
Operating Interorganizational Logistical
Workflows on a Shared Software Platform
Betrieb organisationsübergreifender logistischer
Prozesse auf einer geteilten Softwareplattform

Master thesis

as part of the degree program
Media informatics
at the University of Lübeck

written by
Nikolas Knickrehm

issued and supervised by
Prof. Dr. Martin Leucker

Lübeck, 05.05.2020

Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit ohne unzulässige
Hilfe Dritter und ohne die Benutzung anderer als der angegebenen Hilfsmittel selbst-
ständig verfasst habe; die aus anderen Quellen direkt oder indirekt übernommenen
Daten und Konzepte sind unter Angabe des Literaturzitats gekennzeichnet.

(Nikolas Knickrehm)
Lübeck, den 05.05.2020

iii

Acknowledgements

Before starting with the main content of this thesis, I would like to express my sin-
cere gratitude to a number of people.

During the first semesters of my Bachelor program I was not so ambitious, because
I did not agree to certain contents of the program and was unsure if I had chosen
the right carrier path. This changed drastically when I started working for Pro-
fessor Martin Leucker at the Institute for Software Engineering and Programming
Languages. I have learned a lot during this time and am very humble to the level of
trust, that I received right from the start. This had a huge impact on my personal
development for which I can not thank him enough.

To my colleagues at the University of Lübeck I would like to say, that I have never
worked in a more friendly and open environment in which everyone’s opinion was
always heard and respected during discussions and where you could always find
someone to talk to. Whether about work related or personal issues. Thank you all,
guys!

When I started my own journey and left my parents’ house, I was only 18 years old
and still had a lot to learn. Even though I made a lot of mistakes along the way
my family always supported me in every way possible. Thank you for raising me,
supporting me, trusting me, for always being by my side and for allowing me to go
my own way!

I thank my aunt Frauke and my cousin Lotta for sacrificing their weekend to correct
a number of mistakes in this thesis. You made the last few days a lot easier for me.

Lastly, I would like to thank you, Steffi! When we first met, you saw someone in
me that I could not at that time. Your love, trust and support guided me through
my ups and downs. I am deeply impressed by your ambition and happiness and by
your way of showing me, that I too could be that person. You taught me a lot and
if it was not for you, god knows where I would be today. I love you from all of my
heart.

v

Abstract This master thesis examines interorganizational logistical workflows con-
nected to freight transportation through inland-waterways inside the European
Union (EU). As the lack of interoperability is one of the major challenges for com-
panies in the logistics domain today, a new software platform could be used to
connect all stakeholders in order to operate shared workflows. A concept for such
Logistics Platform is elaborated utilizing scenarios, which describe possible use cases
for the platform and a thorough analysis of different architecture patterns for in-
terconnected software systems. The resulting event-driven architecture is further
evolved by creating the design specification for all components, which together ful-
fill the requirements for the Logistics Platform. Following an incremental software
development process, the platform design is then implemented to create a proto-
type, incorporating the most important aspects of the design concept, which is then
evaluated by simulating a logistical workflow, that is based on a real business case.

vii

Kurzfassung In dieser Masterarbeit werden logistische Prozesse im Bereich der
Binnenschifffahrt innerhalb der Europäischen Union (EU) untersucht, die von meh-
reren Unternehmen gemeinsam durchgeführt werden. Da der Mangel an Interope-
rabilität in der Branche aktuell als eine der größten Herausforderungen gilt, könnte
eine neue Softwareplattform, die alle Akteure miteinander vernetzt, eine Lösung sein,
um unternehmensübergreifende logistische Prozesse abzuwickeln. Das Konzept für
eine solche Logistikplattform wird daher unter Verwendung von Szenarien erarbei-
tet, welche potentielle Anwendungsfälle eines solchen Systems beschreiben. Unter-
schiedliche Architekturansätze für verteilte Softwaresysteme werden auf Basis dieser
Szenarien untersucht und das Konzept einer ereignisgesteuerten Softwareplattform
samt aller benötigten Teilkomponenten ausgearbeitet. In einem inkrementellen Soft-
wareentwicklungsprozess wird ein Prototyp erstellt, der die wichtigsten Aspekte der
Logistikplattform beinhaltet. Dieser Prototyp wird anschließend durch die Simula-
tion eines logistischen Prozesses evaluiert, der auf einem realen Geschäftsfall basiert.

ix

Contents

1. Introduction 1
1.1. Terminology . 2
1.2. Goals of this Thesis . 3
1.3. Related Work . 3
1.4. Outline . 3

2. Contextual Analysis 5
2.1. Transportation through Inland-Waterways 6
2.2. Stakeholders . 6

2.2.1. Port Authorities . 6
2.2.2. Shipping Companies . 7
2.2.3. Commercial Customers . 8

2.3. Summary . 8

3. Methodology 11
3.1. Software Architecture Analysis Method 11
3.2. Requirements Engineering . 11
3.3. Incremental Software Development 12
3.4. Combined Methodology . 12

4. Scenarios for the Logistics Platform 15
4.1. Exemplary Logistical Process . 16
4.2. Controlling Access to Information . 18
4.3. Integrating a new Actor . 20
4.4. Extending an existing Workflow . 20
4.5. Updating an existing Component . 21
4.6. Summary . 22

5. Requirements Analysis 23
5.1. Information Exchange Between Companies 23
5.2. Deploying Components to the Platform 24

5.2.1. Deployment Pipelines . 25
5.2.2. Automated Testing . 25
5.2.3. Continuous Integration . 25
5.2.4. Automated Low-Risk Releases 26

xi

Contents

5.3. Monitoring . 27
5.3.1. Business Level . 28
5.3.2. Application Level . 28
5.3.3. Infrastructure Level . 29
5.3.4. Client Software Level . 30
5.3.5. Deployment Pipeline Level . 31

5.4. Summary . 31

6. Designing the Logistics Platform 33
6.1. Comparing Architecture Patterns . 33

6.1.1. Monolith . 34
6.1.2. Service-Oriented Architecture 38
6.1.3. Microservice Architecture . 41
6.1.4. Event-Driven Architecture . 48
6.1.5. Conclusion . 52

6.2. Platform Architecture Overview . 53
6.3. Designing the Software Platform . 54

6.3.1. Choosing a Container Orchestration Engine 54
6.3.2. Choosing an Event Bus . 57
6.3.3. Designing the Event Structure 59
6.3.4. Choosing a Monitoring System 64
6.3.5. Choosing a Continuous Integration System 66

6.4. Summary . 67

7. Implementation of the Platform Design 69
7.1. Setting Up Kubernetes . 69
7.2. Setting Up Kafka . 72
7.3. Setting Up the Monitoring System 73

7.3.1. Monitoring the Infrastructure Layer 73
7.3.2. Monitoring Kafka . 74
7.3.3. Monitoring Other Layers . 75

7.4. Summary . 75

8. Evaluation 77
8.1. Evaluation Goals . 77
8.2. Setting Up the Evaluation . 78
8.3. Simulating the Logistical Workflow 79
8.4. Monitoring the Logistical Workflow 81
8.5. Altering a Logistical Workflow . 82
8.6. Summary . 83

xii

Contents

9. Concluding Remarks 85
9.1. Limitations . 85
9.2. Future Work . 86

A. Appendix 87
A.1. Functional Requirements for the Logistics Platform 87
A.2. Enclosed DVD . 90

xiii

1. Introduction

Freight traffic through inland waterways is based on complex logistical workflows
spanned across multiple organizations. Unfortunately those organizations are cur-
rently not sharing information technology (IT) infrastructure on a larger scale, so
digitalization efforts, that exceed organizational boundaries, are hard to implement.
For example the movements of large ships on the Elbe river and inside the Hamburg
harbor are coordinated through the highly advanced Port River Information System
Elbe (PRISE) since 2014 (Hafen Hamburg Marketing e.V., 2014). This is an exam-
ple for a local digitalization project which had a positive impact within a certain
area and lead to the Hamburg Port Authority to push digitalization efforts for their
whole logistical supply-chain aiming to optimize economic and ecologic outcomes
(Hafen Hamburg Marketing e.V., 2020). Other harbors in Europe now follow suit
and develop similar technologies which they use for their specific use cases.

Such isolated efforts can result in positive effects for some companies, just like
the PRISE system in Hamburg, but lack the holistic view on logistical workflows,
which often involve multiple companies like port authorities and shipping companies.
When every port authority now develops their own system, which has proprietary
interfaces, the number of interfaces a shipping company would have to implement
and maintain soon becomes unmanageable. This thesis suggests, that certain work-
flows within the logistical domain should be standardized and operated on a shared
software platform, which allows safe workflow-related communication between all
stakeholders.

The requirements for such Logistics Platform will be defined in this thesis using a
real business case of a typical logistical workflow involving multiple companies. Dif-
ferent architectural approaches for implementing a shared software platform on the
larger scale will be introduced and compared, before a prototype is implemented.
This prototype will then be evaluated by deploying a simplified version of the real
logistical workflow to the platform to demonstrate a positive business outcome, that
was not possible before, due to the lack of interoperability between the stakehold-
ers.

1

1. Introduction

1.1. Terminology

This thesis will make use of the terms business process, logistical process and workflow
which are often used synonymously throughout the literature. The demarcation of
those three words followed in this thesis is based on definitions made by (Fill, 2013;
Jablonski, 1995; Karagiannis, Junginger, & Strobl, 1996).

A business processes works on the domain level and includes tasks performed by
domain experts, who are not required to have a detailed understanding of the IT
implementation of this process.

A logistical processes is a business process within the logistics domain. It is
performed by experts working within the logistics field.

A workflow is the technological realization of a business process that refers to
technical properties like information exchange between different services. People
working on a workflow are required to have technical know-how about the underlying
IT-systems.

A logistical workflow is a workflow, which is the technological realization of a
logistical process.

Workflow Management or “Business Process Management (BPM)” is defined
“[as] a discipline involving any combination of modeling, automation, execution,
control, measurement and optimization of business activity flows, in support of en-
terprise goals, spanning systems, employees, customers and partners within and
beyond the enterprise boundaries” (Workflow Management Coalition, 2014). Com-
puter programs implementing BPM are often referred to as Business Process Man-
agement Systems. Such systems can deploy, monitor and control workflows that are
described in some standardized format like the Business Process Model and Nota-
tion (BPMN) (Object Management Group, 2011).

While it is possible to describe and even execute logistical workflows using BPMN or
similar notations, this implies certain architecture decisions, which will be discussed
in Section 6.1 on page 33.

2

1.2. Goals of this Thesis

1.2. Goals of this Thesis

This thesis aims to prove that interorganizational workflows can be operated on a
shared software platform, which allows safe and standardized communication be-
tween companies. Therefore, a real business case will be utilized to design, imple-
ment and evaluate such Logistics Platform following existing methodologies of Soft-
ware Engineering, that will be further explained in Chapter 3 on page 11. As using
only one real use case comes at the cost of restricted generalisability, abstraction is
used where ever possible while recommendations for further means of evaluation are
given at the end of this thesis. The result of this thesis is an architectural concept
for a software system which can fulfill the purpose of a Logistics Platform capable
of operating workflows between multiple stakeholders, that needs to be evaluated
further through future research.

1.3. Related Work

Multiple current and past research projects and theses at the Institute for Software
Engineering and Programming Languages (ISP) at the University of Lübeck are fo-
cusing the field of maritime logistics in Europe. The research projects MISSION1,
RoRoHafen2 and SecurePort3 are cooperative projects of the ISP with multiple in-
dustry partners from the logistics domain, most notably the Lübeck harbor author-
ity. Approaches for event-based systems, a concept examined later in this thesis,
were already taken into consideration during those projects. (Queßeleit, 2020) de-
scribed logistical processes at the Lübeck harbor from the perspective of different
actors and through his thorough research laid the foundation for an event-driven
system, that follows international standards of maritime logistics. This thesis will
focus on the Logistics Platform from a more technological perspective and provide
a proof of concept for this abstract idea. As the time period during which this
thesis was written partly overlaps with the work of (Queßeleit, 2020), the logistical
processes that he described in his thesis, could not be taken into consideration.

1.4. Outline

This thesis is split into nine chapters: Chapter 2 on page 5 will examine the logistics
domain as the field of research and introduce the different actors involved. Chap-

1https://www.isp.uni-luebeck.de/research/projects/mission
2https://www.isp.uni-luebeck.de/research/projects/roro-hafen-40
3https://www.isp.uni-luebeck.de/research/projects/secureport

3

https://www.isp.uni-luebeck.de/research/projects/mission
https://www.isp.uni-luebeck.de/research/projects/roro-hafen-40
https://www.isp.uni-luebeck.de/research/projects/secureport

1. Introduction

ter 3 on page 11 explains the methodologies of Software Engineering which will be
applied in this thesis. Chapter 4 on page 15 describes scenarios which are based
on a real business case for the Logistics Platform and focus on different aspects
and challenges related to operating interorganizational workflows on a shared plat-
form. Chapter 5 on page 23 contains technological requirements which are clustered
to represent different aspects of the platform. Chapter 6 on page 33 introduces and
compares various architecture patterns and explains the design process of the com-
ponents contained in the software system, which will later become the Logistics
Platform. Chapter 7 on page 69 follows all steps of the implementation process for
the platform prototype. Chapter 8 on page 77 evaluates the platform concept and
prototype by deploying and simulating the model of a real logistical workflow. Chap-
ter 9 on page 85 summarizes this thesis and gives some concluding remarks as well
as a prospect for future work.

4

2. Contextual Analysis

Digital transformation is currently one of the major challenges for companies work-
ing in the logistics field. A study conducted by (Maguire et al., 2018) found that out
of 433 senior industry and functional executives in logistics, supply chain and trans-
portation, 65% notice fundamental shifts in logistical processes, while 62% say that
their own business is experiencing profound transformation. One of the participants,
who is the president and chief executive officer (CEO) of a major transportation and
logistics provider, claims that “we’re at a point where there’s more change taking
place in this instant than what [he has] seen in 25 years on the front lines”.
Another study performed by (Hermes, 2019) among 200 decision-makers in the Ger-
man logistics field showed similar results. The biggest challenge in optimizing supply
chains, according to 55% of the participants, was the lack of information exchange
between stakeholders. 79% of the participants also said that optimizing the informa-
tion exchange between stakeholders is the most important measure for optimizing
the whole supply chain.
The EU also recognizes the problems faced by the logistics field, explicitly including
maritime transport. (European Commission, 2015) names the interoperability of
systems and standards to actively connect all players as two of the major challenges
of digitalization in the logistics area. The European Logistics Platform1 is an inter-
est group based in Brussels that connects policy makers and industry stakeholders
promoting digitalization efforts in the logistical sector.

In this thesis, a specific subsection of the larger logistical field in the EU is addressed.
Transportation of freight over inland-waterways is one of four major ways of trans-
portation in the EU. The other three ways of transportation are road, railway and
air transportation. While the Logistics Platform developed in this thesis explicitly
targets logistical processes and actors in the maritime context, the platform could
be extended to include other areas of the logistics field. Section 2.1 on the following
page describes the key features of the logistical subfield examined in this thesis,
introducing the different actors involved.

1http://www.european-logistics-platform.eu/

5

http://www.european-logistics-platform.eu/

2. Contextual Analysis

2.1. Transportation through Inland-Waterways

The logistics field focused on in this thesis includes logistical processes and work-
flows of transportation through inland-waterways in Europe. This way of trans-
portation is used for many centuries now and is still very important today, espe-
cially for commercial shipments (Encyclopedia.com, 2020). Compared to the other
three means of commercial freight transportation in Europe, transportation through
inland-waterways has a relatively small market share with only 6% which ranks it on
the third place behind road and rail transportation (European Commission, 2011;
Ionescu, 2016). Figure 2.1 on page 9 shows that road transportation is by far the
most common way of transportations today with 76% market share. Still, rail and
inland-waterways will become more relevant again in the near future, as they are
more efficient than road transportation. In their white paper the EU proposes that
transportation over rails and through inland-waterways should be preferred over
road transportation as this will have a large positive impact on the European CO2

emissions (European Commission, 2011).

The following sections will introduce three of the main actors involved in transporta-
tion through inland-waterways:

• Port operators

• Shipping companies

• Commercial customers

2.2. Stakeholders

Today, there are a variety of different companies operating in the maritime logistics
field. (Queßeleit, 2020) names three groups of companies that are important for
transportation through inland-waterways that should be considered for a Logistics
Platform.

2.2.1. Port Authorities

Port authorities, or port operators, are operating one or multiple ports. As this
includes a variety of different tasks, they might be split up into different sub-
organizations. A port consists of multiple gates and docks which are used by ship-
ping companies. Cargo is moved between different vessels like ships, trucks and
trains and might be processed by customs. Because ports are complex ecosystems
on their own, where different companies have to cooperate on site, many already

6

2.2. Stakeholders

implement cyber-physical systems to optimize their internal processes. One example
which was already mentioned in Chapter 1 on page 1 involves the Hamburg Harbor
Authority which amongst other things operates a system which optimizes the com-
plex coordination process of large ships on the Elbe river and on the properties of
the Hamburg harbor. (Queßeleit, 2020) describes the business processes performed
at the Skandinavienkai of the Lübeck harbor which utilize IT on a much smaller
scale. In order for the Logistics Platform to succeed, it must be attractive towards
many different ports which will be digitalized to various extends. This means that
the platform should be capable of hosting all possible workflows to variable extends
depending on the requirements of individual stakeholders and integrate with their
existing IT infrastructure to connect workflows which are operated outside of the
platforms scope. Some of the common roles of port authorities include:

• Operating port and terminal infrastructure

• Handling cargo operations like loading and unloading vessels

• Coordinate vehicle movements (ships, trucks and trains) between ports and
cargo destinations

• Managing cargo documents between actors (cargo owners, shipping companies
and customs)

2.2.2. Shipping Companies

A shipping company is responsible for transporting cargo owned by their clients.
They operate through one or multiple ways of transportation like road, rail, air or sea
and might cooperate with other shipping companies in order to fulfill their contracts.
In commercial business-to-business (B2B) settings, where clients frequently require
the services of a shipping company, there is often an ongoing cooperation between
the two companies. Usually shipping companies own and operate the vehicles used
to transport their clients freight and make regular journeys between ports during
which they ship the goods of many clients at once. Like port operators, there are
a variety of different shipping companies, which might provide slightly different
services and are digitalized to different degrees. Some companies like Mærsk Line2

belong to large cooperations which also own and operate the ports involved in the
shipping process. Many shipping companies act on a much smaller scale and are
independent from specific port authorities from an organizational perspective. The
shipping company involved in the exemplary workflow introduced in Section 4.1 on
page 16 is an independent organization which has to cooperate with different port
authorities in order to fulfill their delivery contracts.

2https://www.maersk.com/

7

https://www.maersk.com/

2. Contextual Analysis

2.2.3. Commercial Customers

Any person or organization could potentially use the services provided by a shipping
company in order to outsource the transportation of freight, which can completely
eliminate direct interaction with port authorities and other companies apart from
the shipping company. In order to use these services, clients sign a contract with the
shipping company containing detailed information on what is being transported from
which origin to which destination. A commercial customer of a shipping company
might rely on transportation through inland-waterways in their own supply-chain
and close a permanent contract with a shipping company to ensure that their supply-
chain is sustainable. The business case focused on in this thesis is one example where
a manufacturer relies on a shipping company to move components between facilities
at different locations in Europe.

2.3. Summary

While transportation through inland-waterways ranks only third place when con-
sidering the whole logistics market throughout Europe, it will potentially become
more relevant again, because it is more efficient compared to road transportation.
Industry experts and policy makers agree that the lack of interorganizational in-
formation exchange is one of the biggest challenges faced by the logistics indus-
try today, which affects all stakeholders. Companies operating in transportation
through inland-waterways include port authorities, shipping companies and com-
mercial customers which all have to cooperate in order to fulfill shipping contracts.
As companies, even those belonging to one of the three mentioned groups, differ in
many ways, a shared Logistics Platform must be flexible enough to handle various
kinds of workflows and integrate with pre-existing IT infrastructure.

This chapter still gave a more abstract perspective on the field of research that
requires a more detailed look. Therefore, a real business case involving an interor-
ganizational logistical workflow will be introduced in Chapter 4 on page 15. But first
the methodology applied in this thesis will be explained in Chapter 3 on page 11.

8

2.3. Summary

Road

76%

Rail

17%

Inland waterways

6%

Other

1%

Figure 2.1.: Market shares of the different means of commercial freight trans-
portation in the EU (Ionescu, 2016).

9

3. Methodology

The aim of this master thesis is to prove that interorganizational logistical business
processes in the context of freight traffic through inland waterways can be operated
on a shared software platform. Therefore, such a platform will be designed, imple-
mented and evaluated by applying a combined set of different Software Engineering
methodologies that are explained in the following sections.

3.1. Software Architecture Analysis Method

(Kazman, Abowd, Bass, & Clements, 1996) introduce a scenario-based analysis for
software architectures named the Software Architecture Analysis Method (SAAM).
This method can be utilized to evaluate and compare different architectural designs,
before starting the implementation process. In order to perform this methodology
scenarios are necessary which describe the future use cases of the Logistics Platform.
Different architecture designs can be examined using this methodology in order to
evaluate if they can, when fully implemented, fulfill those scenarios.

The scenarios necessary to perform the SAAM methodology will include an exist-
ing logistical workflow and also operational aspects of the future platform for the
platform operator and companies connected to it. Those scenarios will be intro-
duced in Chapter 4 on page 15. In Section 6.1 on page 33 the SAAM methodology
will be applied by introducing different architectural patterns and evaluating their
suitability according to the scenarios.

3.2. Requirements Engineering

In order to design a safe and reliable software system, that provides all necessary
functionalities to become a platform, which hosts interorganizational workflows, a
detailed requirements analysis will be performed in Chapter 5 on page 23 following
the requirements engineering process introduced by (Kotonya & Sommerville, 1998).
Originally the SAAM methodology was developed as an alternative to requirements
engineering as the latter focuses merely on the detailed technological aspects, while

11

3. Methodology

scenarios are more flexible and provide a richer look on a software system. In this
thesis both methodologies will be combined in order to translate the scenarios into
technical requirements which will be used during the implementation process of the
software system in Chapter 7 on page 69.

3.3. Incremental Software Development

(Philip, Afolabi, Adeniran, Ishaya, & Oluwatolani, 2010) compare different soft-
ware development methodologies according to key characteristics of typical software
projects. According to this study, the incremental software development process
(Larman & Basili, 2003) can be used for complex software projects as it provides
the option to split a project into multiple incremental stages, that all result in a
functional prototype. This makes the incremental software development process a
good fit for the Logistics Platform during the scope of this thesis and also beyond,
as there are a lot of different aspects for such platform, that could be implemented
in multiple stages enabling evaluation at all of those stages.

The incremental build model is a direct derivation of the waterfall model (Panel &
of Naval Research, 1956), which means, that all requirements for the future software
system are still acquired at once early in the design process. Then, the development
process is split into multiple parts, each addressing a growing number of require-
ments. The result of every stage should be a functional prototype, that will be used
to validate and adapt the requirements for the following development stages. All
prototypes should build upon each other.

3.4. Combined Methodology

This thesis will combine all three described methodologies in order to aim for the
best possible outcome in the limited time available for this thesis. The SAAM
methodology is used early on to describe scenarios for the Logistics Platform, which
can be used to evaluate different design approaches in Section 6.1 on page 33. Addi-
tionally, a requirements analysis will be performed in Chapter 5 on page 23 in order
to define all technical implications of the scenarios and to enable the incremental
software development process, which will be followed in Chapter 7 on page 69. Fig-
ure 3.1 on the next page illustrates the combined methodology used in this thesis.

12

3.4. Combined Methodology

Scenarios

Requirements

Design SAAM

Implementation Evaluation

Iterate

Incremental build

Figure 3.1.: The combined Software Engineering methodology consisting of the
Software Architecture Analysis Method (SAAM), requirements engineering and
the incremental software development process.

13

4. Scenarios for the Logistics Platform

In this chapter scenarios will be developed, which will be utilized to evaluate and
compare different architectural design approaches in Chapter 6 on page 33 using
the SAAM methodology introduced in Section 3.1 on page 11. Furthermore, these
scenarios will be used to perform a requirements analysis in Chapter 5 on page 23,
which will drive the incremental software development process during Chapter 7 on
page 69.

As mentioned before, this thesis will use a real business case containing an logistical
workflow involving multiple companies, which will be described in Section 4.1 on
the following page. This business case will also act as the primary scenario for the
Logistics Platform, which is also used to later evaluate the implemented prototype
in Chapter 8 on page 77. Additional scenarios will focus on operational aspects
of the future Logistics Platform, which involves the platform operator as well as
companies who are participating in shared workflows hosted on the platform. Those
scenarios will be introduced in the later sections of this chapter.

(Kazman et al., 1996) suggest to include three different kinds of quality attributes
in scenarios used for the SAAM methodology to achieve the most valuable results:

• Quality attributes describing the output of the system as the result of specific
input (e.g. correctness, security, reliability and availability).

• Quality attributes describing the activities of development and operational
teams (e.g. maintainability, portability, adaptability and scalability).

• Quality attributes describing the activities of particular users (including other
systems) of a system (e.g. ease of use, predictability and learnability).

Those quality attributes were taken into consideration for the scenarios described
in this thesis.

15

4. Scenarios for the Logistics Platform

4.1. Exemplary Logistical Process

The following logistical process is based on a real business case, which was pro-
vided by (Leucker, 2019). It addresses the problem of tracking freight during a
shipment process, which involves multiple port authorities, a shipping company and
a commercial client, who is operating multiple factories across Europe. As those
companies are currently not sharing IT infrastructure, information exchange is very
limited and results in negative consequences for the commercial client. This busi-
ness case showcases the impact of a supply-chain bottleneck, which is very common
today and the result of a lack of interoperability between stakeholders within the
logistics domain.

The mentioned commercial client of the shipping process is a car manufacturer op-
erating multiple factories in Europe, which all fulfill their own business goals within
the production of different car models. One of the factories focused on in the use
case is located in Estonia and responsible for assembling car components, which are
produced at other factories, to the complete cars, which are then shipped to car
sellers across the continent.

As the car manufacturer offers many different car models and the components for
those models originate from different factories, creating an assembly schedule for the
Estonian factory is a challenging task. One of the biggest problems in the process
of creating an efficient schedule is the lack of detailed tracking information, when
components are shipped through inland-waterways, which is in some cases the only
option available. The car manufacturer can only estimate the arrival dates, because
there are no updates on the delivery status between the moment that components
are picked up at a factory and the moment they arrive at the destination port in
Estonia. Those estimated dates often account for multiple days of delay to ensure,
that all components will arrive in time. When the estimates were too optimistic,
cars are assembled as far as possible and then removed from the assembly halls until
the missing components finally arrive. As many employees of the Estonian factory
are affected by this uncertainty in their order-based job, the current situation is far
from perfect.

The logistical process used throughout this thesis will focus on frequent shipments
of car components produced by a factory in Finland to the Estonian factory. This
shipping process involves both the Finish and Estonian factory, one shipping com-
pany and port authorities in Finland and Estonia. All five actors and their role in
the logistical process are outlined in the following sections. Figure 4.1 on page 19
visualizes the logistical process in BPMN notation:

16

4.1. Exemplary Logistical Process

The factory in Estonia is assembling complete cars and relies on components
being shipped from other factories, in order to fulfill their business goals. They
create assembly schedules based on all tracking information they can acquire which,
due to the lack of interoperability, often results in inefficient schedules or production
halts. In the logistical shipping process the role of the Estonian factory is rather
passive, because they are only waiting to receive their expected delivery and all
information connected to it.

The factory in Finland produces some of the components required by the Estonian
factory. When said components have been produced and are ready for delivery,
the Finish factory will contact the shipping company in order to close a shipping
contract. They will prepare the components for pickup, which means that they
are packed into containers, which will then be fetched by workers of the shipping
company via trucks. After the containers were handed to the shipping company and
the Estonian factory was notified, the factory in Finland has completed their tasks
within the logistical process.

The shipping company is responsible for the whole shipping process, which in-
cludes road transportation and transportation through inland-waterways. They own
and operate the trucks and ships used to transport the containers between different
locations. They rely on the infrastructure provided by port authorities to dock their
ship, which means, that they receive a docking schedule containing information on
where and when they are allowed to dock their ship. This process has to be coordi-
nated with their truck divers, who fetch the containers of their clients to bring them
to the Finish port. They in return receive information on where and when to arrive
at the harbor so that port operators can move the containers from the trucks onto
the ship via cranes1. The shipping company will also receive a docking schedule
from the Estonian port authorities, so it has to get there in time. There, workers
will move the containers onto trucks of the shipping company, which will then be
used to transport the containers to the factory in Estonia. Only then, their tasks
inside the shipping process are fulfilled.

The port authorities in Finland instruct the shipping company on where and
when to dock their ship at their harbor, after they receive an initial request from
the shipping company. After the containers were transported to the drop-off zone
at the Finish harbor, their workers will move them onto the ship via cranes. After

1In this scenario the trucks will drop off the container at the port, from where port operators will
load them onto the ship. A common alternative to this is that trucks drive onto a ship and are
moved as a whole, which eliminates loading and unloading containers via cranes.

17

4. Scenarios for the Logistics Platform

the ship was un-docked and has departed from the harbors properties, the Finish
port authorities completed their role in the logistical process.

The port authorities in Estonia give instructions to the shipping company on
where and when to dock their ship. The docking time frame for the ship as well
as instructions for the truck drivers are dictated by the port authorities. When the
ship has docked, workers at the Estonian port will unload the containers from the
ship via cranes to certain pick-up zones for the truck drivers, who will then move
them to the Estonian factory.

The described workflow simplifies the complexity of this logistical process by focusing
on the interorganizational aspects of it while leaving out a lot of the internal pro-
cesses of the stakeholders. After all, the Logistics Platform will focus on those parts
of workflows rather than operate company internal workflows as well. (Queßeleit,
2020) provides a more detailed analysis of logistical processes at European harbors
and the impact of a shared Logistics Platform, which he performed contemporane-
ous to this thesis.

Still, the logistical process described in this section relies on the interplay of five
different companies, which all have their own IT infrastructure. In order for the
Estonian factory to create efficient assembly schedules, tracking information is re-
quired, which can only be obtained when all actors contribute to a shared informa-
tion system. As freight tracking is a very common use case, a platform enabling
tracking related information exchange in a standardized fashion offers a practical
demonstration on the positive impacts of interoperability.

The following sections describe additional scenarios focusing on different aspects of
the Logistics Platform from the perspective of the platform operator as well as those
companies which will later use it to participate in shared workflows.

4.2. Controlling Access to Information

A company willing to contribute workflow-related information to the platform should
be able to determine who will receive which parts of the information and for what
reasons. In case of the delivery process described in Section 4.1 on page 16 not every
part of every step is of interest for all named actors. For example port authorities
are not required to know of the exact contents of the shipping contract between
the customer and the shipping company. The customer in return does not need

18

4.2. Controlling Access to Information

F
ig

ur
e

4.
1.

:
B
PM

N
vi
su
al
iz
at
io
n
of

th
e
ex
em

pl
ar
y
lo
gi
st
ic
al

pr
oc
es
s
of

tr
an

s-
po

rt
in
g
fr
ei
gh

t
fr
om

on
e
ca
r
m
an

uf
ac
tu
re
rs

fa
ct
or
y
in

Fi
nl
an

d
to

an
ot
he

r
fa
ct
or
y

lo
ca
te
d
in

Es
to
ni
a.

19

4. Scenarios for the Logistics Platform

to know the details of the docking schedules provided from the port authorities to
the shipping company. Therefore, control mechanisms should ensure that only the
essential parts of workflow related information will be delivered to certain stake-
holders. All access to information should be controlled and documented in order to
prevent information from being leaked to unconcerned others.

4.3. Integrating a new Actor

The Logistics Platform should be able to integrate new actors without causing neg-
ative effects to the platform and other stakeholders involved. Access to the Logistics
Platform should generally be limited, so that every actor needs to agree to the terms
of service before gaining access to certain parts of the platform. In order to create
a high level of trust between all stakeholders operating shared workflows on the
platform, access to all workflows should always follow a white-listing principle.

Still, joining the platform should be as simple as possible even for companies that do
not have large IT departments. It should also be possible to connect existing infor-
mation systems to the Logistics Platform, so a company does not need to completely
rebuild their IT just to participate. As the Logistics Platform targets a variety of
different companies the landscape of information systems, that will potentially be
connected to the platform, is diverse, which requires a high level of flexibility and a
high number of interfaces to the platform.

One possible scenario where a new actor wants to join the Logistics Platform could
be a shipping company, which wants to offer advanced tracking information to their
customers. When they are first granted access to the platform they should not
be able to directly participate in existing workflows, as the conditions for informa-
tion exchange must first be negotiated with all other actors involved in a shipping
process.

4.4. Extending an existing Workflow

As logistical processes might change over the time, the Logistics Platform must
also be ready to adapt to changing workflows and because workflows operated on
the platform should involve different companies, changes made by one company
must not result in negative effects to any other participating company. In order to
prevent such negative effects, all updates to workflow related components should

20

4.5. Updating an existing Component

remain backwards-compatible, for example by only allowing additive changes to
data schemes. When an update will break existing functionality in workflows, the
update must be performed in an coordinated effort involving all actors participating.

As described in the previous scenario, two likely concerns from a companies per-
spective are data ownership and distribution of information. When a workflow is
extended, for example when a new company is integrated, this could likely result in
changes to the information flow. Every company participating in a workflow must
know and agree at any time, which parties will receive which parts of the informa-
tion they provide on the platform. This means that adapted workflows resulting in
changes in the information flow must be communicated with all affected stakehold-
ers.

In the described case that a shipping company will join the platform to digitally
cooperate with port authorities, their customers and other stakeholders, all of those
companies have to agree before information is shared with the shipping company.

4.5. Updating an existing Component

The platform should ensure that updates to the platform will not result in any
negative impact to any company connected to the platform. Therefore, safety and
security mechanisms should be implemented, to examine the impact of any update
in advance before applying it to the Logistics Platform. Such mechanisms should
not only validate those parts of the platform, that are developed and maintained by
the platform provider, but also those provided by other companies.

As logistical processes can be operated around the clock it is generally difficult to
schedule longer maintenance downtimes, where larger parts of the system could be
updated at once. Also, as there are many different companies involved, it would be
difficult to determine a time frame that suit every company. It should be possible for
every company and every team working on the Logistics Platform to autonomously
deploy updates to their components without causing a global outage of the system.
In the case that a company will perform an update to their own internal IT infras-
tructure, which is possibly connected to the platform, they should be able to do
so, without having to coordinate with every other company involved on the plat-
form. The Logistics Platform must therefore provide mechanisms which compensate
eventual downtime of some components without causing a chain of negative effects
affecting the whole system.

21

4. Scenarios for the Logistics Platform

4.6. Summary

This chapter introduced a logistical process which is based on a real business case of
multiple companies cooperating throughout Europe where a lack of interoperability
results in a negative impact on one business. Such logistical process is only one
example for a workflow, that could potentially be operated on a shared Logistics
Platform. Other scenarios focused on operational aspects, which were not directly
addressed in the logistical process itself. Those scenarios described how the new
Logistics Platform needs to behave when stakeholders and workflows change over
the time to enable a high level of safety, security and trust between all stakeholders.

All scenarios described in this chapter will be used to define technological require-
ments manifesting their explicit and implicit content in Chapter 5 on the facing page.
Those requirements will later be used to drive the implementation process followed
in Chapter 7 on page 69. Furthermore, as described in Chapter 3 on page 11, the
SAAM methodology will be use the scenarios of this chapter to compare and eval-
uate different architecture designs in Section 6.1 on page 33. The logistical process
described in Section 4.1 on page 16 will be implemented and deployed in Chapter 8
on page 77 to evaluate the platform design and the prototypic implementation.

22

5. Requirements Analysis

In Chapter 4 on page 15 a number of scenarios for the Logistics Platform were in-
troduced and explained. This chapter contains a requirements analysis in order to
create a technical specification for the software system which is referred to as the
Logistics Platform throughout this thesis. The requirements defined in this chapter
manifest the explicit and implicit content of the scenarios of Chapter 4 on page 15
in a clear and technical language.

According to the principles of requirements engineering (Kotonya & Sommerville,
1998) all requirements can be grouped into functional and non-functional require-
ments (Chung, Nixon, Yu, & Mylopoulos, 2012). Functional requirements describe
specific features of a software system that need to be considered or avoided in the sys-
tem design and implementation. Those requirements therefore focus on a systems
behavior rather than its operational costs, which are described by non-functional
requirements. As the Logistics Platform itself will be used to host and operate lo-
gistical workflows, some functional requirements will focus on operational aspects
for these workflows.

The functional requirements for the Logistics Platform are clustered into different
aspects, which loosely derivate from the scenarios described in the previous chapter.
This is merely an instrument to make this chapter easier to read, so the order of
sections and requirements in this chapter do not reflect on their importance to the
platform. Instead, the level of importance of every requirement is described by one of
the key words must, must not, should, should not or may as suggested by (Bradner,
1997).

5.1. Information Exchange Between Companies

As the logistical workflows operated on the Logistics Platform require cooperation
between different companies, said companies need to exchange information over the
platform in order to participate in distributed workflows. This information exchange
might contain sensible information, so every company that is sharing information

23

5. Requirements Analysis

Req. No Description
R001 The platform must provide mechanisms allowing information ex-

change between companies participating in shared workflows.
R002 The platform must standardize workflow related information ex-

change in order to enable interoperability between companies ful-
filling similar tasks.

R003 The platform must provide mechanisms that allow a company to
limit access to information it provides to the platform.

R004 The platform should ensure that information does not breach the
limitation rules defined by a company sharing information.

R005 The platform must log all access to information shared by a com-
pany in order to detect breaches and initiate necessary counter mea-
sures.

R006 The platform must encrypt all information which is processed on
the platform.

Table 5.1.: Requirements for information exchange between companies.

must be able to determine who should receive it. Table A.1 on page 89 lists all func-
tional requirements related to information exchange between companies cooperating
on the platform.

5.2. Deploying Components to the Platform

In order to fulfill their tasks in a shared workflow, a company needs to deploy their
own software components, which might be connected to other IT infrastructure
within their company. As those software components are developed by different
teams at multiple companies they need to be deployable autonomously. (Kim, De-
bois, Willis, & Humble, 2016, pp. 126-193) list and explain four important aspects
for creating safe deployment strategies, that can also be automated to a high de-
gree:

• Deployment pipelines

• Automated testing

• Continuous integration

• Automated low-risk releases

24

5.2. Deploying Components to the Platform

Req. No Description
R007 The platform should provide configuration files to setup production

like environments for teams developing software for the platform.
R008 The platform should contain a Git repository holding all configu-

ration files necessary for creating a production like environment.
R009 The platform should only allow deploying software through the

standardized deployment pipeline.

Table 5.2.: Functional requirements for deployment pipelines.

Requirements concerning the deployment of components to the Logistics Platform
are grouped according to those aspects, which will be examined in the following
sub-sections.

5.2.1. Deployment Pipelines

A deployment pipeline allows to standardize the process of updating and deploying
software. This pipeline should guide developers and operators throughout the whole
process in order to optimize flow and detect bugs as early as possible. To achieve this
in the context of the Logistics Platform, multiple things have to be considered. Table
5.2 contains a list of requirements, which are linked to deployment pipelines for the
platform.

5.2.2. Automated Testing

Software must always be tested thoroughly before being deployed to the Logis-
tics Platform in order to prevent internal bugs or broken interfaces. Deployment
pipelines can integrate automated test suites, that validate the functionality of soft-
ware, before it is rolled out. Such test suites should perform as many tests as
possible at an early stage of the deployment process and should be extended when-
ever contained tests failed to detect a bug in order to continuously raise safety and
security of the deployment pipeline. Table 5.3 on the following page contains the
requirements related to automated testing inside the deployment pipelines.

5.2.3. Continuous Integration

The principles of continuous integration (CI) suggest that the different parts of
software should not be developed independently for longer time periods, because
this usually results in infrequent and complex merges. Such merges might contain

25

5. Requirements Analysis

Req. No Description
R010 The platform should run automated test suites against new version

of software operated on the platform.
R011 The platform should include all those test suites into the deploy-

ment pipeline automatically rejecting deployments that fail manda-
tory tests.

R012 The platform should ensure that no software can be deployed that
breaks the functionality of other components.

Table 5.3.: Functional requirements for automated testing.

Req. No Description
R013 The platform should allow frequent deployment of software compo-

nents.
R014 The platform should automatically integrate updates made by dif-

ferent developers and teams on a frequent basis.
R015 The platform should provide tools supporting CI.

Table 5.4.: Functional requirements for continuous integration.

conflicts between changes made by different teams, that could require manual in-
tervention. After every merge containing smaller updates or even completely new
features, the software needs to be tested thoroughly again, as the combination of all
changes might introduce new bugs.

CI suggests to perform merges of the whole software very frequently, for example
on a daily basis. The work of individual developers and small teams could then
be merged together on the afternoon, resulting in much smaller and more frequent
merges, faster feedback loops and a lot more practice regarding integration.

In the context of the Logistics Platform, which consist of software developed by
multiple independent teams, CI could be applied by allowing and encouraging the
deployment of those modules on a frequent basis. This would result in more frequent
updates to the platform, but also reduce the size and potential impact of those
updates. Requirements regarding CI can be found in Table 5.4.

5.2.4. Automated Low-Risk Releases

In order to encourage CI, every team should be able to deploy minor changes to their
software without any manual intervention by another party. Of course updates that

26

5.3. Monitoring

Req. No Description
R016 The platform should allow automated deployments of software

which passes all automated tests inside the deployment pipeline.
R017 The platform should allow automated deployments of software

when no interfaces were changed in a non backward-compatible
way.

R018 The platform should automatically perform tests which evaluate if
the interfaces of a software component were changed.

Table 5.5.: Functional requirements for automated low-risk releases.

are likely to affect other modules, like changing interfaces in non-backward compati-
ble ways, should not be possible without manual approval and testing performed by
the platform operator and the other stakeholder involved1. Requirements regarding
automated low-risk releases are listed in Table 5.5.

5.3. Monitoring

Monitoring is an essential part of the Logistics Platform. As multiple logistical work-
flows involving different companies will be operated on the platform, it is important
to track the progress of all workflow instances. This enables the platform operator
to detect abnormalities or long-term bottlenecks in the processes, that might need
further optimization. Also, the companies involved in a workflow instance should be
able to track the progress and potential abnormalities in their processes. According
to (Kim et al., 2016, p. 208) the metrics of distributed systems can be demarcated
into five levels:

• Business level

• Application level

• Infrastructure level

• Client software level

• Deployment pipeline level

The following sub-sections define requirements for monitoring the Logistics Platform
according to those five levels.

1In Chapter 6 on page 33 some ways of making major changes to software components are
addressed, that can still be automated to a high degree.

27

5. Requirements Analysis

Req. No Description
R019 A component responsible for fulfilling steps of a workflow must

provide metrics allowing the platform operator to track the progress
of all workflow instances.

R020 The component initiating a workflow must provide a unique iden-
tification code for the workflow instance.

R021 A component responsible for fulfilling steps in a workflow must
include the unique workflow instance identification code in all com-
munication related to a workflow instance.

R022 The platform operator must be provided with metrics allowing him
to track all workflow instances operated on the platform.

R023 The platform must provide tools to the platform operator that vi-
sualize the information flow between components that run a shared
workflow.

R024 The platform should provide tools that allow all actors to see who
has access to the information they share on the platform.

R025 The platform should detect abnormalities inside individual work-
flow instances.

R026 The platform should automatically inform the platform operator
about detected abnormalities.

Table 5.6.: Functional requirements for monitoring the business layer of the
Logistics Platform.

5.3.1. Business Level

At business level abstract business goals are tracked using a number of metrics. In
this thesis the business layer includes all information related to the logistical work-
flows and workflow instances operated on the platform. At all times the platform
operator should be able to gain an overview on all the workflows currently operated
on the platform. Additionally all companies involved in certain workflow instances
should be able to track their progress. Table 5.6 includes all requirements concerning
monitoring the Logistics Platform on the business level.

5.3.2. Application Level

Metrics on the application level address the internal performance of all components
operated on the Logistics Platform. This is useful to identify performance issues dur-
ing production times, allowing to respond quickly by rolling back a bad performing
update or adjust scaling mechanisms for the component. Especially internal failures

28

5.3. Monitoring

Req. No Description
R027 Every component on the Logistics Platform must write internal

failures to a log that can be accessed by the platform provider.
R028 Every component on the Logistics Platform should provide ad-

ditional metrics (e.g. transaction times) allowing the platform
provider to monitor the performance of the application.

R029 The platform should provide a monitoring dashboard for the plat-
form operator containing application layer metrics of all compo-
nents on the platform.

R030 The platform should provided a monitoring dashboard for every
company cooperating on the platform containing application layer
metrics of all their components on the platform.

R031 The monitoring dashboard should enable filtering mechanisms to
isolate certain metrics and / or components.

Table 5.7.: Functional requirements for monitoring the application layer of the
Logistics Platform.

of components should be shared with the platform operator in order to plan an ap-
propriate response. Possibly a failure inside one component might cause a workflow
instance from being further processed on the platform, which should be identified
as soon as possible. Also failures inside a component in production indicate that
the automated testing tools inside the deployment pipeline need to be extended,
in order to catch similar failures in future updates. In Table 5.7 requirements for
monitoring components on the application layer are listed.

5.3.3. Infrastructure Level

On the infrastructure level metrics like CPU load, RAM usage, I/O operations on
disk and network traffic should be tracked in order to prevent failures on the ap-
plication and business level caused by fraud or otherwise insufficient infrastructure.
Consequently monitoring this information over the time helps to identify the steps
necessary to sustain higher loads in the future and fulfill availability goals. Care-
fully monitoring the performance of the infrastructure can help setting up efficient
scaling mechanisms, which can result in less operational costs than providing an
over-sized infrastructure, that often runs idle. All requirements related to monitor-
ing the infrastructure level of the Logistics Platform can be found in Table 5.8 on
the following page.

29

5. Requirements Analysis

Req. No Description
R032 The CPU load, RAM usage, I/O disk operations and network traf-

fic of all servers used to operate the Logistics Platform should be
monitored in order to setup efficient infrastructure.

R033 Metrics collected at infrastructure level should be accessible by the
platform operator on a central monitoring dashboard.

R034 The monitoring dashboard should allow to setup alerts related to
individual or a group of metrics.

Table 5.8.: Functional requirements for monitoring the infrastructure layer of
the Logistics Platform.

Req. No Description
R035 The platform should provide APIs allowing client software to feed-

back performance metrics.
R036 The platform provider should be able to access the performance

metrics provided by all client software.
R037 The performance information of client software should be accessible

by the company who owns the software.
R038 The monitoring dashboard should visualize performance metrics

provided by client software.
R039 The monitoring dashboard should provide functionalities to filter

client software performance metrics.
R040 The monitoring dashboard should allow to setup alerts concerning

the performance of client software.

Table 5.9.: Functional requirements for monitoring the client software layer of
the Logistics Platform.

5.3.4. Client Software Level

Monitoring the performance on the client side allows to measure transaction times
for operations performed on the Logistics Platform. In case of the platform the client
side includes all application programmable interfaces (APIs), which are consumed
by external components, and all user interfaces. An API can be monitored from
the client side by providing a client library, which is used to consume the API. This
library contains automated feedback mechanisms providing metrics to the platform
operator. A user interface, for example provided by a web application, can also
contain code, which is executed on a users device to send back metrics concerning the
performance of the user interaction. Table 5.9 contains requirements for monitoring
client software interacting with the Logistics Platform.

30

5.4. Summary

Req. No Description
R041 The platform should gather telemetry on all deployment pipelines

used by components of the Logistics Platform.
R042 The platform provider should be able to access the telemetry of all

deployment pipelines on a central dashboard.
R043 The teams developing modules for the platform should be able to

access the metrics measuring the performance and usage behavior
of their deployment pipelines.

R044 The platform provider should be able to setup alerts concerning the
performance and usage metrics of deployment pipelines.

R045 The teams developing modules for the platform should be able to
setup alerts concerning the performance and usage metrics of their
deployment pipelines.

Table 5.10.: Functional requirements for monitoring the deployment pipeline
layer of the Logistics Platform.

5.3.5. Deployment Pipeline Level

When setting up deployment pipelines, that allow teams to deploy updates to their
software autonomously, the status of those pipelines should be aggregated on a
central dashboard, which can be accessed by the platform operator. This allows
the operator to detect abnormalities like broken pipelines or suspicious deployment
frequencies so he can intervene at any time. Gathering as much telemetry as possible
on the usage and performance of such pipelines helps to optimize them further over
the time. The requirements concerning the monitoring of deployment pipelines are
listed in Table 5.10.

5.4. Summary

This chapter performed a thorough requirements analysis which is the base for a
software system which can become the Logistics Platform in the following chapters.
All requirements were grouped into different sections according to distinct aspects
of the platform. Based on the scenarios described in Chapter 4 on page 15 the re-
quirements manifest their explicit and implicit contents. The requirements will be
used to develop the detailed architecture design in Chapter 6 on page 33. During
the incremental software development process followed in Chapter 7 on page 69, the
specification elaborated in this section will be implemented in multiple stages.

31

5. Requirements Analysis

Important aspects of the Logistics Platform include the safe and standardized in-
formation exchange between companies, monitoring on all layers and mechanisms
allowing teams to autonomously develop and maintain their software components.
An aggregated list containing all functional requirements for the Logistics Platform
can be found in Section A.1 on page 87.

32

6. Designing the Logistics Platform

Based on the scenarios in Chapter 4 on page 15 and the requirements analysis
in Chapter 5 on page 23, this chapter will evaluate the fitness of different archi-
tectural designs for the Logistics Platform and create the detailed design for the
software system to be implemented in Chapter 7 on page 69. Therefore this chapter
is split up into three larger sections:

• Section 6.1 will introduce and explain different architecture patterns, which
can be used to build distributed software systems. Those design patterns will
be evaluated individually using the SAAM methodology, which utilizes the
scenarios described in Chapter 4 on page 15. At the end of this section one
architecture design will be selected, that will lay the architectural foundation
for the Logistics Platform.

• After selecting an appropriate system architecture, the following two sections
showcase the specific design for the Logistics Platform. Section 6.2 on page 53
gives a holistic view on the software system to be developed and introduce
different components used to fulfill specific tasks within the platform.

• In Section 6.3 on page 54 the components of the Logistics Platform are ex-
amined in more detail, highlighting the architectural design decisions, that
still have to be made. This includes the comparison and selection of existing
technologies to be integrated in the system architecture.

6.1. Comparing Architecture Patterns

In order to create a software system suitable for hosting and operating logistical
workflows involving multiple organizations, the base architecture design has to be
carefully selected. This thesis will utilize the SAAM methodology, which was in-
troduced in Chapter 3 on page 11, to compare and evaluate different architectural
design patterns with the help of scenarios, which describe the future use of the Lo-
gistics Platform. The scenarios for the platform were already introduced in Chapter
4 on page 15. As there are many different approaches on system architecture, that
could be used for a distributed software system, the SAAM methodology allows to
examine them in the context of a specific use case at an early stage in the design

33

6. Designing the Logistics Platform

process.

The architecture designs discussed in this section are a collection of popular ap-
proaches in software development as well as some of their derivations and variants
introducing interesting new concepts, which could potentially match the scenarios
and requirements of the Logistics Platform. Every distinct architecture pattern is
examined in a new sub-section which contains and compares different variations of
this pattern before the abstract architecture design is evaluated using the SAAM
methodology.

Sub-section 6.1.5 on page 52 concludes this section by following the decision process,
which results in the selection of an abstract architecture pattern for the Logistics
Platform. As this is merely an abstract decision Section 6.2 on page 53 and Section
6.3 on page 54 describe the detailed specification for the Logistics Platform to finalize
the system design.

6.1.1. Monolith

The word Monolith is the umbrella term used to describe a variety of different ar-
chitecture designs. (Villamizar et al., 2015) defines a Monolith as “an application
with a single large code-base [...] that offers tens or hundreds of services using dif-
ferent interfaces such as HTML pages, Web services or/and REST services”. Such
architecture design is nowadays often considered outdated, because it was intro-
duced many decades ago, when software was much simpler compared to the large
interconnected systems of today. One of the disadvantages associated with mono-
lithic software concerns the lack of dynamic scaling functionalities. As a monolithic
software is just one large unit, it can only be scaled as a whole, which can result
in inefficient use of resources, when certain parts of the software are used more fre-
quently while others run idle most of the time. It can also be difficult to manage
large monolithic applications, when multiple development and maintenance teams
have to coordinate their work. This can result in large merge conflicts, complex
manual integration tasks and as a result less team autonomy and infrequent releases
of software.

But the generalization that a monolithic architecture is always a bad design deci-
sion is wrong, even though more modular architecture approaches are often favored
nowadays. A monolithic architecture also brings a number of advantages and can
outperform software following other architecture patterns. Having a single code-
base for the whole software results in less interfaces between applications, which

34

6.1. Comparing Architecture Patterns

are usually more error prone and difficult to maintain. So a monolithic architecture
approach can still be a valid and good design decision today, as long as sophisticated
design rules are enforced in order to mitigate possible disadvantages. There are a
number of solutions for the problems of monolithic applications, which enable devel-
opment and maintenance teams to work on different parts of a monolithic software
at once, without causing much conflicts between individuals or teams. One popular
derivation of the traditional monolithic architecture approach, the so called Layered
Monolith pattern, is introduced in the following sub-section.

Layered Monolith

One way of structuring monolithic software is by defining multiple vertical layers,
which separate the application logic executed between an interaction with the soft-
ware from the outside and persistent operations on a database system or disk. The
control flow of a layered monolith is top-to-bottom, meaning that user or applica-
tion interaction at the topmost layer is passed throughout all the underlying layers
before eventually database operations are performed and information is passed back
through the layers back to the user or the interacting application. There is no gen-
eral rule on the number and exact composition of the layers in a Layered Monolith,
as this highly depends on the usecase for the software. A popular four layer compo-
sition of a Layered Monolith consists of the Presentation Layer, the Business Layer,
the Persistence Layer and the Database Layer :

• The Presentation Layer contains all user interfaces.

• The Business Layer includes all the logic responsible for fulfilling business
goals.

• The Persistence Layer translates create/read/update/delete operations (CRUD-
operations) on objects to uniform database queries.

• The Database Layer stores information persistently on disk often using rela-
tional database systems.

In most Layered Monolith’s modules inside one layer are only allowed to commu-
nicate with modules on the same layer or the layer directly below. Such rules can
be enforced automatically through automated tests and even at the very moment
a software developer is writing code in a modern Integrated Development Environ-
ment (IDE): The vertical layers can be represented by packages and access between
modules of different packages can be restricted. Of course those restrictions should
always be evaluated through autonomous tests as well, as a developer could use a
mis-configured IDE, but usually this can be a helpful tool to guide developers in

35

6. Designing the Logistics Platform

Presentation layer

Business layer

Persistence layer

Database layer

Business A Business B Business C

Figure 6.1.: The Layered Monolith pattern separates modules vertically to allow
a structured control flow. Additionally, modules might be grouped horizontally
when they belong to separate business areas.

their daily work and prevent illegal access between modules early on.

A Layered Monolith can also be split up horizontally in order to group modules
belonging to specific business areas. In such an architecture, calls between vertical
layers are usually only allowed, when the modules are also in the same horizontal
group. Communication between modules on the same vertical layer are still allowed,
even when they breach horizontal boundaries. One way to introduce horizontal
layers in an IDE utilizes distinct namespaces which are available for modules in all
packages, which in return depict the vertical layers of the Monolith, as described
earlier. Figure 6.1 shows how a Layered Monolith consisting of multiple horizontal
and vertical layers could be structured.

Evaluation

In theory it is possible to design the Logistics Platform as one large monolithic ap-
plication, likely following a structured approach like the Layered Monolith pattern.
The topmost layer of the system would contain a number of APIs, which could be
consumed by the IT systems of companies involved in the platform.
The exemplary workflow, which is described in Section 4.1 on page 16, could be
hosted and operated on this platform. A monolithic application could integrate a

36

6.1. Comparing Architecture Patterns

popular BPM framework like Camunda1 or Activiti2 in order to execute logistical
workflows described in BPMN. Companies associated with a workflow can receive
their own API endpoints to the Logistics Platform, where they fetch workflow re-
lated information and receive tasks, which they later mark as completed using the
API as well.
Implementing a monolithic platform also enables the platform operator to control
all access and the flow of information from within one application. Monitoring,
especially on the business layer, is also very simple to implement, because BPM
engines often contain tools for visualizing workflows out of the box. Some of them
also contain monitoring features for detecting abnormalities in individual workflow
instances.

Unfortunately, a monolithic approach also introduces a lot of disadvantages. Most
notability the lack of dynamic scaling options can be a huge problem for the Logis-
tics Platform on the long run. When operating only one workflow involving a small
number of stakeholders, like the one described in Section 4.1 on page 16, there is
not much need for dynamic scaling. But as the Logistics Platform might grow over
the time to host and operate hundreds or even thousands of different workflows it
has to sustain the traffic produced by all associated actors. This could result in
availability issues for a monolithic platform or cause enormous operational costs in
order to sustain the load at any given time. At an early stage, when the Logistics
Platform is rather small, a monolithic architecture approach has a lot of advantages
and could be very simple to implement, but in order to become a viable solution,
which could drive maritime logistic operations throughout Europe, a more scalable
architecture is recommendable.

To identify the associated company of a software consuming APIs provided by the
Logistics Platform, authentication and authorization mechanisms are necessary. In
a monolithic architecture this is rather simple to achieve, as those mechanisms can
be integrated into the application itself. Through white listing rules the access to
information could be restricted and all access to information could automatically be
documented to an append-only log on disk. Authentication and authorization can
be more problematic in systems which follow a more decentralized approach.

Extending or altering workflows might require new APIs for the Logistics Platform
or existing ones need to be changed. In order to ensure functionality, even when
changes to APIs are non-backward compatible, all APIs should include versioning
mechanisms and slowly deprecate older versions over the time, so all stakeholders

1https://camunda.com/
2https://www.activiti.org

37

https://camunda.com/
https://www.activiti.org

6. Designing the Logistics Platform

can update their software components. As described earlier, the prejudice that
monolithic software is always more difficult to develop and maintain is in reality
largely dependent on the way the system is designed in detail. When strict design
rules are enforced, creating new or updating existing interfaces is not necessarily
more difficult in a monolithic application compared to a software following another
architectural design. As a Monolith is still just one big application, updates made by
different developers and teams need to be integrated and tested thoroughly before
they can be deployed to production safely. When the Logistics Platform reaches a
certain size, this process can become more and more complex so updates could take
a long time and involve much manual work before they are completed, which makes
a Monolith less dynamic compared to other architecture designs. The updating
process itself might also cause long maintenance downtime, because the platform
always needs to be updated as a whole. As workflows might be operated around the
clock it could be difficult to find a time frame which is long enough to update the
Logistics Platform without causing problems to companies involved in the platform.

The following sections will focus on more distributed approaches on system archi-
tecture, which tackle a lot of the problems commonly associated with monolithic
software.

6.1.2. Service-Oriented Architecture

A service-oriented architecture (SOA) structures a system as a set of services that
can fall under different ownership domains (OASIS Committee, 2012). Typically,
there are three different roles within a SOA which a component might implement
(Al-Khanjari, Alkindi, Al-Kindi, & Kraiem, 2015):

• Service providers are responsible for designing and implementing services. They
specify the interface that other components can consume and publish all infor-
mation related to its services to the central service registry.

• Service consumers rely on functionalities provided by the service of other com-
ponents in order to perform their own business logic or otherwise integrate into
the holistic system. Before a service consumer can access those services, it first
needs to learn the location and specification, which is hosted by the central
service registry.

• The service registry stores service descriptions and locations of all service
providers in the SOA. Its address and interfaces have to be known to all service
providers and service consumers in the system, so that consumers can find and
connect the service provider hosting their required functionalities.

38

6.1. Comparing Architecture Patterns

Figure 6.2 on page 41 depicts the relationship between service providers, service
consumers and the service registry in a typical SOA. The SOA approach has been
a very popular architecture pattern for decades and there are numerous derivations
of this pattern, which further drive and extend the modularity approach. For ex-
ample the service-oriented device architecture pattern (SODA) is still very similar
to the original SOA approach, but removes the need for a central service registry by
allowing service providers to publish their service descriptions using broadcasting
and multicasting methods3. Other SOA derivations, which further differ from the
traditional SOA design approach, are introduced, explained and evaluated in their
own sub-sections of this chapter, as some deserve a more extensive examination.
The following evaluation concerns the traditional SOA approach.

Evaluation

As the main purpose of the Logistics Platform is to enable cooperation between
different organizations, it is natural to consider SOA as a potential software archi-
tecture pattern. Therefore this idea will be evaluated using the scenarios described
in Chapter 4 on page 15.

Companies working on shared workflows need to exchange information in some way
that is safe and transparent to everyone involved. Decentralized services could be
used to achieve this kind of information exchange and introduce shared responsi-
bility. When a company is capable of providing analog logistical services to other
stakeholders, a matching virtual service could act as a digital twin. In a traditional
SOA, all services would be listed in a central service registry, which enforces ser-
vice descriptions to be in some standardized format. Companies providing similar
services, for example because they are operating within the same business domain,
should implement standardized service interfaces to drive interoperability within the
Logistics Platform. This could be validated by the platform operator before a ser-
vice provider is able to enlist in the central service registry. This way, the exemplary
logistical workflow described in Section 4.1 on page 16 could be implemented in a
way, that also works in other similar business cases involving different companies.

One downside of the traditional SOA approach is, that monitoring the platform as
a whole is rather difficult, because, except for the initial service binding involving
the central service registry, all communication happens directly between service con-
sumers and service providers, which are owned by different stakeholders. In order to

3The ISP was part of the OR.NET research project which resulted in the IEEE 11073-SDC
standard family, which defines a SODA, that is fit for medical contexts (Kasparick et al.,
2018).

39

6. Designing the Logistics Platform

overcome this problem, all service providers could be forced to include standardized
monitoring services to the platform provider, in order to gather monitoring metrics
on the business and application layer. This comes at higher development and main-
tenance costs for the companies involved in the platform and is difficult to validate
by the platform operator, when the platform consists of potentially thousands of
services.
Another problem with the traditional SOA design is the lack of centralized authenti-
cation and authorization. Authentication could be implemented and provided as an
additional service by the platform operator and could be used by service providers
and service consumers to validate the identity of the components they are interact-
ing with. There are many existing authentication technologies available for such use
cases, many of them working with temporal authentication tokens that a component
can include in their communication and which can be validated by their communi-
cation partners.
Authorization would probably be carried out by the service providers themselves in
order to control which service consumers and therefore which companies are allowed
to consume their functionalities. This in return also causes more effort for all stake-
holders cooperating on the platform, many of them not having large IT departments
or a team of software developers at hand.

Integrating a new company to the platform could be achieved easily within a SOA,
because it does not require changes to any of the existing components inside the
system. As authorization of service consumers lies in the responsibility of a service
provider, a component introduced by a new company should only be able to access
information available for the public, but ensuring that a new actor has no access to
restricted services can not be achieved by the platform operator. When a service
consumer is allowed to consume the interfaces of a service provider, this has to be
implemented by the service provider.

Updating components on the platform is a bit easier in a SOA compared to a mono-
lithic architecture, as all components are applications which are operated on their
own. Temporal downtime of service providers could be compensated by implement-
ing mechanisms on the service consumer side. When a service consumer loses the
connection to a service provider it could try to fall-back on other service providers
enlisted in the service registry or try to reconnect after some time has passed. This
way, a company updating a service provider could deploy the updated version to the
platform, enlist it in the service registry and then shutdown the old version of the
service, so that all consumers will connect to the updated service. This could delay
some workflows, but in many cases has only a small local impact to the platform, so
other workflows can be operated without any interference. When service interfaces
change in a way that breaks existing service consumers, this can have a larger local

40

6.1. Comparing Architecture Patterns

Service registry

Service consumer Service provider

Find Publish

Bind, Execute

Figure 6.2.: The relationship between service providers, consumers and the reg-
istry in a service-oriented architecture (Jana, 2006).

impact, because some workflows might get stuck in an incomplete state. Therefore,
standardized service interfaces should be used where ever possible to prevent such
outages. A traditional SOA does not natively provide such mechanisms, but there
are ways to implement this, some of which are introduced in the following sections.

Ideally every module in a SOA has a minimalistic role in the holistic system, so that
updates can only cause very limited and traceable effects, but the SOA principle
per se does not enforce components to be atomic in that manner. Every stakeholder
could use a monolithic application, which includes all of their service providers
and service consumers allowing them to cooperate through the Logistics Platform.
Such distributed Monolith comes at the cost of all the negative effects, which were
explained in Sub-section 6.1.1 on page 34 and should therefore be avoided. A tradi-
tional SOA distributes business logic and responsibility to all the stakeholders, which
develop and operate service providers and service consumers, which makes operating
the platform itself rather easy at the cost of more effort for all other stakeholders.
As joining and using the Logistics Platform should be as simple as possible for any
company operating in the maritime logistics sector, this is not an ideal solution. Sub-
section 6.1.3 and Sub-section 6.1.4 on page 48 examine SOA derivations, that are
more suited as a base architecture design for the Logistics Platform, because they
address those problems.

6.1.3. Microservice Architecture

Since the Logistics Platform will be used by many different companies for a variety
of workflow-related use cases, the platform needs to be dynamic in order to support

41

6. Designing the Logistics Platform

all of those use cases and adapt to changed logistical processes in due time. Modules
used to drive the workflows on the platform will not only be developed and operated
by the platform provider, but also by the companies directly involved in the work-
flows. Such modules might be connected with existing IT infrastructure operated
by the stakeholders in order to enable seamless integration with internal workflows
where ever possible.

The microservice architecture pattern is a newer derivation of SOA which could
match the described use case of a Logistics Platform. While the term Microservice
has no clear origin or unified definition4, one popular characterization of microser-
vices that most industry professionals agree with was written by (Lewis & Fowler,
2014). He describes that microservices are “an approach to developing a single appli-
cation as a suite of small services, each running in its own process and communicat-
ing with lightweight mechanisms, often an HTTP resource API. These services are
built around business capabilities and independently deployable by fully automated de-
ployment machinery. There is a bare minimum of centralized management of these
services, which may be written in different programming languages and use different
data storage technologies”. A microservice can include custom APIs, user interfaces
and even its own database system to persistently store information in an isolated en-
vironment within a complex system consisting of many other microservices. Usually
microservices are designed to be stateless, meaning that all persistent information
is stored externally, which allows to create, duplicate or destroy a microservice at
will. (Richardson, 2017, pp. 8-11) further explain the concept of microservices by
utilizing the scale cube which was developed by (Abbott & Fisher, 2015). The scale
cube, as depicted in Figure 6.3 on the facing page, introduces three dimensions of
scaling for computer software:

• X: Cloning identical instances of the application and evenly distributing all in-
coming requests. Throughout the literature this concept is commonly referred
to as horizontal scaling.

• Y: Decomposing an application into microservices.

• Z: Splitting up responsibility between multiple instances of an application
based on request parameters.

While scaling an application along the X and Z axis can improve the availability
of an application, growing development and maintenance costs will not be solved
by scaling along theses axises. Those problems can instead be addressed by scaling
along the Y axis by decomposing a large application into atomic microservices.

4(Rodgers, 2005) was the first person to speak of micro (web-)services during a conference talk,
but the principles behind microservices are based on the UNIX philosophy first documented
by (McIlroy, Pinson, & Tague, 1987).

42

6.1. Comparing Architecture Patterns

Monolith

Microservices

SOA

One instance Many instances
One partition

Many partitions

Figure 6.3.: The scale cube, as depicted in (Abbott & Fisher, 2015), defines
three dimensions to scale an application: Balancing load across multiple identical
instances of an application (X); Functionally decomposing an application into a
set of microservices (Y); Balancing load across across multiple instance based on
request parameters (Z).

43

6. Designing the Logistics Platform

one to one one to many
Synchronous Request-response -
Asynchronous Asynchronous request-response

One-way notifications
Publish-subscribe
Publish-async responses

Table 6.1.: Communication patterns categorized in two dimensions according
to (Richardson, 2017, pp. 67-68).

According to (Richardson, 2017, pp. 14-17) the microservice architecture pattern
offers a variety of benefits:

• Continuous delivery and deployment of large complex applications
• Services are small and easy to maintain
• Services can be deployed independently
• Services can be scaled independently
• Autonomous teams
• New technologies can be adapted more easily
• Fault isolation

Those benefits directly address a number of requirements, especially those defined
in Section 5.2 on page 24. As the microservice architecture permits a number of
different communication patterns, those patterns will be further examined and com-
pared in the following sub-section.

Communication Patterns

(Richardson, 2017, pp. 67-68) characterizes communication patterns for interpro-
cess communication (IPC) in two dimensions as depicted in Table 6.1. The first
dimension describes whether the communication occurs between two components
only, or if there might be multiple recipients at once. On the other dimension,
communication patterns are separated according to synchronicity or asynchronic-
ity. In a synchronous communication, a component awaits a response to a request
within a predetermined time period. Until the response is resolved or the time pe-
riod expires, the component is waiting in a blocked state, whereas an asynchronous
communication is non-blocking and does not require an immediate response. The
request-response and the publish-subscribe pattern will be further explained, as they
are both commonly used in a microservice architecture.

44

6.1. Comparing Architecture Patterns

Request-Response Communication

Many communication protocols follow the request-response principle. This princi-
ple works as follows: When a component requires information provided by another
component, it sends a request asking for it. This request will then be evaluated
by the hosting component and a response will be returned, which either contains
the requested information or an error message. The Hypertext Transfer Protocol
(HTTP) (R. Fielding et al., 1999) is a popular protocol following this communication
pattern, which is used to access most information on the internet today. It is also
used in many microservice architectures to exchange information between services.
Many APIs today combine HTTP and the Representational State Transfer (REST)
paradigm (R. T. Fielding & Taylor, 2000) in order to implement APIs. Information
is then often formatted in some standardized format like the Extensible Markup
Language (XML) (W3C, 2008) or the JavaScript Object Notation (JSON) (Bray,
2017). The advantage of such protocol stack is that it can be interpreted by humans
(more specifically IT specialists) as well as computer programs. Request-response
can also be implemented using binary message formats like the language neutral
gRPC which uses HTTP/2 which can only be interpreted by computer programs,
but might be more efficient in some scenarios compared to a REST-API.

In a request-response communication, the information flow is controlled by service
consumers, as they have to explicitly request information, before a service provider
will respond. This makes the role of a service provider rather passive in the request-
response paradigm. As a result, some functionalities like a notification service are not
as easy to implement when following this communication pattern. Request-driven
communication also requires service consumers to know the address and interface
of the services that they need to consume. This can result in a tightly coupled
system, where changes or outages of one or more services might cause cascading
errors, which are hard to predict in a large interconnected system. At a certain size,
a tightly coupled microservice architecture can be hard to maintain, because the
impact of an unavailable component or an updated API could have unexpected side
effects and could even bring the whole system down.

(Fowler, 2014) and (Nygard, 2017) introduce the circuit breaker pattern to address
this problem. They suggest to wrap all calls to remote services in circuit breaker
objects. Those are monitoring the failure rate of all requests and at some point
break the circuit, resulting in the execution of local fallback code during the outage.
Circuit breaker objects are usually connected to a central monitoring dashboard
and can also contain functionalities, which automatically reopen the circuit, when a

45

6. Designing the Logistics Platform

remote service is available again. Netflix5, a company streaming media to millions
of customers every day, implements this pattern in their request-response driven
microservice architecture and even introduces artificial outages to their production
system in order to ensure high availability and robustness even when certain services
are temporarily unavailable (Christensen, 2012).

As depicted in Table 6.1 on page 44, the request-response pattern is used for one-to-
one communication that is in many cases also synchronous. Today many applications
and programming languages prefer the use of asynchronous calls wherever possible,
because it usually performs better, as synchronous communication can temporarily
bring an application to a blocked state.

Applying the request-response paradigm to the whole Logistics Platform would re-
quire a deep shared understanding of the whole system by every stakeholder and
the installation of safety nets like the circuit-breaker pattern introduced by Netflix.
While Netflix operates a complex interconnected system of microservices to fulfill
their business goals, they are in a position to ensure that all of their teams follow
company guidelines. As the Logistics Platform will connect various different compa-
nies, which all contribute software to the platform, this would be far more complex
to achieve.

Apart from that, companies involved in the platform need to be able to limit access to
their services in order to control, which stakeholders receive workflow related infor-
mation. Implementing authentication and authorization mechanisms is comparably
easy to achieve in request-response communication, because the communication is
one-to-one and every party could identify the other one using a central authentica-
tion technology provided by the platform operator. Asynchronous request-response
can also be used for one-way notifications, which is a potential use case for the Lo-
gistics Platform: A service consumer sends a request to receive a notification to a
service provider. Because of the asynchronicity the communication is non-blocking
and does not require an immediate or any response. Therefore, the service provider
could use a response to eventually send a notification to the service consumer when
it is deemed necessary.

Publish-Subscribe Communication

Instead of sending information only when it is explicitly requested by a service con-
sumer, some protocols allow service providers to actively send messages. Those

5https://www.netflix.com/de/

46

https://www.netflix.com/de/

6.1. Comparing Architecture Patterns

services, often referred to as publishers, can group messages into one or more cate-
gories in order to narrow down the number of recipients. Service consumers, in such
paradigm often named subscribers, can subscribe to all messages linked to specific
categories and can passively wait for all incoming messages. Publish-subscribe pat-
terns usually involve third party technology, responsible for routing messages from
publishers to subscribers. As every component is only communicating with this
messaging technology, the existence of producers is unknown to the subscribers and
vice versa. Because this eliminates most explicit interfaces between components,
this kind of architecture is considered loosely-coupled.

Of course, loose coupling also comes at a cost: Subscribers can only perform their
tasks if they receive the messages they need. If the messaging system is unavail-
able, the producer stops sending messages, a message is assigned another category
or the message format is changed, this has a direct impact to a number of sub-
scribers unknown to the publishers. In a publish-subscribe based communication
safety mechanisms need to be implemented in order to avoid such scenarios.

In order to ensure interoperability in a loosely coupled system, following the publish-
subscribe communication pattern, all messages should follow standardized schemes
which also determine the linked message categories. Components, that produce or
consume messages, could be tested before they are deployed in order to evaluate, if
they comply to the standardized message format. This could be further extended
by introducing contract-based testing to all components operated on the Logistics
Platform (Ciupa & Leitner, 2005). Every publisher and subscriber has to close a
contract, specifying how they have to behave in order to publish or consume certain
types of messages. The fulfillment of such contracts should be ensured through
autonomous and manual testing.

Evaluation

The workflow described in Section 4.1 on page 16 can be broken down into microser-
vices, each of them responsible for one task within the workflow. As the workflow
involves different stakeholders, every organization provides those microservices re-
quired to perform the tasks they are responsible for in the logistical process. Some
parts of the workflow might be standardized in the future, so that interoperability
between companies can be assured. This could even result in standardized mi-
croservices for certain workflow steps, which the platform provider could offer to
any interested stakeholder to facilitate the process of joining the platform. Integrat-
ing new stakeholders and their services into a typical SOA can be achieved with
very little effort, as mentioned in Sub-section 6.1.2 on page 38. In a microservice

47

6. Designing the Logistics Platform

architecture, which is merely a more atomic approach to SOA, this is very similar.

As the pattern used to communicate between microservices has a big impact on the
system architecture, both the request-response and the publish-subscribe pattern
were introduced with a focus on they could be implemented in the context of the
Logistics Platform. When the request-response principle is followed, the system be-
comes tightly coupled, which makes it harder to maintain when it reaches a certain
size. Choosing the publish-subscribe pattern results in a tightly-coupled system,
which would be more flexible and could be easier to maintain.

In general, the microservice architecture suits the Logistics Platform very well, be-
cause it promotes components to fulfill a single purpose, which makes them reusable
and far less complex compared to a monolithic application, that incorporates var-
ious services at once. This allows for a very dynamic system, that could quickly
adapt in order to include new or changed workflows operated in the platform. Of
course the problems related to a more dynamic system have to be addressed in the
specific system design. The following section will further examine a microservice
architecture, following the publish-subscribe pattern.

6.1.4. Event-Driven Architecture

Event-driven describes an architectural design approach for distributed software
systems, which can be used as an addition to the microservice architecture. A
system following this design suggests, that all communication between microservices
should follow the publish-subscribe communication pattern where every message is
considered an event, meaning that it describes a significant change in state (Chandy,
2009). In the context of the Logistics Platform an event could contain an update
related to a workflow instance like the fulfillment of a workflow step. An event-driven
architecture can follow two distinct philosophies of governance for communication
flow (Butzin, Golatowski, & Timmermann, 2016):

• An orchestrated governance approach, meaning centralized control.

• A choreographed governance approach, meaning decentralized control.

Both governance approaches will be explained and examined individually before the
event-driven approach is evaluated at the end of this section.

48

6.1. Comparing Architecture Patterns

Orchestration

In an orchestrated architecture, one centralized module is responsible for controlling
the communication flow between all other modules in the system. This approach
enables central responsibility for workflows for example by the platform operator.
The one central component distributes tasks to components provided by the stake-
holders who are integrated in a shared workflow. Those components then have to
report all progress related to this task back to the central component, which might
trigger other components as a result in order to proceed with the workflow.

Workflow management systems are usually designed in a way, that one central com-
ponent, often called workflow engine, is orchestrating all other components in the
system to fulfill all workflows. While the workflow engine keeps track of all work-
flow instances, the completion of workflow steps is outsourced to other components.
The workflow engine can be compared to a state machine tracking the state of all
workflows within the system. It is responsible for updating the state of workflow
instances and will trigger other components in order to move workflows along the
predetermined paths. In order to distribute workflow tasks, the workflow engine pro-
vides APIs, which can be consumed by task workers. They can consume those APIs
to receive new tasks and update task related information, which is an approach that
could also be used in a publish-subscribe communication, by assigning each compo-
nent their own message queue. Most workflow engines today use request-response
based communication for their APIs, but there are also technologies which support
the publish-subscribe communication pattern. The popular workflow engine Ca-
munda6 can be combined with messaging technologies instead of using a REST-API
(Camunda Services GmbH, 2020). Other workflow engines like Zeebe7 purely focus
on publish-subscribe communication.

Unfortunately, orchestrated governance is not the ideal solution in a microservice ar-
chitecture, as the existence of one central microservice in control contradicts the phi-
losophy behind such architecture, because every microservice should fulfill a single
atomic task, for which it is responsible on its own. Having one central microservice
in control makes this service a bottleneck for the whole system, as all functionality
is depending on it. Interestingly, this anti-pattern occurs very often in practice and
even has its own name. (Smith, 2017; Tabbaa, 2019; Tengstrand, 2016) introduced
the term Microlith to describe this anti-pattern, which is also commonly referred to
as Micro-Monolith.

6https://camunda.com
7https://zeebe.io/

49

https://camunda.com
https://zeebe.io/

6. Designing the Logistics Platform

Having a central workflow engine also implies, that every workflow must be defined
within this engine before it can be operated by task workers. This top-to-bottom
approach limits dynamic adapting workflows and slows down the introduction or
altering of workflows on the Logistics Platform. A workflow would always need to
be altered in the engine first, before task workers can also adapt. The only real
advantage of the centralized governance approach is, that the platform operator
is in full control of the information flow and can prevent information from being
distributed to the wrong stakeholders. Having multiple components in control can
result in more effort to govern the platform.

Choreography

A different governance approach in an event-based system is the use of choreogra-
phy, which means that the governance is highly decentralized. When taken to its
extreme, all connections between components should be implicit, which results in
a very loosely coupled system. In such architecture, events do not have a specific
recipient. Every service can produce and subscribe to those events necessary to ful-
fill its own workflow tasks. This makes choreographed architectures much harder to
control, as any additional, updated or removed component may cause a chain reac-
tion of effects, that might be difficult to predict. Therefore, a choreographed system
requires careful design and monitoring to verify the correctness of its behavior. In
order to limit the access to information, every company could be assigned their own
topic within the messaging technology, which only contains those event connected
to workflows directly involving said company. The platform provider could provide
microservices, which forward events between topics, in order to allow a managed
control flow, which is realized through multiple components, following a decentral-
ized approach.

Choreographic governance in the event-based microservice architecture is ultimately
more favorable, because orchestration breaks many of the advantages, which were
introduced by microservices (Butzin et al., 2016). This design choice implies that
there is no central microservice in control of all information flow. Instead, multi-
ple microservices coordinate the flow of events between stakeholders, resulting in
a highly flexible and dynamic system. In order to compensate the challenges con-
nected to decentralized governance, a reasoned system design is vital to the success
of the Logistics Platform.

50

6.1. Comparing Architecture Patterns

Evaluation

The described business case of a shipping process involving two factories, two port
authorities and a shipping company, every step within this logistical workflow could
be described by using events. Every company interested in the workflow can sub-
scribe to workflow-related events in order to receive updates on workflow instances,
which might act as a trigger for performing their own tasks within the workflow.
Dedicated microservices controlled by the platform provider ensure that events will
only be mediated to those companies which are allowed to receive the information
contained.

Adding new actors to the platform is not a challenge in such event-driven archi-
tecture, as every company would receive their own event queue or topic. Achieved
by authentication and authorization mechanisms, stakeholders can only publish and
subscribe to their own topic, which initially isolates them on the platform. Addi-
tional microservices of the platform provider can mediate events between topics in
order to distribute information among companies in a shared workflow. The condi-
tions for this forwarding process to happen, could be negotiated with a stakeholder
for every type of event that he wants to send or receive.

Updating or adding components to the system can also be achieved very easily. As
there are no explicit interfaces between microservices, a new, updated or removed
microservice can not directly impact another microservice. Still, indirect effects
need to be considered and avoided. For example a message schema changed by a
publisher can result in subscribers not being able to interpret the messages in the
future, which might be unnoticed for some time. In order to prevent events and
the related information from getting lost, three mechanisms should be implemented
inside the Logistics Platform:

1. The queue / topic of a company should hold events for a predetermined time
period, so no information gets lost, while a component is updated or is other-
wise unavailable.

2. Every component should be able to replay events after a specific point in time,
in order to safely recover after an update or system failure resulting in a crash.

3. Every component responsible for publishing a certain event type should be
tested before it can be deployed, in order to ensure that the event follows a
standardized schema, which other components can understand. Subscribers
should also be tested to ensure, that they can correctly interpret the events,
that they subscribe to.

51

6. Designing the Logistics Platform

6.1.5. Conclusion

Overall, the event-driven architecture is a good match for the Logistics Platform
as the scenarios described in Chapter 4 on page 15 could be fulfilled by such archi-
tecture, when certain design aspects are considered, when the detailed architecture
design is created. Those design details will be elaborated by also utilizing the require-
ments defined in Chapter 5 on page 23, which contain a more technical perspective
on the scenarios for the Logistics Platform.

While the publish-subscribe communication by the means of events is ultimately
more favorable for the platform, some IT systems used by the stakeholders, willing
to cooperate through the platform, might only support request-response based in-
terfaces like a REST-API. This problem could be addressed by developing microser-
vices, which can translate between both communication patterns. For example, a
port authority might want to fetch a ships manifest at once, rather than creating
it on their own from a series of events, describing containers being loaded onto the
ship. This could be achieved by a microservice, which collects and aggregates all
those events within a topic and provides a REST-interface for the port authorities
to consume. As this is a use case, that can be generalized, such microservice could
be provided by the platform provider to every port authority.

Still, all platform internal communication should be implemented using events to
truly achieve the decentralized and loosely-coupled architecture. Microservices oper-
ating on the edge of the Logistics Platform could be allowed to have other interfaces,
which can be consumed from the outside. This not only includes APIs for other in-
formation systems to consume, but also user interfaces.

After the base architecture for the platform was elaborated, the next two sections will
create the detailed architecture design for the whole Logistics Platform. First, Sec-
tion 6.2 on the facing page will give a holistic view on the system design to demon-
strate how the components contained focus on different aspects of the platform.
Then, Section 6.3 on page 54 will follow the design process for those components in
detail, explaining all design decisions made along the way.

52

6.2. Platform Architecture Overview

6.2. Platform Architecture Overview

Before all components are described in more detail in Section 6.3 on the follow-
ing page, this section will give an overview on the platform design, which means,
that certain design decisions like the selection of specific technologies will be fore-
shadowed. Still, it is easier to follow the detailed design process behind specific
components, when the holistic platform design is introduced in advance. This sec-
tion can also be used as an index to directly jump into the design process of certain
components of interest.

The Logistics Platform will be the host to an unknown number of software com-
ponents, so a flexible platform solution is needed. Such technology must enable
deploying and operating software in a shared environment, that meets the require-
ments defined in Chapter 5 on page 23. One technology, which can achieve this, is
the container orchestration engine (COE) Kubernetes (K8s), which provides sophis-
ticated tools for scheduling containerized software and allows applications to safely
interact inside a virtual network. The complete decision process, which ultimately
lead to the selection of K8s is followed in Sub-section 6.3.1 on the following page.

An event-driven architecture approach relies on a messaging technology, which
follows the publish-subscribe communication pattern. For the Logistics Platform
Apache Kafka was selected, because of its distinctive feature of storing all messages
persistently on disk in append-only log files instead of processing messages solely in
memory. A more extensive explanation on why Kafka was selected, including com-
parisons with similar technologies, can be found in Sub-section 6.3.2 on page 57.
Kafka can be operated within the K8s cluster used to drive all other components of
the platform as well. Still, a lot of design decision are necessary to enable the choreo-
graphic governance principle for workflows, which was briefly outlined in Sub-section
6.1.4 on page 50. This has to be achieved in a way, that fulfills all requirements
defined for the Logistics Platform and is described in detail in Sub-section 6.3.3 on
page 59.

One aspect of the platform, which is linked to a lot of requirements in Chapter 5 on
page 23, concerns monitoring. As described earlier, monitoring an interconnected
software system relies on metrics being collected on multiple layers to provide a com-
plete picture of the systems state. This includes monitoring the K8s cluster itself as
well as the Kafka message brokers and all other components operated within. The
collection of metrics should be automated to a high degree, so the implementation
and integration effort for other stakeholders can be minimized. Monitoring related

53

6. Designing the Logistics Platform

aspects of the Logistics Platform are described in Sub-section 6.3.4 on page 64.

Unfortunately, due to the lack of time, aspects like CI and CD could not be fully
completed within the architecture design. Still, Sub-section 6.3.5 on page 66 will
introduce possibilities to incorporate those aspects into the platform at a later point
in time, highlighting the use of GitLab CI and similar tools, which can be connected
to the K8s cluster. Unlike the other parts of the system design, CI/CD will not be
implemented in Chapter 7 on page 69.

6.3. Designing the Software Platform

This section introduces the different components of the Logistics Platform in more
detail, following all design decisions leading to the selection of specific technologies
and design aspects. As the different parts of this design build upon each other,
the order of sub-section matches the different stages of the incremental software
development process used in Chapter 7 on page 69.

6.3.1. Choosing a Container Orchestration Engine

The Logistics Platform has explicit requirements concerning the availability and
scalability for the microservices it contains. To achieve this, the platform has to
be operated on multiple servers, so when one of them fails, the platform is still
available to all stakeholders. This results in the fundamental question of how the
microservices can be operated efficiently across multiple servers at once.

In general there are multiple different ways of running software on a computer. The
most primitive one is to simply execute a compiled application without any further
means of encapsulation. This is the usual way in which software is operated on
a personal computer and is still also very common on servers hosting applications
consumed by multiple clients. Unfortunately this is a very simple setup that does
not scale very well and also raises safety and security problems, as applications can
interfere with another.

One popular technique used to overcome these problems is to use virtualization,
which many use synonymously with the concept of virtual machines (VMs). VMs
simulate the complete architecture of a real computer and can be used to operate
software in an isolated environment. Although the use of VMs is considered very
stable nowadays, there is still a large resource overhead, when virtualizing a whole

54

6.3. Designing the Software Platform

computer, instead of just those parts necessary to encapsulate applications (Vil-
lamizar et al., 2015).

Today a popular alternative to operating software within VMs is to use so called
containers. This is another form of virtualization, that is more lightweight and ef-
ficient compared to VMs (Villamizar et al., 2015). Containerized software is still
sharing the same kernel of their host machine, while all other required resources can
be container exclusive. The concept of containerized software is surprisingly old,
as it is linked many years back to the introduction of the chroot-command in Unix
version 7 in 19798. But as it was rather difficult to implement and use for decades,
it only became very popular to the development community, after the first version
of Docker9 was released in 2013. Docker allows to create containers from existing
software, which can then be shared and operated using a very lightweight command
line interface. Even though containers are a Linux-exclusive feature, Docker also
allows to operate containers on Windows and macOS computers by running a Linux
VM, which hosts all the containers.

Containers are often used in systems following the microservice architecture ap-
proach, because of their lightweight nature and because they can contain all of the
dependencies required to operate the software, like specifically configured run time
environments. Still, the mere use of containers does not solve the problem of oper-
ating microservices on multiple servers at once, in order to ensure high availability
and scalability. This in return can be achieved by Container Orchestration En-
gines (COEs), which are used to create complex software systems often consisting
of thousands of containers, scattered across multiple servers. The following sections
introduce and compare three popular COEs, that allow to operate containerized
software across multiple servers10. The main purpose of a COE is to schedule con-
tainers, which means, that they can start, stop, distribute and scale containerized
software on multiple nodes. COEs also allow to assign storage volumes to contain-
ers and setup virtual networks, where containers can safely communicate with each
other or even have an external IP address assigned.

8(Bernstein, 2014) follows the history of containers demonstrating, that early versions of contain-
ers can also be found in FreeBSD (1998) and its Jail feature and also Solaris 10 (2004) and its
Zones feature. Containers were standardized in 2008 when LinuX Containers (LXC) became a
part of the standard Linux distribution.

9https://www.docker.com
10The words node and server will be used synonymously from now on

55

https://www.docker.com

6. Designing the Logistics Platform

Kubernetes

Kubernetes (K8s)11 is a tool originally developed by Google, which is now open
source and part of the Cloud Native Computing Foundation (CNCF). K8s has a
rich set of native features like auto-scaling, service discovery, load balancing, volume
management and secret management. It is often operated in managed environments
like Amazon Web Services (AWS) or Google Cloud Platform (GCP), but can also be
setup and operated on own infrastructure, which from the experience of the author
of this thesis is not recommendable as explained later in Section 7.1 on page 69.

Docker Swarm

Developed by the Docker Foundation, Docker Swarm12 is the official COE for Docker.
It is tightly integrated with the API of the Docker core, which makes it very easy
to get started for people that are already experienced in Docker. Like K8s, Swarm
uses YAML files to configure the scheduling of containers. Auto-scaling and load
balancing currently require third-party technologies, but support for those features
might be added in the future. Since the Docker Foundation officially started sup-
porting K8s in their Enterprise Edition as well, the future of Docker Swarm is not
so clear (Bohn, 2018).

Apache Mesos

Mesos13 works a bit differently than K8s and Swarm, as it has an even stronger
focus on decentralized control. Unlike the other two COEs, Mesos allows to operate
multiple master instances at once, which results in higher degrees of flexibility and
availability. It also supports to operate containers using multiple container engines
at the same time and can even be used to host K8s or Swarm clusters. Unfortunately
Mesos is far more complex to use. While the other two technologies have a rather
steep learning curve, Mesos requires a detailed understanding of the underlying
technology, before it can be used to perform simple scheduling tasks for containers.
In some use cases, where the features of K8s and Swarm are not sufficient, Apache
Mesos could be the only real option today.

11https://kubernetes.io
12https://docs.docker.com/engine/swarm/
13https://mesos.apache.org

56

https://kubernetes.io
https://docs.docker.com/engine/swarm/
https://mesos.apache.org

6.3. Designing the Software Platform

Conclusion

All three technologies could be used to operate the Logistics Platform. As it is more
difficult to setup and operate and it requires a lot of background knowledge, Mesos
will not be used for the Logistics Platform within the scope of this thesis. The
point at which the other two COEs might become insufficient is very distant, as K8s
and Swarm are both technologies which are capable of powering complex systems
consisting of thousands of containers.

While Docker Swarm is easier to setup and operate and it is tightly integrate with
the Docker API, it contains less features compared K8s. Especially the lack of
dynamic scaling and load balancing out of the box, makes K8s the better option in
the long run. Also it remains in question, if the popularity of K8s within the Docker
community, will result in Docker Swarm being discontinued in a few years.

6.3.2. Choosing an Event Bus

In an event-driven architecture one component is responsible for transmitting mes-
sages between all other components. This section gives an overview on popular
messaging technologies following the publish-subscribe pattern and explains why
Apache Kafka will be used for the Logistics Platform.

Java Message Service

The Java Message Service (JMS) (Hapner et al., 2015) is an API for Java, that allows
to exchange messages between two or more clients, without any explicit coupling
between them. JMS allows two distinct messaging models:

• Messages can be sent to a queue, which allows multiple senders but is bound
to only one client.

• Messages can be sent to a topic, which allows multiple senders and also multiple
recipients, who are subscribed to the topic.

The second messaging model is an implementation of the publish-subscribe pattern,
which could be used inside an event-driven architecture. Unfortunately JMS only
supports languages that operate on the Java Virtual Machine (JVM) like Java, Scala
or Kotlin.

57

6. Designing the Logistics Platform

Advanced Message Queuing Protocol

The Advanced Message Queuing Protocol (AMQP) (International Organization for
Standardization, 2014) is an open source message-based standard for inter-process
communication (IPC). Unlike JMS, which provides a high-level API for Java appli-
cations, AMQP is a wire protocol, that specifies a binary message format, which can
be implemented in most modern programming languages. The protocol also offers
multiple delivery-guarantees for messages such as promises, that a message will be
consumed at-most-once, at-least-once and exactly-once. AMQP can split the load
between multiple AMQP brokers by defining a hierarchy of topics, which can be
used for routing purposes.

Message Queue Telemetry Transport

Another open source messaging protocol is the Message Queue Telemetry Trans-
port (MQTT) (OASIS Standard, 2019), that is very popular in the internet of
things (IoT) domain, because of its lightweight implementation. MQTT follows the
publish-subscribe communication pattern and allows a hierarchy of topics to which a
client can subscribe and publish. Like AMQP, MQTT also offers delivery-guarantees
such as delivering messages at-most-once, at-least-once and exactly-once. MQTT
brokers can be configured to share the load and compensate failures of individual
brokers.

Streaming Text Oriented Messaging Protocol

The Streaming Text Oriented Messaging Protocol (STOMP) (Stomp.github.io, n.d.)
is a text based messaging protocol, that follows and extends the specification of
HTTP. While STOMP is very easy to implement, the protocol only offers a limited
set of features for sending and receiving messages, while all other functionalities
must be developed from scratch.

Apache Kafka

Apache Kafka14, unlike most other message brokers, is writing messages to a persis-
tent append-only log file on disk. Those log files keep messages for a configurable
amount of time, before they are eventually deleted. In the context of the Logistics
Platform this allows to track the history of events without the need for an additional

14https://kafka.apache.org

58

https://kafka.apache.org

6.3. Designing the Software Platform

database. Kafka is part of the Confluent Platform15, which provides additional fea-
tures like KSQL as an extension to the Kafka core. KSQL allows to create SQL-like
views on event logs, which can be cached within a microservice. This approach is
called data on the outside, meaning that data is not stored within microservices, but
instead the message broker fulfills the role of a database. The philosophy behind
this pattern is event sourcing, which claims that the current state of a system can be
recreated by following all events leading up to the current point of time (Stopford,
2018). So rather than explicitly storing the current state of a shipment in a database,
all events related to this shipment could be recalled in order to determine its current
state. Though, KSQL as well as other features of the Confluent Platform are not
distributed under an open source license. The Confluent Community License (CCL)
shall prevent cloud providers to create concurring offers to the Confluent Platform
(Parbel, 2018). In case of the Logistics Platform, features like KSQL could still be
used, as Confluent does not sell any directly concurring product16.

Conclusion

The different messaging technologies introduced all have advantages and disadvan-
tages. JMS does not suit the Logistics Platform, because of the lack of support for
different programming languages. Not every actor involved in the platform will likely
be experienced in Java or other JVM languages. While STOMP is easy to imple-
ment, it lacks many features of the other technologies shown in this section, some of
which required by the Logistics Platform. While AMQP, MQTT and Apache Kafka
perform very similar in benchmarking tests (Dobbelaere & Esmaili, 2017), the per-
sistent message logs of Kafka allow microservices to recover and replay events after a
critical failure, whereas the other two messaging technologies usually delete messages
when they were consumed by every registered subscriber in a topic, which makes
the recovery for a microservice much harder. Therefore, the Logistics Platform will
use Apache Kafka for all internal event-based communication.

6.3.3. Designing the Event Structure

There are two important design aspects to be considered when designing the event-
driven system, both related to the structure of events within the Logistics Platform.
On the one hand it is necessary to define a uniform format for events, so that they can

15https://www.confluent.io
16(Confluent Inc., 2019) states that most commercial and free products are still allowed to use

KSQL. The license is targeting providers that offer services, that directly compete with those
offered by Confluent. A hotel booking engine, which internally uses KSQL, would still be
allowed to be operated without any restrictions, as Confluent does not offer such service.

59

https://www.confluent.io

6. Designing the Logistics Platform

be interpreted and processed correctly by microservices operated on the platform.
In addition to that, the structure of topics within Kafka also has to be specified
to ensure that events are delivered to all subscribers, which have the permission to
receive the information contained.

Event Format

Kafka itself does not enforce any specific format for messages. In order for a con-
sumer to parse information within a Kafka message, a uniform data format for all
events should be selected, which all components have to comply with. One popu-
lar notation for events in cloud based applications is the CloudEvents specification
(Cloudevents.io, 2019a). (Cloudevents.io, 2019b) offers a detailed explanation on
how CloudEvents can be used within Kafka, which will be the base for the event
specification for the Logistics Platform.

As suggested by this specification, all events will follow the JSON format and contain
the following list of attributes:

• id: A String containing a unique identifier for the event following the UUID
version specification (Leach et al., 2005).

• source: A String containing the name of the topic where the event was first
published and the producers IPv4 address inside the K8s cluster

• specversion: A String containing the version of the CloudEvent specification
used. During the scope of this thesis the version “1.0” of the CloudEvents
specification is used.

• type: A String specifying the type of event using the reverse domain name
system (DNS) convention.

• dataschema: The URI of the schema description, that the data property of
this event will follow.

• subject: A String containing a UUID of the workflow instance related to this
event. This attribute is only mandatory for events directly related to a work-
flow.

• time: A time stamp of the events occurrence following the uniform time stamp
format for the internet as specified in RFC 3339 (Klyne, Clearswift Corpora-
tion, Newman, & Microsystems, 2002).

60

6.3. Designing the Software Platform

• data: The event body. All fields within the body depend on the specific event
type and linked data schema which might enforce an additional list of manda-
tory fields and their respective type.

Listing 6.1 shows an exemplary event, which describes that a unit was loaded onto
a ship. The data property of this event follows a proposal made by (Braun, 2019)
and incorporates data types currently used in the logistics domain such as the In-
termodal Loading Unit (ILU) (Deutsches Institut für Normung e. V., 2011) for
identifying units and the United Nations Code for Trade and Transport Locations
(UN/LOCODES) (United Nations Economic Commission for Europe, 2019) for
identifying locations relevant for trade and transport. This thesis will not pro-
vide event schemes related to all steps within the exemplary logistical workflow as
described in Section 4.1 on page 16 and instead will just use different event types
in the event headers to differentiate between events. Creating standardized event
schemes for all workflow related steps would require a lot of domain knowledge and
should be achieved in cooperation with different companies working within this do-
main in order to create a specification suitable for most use cases. Standardized
schemes for all the events are highly encouraged as they lay the base for a truly
inter-operable platform.

{
"id" : "65b35bd3-c5e2-4f43-b309-2334da7553a7",
"source" : "facilityA/10.244.10.10",
"specversion" : "1.0",
"type" : "port.vessel.unit.loaded",
"dataschema" : "",
"subject" : "b3293715-6eed-4c40-a5b5-8b207d944809",
"time" : "2020-05-19T04:20:00Z",
"data" : {

"unitID" : "<ILU>",
"unitType" : "",
"unitAttributes" : [],
"vesselID": "<IMO>",
"vesselDestination": "<LOCODE>"

}
}

Listings 6.1: Exemplary event describing that a unit was loaded onto a ship.
The event follows the CloudEvent specification (Cloudevents.io, 2019a) and is
based on a draft created by (Braun, 2019).

61

6. Designing the Logistics Platform

Topic Structure

As described earlier, Kafka allows to create multiple topics to separate events, where
multiple producers and subscribers can be connected to one or more topics. There
are also authentication and authorization mechanisms available in Kafka to create
permission rules on a topic level. This allows to limit the scope, in which events are
distributed among companies. Topics are also separated into multiple partitions,
where events associated with one partition are always consumed by the same sub-
scribers. Partitions are used, when multiple Kafka brokers share the load of the
whole system. Replication rules can be enforced to ensure, that topics and par-
titions are replicated on multiple brokers. The concept of partitions is extremely
useful, when multiple instances of one microservice are setup to share the load of
an incoming event stream, as all events, which are linked to one subject, could be
assigned by using this subject as the partition name. Following this approach, all
events associated with a specific workflow instance will always be processed by the
same instance of a microservice, even if many replications of the same microservices
are operated at the same time.

One design concept briefly outlined before, was to assign each company their own
topic, which can only be accessed by components of the company and the platform
operator. This is not the only possible options on how to structure the topics within
the Logistics Platform, but ensures, that information flow can be contained very
easily. The idea behind this concept is, that it allows the platform operator to control
the flow of information between companies. Additional to the topics assigned to the
cooperating companies, one topic will act as the inner core of the platform, where
all workflow related events will be forwarded to. Therefore, multiple microservices
will listen to the companies topics and forward every standardized workflow event
to the inner platform topic. There, other microservices will inspect those events
and forward them to the topic of every stakeholder, which is allowed to receive
the information it contains. In order to detect wrong forwarding rules and allow
a stakeholder to follow up the distribution of information, that he shares, every
time an event is mediated between topics, a notification event is sent back to the
topic of the original event producer. This allows every stakeholder to monitor their
contribution to the platform from their own perspective. Monitoring dashboards
can be setup to visualize this information flow. The flow of one event through the
topic structure of the Logistics Platform is depicted in Figure 6.4 on the facing page.
The specification for the event, which contains the delivery report of an event to
another topic, is described in Listing 6.2. It most notably contains the mandatory
fields topicName and companyName in the data section of the event, allowing to
reconstruct the flow of events to certain topics.

{

62

6.3. Designing the Software Platform

Figure 6.4.: The flow of an exemplary event through the Logistics Platform.
Every company has a dedicated Kafka topic, which they can publish and subscribe
to. Certain standardized events related to workflows will be forwarded to an
internal platform topic by microservices provided by the platform operator. Other
microservices will redirect events to the topics of concerned stakeholders and
produce a delivery report event, which is send to the topic of the company, that
originally produced the event.

...
"type" : "platform.reporting.event.delivered",
...
"data" : {

"topicName" : "<The name of the topic where the event
was published>",

"companyName" : "<The name of the company owning the
topic>",

}
}

Listings 6.2: An extension to the general event specification for the Logistics
Platform, that reports the delivery of an event to another companies Kafka topic
back to the original event publisher.

63

6. Designing the Logistics Platform

6.3.4. Choosing a Monitoring System

One important aspect of the Logistics Platform concerns monitoring. Chapter 5 on
page 23 describes that monitoring a distributed software system like the Logistics
Platform concerns performance metrics, which need to be collected on multiple
layers:

• The business layer

• The application layer

• The infrastructure layer

• The client software layer

• The deployment pipeline layer

Monitoring the first four of those layers is addressed in the following sub-sections, as
they all work a bit differently. The deployment layer will not be further examined
due to the limited time available. As the whole aspect of CI/CD is only outlined
briefly in Sub-section 6.3.5 on page 66, monitoring related to this aspect was not
completed in time.

Monitoring the Infrastructure Layer

The infrastructure used to operate the Logistics Platform includes K8s and the nodes
used to operate it. In K8s a service interface can be enabled, which grants access
to performance metrics of nodes and pods17 from within the K8s cluster. The open
source monitoring tool Prometheus18 can be deployed in the cluster to consume this
service interface and collect metrics. As Prometheus has only limited capabilities
concerning the creation of dashboards and alerting rules, other monitoring tools
are better suited to match the monitoring requirements defined for the Logistics
Platform. Fortunately, Prometheus provides interfaces, which can be consumed
by tools like Grafana19 or Graphite20. When combined, Prometheus and Grafana
can fulfill all monitoring requirements for the infrastructure layer listed in Table
5.8 on page 30, which will provide powerful monitoring dashboards to the platform
operator. Through custom alerting rules, the platform operator can be notified
automatically to quickly respond to all problems related to insufficient or damaged
infrastructure.

17A pod is a a group of containers, which can share certain resources like storage. Every container
must be connected to a pod.

18https://prometheus.io/
19https://grafana.com/
20https://graphiteapp.org

64

https://prometheus.io/
https://grafana.com/
https://graphiteapp.org

6.3. Designing the Software Platform

Monitoring the Business Layer, Application and Client Level

Collecting metrics on the business layer is connected to a set of requirements, which
are listed in Table 5.6 on page 28. Such monitoring capabilities are necessary to
track the progress of workflows and to detect abnormalities in workflow instances,
which could have a negative impact on the business goals of a company connected
to the platform. Those metrics are highly dependent on the use case of the workflow
and the components working on it, so every company might define these metrics on
their own. For standardized workflows a set of mandatory monitoring events for the
business layer might be defined at a later point in order to consolidate monitoring
for the platform operator. As all components communicate on the platform through
events, monitoring metrics should also be published as events to the stakeholders
topic. This has to huge advantage, that all workflow related events as well as all
monitoring events are recorded in order inside the topics. A monitoring tool like
Graphite21 is capable of consuming Kafka events to create custom monitoring dash-
boards.

The setup involving Graphite and special monitoring events can also be used to col-
lect metrics on the application and client software layer, which are also custom for
every component within the platform. This will address the requirements described
in Table 5.7 on page 29 and Table 5.9 on page 30. Every company could be provided
their own Graphite instance which can only consume their assigned topic. Graphite
can also be connected to Grafana, which allows the platform operator to integrate
the metrics collected at all four layers within one monitoring tool and even in one
single dashboard.
Using the same mechanism, which is used to mediate workflow related events be-
tween topics, the standardized monitoring events can also be moved to the platform
internal topic. This would result in a single topic containing the whole stream of
event on the platform, which could be consumed by the Graphite instance assigned
to the platform operator, which could be connected to the Grafana instance moni-
toring the infrastructure layer.

The event schema introduced in Sub-section 6.3.3 on page 60 and demonstrated
in Listing 6.1 on page 61 can be used as the base specification for the monitoring
events as well. Listing 6.3 on the following page contains an event schema based
on this specification, which can be used for all monitoring events on the business,
application and client software layer:

• The event type names the layer on which a metric was collected

21https://graphiteapp.org/

65

https://graphiteapp.org/

6. Designing the Logistics Platform

• The body contains fields specifying where the metric was collected

• Every company can use own metrics according to their usecase. In order to
monitor to create a view showing the course of a metric over the time, all
connected values should be assigned in events using the same metric name.

{
...
"type" : "platform.reporting.level.business",
// "type" : "platform.reporting.level.application",
// "type" : "platform.reporting.level.client-software",
...
"data" : {
"topicName" : "<Name of the Kafka topic where the

event was published>",
"companyName" : "<Name of the company owning the

Kafka topic>",
"metric" : "<The name of the metric>",
"value" : "<The value of the metric>"

}
}

Listings 6.3: An extension to the general event specification for the Logistics
Platform contained in Listing 6.1 on page 61. This event schema can be utilized
to report metrics on the business, application and client software layer.

6.3.5. Choosing a Continuous Integration System

Continuous Integration (CI) and Continuous Delivery (CD) are both terms that are
strongly associated with DevOps, which is a modern approach on managing soft-
ware projects, that covers a variety of different development and operational aspects.
(Kim et al., 2016) gives an extensive explanation on the history and contents of the
term DevOps from the perspective of industry leaders in the IT sector. CI sum-
marizes tools that allow teams to work autonomously on a shared software project,
where the work of all individuals and teams is frequently merged together. This
shall prevent teams from working on different version control branches for longer
time periods to prevent merge conflicts and the introduction of new bugs due to
infrequent integration.
CD goes even one step further and allows teams to deploy software to production
autonomously. This can be achieved through the setup and enforcement of deploy-
ment pipelines, that are connected to the source repository. Every time a team
pushes changes to the release branch of the repository, the deployment pipeline will

66

6.4. Summary

automatically integrate and compile the software and execute a chain of automated
tests before eventually deploying the software to production servers.

In practice, CI/CD can be implemented through many different open source tech-
nologies, the most popular being Jenkins X22 and GitLab CI23. Functionality-wise
both tools would be fit to use for the Logistics Platform. As all source code of
the components developed for the Logistics Platform is currently living within the
GitLab of the ISP, it might be easier to initially setup CI/CD using the GitLab CI.
Both tools can be connected to Grafana in order to integrate performance metrics
of the deployment pipelines into the central monitoring dashboard of the platform
provider and are capable to deploy software directly to a K8s cluster. This would
meet the requirements defined in Table 5.10 on page 31.

A deployment pipeline for microservices operated on the Logistics Platform should
contain the following steps:

• Running unit tests against the new version of the application.

• Building a Docker container from the new version of the application.

• Running automated test suites against the new Docker container.

• Deploying the new version of the container to K8s.

As mentioned before, the aspect of CI/CD could not be implemented in time
in Chapter 7 on page 69, which will be further addressed in Section 9.2 on page 86.

6.4. Summary

This chapter followed the complete design process of the Logistics Platform. Section
6.1 on page 33 introduced different architecture patterns with a focus on distributed
software systems. All of the architecture patterns were examined and evaluated
using the SAAM methodology and the scenarios described in Chapter 4 on page 15.
By the end of this section the base architecture for the Logistics Platform was se-
lected as an event-driven microservice approach, which allows for a loosely coupled
and scalable software system.

22https://jenkins-x.io/
23https://docs.gitlab.com/ee/ci/

67

https://jenkins-x.io/
https://docs.gitlab.com/ee/ci/

6. Designing the Logistics Platform

Building upon this decision, Section 6.2 on page 53 gave a holistic view on the
Logistics Platform architecture naming and briefly outlining the purpose of the dif-
ferent components included. All of the components fulfilling different tasks within
the platform were explained in more detail in Section 6.3 on page 54. Remaining
design decisions were made in this section, in order to create an architecture design,
which fulfills all requirements defined in Chapter 5 on page 23, when the platform
is implemented.

Chapter 7 on the next page now follows the implementation process of the Logistics
Platform in an incremental process, where all stages are based on the structure of
sub-sections in Section 6.3 on page 54. The final implemented prototype will be
evaluated in Chapter 8 on page 77 by demonstrating, how the exemplary logistical
workflow described in Section 1.1 on page 2 can be deployed and operated on the
platform.

68

7. Implementation of the Platform Design

Based on the architecture design completed in Chapter 6 on page 33 this chapter
follows the implementation of the Logistics Platform. As explained in Chapter 3 on
page 11 this thesis will follow the incremental software development process, mean-
ing that after every development stage a functional prototype is available, which
fulfills a growing number of requirements for the overall system. Due to time re-
strictions not all aspects of the design will be implemented, which is the trade off
for enabling the evaluation of the final prototype, using the exemplary logistical
workflow in Chapter 8 on page 77.

The different stages of the incremental process match the sections of this chapter,
which in return correspond with the order of sub-sections in Section 6.3 on page 54.
After every stage a prototype is available, that includes a growing number of aspects
of the Logistics Platform.

• In Section 7.1 the K8s cluster, which will host all other components, will be
setup

• In Section 7.2 on page 72 Kafka will be deployed to to the cluster to enable
communication between components

• In Section 7.3 on page 73 monitoring on the infrastructure layer and parts of
the application layer will be enabled

7.1. Setting Up Kubernetes

The base of the platform is K8s, which will be used to host and operate all other
components of the platform. Those components include all the microservices used
to operate workflows on the platform. Initially a private K8s cluster was setup on
IT infrastructure of the ISP. Unfortunately this could not be completed, because a
number of problems occurred along the way. This was mostly due to features, which
seem to be part of the K8s core, but in reality rely on third-party software or need
custom implementation. First of all, in order to ensure a high level of availability,
it was necessary to create a K8s cluster consisting of multiple nodes to compensate

69

7. Implementation of the Platform Design

eventual outage of one or two nodes. This was achieved by following the official doc-
umentation of K8s using the kubeadm-tool shipped with K8s (Kubernetes.io, 2020b).
As microservices within the cluster need to communicate independent to the node
they are living on, K8s makes use of a virtual network, which relies on third-party
technology. This was one of the more easier problems to solve, as there are numer-
ous open source technologies available, that can be used with K8s (Kubernetes.io,
2020a). This at least allowed microservices to communicate using cluster internal
host names and IPv4 addresses. Exposing services to external IP addresses and load
balancing for services is not possible using just the basic open source networking
technologies available.

Another problem concerns storage for pods. Many of the components for the Logis-
tics Platform, most notably Kafka, rely on persistent storage in order to function as
intended. Even though K8s allows to request storage for pods in their configuration
files, those PersistentVolumeClaims still need to be resolved by other components
within the cluster. So called PersistentVolumes classes are not contained within
the K8s core and need to be implemented, in order to provide persistent storage
to pods. Currently the only workaround to avoid implementing persistent volumes
from scratch is to use of NFS volumes, that are operated in the same sub-network
the K8s nodes are connected to. Those NFS volumes can be used to provide persis-
tent storage to pods in a strongly limited manner.

These problems were also confirmed in personal conversations with industry experts
working for large companies, that tried to setup and operate their own K8s clus-
ters and later switched to managed environments of cloud providers like Amazon
or Google (Dang, 2019; Schröder, 2020). As this thesis only uses K8s as a tool to
demonstrate the future use of the platform, completing the setup of a private K8s
cluster was not advisable, due to more important aspects of this thesis. Therefore
the platform was setup in a managed K8s cluster within the Google Cloud Platform,
which offers the full set of features for K8s like networking, load balancing and per-
sistent storage. All K8s configuration objects developed in this chapter or Chapter
8 on page 77 could also be used in a cluster within another public cloud like the
Amazon Web Services (AWS). The K8s cluster used for the prototype consists of
three nodes each assigned one virtual CPU core and 1.21 GB of RAM as depicted
in Figure 7.1 on the next page.

Google provides a Software Development Kit (SDK) which allows to connect a K8s
cluster within the Google Cloud Platform (GCP) to a remote computers in order to
issue commands locally, that will be mirrored on one of the nodes hosting the K8s
cluster. kubectl-commands to schedule containers can therefore be issued without

70

7.1. Setting Up Kubernetes

Figure 7.1.: The managed Kubernetes environment for the Logistics Platform
which is hosted on the Google Cloud Platform. It consists of three servers each
assigned one vCPU core and 1.21 GB RAM. Storage and external IP addresses
can be acquired at additional costs.

logging in to the nodes via SSH. In order to deploy applications to the cluster, the
containerized software must be hosted in a Docker image registry, which is accessible
by the nodes of the K8s cluster. This does not exclude privately image registries
like the one contained in the ISP GitLab server, where the source code of all com-
ponents, which will be developed in the scope of this thesis, is hosted. In order
to access these Docker images, the K8s cluster needs authentication credentials for
this GitLab server, which grant read access to the repository connected to a specific
Docker image. Listing 7.1 shows how the credentials can be saved within the cluster
to allow the deployment of all microservices developed in this thesis.

kubectl create secret docker-registry regcred \
--docker-server=<registry> \
--docker-username=<username> \
--docker-password=<password> \
--docker-email=<email>

Listings 7.1: Authenticating Kubernetes to a private Docker image registry.

71

7. Implementation of the Platform Design

Figure 7.2.: The Kafka setup was tested using two containerized applications,
which provide a basic CLI for a Kafka producer (on the left side) and consumer
(on the right side).

7.2. Setting Up Kafka

As the event mediator of choice, Kafka will be setup to operate within the K8s
cluster. One challenge of such setup is that Kafka relies on Apache Zookeeper. The
combination of these tools implements its own scaling mechanisms, which can not
be linked to the scaling capabilities provided by K8s. As one instance of the Kafka
broker can handle up to 1000 events per second (Dobbelaere & Esmaili, 2017), this
will not become a huge problem very fast, but might result in less efficient use of
available infrastructure. In this thesis, three instances of the Kafka broker will be
deployed, without the automatic scaling mechanisms of K8s enabled. This allows
Kafka and Zookeeper to use their own means of scaling, so some brokers might run
idle most of the time. While the resource overhead is not a huge problem in this kind
of setup, a Logistics Platform handling millions of events per second might require
Kafka to be operated outside of K8s. Bitnami provides K8s objects1, that were
adapted to setup Kafka for the Logistics Platform containing three Kafka brokers
and one instance of Zookeeper. All K8s objects used in this thesis can be found on the
DVD which is enclosed to this thesis. The Kafka setup was initially tested by setting
up a generic publisher and subscriber applications as shown in Figure 7.2. Kafka
can be configured to limit the access to topics by using authentication mechanisms
like Kerberos (Adams, 2011) and authorization rules defined in Access Control Lists
(ACL) (Confluent Inc., 2020). This will not be performed during the scope of this
thesis, but is required when the Logistics Platform will host the logistical workflows
of real companies. All communication between a publisher or subscriber with Kafka
should be end-to-end encrypted using SSL to prevent man-in-the-middle attacks.

1https://github.com/bitnami/charts/tree/master/bitnami/kafka

72

https://github.com/bitnami/charts/tree/master/bitnami/kafka

7.3. Setting Up the Monitoring System

7.3. Setting Up the Monitoring System

As described in Chapter 5 on page 23, monitoring the Logistics Platform is neces-
sary on different layers. The base for the platform is the infrastructure on which
all parts of the software system are hosted. In case of the Logistics Platform K8s is
used to operate all other components that are part of the system. The infrastructure
layer therefore contains metrics collected at node level as well as basic performance
metrics of K8s. Sub-section 7.3.1 will explain, how the underlying infrastructure of
the Logistics Platform is monitored using Prometheus and Grafana. Monitoring the
application layer will, in the scope of this thesis, only be implemented for Kafka
in Sub-section 7.3.2 on the following page. Unfortunately monitoring the applica-
tion, business and client-software layer were not completed in time. This means,
that for all microservices used to simulate the workflow in Chapter 8 on page 77
only performance metrics on the infrastructure layer will be collected.

7.3.1. Monitoring the Infrastructure Layer

K8s is operated on multiple nodes in order to split the load produced by the platform
to multiple machines and provide coping mechanisms in case a node is unavailable.
In K8s a service API can be enabled, which makes performance metrics collected
on the node level available to certain components within the K8s cluster. To use
this API, Tiller2 needs to be deployed to the cluster. Tiller is the server component
of the Helm3 package manager, which can be used to deploy applications to a K8s
cluster without having to manually provide the required configuration files. Tiller
also provides an API containing performance metrics of the K8s cluster, that it is
deployed on. This allows a monitoring tool like Prometheus to consume the Tiller-
API and to further process this information. As described in Sub-section 6.3.4 on
page 64, Grafana will be connected to Prometheus as it provides more powerful
features for creating dashboards and alert rules. Grafana can also be configured
to consume additional data sources like potentially Graphite to include monitor-
ing Kafka events as suggested in Sub-section 6.3.4 on page 65. Overall this makes
Grafana more flexible to meet current and future monitoring requirements.

(Vermeulen, 2019) gives a detailed explanation on how Tiller, Prometheus and
Grafana can be used to monitor a K8s cluster and instructs how those compo-
nents can be deployed and configured to create a robust monitoring setup. In order
to keep the K8s cluster structured and later restrict access to certain parts of the

2https://v2.helm.sh/docs/glossary/#tiller
3https://v2.helm.sh/

73

https://v2.helm.sh/docs/glossary/#tiller
https://v2.helm.sh/

7. Implementation of the Platform Design

Figure 7.3.: The Grafana dashboard containing metrics collected on the infras-
tructure layer. This includes CPU load, RAM usage, disk I/O and network
performance of the hosts forming the K8s cluster.

platform, all monitoring related components are deployed in the namespace mon-
itoring. Figure 7.3 depicts the Grafana monitoring dashboard, which contains all
performance metrics of the Logistics Platform collected on the infrastructure layer.
This includes information about the available CPU, RAM, disk I/O and network
capacities of the nodes as well as the current system load. Those metrics are also
broken down to showcase the used resource of individual deployments.

This monitoring setup can be recreated by using the configuration files and com-
mands listed on the enclosed DVD.

7.3.2. Monitoring Kafka

As mentioned before, monitoring on the application layer as well as the business and
client-software layer was not completed in time in this thesis in order to perform the
evaluation of the prototype in Chapter 8 on page 77. Kafka is the only exception to
this, as it is the only component operated on the platform, which can obviously not
be monitored using Kafka events. The configuration objects for deploying Kafka
in K8s allow to enable the use of a ServiceMonitor, which collects performance
metrics, that can be scraped with the Prometheus Operator4. This way, the same

4https://github.com/coreos/prometheus-operator

74

https://github.com/coreos/prometheus-operator

7.4. Summary

Prometheus instance used to monitor the infrastructure layer of the platform can
be used to collect the performance metrics of Kafka, which are then passed on
to Grafana. The monitor for Kafka created for the Logistics Platform is depicted
in Figure 7.4 on the following page. It currently only shows two metrics to provide
a simple proof of concept, which was tested using the abstract Kafka publisher and
subscriber as mentioned in Section 7.2 on page 72.

7.3.3. Monitoring Other Layers

Due to the limited time, it was not possible to setup and test monitoring on all
layers of the Logistics Platform. As suggested in Sub-section 6.3.4 on page 65 Kafka
events could be used in order to collect metrics at the application, business and
client-software layer as this would result in very little effort for the stakeholders
developing components for the system, because they also use Kafka events to com-
municate workflow-related information. Another possibility for monitoring metrics
on these layers is to develop ServiceMonitors, which could be consumed by the
Prometheus Operator. There are client libraries available5 for many different pro-
gramming languages, which can setup an API endpoint which can be consumed by
the Prometheus Operator. As this is more complex to setup, monitoring through
Kafka events should be preferred, but the other option remains in case certain com-
ponents shall not be monitored through Kafka events.

In order to capture the monitoring events in Kafka, it is necessary to deploy and
configure Graphite. This tool could be deployed for every stakeholder to listen for
monitoring events in their respective topic. Following that approach, every stake-
holder receives their own powerful monitoring dashboards, which could be setup
automatically when a new company joins the platform. It is also possible to connect
Graphite to Grafana for the platform operator, in order to receive a monitoring
dashboard which contains monitoring metrics collected at all levels for all the com-
ponents at once.

7.4. Summary

The prototype of the Logistics Platform was implemented using incremental steps.
First the underlying software platform was setup with K8s in order to host all other
components of the platform. Then, Kafka was configured to operate within the K8s
cluster to allow event-based publish-subscribe communication between components.

5https://prometheus.io/docs/instrumenting/clientlibs/

75

https://prometheus.io/docs/instrumenting/clientlibs/

7. Implementation of the Platform Design

Figure 7.4.: A basic Grafana monitoring dashboard containing performance
metrics of Kafka, which were collected by the Prometheus Operator.

At last, monitoring capabilities for the infrastructure layer and parts of the appli-
cation layer were introduced to showcase how a central monitoring dashboard can
later be used by the platform operator.

Unfortunately it was not possible to further implement the Logistics Platform, mean-
ing that there are still a number of open requirements left in Chapter 5 on page 23,
that need to be implemented in the future. As the incremental build model was se-
lected for this thesis, it is still possible to evaluate the system design and prototypic
implementation in Chapter 8 on the facing page.

76

8. Evaluation

Evaluation of the platform prototype will be performed by deploying components to
the Logistics Platform, which simulate the exemplary workflow as described in Sec-
tion 4.1 on page 16. This will demonstrate that it is indeed possible to operate
interorganizational workflows on a shared software platform.

8.1. Evaluation Goals

In Chapter 4 on page 15 one use case for the Logistics Platform was described in de-
tail: A car manufacturer in Estonia ships car components through inland waterways
and needs to know the whereabouts of his shipments, in order to create an efficient
assembly schedule. The event-driven approach for the platform suggests that every
fulfilled step within the logistical workflow of shipping those components between
the two factories should produce an event, which is forwarded to every company
it concerns to further drive the workflow or otherwise act as a notification. This
would enable the Estonian car manufacturer to track his shipment throughout the
workflow and allow him to prepare more efficient assembly schedules.

This chapter will showcase, how a logistical workflow like this can be operated on
the Logistics Platform. Therefore, it is first necessary to find the answers to three
fundamental questions:

• Which workflow steps should produce events?

• Which event is associated with which workflow step?

• Which stakeholder is allowed to receive which events?

After those questions have been answered, a number of microservices have to be
implemented in order to simulate the logistical workflow. After this has been com-
pleted, the components can be deployed to the platform prototype in order to sim-
ulate the workflow.

77

8. Evaluation

8.2. Setting Up the Evaluation

First of all, the different steps contained in the workflow are identified and cor-
responding events describing the fulfillment of those workflow steps are specified.
Also, every event will be assigned a producer and a list of subscribers allowed to
receive the event. A generic microservice will be developed, which can parse this
information in order to later simulate the workflow. According to the topic structure
defined in Sub-section 6.3.3 on page 62 every company is only allowed to publish and
subscribe to their own topic, while additional microservices provided by the platform
operator will forward events between a stakeholders topic and one internal platform
topic. From there, other microservices will forward the events to the topics of those
stakeholders, which are allowed to receive the information contained. Forwarding of
events between topics will automatically cause a notification event, informing the
original event producer that the event was forwarded to a specific topic. This pro-
cess was already described in detail in Sub-section 6.3.4 on page 65. A list of all
the events used for the exemplary workflow in the context of this evaluation can be
found in Table 8.1 on page 80. The delivery reporting event is not included here,
as it was already specified in Listing 6.3 on page 66 and will be produced multiple
times throughout this workflow.

All of the microservices necessary to simulate this workflow can be implemented as
one generic application, which will receive its tasks within the workflow using a num-
ber of configuration variables. This application will be developed in JavaScript and
executed using the Node.js1https://nodejs.org/en/ runtime within a Docker con-
tainer operated on the platform. In order to fulfill all of those tasks, the application
must be able to act in three different ways, according to the role that is configured
to play and therefore its configuration:

1. Initiating the workflow by producing the event shipping.contract.initiated

2. Mediating a specific event between two topics and producing the delivery report
event to the topic used by the original publisher.

3. Consuming an event and producing the follow-up event to continue the work-
flow.

Every microservice is configured to take on the role of one single company involved
in the workflow including the platform operator. This configuration determines,
which topics the microservice will access and what it will do with the events of
a certain type, which are published in a certain topic. When the microservice
simulates the behavior of a workflow stakeholder, it is responsible for listening for a

1\unskip\penalty\@M\vrulewidth\z@height\z@depth\dp¸

78

\unskip \penalty \@M \vrule width\z@ height\z@ depth\dp

8.3. Simulating the Logistical Workflow

specific event within the workflow to publish the follow up event. The only exception
to this is one microservice, which produces the event initiating a new instance of
the workflow. This will be done every few seconds to continuously simulate the
workflow. All configuration options necessary to instantiate the microservices are
set via environmental variables within the K8s configuration objects. This list of
variables includes:

• KAFKA_CLIENT_ID: A unique name for the Kafka client.

• KAFKA_GROUP_ID: An assigned group for the Kafka client. This could be
later used, when multiple instances of one microservice share the load of one
task.

• KAFKA_BROKER: The address of the Kafka broker within the cluster, e.g.
kafka:9092

• ROLE: The String PLATFORM, FINISH_PORT, ESTONIAN_PORT,
FINISH_FACTORY, ESTONIAN_FACTORY or SHIPPING_COMPANY

• EVENT_TYPE: The type of event to handle

• SUBSCRIBE_TOPIC: The name of the topic to subscribe to (only mandatory
for platform microservices)

• SUBSCRIBE_TOPIC: The name of the topic where an event shall be pub-
lished (only mandatory for platform microservices)

The application contains different classes, which allow a stakeholders microservice to
identify the current step within a workflow based on an event to produce the event
connected to the next workflow step when it is configured to do so. All internal
processes within a company are completely ignored in this workflow simulation, so
all events will be produced immediately to drive the workflow.
The platform microservices in return are configured to listen within a specific topic
for a certain event type to forward it to another predetermined topic, while also
producing the delivery report event to the topic, where the event was initially pub-
lished.

8.3. Simulating the Logistical Workflow

As described in the previous section, multiple microservices will simulate the ex-
emplary workflow by publishing events describing the fulfillment of workflow steps,
which will then be forwarded to the topics of other stakeholders involved. Ev-
ery event described in Table 8.1 on the preceding page will be produced by one

79

8. Evaluation

Event Type Producer Subscribers
shipping.contract.initiated Finnish Company Shipping Company
shipping.contract.confirmed Shipping Company Finnish Company

Estonian Company
voyage.initiated Shipping Company Finnish Company

Estonian Company
Finnish Port
Estonian Port

voyage.docking.schedule.created Finnish Port Shipping Company
voyage.docking.schedule.created Estonian Port Shipping Company
shipping.payload.fetched Shipping Company Finnish Company

Estonian Company
vessel.docked Shipping Company Finnish Company

Estonian Company
Finnish Port

vessel.loaded Finnish Port Finnish Company
Estonian Company
Shipping Company

vessel.undocked Shipping Company Finnish Company
Estonian Company
Finnish Port

vessel.docked Shipping Company Finnish Company
Estonian Company
Estonian Port

vessel.unloaded Estonian Port Finnish Company
Estonian Company
Shipping Company

shipping.payload.delivered Shipping Company Finnish Company
Estonian Company

Table 8.1.: Events related to the exemplary workflow as implemented for the
evaluation. It contains information on who will produce the event and which
stakeholder are allowed to receive it.

80

8.4. Monitoring the Logistical Workflow

microservice acting the role of a stakeholder. The microservice producing the ship-
ping.contract.initiated-event in the topic of the Finish port authorities contains a
mechanism resulting in the event being published every seven seconds. All other
events are produced automatically, because mediators and microservices acting the
role of the platform operator and other companies are setup to process the whole
workflow. In this setup every microservice fulfills one single role, so it is only con-
cerned of the events of one type within one topic to which they will produce only
one predetermined event. The microservices simulating the behavior of the media-
tor components underline the decentralized governance approach, as they are only
responsible for atomic parts within the information flow.

As it is rather difficult to setup the prototype including a full-grown K8s cluster to
reproduce this evaluation, the enclosed DVD contains a Docker Compose file, which
can be used on every computer, which has a recent version of Docker installed. This
container composition file can be used to automatically setup and execute a smaller
version of this evaluation, which is missing the monitoring capabilities achieved
through Prometheus and Grafana. Still, this can be used to validate, that the
microservices are able to operate the workflow by communicating via Kafka events
following the Logistics Platform design. The additional tool Kafka WebView2 is also
deployed in this composition, which allows to browse through the Kafka topics within
the evaluation setup to comprehend the information flow. After the composition
was started using docker-compose up and a few minutes have passed, the tool can
be accessed through a web browser on port 8080 of the host machine. The default
login credentials for Kafka WebView are admin@example.com:admin. Figure 8.1 on
the following page shows a screenshot of the Kafka WebView containing a live stream
of all events within the Estonian factories topic.

8.4. Monitoring the Logistical Workflow

Monitoring the Logistics Platform was setup on the infrastructure and application
layer. The performance metrics of every deployment is automatically collected by
Prometheus and displayed on the Grafana dashboard. This includes information
on the system resources used by the different deployments within the K8s cluster.
Monitoring on the business and application layer requires additional metrics defined
by the developers of the microservices operated on the platform. As mentioned
in Sub-section 6.3.4 on page 65 this can be achieved through additional events in
Kafka, which a company can utilize to describe performance on these abstract layers.
Unfortunately, due to time constraints, it was not possible to develop a monitoring

2https://github.com/SourceLabOrg/kafka-webview

81

https://github.com/SourceLabOrg/kafka-webview

8. Evaluation

Figure 8.1.: The Kafka WebView streaming the events inside the Estonian fac-
tories topic. The highlighted Strings show that some events are related to the
same workflow instance.

dashboard which collects and depicts those performance metrics contained within
Kafka events.

8.5. Altering a Logistical Workflow

Altering the logistical workflow is also very simple. For example it is possible to
forward certain events to additional actors by deploying additional mediator com-
ponents. As those components are generic, they can be configured and deployed in
seconds to adapt to the altered workflow. The companies, whose events are now
published to an additional stakeholder receive automatic notifications through the
mediator components. As a mediator component will only forward one specific event
type one-way between two topics, every company involved in the platform can easily
add new components operating in their companies topic, without affecting the flow
of other events on the platform. When a new event shall be forwarded to other com-
panies, the stakeholder can contact the platform operator, who will then deploy a
new mediator service for this event type. This service is subscribed to the companies
topic and moves the concerned events to the platform internal topic. Every company
interested in those events can then also contact the platform operator to receive a
mediator service, which forwards events to their topic in agreement with the original
event producer. When access to events shall be revoked, only one mediator com-
ponent needs to be removed from the platforms K8s cluster, which automatically

82

8.6. Summary

stops information flow at this point.

8.6. Summary

In this chapter the platform prototype developed in Chapter 7 on page 69 was eval-
uated by developing and deploying components to the K8s cluster, which simulate
the exemplary workflow described in Section 4.1 on page 16. All of the microservices
performing the workflow are the same Node.js application, which can be configured
and deployed to fulfill various roles within the workflow, by including a number of
environment variables through the K8s deployment objects. As the implementa-
tion of the platform design could not be completed to all extends in the scope of
this thesis, further implementation is necessary, before all aspects might be evalu-
ated through future work. This includes monitoring capabilities on the application,
business and client software layer as well as aspects related to CI/CD.

83

9. Concluding Remarks

This thesis proved that a Logistical Platform can be used to perform shared work-
flows of companies working in the domain of transportation through inland-waterways.
Therefore, a concept for such platform was designed, implemented and evaluated.

First, the current state within the logistics domain was researched and summarized
in Chapter 1 on page 1. Chapter 2 on page 5 gave a more detailed perspective
on the current state of this business area with a focus on interoperability aspects,
highlighting the need for a shared software platform capable of operating interorga-
nizational workflows between companies. In order to create said platform, a number
of methodologies of Software Engineering were introduced and combined in Chapter
3 on page 11. Following those methodologies, scenarios for the Logistics Platform
were elaborating in Chapter 4 on page 15 including a real business case and other
perspectives on a potential platform used to operate shared logistical workflows.
Those scenarios were translated into technical requirements in Chapter 5 on page 23
manifesting their explicit and implicit contents. The architecture for the Logistics
Platform was developed in Chapter 6 on page 33 examining the suitability of differ-
ent architecture patterns, before creating the detailed design for all the components
required for the platform. Chapter 7 on page 69 followed the incremental software
development process, which was used to implement the Logistics Platform using
a prioritized list of the different aspects. The resulting prototype was evaluated
in Chapter 8 on page 77 by developing, deploying and operating microservices on
the platform, which simulate the logistical workflow described in Section 4.1 on
page 16.

9.1. Limitations

As this thesis is based on one specific business case, it remains in question, if the con-
cept for the Logistics Platform is relevant to other companies as well. The business
case provided by (Leucker, 2019) was therefore considered from a more abstract
position whenever possible in order to focus on the interorganizational interplay,
that could be transfered to other business cases as well. Furthermore, the need
for such platform was examined in Chapter 2 on page 5 by analyzing the current

85

9. Concluding Remarks

state of the business area, showing a high demand for interoperability. Still it is
necessary to evaluate the platform design and implementation by simulating other
workflows common in transportation through inland-waterways. Contemporaneous
to the work on this thesis, (Queßeleit, 2020) examined interorganizational workflows
operated at the Lübeck harbor, which could be simulated on the platform prototype
by adapting the generic microservice developed in Chapter 8 on page 77.

Due to the limited time, it was not possible to implement all parts of the platform
design. Some important aspects like CI/CD are completely missing in the proto-
type. While monitoring was enabled for some parts of the platform, metrics provided
through Kafka events can only be included to the dashboards after additional soft-
ware is introduced to the K8s cluster. are configured and deployed to the platform.
Those parts of the architecture design could therefore not be evaluated by the end
of this thesis.

9.2. Future Work

This thesis lay the base for a Logistics Platform that might be used to operate work-
flows in transportation through inland-waterways spanned across multiple compa-
nies. As the lack of interoperability is considered one of the major problems for the
logistics domain today, the concepts elaborated in this thesis could contribute to
future developments in this business area. Additional work is required to complete
the implementation of a prototype, which could be used to demonstrate the impact
of a neutral platform for workflows to real stakeholders within the domain.

Eventually funding is required to seriously push the concept of a Logistics Platform
further, as multiple companies have to be convinced to join such platform and al-
lowing it to host and operate real logistical workflows. This would require a team
of developers and operators to complete the platform implementation and making
it production ready. Another important aspect of interoperability concerns a spec-
ification for events, which standardize certain workflows and workflow steps within
the industry to enable companies to exchange information in a way that can be
interpreted correctly by every stakeholder.

86

A. Appendix

A.1. Functional Requirements for the Logistics
Platform

Req. No Description
R001 The platform must provide mechanisms allowing information ex-

change between companies participating in shared workflows.
R002 The platform must standardize workflow related information ex-

change in order to enable interoperability between companies ful-
filling similar tasks.

R003 The platform must provide mechanisms that allow a company to
limit access to information it provides to the platform.

R004 The platform should ensure that information does not breach the
limitation rules defined by a company sharing information.

R005 The platform must log all access to information shared by a com-
pany in order to detect breaches and initiate necessary counter mea-
sures.

R006 The platform must encrypt all information which is processed on
the platform.

R007 The platform should provide configuration files to setup production
like environments for teams developing software for the platform.

R008 The platform should contain a Git repository holding all configu-
ration files necessary for creating a production like environment.

R009 The platform should only allow deploying software through the
standardized deployment pipeline.

R010 The platform should run automated test suites against new version
of software operated on the platform.

R011 The platform should include all those test suites into the deploy-
ment pipeline automatically rejecting deployments that fail manda-
tory tests.

R012 The platform should ensure that no software can be deployed that
breaks the functionality of other components.

R013 The platform should allow frequent deployment of software compo-
nents.

87

A. Appendix

Req. No Description
R014 The platform should automatically integrate updates made by dif-

ferent developers and teams on a frequent basis.
R015 The platform should provide tools supporting CI.
R016 The platform should allow automated deployments of software

which passes all automated tests inside the deployment pipeline.
R017 The platform should allow automated deployments of software

when no interfaces were changed in a non backward-compatible
way.

R018 The platform should automatically perform tests which evaluate if
the interfaces of a software component were changed.

R019 A component responsible for fulfilling steps of a workflow must
provide metrics allowing the platform operator to track the progress
of all workflow instances.

R020 The component initiating a workflow must provide a unique iden-
tification code for the workflow instance.

R021 A component responsible for fulfilling steps in a workflow must
include the unique workflow instance identification code in all com-
munication related to a workflow instance.

R022 The platform operator must be provided with metrics allowing him
to track all workflow instances operated on the platform.

R023 The platform must provide tools to the platform operator that vi-
sualize the information flow between components that run a shared
workflow.

R024 The platform should provide tools that allow all actors to see who
has access to the information they share on the platform.

R025 The platform should detect abnormalities inside individual work-
flow instances.

R026 The platform should automatically inform the platform operator
about detected abnormalities.

R027 Every component on the Logistics Platform must write internal
failures to a log that can be accessed by the platform provider.

R028 Every component on the Logistics Platform should provide ad-
ditional metrics (e.g. transaction times) allowing the platform
provider to monitor the performance of the application.

R029 The platform should provide a monitoring dashboard for the plat-
form operator containing application layer metrics of all compo-
nents on the platform.

R030 The platform should provided a monitoring dashboard for every
company cooperating on the platform containing application layer
metrics of all their components on the platform.

88

A.1. Functional Requirements for the Logistics Platform

Req. No Description
R031 The monitoring dashboard should enable filtering mechanisms to

isolate certain metrics and / or components.
R032 The CPU load, RAM usage, I/O disk operations and network traf-

fic of all servers used to operate the Logistics Platform should be
monitored in order to setup efficient infrastructure.

R033 Metrics collected at infrastructure level should be accessible by the
platform operator on a central monitoring dashboard.

R034 The monitoring dashboard should allow to setup alerts related to
individual or a group of metrics.

R035 The platform should provide APIs allowing client software to feed-
back performance metrics.

R036 The platform provider should be able to access the performance
metrics provided by all client software.

R037 The performance information of client software should be accessible
by the company who owns the software.

R038 The monitoring dashboard should visualize performance metrics
provided by client software.

R039 The monitoring dashboard should provide functionalities to filter
client software performance metrics.

R040 The monitoring dashboard should allow to setup alerts concerning
the performance of client software.

R041 The platform should gather telemetry on all deployment pipelines
used by components of the Logistics Platform.

R042 The platform provider should be able to access the telemetry of all
deployment pipelines on a central dashboard.

R043 The teams developing modules for the platform should be able to
access the metrics measuring the performance and usage behavior
of their deployment pipelines.

R044 The platform provider should be able to setup alerts concerning the
performance and usage metrics of deployment pipelines.

R045 The teams developing modules for the platform should be able to
setup alerts concerning the performance and usage metrics of their
deployment pipelines.

Table A.1.: All functional requirements for the logistics platform (aggregated
from Chapter 5).

89

A. Appendix

A.2. Enclosed DVD

The enclosed DVD contains a digital copy of this thesis as well as configuration files
and instructions on how to setup the platform prototype. A smaller setup for the
evaluation can also be found on the disk. This evaluation setup relies on Docker1

which was used in version 2.2.0.4.

1https://www.docker.com

90

https://www.docker.com

List of Figures

2.1. Market shares of the different means of commercial freight transporta-
tion in the EU . 9

3.1. Combined Software Engineering methodology applied in this thesis . 13

4.1. Exemplary logistical process modeled in BPMN 19

6.1. Exemplary structure of a system following the Layered Monolith pattern 36
6.2. Relationships between components in a SOA 41
6.3. The scale cube describes three dimensions of scaling computer software 43
6.4. The flow of an exemplary event through the Logistics Platform 63

7.1. The managed Kubernetes environment hosted on the Google Cloud
Platform . 71

7.2. Testing the Kafka setup in the Kubernetes environment 72
7.3. The Grafana monitoring dashboard containing metrics collected on

the Infrastructure Layer . 74
7.4. A basic Grafana monitoring dashboard containing performance met-

rics of Kafka . 76

8.1. The Kafka WebView streaming the events inside the Estonian facto-
ries topic . 82

91

List of Tables

5.1. Requirements for information exchange between companies 24
5.2. Requirements for deployment pipelines 25
5.3. Requirements for automated testing 26
5.4. Requirements for continuous integration 26
5.5. Requirements for automated low-risk releases 27
5.6. Requirements for monitoring the business layer 28
5.7. Requirements for monitoring the application layer 29
5.8. Requirements for monitoring the infrastructure layer 30
5.9. Requirements for monitoring the client software layer 30
5.10. Requirements for monitoring the deployment pipeline layer 31

6.1. Communication patterns categorized in two dimensions 44

8.1. Events related to the exemplary workflow including their producer
and subscribers . 80

A.1. All functional requirements for the logistics platform 89

93

List of Listings

6.1. Exemplary event following the event schema for the platform 61
6.2. Schema of the delivery reporting event 62
6.3. Schema of the monitoring event . 66

7.1. Authenticating Kubernetes to a private Docker image registry. 71

95

Abbreviations

API application programming interface
BPM business process manamgement
BPMN business process model and notation
CEO chief executive officer
CRUD create read update delete
DNS domain name system
COE container orchestration engine
HTTP hyper text transport protocol
IDE integrated development environment
ILU intermodal loading units
IPC inter process communication
IT information technology
JSON javascript object notation
K8s kubernetes
UN/LOCODES united nations code for trade and transport locations
LXC linux containers
PRISE port r iver information system elbe
REST representional state transfer
RPC remote procedure call
SAAM software architecture analysis method
SOA service oriented architecture
SODA service oriented device architecture
VM virtual machine
XML extensible markup language

97

Bibliography

Abbott, M. L., & Fisher, M. T. (2015). The Art of Scalability: Scalable Web Architec-
ture, Processes, and Organizations for the Modern Enterprise (2nd). Addison-
Wesley Professional.

Adams, C. (2011). Kerberos Authentication Protocol. In H. C. A. van Tilborg &
S. Jajodia (Eds.), Encyclopedia of cryptography and security (pp. 674–675).
doi:10.1007/978-1-4419-5906-5_81

Bernstein, D. (2014). Containers and cloud: From LXC to docker to kubernetes.
IEEE Cloud Computing, 1 (3), 81–84. doi:10.1109/MCC.2014.51

Bohn, B. (2018). Docker Enterprise Edition: Jetzt auch mit Kubernetes | heise on-
line. Retrieved February 24, 2020, from https://www.heise .de/developer/
meldung/Docker-Enterprise-Edition- Jetzt- auch-mit-Kubernetes- 4026415.
html

Bradner, S. (1997). IETF RFC 2119: Key words for use in RFCs to Indicate Re-
quirement Levels. Internet Engineering Task Force (IETF).

Braun, T. (2019). EventHub Prototype (tech. rep. No. v0.4).
Bray, T. (2017). The JavaScript Object Notation (JSON) Data Interchange Format.

RFC 8259. doi:10.17487/RFC8259
Butzin, B., Golatowski, F., & Timmermann, D. (2016). Microservices approach for

the internet of things. IEEE International Conference on Emerging Technolo-
gies and Factory Automation, ETFA, 2016-Novem. doi:10.1109/ETFA.2016.
7733707

Camunda Services GmbH. (2020). Dealing with Choreography Chaos? Retrieved
February 7, 2020, from https://camunda.com/de/solutions/microservices-
orchestration/

Chandy, K. M. (2009). Event Driven Architecture. In L. LIU & M. T. ÖZSU (Eds.),
Encyclopedia of database systems (pp. 1040–1044). doi:10.1007/978-0- 387-
39940-9_570

Christensen, B. (2012). Fault Tolerance in a High Volume, Distributed System. Re-
trieved February 14, 2019, from https://netflixtechblog.com/fault-tolerance-
in-a-high-volume-distributed-system-91ab4faae74a

Chung, L., Nixon, B. A., Yu, E., & Mylopoulos, J. (2012). Non-Functional Re-
quirements in Software Engineering. International Series in Software Engi-
neering. Springer US. Retrieved from https://books.google.de/books?id=
MNrcBwAAQBAJ

99

https://dx.doi.org/10.1007/978-1-4419-5906-5_81
https://dx.doi.org/10.1109/MCC.2014.51
https://www.heise.de/developer/meldung/Docker-Enterprise-Edition-Jetzt-auch-mit-Kubernetes-4026415.html
https://www.heise.de/developer/meldung/Docker-Enterprise-Edition-Jetzt-auch-mit-Kubernetes-4026415.html
https://www.heise.de/developer/meldung/Docker-Enterprise-Edition-Jetzt-auch-mit-Kubernetes-4026415.html
https://dx.doi.org/10.17487/RFC8259
https://dx.doi.org/10.1109/ETFA.2016.7733707
https://dx.doi.org/10.1109/ETFA.2016.7733707
https://camunda.com/de/solutions/microservices-orchestration/
https://camunda.com/de/solutions/microservices-orchestration/
https://dx.doi.org/10.1007/978-0-387-39940-9_570
https://dx.doi.org/10.1007/978-0-387-39940-9_570
https://netflixtechblog.com/fault-tolerance-in-a-high-volume-distributed-system-91ab4faae74a
https://netflixtechblog.com/fault-tolerance-in-a-high-volume-distributed-system-91ab4faae74a
https://books.google.de/books?id=MNrcBwAAQBAJ
https://books.google.de/books?id=MNrcBwAAQBAJ

Bibliography

Ciupa, I., & Leitner, A. (2005). Automatic testing based on Design by Contract. In
Proceedings of net. objectdays (pp. 545–557). Retrieved from http://citeseerx.
ist .psu.edu/viewdoc/download?doi=10.1.1.83.7881%7B%5C&%7Drep=
rep1%7B%5C&%7Dtype=pdf

Cloudevents.io. (2019a). CloudEvent specification v1.0. Retrieved March 12, 2020,
from https://github.com/cloudevents/spec/blob/v1.0/spec.md

Cloudevents.io. (2019b). Kafka Protocol Binding for CloudEvents - Version 1.0.
Retrieved March 12, 2020, from https://github.com/cloudevents/spec/blob/
v1.0/kafka-protocol-binding.md

Confluent Inc. (2019). Confluent Community License FAQ. Retrieved February 24,
2020, from https://www.confluent.io/confluent-community-license-faq/

Confluent Inc. (2020). Authorization using ACLs. Retrieved March 27, 2020, from
https://docs.confluent.io/current/kafka/authorization.html

Dang, S. (2019). Personal communication.
Deutsches Institut für Normung e. V. (2011). Intermodal Loading Units.
Dobbelaere, P., & Esmaili, K. S. (2017). Kafka versus RabbitMQ: A comparative

study of two industry reference publish/subscribe implementations: Industry
Paper. In Proceedings of the 11th acm international conference on distributed
and event-based systems (pp. 227–238).

Encyclopedia.com. (2020). Shipping, Inland Waterways, Europe. Retrieved February
2, 2020, from https ://www.encyclopedia .com/history/news-wires -white-
papers-and-books/shipping-inland-waterways-europe

European Commission. (2011). White Paper: Roadmap to a Single European Trans-
port Area – Towards a competitive and resource efficient transport system.
Retrieved from https://ec.europa.eu/transport/themes/strategies/2011%
7B%5C_%7Dwhite%7B%5C_%7Dpaper%7B%5C_%7Den

European Commission. (2015). On the Digital Transport and Logistics Forum (tech.
rep. No. 1). EUROPEAN COMMISSION DIRECTORATE-GENERAL FOR
MOBILITY and TRANSPORT. doi:10.4324/9781849776110-28

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Berners-
Lee, T. (1999). RFC2616: Hypertext Transfer Protocol – HTTP/1.1. USA:
RFC Editor.

Fielding, R. T., & Taylor, R. N. (2000). Architectural Styles and the Design of
Network-Based Software Architectures (Doctoral dissertation).

Fill, H.-G. (2013). What is the fundamental difference between a workflow and
a business process in the context of process (or workflow) automation? Re-
trieved February 19, 2020, from https://www.researchgate.net/post/What%
7B%5C_%7Dis% 7B%5C_%7Dthe% 7B%5C_%7Dfundamental% 7B%
5C_%7Ddifference%7B%5C_%7Dbetween%7B%5C_%7Da%7B%5C_
%7Dworkflow%7B%5C_%7Dand%7B%5C_%7Da%7B%5C_%7Dbusiness%
7B%5C_%7Dprocess%7B%5C_%7Din%7B%5C_%7Dthe%7B%5C_

100

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.7881%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.7881%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.7881%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
https://github.com/cloudevents/spec/blob/v1.0/spec.md
https://github.com/cloudevents/spec/blob/v1.0/kafka-protocol-binding.md
https://github.com/cloudevents/spec/blob/v1.0/kafka-protocol-binding.md
https://www.confluent.io/confluent-community-license-faq/
https://docs.confluent.io/current/kafka/authorization.html
https://www.encyclopedia.com/history/news-wires-white-papers-and-books/shipping-inland-waterways-europe
https://www.encyclopedia.com/history/news-wires-white-papers-and-books/shipping-inland-waterways-europe
https://ec.europa.eu/transport/themes/strategies/2011%7B%5C_%7Dwhite%7B%5C_%7Dpaper%7B%5C_%7Den
https://ec.europa.eu/transport/themes/strategies/2011%7B%5C_%7Dwhite%7B%5C_%7Dpaper%7B%5C_%7Den
https://dx.doi.org/10.4324/9781849776110-28
https://www.researchgate.net/post/What%7B%5C_%7Dis%7B%5C_%7Dthe%7B%5C_%7Dfundamental%7B%5C_%7Ddifference%7B%5C_%7Dbetween%7B%5C_%7Da%7B%5C_%7Dworkflow%7B%5C_%7Dand%7B%5C_%7Da%7B%5C_%7Dbusiness%7B%5C_%7Dprocess%7B%5C_%7Din%7B%5C_%7Dthe%7B%5C_%7Dcontext%7B%5C_%7Dof%7B%5C_%7Dprocess%7B%5C_%7Dor%7B%5C_%7Dworkflow%7B%5C_%7Dautomation
https://www.researchgate.net/post/What%7B%5C_%7Dis%7B%5C_%7Dthe%7B%5C_%7Dfundamental%7B%5C_%7Ddifference%7B%5C_%7Dbetween%7B%5C_%7Da%7B%5C_%7Dworkflow%7B%5C_%7Dand%7B%5C_%7Da%7B%5C_%7Dbusiness%7B%5C_%7Dprocess%7B%5C_%7Din%7B%5C_%7Dthe%7B%5C_%7Dcontext%7B%5C_%7Dof%7B%5C_%7Dprocess%7B%5C_%7Dor%7B%5C_%7Dworkflow%7B%5C_%7Dautomation
https://www.researchgate.net/post/What%7B%5C_%7Dis%7B%5C_%7Dthe%7B%5C_%7Dfundamental%7B%5C_%7Ddifference%7B%5C_%7Dbetween%7B%5C_%7Da%7B%5C_%7Dworkflow%7B%5C_%7Dand%7B%5C_%7Da%7B%5C_%7Dbusiness%7B%5C_%7Dprocess%7B%5C_%7Din%7B%5C_%7Dthe%7B%5C_%7Dcontext%7B%5C_%7Dof%7B%5C_%7Dprocess%7B%5C_%7Dor%7B%5C_%7Dworkflow%7B%5C_%7Dautomation
https://www.researchgate.net/post/What%7B%5C_%7Dis%7B%5C_%7Dthe%7B%5C_%7Dfundamental%7B%5C_%7Ddifference%7B%5C_%7Dbetween%7B%5C_%7Da%7B%5C_%7Dworkflow%7B%5C_%7Dand%7B%5C_%7Da%7B%5C_%7Dbusiness%7B%5C_%7Dprocess%7B%5C_%7Din%7B%5C_%7Dthe%7B%5C_%7Dcontext%7B%5C_%7Dof%7B%5C_%7Dprocess%7B%5C_%7Dor%7B%5C_%7Dworkflow%7B%5C_%7Dautomation
https://www.researchgate.net/post/What%7B%5C_%7Dis%7B%5C_%7Dthe%7B%5C_%7Dfundamental%7B%5C_%7Ddifference%7B%5C_%7Dbetween%7B%5C_%7Da%7B%5C_%7Dworkflow%7B%5C_%7Dand%7B%5C_%7Da%7B%5C_%7Dbusiness%7B%5C_%7Dprocess%7B%5C_%7Din%7B%5C_%7Dthe%7B%5C_%7Dcontext%7B%5C_%7Dof%7B%5C_%7Dprocess%7B%5C_%7Dor%7B%5C_%7Dworkflow%7B%5C_%7Dautomation
https://www.researchgate.net/post/What%7B%5C_%7Dis%7B%5C_%7Dthe%7B%5C_%7Dfundamental%7B%5C_%7Ddifference%7B%5C_%7Dbetween%7B%5C_%7Da%7B%5C_%7Dworkflow%7B%5C_%7Dand%7B%5C_%7Da%7B%5C_%7Dbusiness%7B%5C_%7Dprocess%7B%5C_%7Din%7B%5C_%7Dthe%7B%5C_%7Dcontext%7B%5C_%7Dof%7B%5C_%7Dprocess%7B%5C_%7Dor%7B%5C_%7Dworkflow%7B%5C_%7Dautomation

Bibliography

%7Dcontext%7B%5C_%7Dof%7B%5C_%7Dprocess%7B%5C_%7Dor%
7B%5C_%7Dworkflow%7B%5C_%7Dautomation

Fowler, M. (2014). CircuitBreaker. Retrieved February 14, 2020, from https : / /
martinfowler.com/bliki/CircuitBreaker.html

Hafen Hamburg Marketing e.V. (2014). PRISE optimiert Zu- und Ablaufsteuerung
von Großschiffen auf der Elbe und im Hamburger Hafen. Retrieved April 22,
2020, from https://www.hafen-hamburg.de/de/news/prise-optimiert-zu-und-
ablaufsteuerung-von-grossschiffen-auf-der-elbe-und-im-hamburger-hafen---
30987

Hafen Hamburg Marketing e.V. (2020). Universalhafen Hamburg. Retrieved April
22, 2020, from https://www.hafen-hamburg.de/de/universalhafen-hamburg

Hapner, M., Burridge, R., Sharma, R., Fialli, J., Stout, K., & Deaki, N. (2015). Java
Message Service. Sub Microsystems & Oracle, Sun Microsystems & Oracle.
Retrieved from https://download.oracle.com/otndocs/jcp/jms-2%7B%5C_
%7D0%7B%5C_%7Drev%7B%5C_%7Da-mrel-eval-spec/index.html

Hermes. (2019). Optimierungsbedarf in der Supply Chain. Retrieved from https://
www.hermes-supply-chain-blog.com/wp-content/uploads/2019/04/hermes-
barometer-10.pdf

International Organization for Standardization. (2014). ISO/IEC 19464:2014 Ad-
vanced Message Queuing Protocol (AMQP) (1.0). International Organization
for Standardization. Retrieved from https://www.iso.org/standard/64955.
html

Ionescu, R.-V. (2016). Inland Waterways’ Importance for the European Economy.
Case Study: Romanian Inland Waterways Transport. Journal of Danubian
Studies and Research, ISSN: 2392 – 8050, Volume 6, pp. 180–192.

Jablonski, S. (1995). On the Complementarity of Workflow Management and Busi-
ness Process Modeling. SIGOIS Bull. 16 (1), 33–38. doi:10.1145/209891.209899

Jana, D. (2006). Service Oriented Architecture – A New Paradigm. CSI Communi-
cations.

Karagiannis, D., Junginger, S., & Strobl, R. (1996). Introduction to Business Pro-
cess Management Systems Concepts. In B. Scholz-Reiter & E. Stickel (Eds.),
Business process modelling (pp. 81–106). Berlin, Heidelberg: Springer Berlin
Heidelberg.

Kasparick, M., Schmitz, M., Andersen, B., Rockstroh, M., Franke, S., Schlichting,
S., . . . Timmermann, D. (2018). OR.NET: a service-oriented architecture for
safe and dynamic medical device interoperability. doi:10.1515/bmt-2017-0020

Kazman, R., Abowd, G., Bass, L., & Clements, P. (1996). Scenario-based analysis
of software architecture. IEEE Software, 13 (6), 47–55. doi:10.1109/52.542294

Al-Khanjari, Z., Alkindi, Z., Al-Kindi, I., & Kraiem, N. (2015). Developing Edu-
cational Mobile Application Architecture using SOA. International Journal
of Multimedia and Ubiquitous Engineering, 10, 247–254. doi:10.14257/ijmue.
2015.10.9.25

101

https://www.researchgate.net/post/What%7B%5C_%7Dis%7B%5C_%7Dthe%7B%5C_%7Dfundamental%7B%5C_%7Ddifference%7B%5C_%7Dbetween%7B%5C_%7Da%7B%5C_%7Dworkflow%7B%5C_%7Dand%7B%5C_%7Da%7B%5C_%7Dbusiness%7B%5C_%7Dprocess%7B%5C_%7Din%7B%5C_%7Dthe%7B%5C_%7Dcontext%7B%5C_%7Dof%7B%5C_%7Dprocess%7B%5C_%7Dor%7B%5C_%7Dworkflow%7B%5C_%7Dautomation
https://www.researchgate.net/post/What%7B%5C_%7Dis%7B%5C_%7Dthe%7B%5C_%7Dfundamental%7B%5C_%7Ddifference%7B%5C_%7Dbetween%7B%5C_%7Da%7B%5C_%7Dworkflow%7B%5C_%7Dand%7B%5C_%7Da%7B%5C_%7Dbusiness%7B%5C_%7Dprocess%7B%5C_%7Din%7B%5C_%7Dthe%7B%5C_%7Dcontext%7B%5C_%7Dof%7B%5C_%7Dprocess%7B%5C_%7Dor%7B%5C_%7Dworkflow%7B%5C_%7Dautomation
https://www.researchgate.net/post/What%7B%5C_%7Dis%7B%5C_%7Dthe%7B%5C_%7Dfundamental%7B%5C_%7Ddifference%7B%5C_%7Dbetween%7B%5C_%7Da%7B%5C_%7Dworkflow%7B%5C_%7Dand%7B%5C_%7Da%7B%5C_%7Dbusiness%7B%5C_%7Dprocess%7B%5C_%7Din%7B%5C_%7Dthe%7B%5C_%7Dcontext%7B%5C_%7Dof%7B%5C_%7Dprocess%7B%5C_%7Dor%7B%5C_%7Dworkflow%7B%5C_%7Dautomation
https://martinfowler.com/bliki/CircuitBreaker.html
https://martinfowler.com/bliki/CircuitBreaker.html
https://www.hafen-hamburg.de/de/news/prise-optimiert-zu-und-ablaufsteuerung-von-grossschiffen-auf-der-elbe-und-im-hamburger-hafen---30987
https://www.hafen-hamburg.de/de/news/prise-optimiert-zu-und-ablaufsteuerung-von-grossschiffen-auf-der-elbe-und-im-hamburger-hafen---30987
https://www.hafen-hamburg.de/de/news/prise-optimiert-zu-und-ablaufsteuerung-von-grossschiffen-auf-der-elbe-und-im-hamburger-hafen---30987
https://www.hafen-hamburg.de/de/universalhafen-hamburg
https://download.oracle.com/otndocs/jcp/jms-2%7B%5C_%7D0%7B%5C_%7Drev%7B%5C_%7Da-mrel-eval-spec/index.html
https://download.oracle.com/otndocs/jcp/jms-2%7B%5C_%7D0%7B%5C_%7Drev%7B%5C_%7Da-mrel-eval-spec/index.html
https://www.hermes-supply-chain-blog.com/wp-content/uploads/2019/04/hermes-barometer-10.pdf
https://www.hermes-supply-chain-blog.com/wp-content/uploads/2019/04/hermes-barometer-10.pdf
https://www.hermes-supply-chain-blog.com/wp-content/uploads/2019/04/hermes-barometer-10.pdf
https://www.iso.org/standard/64955.html
https://www.iso.org/standard/64955.html
https://dx.doi.org/10.1145/209891.209899
https://dx.doi.org/10.1515/bmt-2017-0020
https://dx.doi.org/10.1109/52.542294
https://dx.doi.org/10.14257/ijmue.2015.10.9.25
https://dx.doi.org/10.14257/ijmue.2015.10.9.25

Bibliography

Kim, G., Debois, P., Willis, J., & Humble, J. (2016). The DevOps Handbook: How
to Create World-Class Agility, Reliability, and Security in Technology Organi-
zations. IT Revolution Press.

Klyne, G., Clearswift Corporation, Newman, C., & Microsystems, S. (2002). RFC
3339: Date and Time on the Internet: Timestamps. IETF.

Kotonya, G., & Sommerville, I. (1998). Requirements Engineering: Processes and
Techniques (1st). Wiley Publishing.

Kubernetes.io. (2020a). Cluster Networking. Retrieved March 27, 2020, from https:
//kubernetes.io/docs/concepts/cluster-administration/networking/

Kubernetes.io. (2020b). Kubernetes Documentation. Retrieved March 27, 2020, from
https://kubernetes.io/docs/

Larman, C., & Basili, V. R. (2003). Iterative and Incremental Development: A Brief
History. Computer, 36 (06), 47–56. doi:10.1109/MC.2003.1204375

Leach, P., Microsoft, Mealling, M., Refactored Networks, L., Salz, R., & DataPower
Technology, I. (2005). RFC 4122: A Universally Unique IDentifier (UUID)
URN Namespace. IETF. Retrieved from https://tools.ietf.org/html/rfc4122

Leucker, M. (2019). Personal communication. Unpublished.
Lewis, J., & Fowler, M. (2014). Microservices. Retrieved February 17, 2020, from

https://martinfowler.com/articles/microservices.html
Maguire, E., Moreno, K. W., Moreno, H. S., Gagnon, R., McGrath, S., Millar, B.,

& Pasternak, Z. (2018). Logistics, Supply Chain and Transportation 2023:
Change at Breakneck Speed. Forbes insights. Retrieved from http://forbesinfo.
forbes .com/l/801473/2019- 09- 23/27ns/801473/8485/Penske%7B%5C_
%7DREPORT%7B%5C_%7DFINAL%7B%5C_%7DDIGITAL.pdf

McIlroy, M., Pinson, E., & Tague, B. (1987). UNIX Time-Sharing System: Foreword.
The Bell System Technical Journal, 1902–1903.

Nygard, M. T. (2017). Release It!: Design and Deploy Production-Ready Software
(Pragmatic Programmers). Pragmatic Bookshelf, The. Retrieved from https:
//www.xarg.org/ref/a/0978739213/

OASIS Committee. (2012). Reference Architecture Foundation for Service Oriented
Architecture Version 1.0. Retrieved February 18, 2020, from http://docs.oasis-
open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.html

OASIS Standard. (2019). MQTT (5th ed.) (A. Banks, E. Briggs, K. Borgendale, &
R. Gupta, Eds.). OASIS. Retrieved from https://docs.oasis-open.org/mqtt/
mqtt/v5.0/mqtt-v5.0.html

Object Management Group. (2011). Business Process Model And Notation. Re-
trieved from https://www.omg.org/spec/BPMN/2.0/

Panel, U. S. N. M. C. A., & of Naval Research, U. S. O. (1956). Symposium on
Advanced Programming Methods for Digital Computers: Washington, D.C.,
June 28, 29, 1956. ONR symposium report. Office of Naval Research, De-
partment of the Navy. Retrieved from https://books.google.de/books?id=
tLo6AQAAMAAJ

102

https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/
https://dx.doi.org/10.1109/MC.2003.1204375
https://tools.ietf.org/html/rfc4122
https://martinfowler.com/articles/microservices.html
http://forbesinfo.forbes.com/l/801473/2019-09-23/27ns/801473/8485/Penske%7B%5C_%7DREPORT%7B%5C_%7DFINAL%7B%5C_%7DDIGITAL.pdf
http://forbesinfo.forbes.com/l/801473/2019-09-23/27ns/801473/8485/Penske%7B%5C_%7DREPORT%7B%5C_%7DFINAL%7B%5C_%7DDIGITAL.pdf
http://forbesinfo.forbes.com/l/801473/2019-09-23/27ns/801473/8485/Penske%7B%5C_%7DREPORT%7B%5C_%7DFINAL%7B%5C_%7DDIGITAL.pdf
https://www.xarg.org/ref/a/0978739213/
https://www.xarg.org/ref/a/0978739213/
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.html
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://www.omg.org/spec/BPMN/2.0/
https://books.google.de/books?id=tLo6AQAAMAAJ
https://books.google.de/books?id=tLo6AQAAMAAJ

Bibliography

Parbel, M. (2018). Apache-Kafka-Unternehmen bricht mit Open-Source-Lizenzierung
| heise online. Retrieved February 24, 2020, from https : //www.heise . de/
developer/meldung/Apache-Kafka-Unternehmen-vertraut-auf-neue-eigene-
Open-Source-Lizenz-4253562.html

Philip, A., Afolabi, B., Adeniran, O., Ishaya, G., & Oluwatolani, O. (2010). Software
Architecture and Methodology as a Tool for Efficient Software Engineering
Process: A Critical Appraisal. Journal of Software Engineering and Applica-
tions, 03 (10), 933–938. doi:10.4236/jsea.2010.310110

Queßeleit, P. (2020). Recording of processes and coding recommendations for a digital
representation of the Port of Lübeck (Doctoral dissertation).

Richardson, C. (2017). Microservices Patterns. arXiv: 1 - 933988- 16 - 9. Retrieved
from http://www.ncbi.nlm.nih.gov/pubmed/20608803

Rodgers, P. (2005). Service-Oriented Development on NetKernel- Patterns, Pro-
cesses & Products to Reduce System Complexity Web Services Edge 2005
East: CS-3. In Cloudcomputingexpo, SYS-CON TV.

Schröder, H. (2020). Personal communication.
Smith, T. (2017). Are You Building Microservices or Microliths? Retrieved December

6, 2019, from https://dzone.com/articles/are-you-building-microservices-or-
microliths

Stomp.github.io. (n.d.). STOMP Protocol Specification, Version 1.2. Retrieved March
2, 2020, from http://stomp.github.io/stomp-specification-1.2.html

Stopford, B. (2018). Designing Event Driven Systems. O’Reilly Media, Inc.
Tabbaa, B. (2019). Anti-Patterns of Microservices. Retrieved December 6, 2019,

from https://itnext.io/anti-patterns-of-microservices-6e802553bd46
Tengstrand, J. (2016). The Micro Monolith Architecture. Retrieved December 6,

2019, from https://medium.com/@joakimtengstrand/the-micro-monolith-
architecture-d135d9cafbe

United Nations Economic Commission for Europe. (2019). United Nations Code for
Trade and Transport Locations - 2019-2. Retrieved February 17, 2020, from
http://www.unece.org/cefact/locode/welcome.html

Vermeulen, C. (2019). How to monitor your Kubernetes cluster with Prometheus
and Grafana. Retrieved from https : / / medium . com / @chris % 7B% 5C_
%7Dlinguine/how- to -monitor - your - kubernetes - cluster - with - prometheus -
and-grafana-2d5704187fc8

Villamizar, M., Garcés, O., Castro, H., Verano, M., Salamanca, L., & Gil, S. (2015).
Evaluating the monolithic and the microservice architecture pattern to deploy
web applications in the cloud. 10th Computing Colombian Conference, 583–
590. doi:10.1109/ColumbianCC.2015.7333476

W3C. (2008). Extensible Markup Language (XML) 1.0 (Fifth Edition). Retrieved
March 13, 2020, from https://www.w3.org/TR/xml/

Workflow Management Coalition. (2014). What is BPM? Retrieved December 3,
2019, from http://www.wfmc.org/what-is-bpm

103

https://www.heise.de/developer/meldung/Apache-Kafka-Unternehmen-vertraut-auf-neue-eigene-Open-Source-Lizenz-4253562.html
https://www.heise.de/developer/meldung/Apache-Kafka-Unternehmen-vertraut-auf-neue-eigene-Open-Source-Lizenz-4253562.html
https://www.heise.de/developer/meldung/Apache-Kafka-Unternehmen-vertraut-auf-neue-eigene-Open-Source-Lizenz-4253562.html
https://dx.doi.org/10.4236/jsea.2010.310110
https://arxiv.org/abs/1-933988-16-9
http://www.ncbi.nlm.nih.gov/pubmed/20608803
https://dzone.com/articles/are-you-building-microservices-or-microliths
https://dzone.com/articles/are-you-building-microservices-or-microliths
http://stomp.github.io/stomp-specification-1.2.html
https://itnext.io/anti-patterns-of-microservices-6e802553bd46
https://medium.com/@joakimtengstrand/the-micro-monolith-architecture-d135d9cafbe
https://medium.com/@joakimtengstrand/the-micro-monolith-architecture-d135d9cafbe
http://www.unece.org/cefact/locode/welcome.html
https://medium.com/@chris%7B%5C_%7Dlinguine/how-to-monitor-your-kubernetes-cluster-with-prometheus-and-grafana-2d5704187fc8
https://medium.com/@chris%7B%5C_%7Dlinguine/how-to-monitor-your-kubernetes-cluster-with-prometheus-and-grafana-2d5704187fc8
https://medium.com/@chris%7B%5C_%7Dlinguine/how-to-monitor-your-kubernetes-cluster-with-prometheus-and-grafana-2d5704187fc8
https://dx.doi.org/10.1109/ColumbianCC.2015.7333476
https://www.w3.org/TR/xml/
http://www.wfmc.org/what-is-bpm

	Acknowledgements
	Abstract
	Table of contents
	Introduction
	Terminology
	Goals of this Thesis
	Related Work
	Outline

	Contextual Analysis
	Transportation through Inland-Waterways
	Stakeholders
	Port Authorities
	Shipping Companies
	Commercial Customers

	Summary

	Methodology
	Software Architecture Analysis Method
	Requirements Engineering
	Incremental Software Development
	Combined Methodology

	Scenarios for the Logistics Platform
	Exemplary Logistical Process
	Controlling Access to Information
	Integrating a new Actor
	Extending an existing Workflow
	Updating an existing Component
	Summary

	Requirements Analysis
	Information Exchange Between Companies
	Deploying Components to the Platform
	Deployment Pipelines
	Automated Testing
	Continuous Integration
	Automated Low-Risk Releases

	Monitoring
	Business Level
	Application Level
	Infrastructure Level
	Client Software Level
	Deployment Pipeline Level

	Summary

	Designing the Logistics Platform
	Comparing Architecture Patterns
	Monolith
	Service-Oriented Architecture
	Microservice Architecture
	Event-Driven Architecture
	Conclusion

	Platform Architecture Overview
	Designing the Software Platform
	Choosing a Container Orchestration Engine
	Choosing an Event Bus
	Designing the Event Structure
	Choosing a Monitoring System
	Choosing a Continuous Integration System

	Summary

	Implementation of the Platform Design
	Setting Up Kubernetes
	Setting Up Kafka
	Setting Up the Monitoring System
	Monitoring the Infrastructure Layer
	Monitoring Kafka
	Monitoring Other Layers

	Summary

	Evaluation
	Evaluation Goals
	Setting Up the Evaluation
	Simulating the Logistical Workflow
	Monitoring the Logistical Workflow
	Altering a Logistical Workflow
	Summary

	Concluding Remarks
	Limitations
	Future Work

	Appendix
	Functional Requirements for the Logistics Platform
	Enclosed DVD

	List of figures
	List of tables
	List of listings
	Abbreviations
	Literature

