in [9], a straightforward implementation always uses immutable data
structures. This requires to copy the whole structure for changes, causing the execution
to slow down with increasing dataset sizes. A generated program should therefore use
mutable datastructures whenever allowed by the data dependencies from its specifica-
tion. Since the problem of finding variables which could be implemented with mutable
structures has shown to be NP-complete in general, the transcompiler uses an approx-
imation algorithm. In the case of the used TeSSLa specification for Linear Road, the
compiler found that all structuresmust be immutable. For the 10 expressway simulation
the toll history contained roughly 95 million entries (~1.4GB input file size) which took
the system about 6 hours to store, whereas the actual simulation with about 120 million
events (~6.5GB input file size) could be processed within the 3 hours of the benchmark,
with amaximumresponse time of about 2 seconds. Carefully planning the access of data
structures which could be implemented mutable, might enable the compiler to detect
them and signifficantly improve the performance.

Comparison to other Systems

With the interpreter we could handle simulations up to 0.1 expressways and therefore
achieved an L-Rating of 0.1 on a 2.6GHz Intel Core i5 with 16GBRAM running Linux. In
the original paper of the bechmark [2] they presented two implementations, both run-
ning on a 3 GHz Pentium box with 2 GB RAM and a Linux oparating system. The first
used a commercially available Relational Database which they called System X and the
other utilized a pre-release commercialization of their DSMS Aurora. With System X
they achieved an L-Rating of 0.5 and for Aurora a rating of 2.5.

With the MaxStream project [4] they describe an architecture integrating DSMSs
together with traditional DBMSs to gain flexibility in the application domain. Their
implementation extends SAP MaxDB by a commercially available DSMS using an SQL-
based query language which they called SPE X (Stream Processing Engine X). They im-
plemented the benchmark for both, their combined implementation as well as solely us-
ing SPE X to observe the overhead their implementation introduces. The client writ-
ing the input stream events and SPE X each ran on a 4-way dual-core AMD Opteron 2.2
GHz with 64 GB memory, the MaxStream server machine was a 2-way quad-core Intel
Clovertown 1.86 GHzwith 16 GBmemory. All machines were running Linux. In both ap-
proaches, theirMaxStream implementation and the plain SPEX, the systemfirst slightly
fails tomeet the response time constraints for 5 expressways therefore their runwith the
highest workload still meeting the constraints indicates an L-Rating of 4.

An implementation with Streamonas DSMS could handle 10 expressways with an
average query latency of 26 microseconds [11]. Using the Scala version, we showed that
an implementation with TeSSLa can, while meeting all latency constraints, also handle
simulations for full 10 expressways, which might be seen as the maximum number as
it is implied by the dimensions of Linear City given in [2]. In theory one might further
scale the simulations using many more expressways to show more accurate results on
the L-Rating, but up to this point we have already seen, that the L-Rating for TeSSLa us-
ing a compiled Scala version is at least 10which can be said to be efficient in comparison
to other known results. Furthermore, for simulations of higher scale, one might con-
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sider to improve the implementations for the simulation data generator as well as the
validator, since on the used system they required significantlymore time than the actual
benchmark. Therefore theTeSSLa Interpreter implementation shows comparatively low
performance on this benchmark, the bottleneck can be seen in frequent changes tomas-
sive datasets, but with a transcompiled version, TeSSLa can be used for efficient stream
proccessing, as shown with this typical use case for general purpose DSMSs.
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Conclusion

We have seen that we can use CQL, PipelineDB’s SQL and TeSSLa for all of the shown
streaming applications, which is not surprising after expressiveness results for these
languages, but we further explored how easy certain features can be implemented, pro-
viding a rough overview on which of these languages might be the best fit for different
use cases: First of all theremight be noDSMS fully supportingCQLuntil now, which dis-
qualifies it for practical use. However it shows different window functions and relation
to streamoperators as a general idea how relations can be a handy concept for streaming
applications, which could be used to lead further research.

PipelineDB as an extension of PostgreSQL features rich and widely used operations
on relations aswell asmultiple tools for turning streams into relations and special stream
to stream operators; in general, making data stream processing accessible to a broad
user group. But when it comes to more complex ordering and timing patterns which
can hardly be expressed using common declarative SQLmethods, it demands a detailed
understanding of PipelineDB’s features.

TeSSLa is comparatively easy to learn because of its small basic operator set and very
well suited for orderingand timingpatternswhich canbe implementedusingmemoryof
fixed size. In these cases recursive use of basic operators can be utilized to build domain-
specific libraries allowing to write easy to use and well readable specifications, even for
complex use cases. When it comes to applications requiring to save and diversely access
potentially unbounded amounts of data, TeSSLa becomes less agile due to its limited
unbounded data structures.

The SRV implementationutilizingPipelineDBexemplarily shows suitability of other
DSMSs for SRV, particularly DSMSs with relational approach, but it remains open, how
they perform compared to TeSSLa in typical SRV scenarios, especially when TeSSLa al-
lows to make use of hardware acceleration. For TeSSLa’s performance on typical use
cases for general DSMSs, the Linear Road implementation showed, that the TeSSLa in-
terpreter’s performance is inferior compared to other DSMSs for specifications making
heavy use of unbounded data structures while the transcompiler yields an efficient solu-
tion.
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